# UCLA UCLA Electronic Theses and Dissertations

## Title

Biochemical Alterations in the Extracellular Matrix in a Murine Model of Duchenne Muscular Dystrophy

**Permalink** https://escholarship.org/uc/item/6zs5m60x

Author Chin, Jesse Wei-lun

# Publication Date

2017

Peer reviewed|Thesis/dissertation

## UNIVERSITY OF CALIFORNIA

Los Angeles

Biochemical Alterations in the Extracellular Matrix in a Murine Model of Duchenne Muscular Dystrophy

A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Physiological Science

by

Jesse Wei-lun Chin

2017

#### ABSTRACT OF THE THESIS

Biochemical Alterations in the Extracellular Matrix in a Murine Model of Duchenne Muscular Dystrophy

by

Jesse Wei-lun Chin

Master of Science in Physiological Science University of California, Los Angeles, 2017 Professor Rachelle Hope Watson, Chair

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration due to the absence of the protein dystrophin, and the subsequent loss of the dystrophin-glycoprotein complex, resulting in inflammation, degeneration/regeneration, and a decrease in muscular strength and function. Although the extracellular matrix was previously thought only to provide structural support to resident cells, there is a growing body of evidence implicating it in cell signaling pathways that may negatively affect muscle regeneration. Despite the increasingly acknowledged importance of the matrix, there is still very little we know about how matrix composition may change in DMD. Therefore, we utilize mass spectrometry to quantify biochemical changes that occur in the extracellular matrix in a murine model of DMD. Identification of changes in the matrisome between dystrophic and normal muscle will allow for the identification of future therapeutic targets that may inform the development of successful therapies for DMD. The thesis of Jesse Wei-lun Chin is approved.

Patricia Emory Phelps James Akira Wohlschlegel Rachelle Hope Watson, Committee Chair

University of California, Los Angeles 2017

#### DEDICATION

I would like to dedicate this thesis to my parents, Hungneng Steve Chin and Chienhua Cathy Chuang. Your support and sacrifices over the past twenty-three years have allowed me to pursue my dreams. I would also like to dedicate this thesis to my girlfriend, Kimberly Hwang. Your belief in me and support in even the most stressful of situations have allowed me to accomplish tasks I never thought possible.

### TABLE OF CONTENTS

| I. Background1                                                                 |
|--------------------------------------------------------------------------------|
| II. Chapter 1: Proteomic Analysis of the ECM with Transverse Sections          |
| A. Introduction                                                                |
| B. Materials and Methods                                                       |
| C. Results                                                                     |
| D. Discussion                                                                  |
| IV. Chapter 2: Proteomic Analysis of the ECM with Fractional Decellularization |
| A. Introduction                                                                |
| B. Materials and Methods                                                       |
| C. Results                                                                     |
| D. Discussion                                                                  |
| V. Conclusion                                                                  |
| VI. References                                                                 |

### LIST OF FIGURES

Chapter 1: Proteomic Analysis of the ECM with Transverse Sections

| Figure 1.1: Schematic diagram of time series decellularization10                            |
|---------------------------------------------------------------------------------------------|
| Figure 1.2: Schematic diagram of proteomic analysis with transverse quadricep sections      |
| and SDS decellularization 11                                                                |
| Figure 1.3: Wild type and <i>mdx</i> quadricep sections decellularize at different rates 13 |
| Table 1.1: Pre- and Post-decellularization wet weights    15                                |
| Table 1.2: Identified proteins with a significant change between $mdx$ vs. wild type        |
| quadricep muscle                                                                            |
| Table 1.3: Identified matrix proteins with a significant change between $mdx$ vs. wild type |
| quadricep muscle                                                                            |
| Chapter 2: Proteomic Analysis of the ECM with Fractional Decellularization                  |
| Figure 2-1: Schematic diagram of proteomic analysis utilizing fractional                    |
| decellularization25                                                                         |
| Figure 2-2: Homogenizing normalizes decellularization progress between wild type and        |
| <i>mdx</i>                                                                                  |
| Table 2-1: Pre- and Post-decellularization wet weights    28                                |
| Figure 2-3: Compartmental protein extraction isolates different muscle fractions 30         |
| Table 2-2: Identified proteins with a significant change between $mdx$ vs. wild type        |
| quadricep muscle                                                                            |

| Table 2-3: Identified matrix proteins with a significant change between $mdx$ vs. wild type |
|---------------------------------------------------------------------------------------------|
| quadricep muscle                                                                            |
| Figure 2-4: Not all proteins are efficiently transferred to the nitrocellulose membrane.    |
|                                                                                             |
| Figure 2-5: Laminin is present in each fraction                                             |

#### ACKNOWLEDGEMENTS

I would like to thank my mentor Dr. Rachelle H. Watson for her guidance and support over the past two years. Her patience and understanding have been a large part of my success in graduate school and I could not have asked for a better mentor. She has inspired in me not only a passion for research, but also for teaching. I would also like to thank my other committee members, Dr. Patricia E. Phelps and Dr. James Wohlschlegel, for their help and influence. Thank you, Patty, for inspiring me to pursue a graduate education and your guidance before I was even a graduate student. Thank you, James, for your continuing guidance and expertise in proteomics that have advanced this project.

I would also like to thank all of the members of the Crosbie-Watson laboratory. I want to specially thank Kristen Stearns-Reider for all the sacrifices she has made helping guide me through my project. All the advice and support you have all given me have helped me finish my thesis and prepared me for medical school. In addition, I would like to thank Dr. Melissa Sondej for her advice and guidance during our preliminary mass spectrometry trials.

The methods section for how mice were obtained for the study (page 5) was prepared by Dr. Kristen Stearns-Reider for an unpublished manuscript. The protocols for C18 tip cleanup (page 8) and mass spectrometry pipelines (page 8-9) were developed by Dr. James Wohlschlegel.

This work was made possible by the following grants: UCLA CTSI #UL1TR000124, NIH NIAMS R01 #AR048179, and NIH P30 #AR057230.

#### BACKGROUND

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder that affects 1 in 5,000 boys [1]. Those affected are wheelchair reliant by their early teen years and have a life expectancy of approximately thirty years. DMD is characterized by progressive muscle degeneration due to the loss of the protein dystrophin, a part of the dystrophinglycoprotein complex (DGC). The DGC serves as an anchor between the cytoskeletal components of the muscle fiber and the surrounding extracellular matrix. The absence of dystrophin results in loss of the DGC, leading to contraction-induced damage of the sarcolemma that initially results in inflammation, followed by continuous cycles of degeneration and regeneration [2]. Over time, regenerative processes are unable to repair the chronic muscle damage, resulting in an accumulation of fat and fibrotic tissue in the muscle [2, 3]. This ultimately results in a loss of muscular strength and function. At late stages, cardiac and respiratory muscle functions are compromised [4].

Although there is currently no cure for DMD, several therapies are currently under investigation. These include gene therapies aimed at introducing a functional dystrophin gene to muscles throughout the body, as well as cell transplantations that attempt to introduce dystrophin positive cells to muscle [5]. However, these current treatments have had limited success and face several challenges. For gene therapy, the largest obstacle is determining how to package and deliver the large dystrophin gene [5]. For cellular therapies, limited myoblast migration and differentiation result only in local effects around the injection sites [5, 6].

The limited success of current therapies necessitates a broader approach to the development of treatments for DMD, including looking at factors extrinsic to the muscle cell [7]. Although the extracellular matrix was previously thought of as merely a passive structure that

only provided structural support to resident cells, there is a growing body of evidence that implicate it in cell signaling pathways. The matrix has a significant role in controlling myoblast proliferation and differentiation [8]. Decorin, a matrix proteoglycan, inhibits myostatin activity which decreases fibrosis and increases muscle fiber regeneration by increasing myocyte proliferation and differentiation [9, 10]. Furthermore, other extracellular matrix factors are known to modulate intracellular signaling pathways, such as the TGF- $\beta$  pathway that modulates cell proliferation and fibrosis [11]. Matrix components such as matrix metalloproteinase-9, integrin  $\alpha_V \beta_6$ , plasmin, and thrombospondin-1 have all been shown to activate latent TGF- $\beta$  [12-17]. Despite the prominent effects the extracellular matrix has on these signaling pathways, we still know very little about the relative abundance of these components in the dystrophic extracellular matrix.

Interestingly, several of the genetic modifiers and markers of DMD were found to be components of the extracellular matrix, such as osteopontin, latent TGF- $\beta$  binding protein 4, annexin A6, fibronectin, and lumican [18, 19]. In DMD, the increasingly fibrotic composition of the extracellular matrix is a result of chronic inflammation that leads to unregulated deposition of matrix proteins as well as the replacement of contractile muscle fibers with non-contractile tissue [2, 3]. The accumulation of matrix proteins also forms a physical barrier that may hamper accessibility to the resident cells for targeted therapies [3]. When this inflammation or fibrosis is reduced, improvements in the pathology have been observed. Inhibiting fibrinogen-driven inflammation in muscles reduced both the inflammatory process as well as muscle degeneration [20]. The inhibition of collagen synthesis by halofuginone reduced muscle fibrosis and improved dystrophic pathology [21].

2

This relationship between the matrix and its resident cells represents a dynamical and reciprocal relationship. Resident cells secrete and produce the surrounding extracellular matrix, and in turn, the matrix affects the activity of the resident cells by upregulating or downregulating their activity. These signaling cascades produced by the matrix are especially relevant in DMD. While it was previously assumed that the eventual decrease in muscle regeneration observed in DMD was a result of reduced satellite cell regeneration, it was recently shown that satellite cells from aged dystrophic muscle have the same regenerative ability as wild type satellite cells when transplanted into a wild type mouse [22]. Therefore, it is not just the loss of dystrophin and the DGC, but also the altered biochemical composition of the matrix that plays a major role in the reduced regeneration observed in DMD.

Administering ECM components has already been found to improve DMD pathology. Biglycan is a matrix proteoglycan that controls sarcolemmal integrity by regulating components of the dystrophin-associated protein complex [23]. Like dystrophic mice, biglycan deficient mice have a sarcolemma that is leaky and susceptible to damage. Administering recombinant biglycan to dystrophic mice ameliorated several pathological markers of DMD with a resultant increase in muscle strength and myofiber size, decrease in the number of centrally located nuclei and decrease in the levels of creatine kinase in the blood [24]. Another potential therapeutic ECM target is laminin, an important protein in the basement membrane of the matrix that facilitates binding of the dystroglycan complex to the extracellular matrix [25]. Laminin-111 treatment of *mdx* mice improved the pathology by increasing muscle strength, sarcolemmal integrity, and resistance to fatigue, reduced inflammation, and reduced exercise-induced damage [6, 26]. When coupled to myoblast transplantation, laminin-111 treatment improved myoblast proliferation and migration compared to myoblast transplantation alone [6]. Coupling cellular therapies to targeted changes in the biochemical composition of the matrix and its associated factors, or the matrisome [27], may then be a new treatment paradigm for DMD.

Despite the increasingly acknowledged importance of the extracellular matrix in the regulation of muscle cell activity, there is still very little we know about the matrix in terms of its composition or how it changes in DMD. While the composition of collagen in the ECM has been well documented, other areas of the matrisome are not as well understood. Understanding these changes in the matrix will provide a greater picture of the signaling pathways that are affected in DMD. Therefore, we utilize mass spectrometry to understand the biochemical changes that occur in the extracellular matrix in a murine model of DMD, with an emphasis on the glycoproteins that serve as signaling molecules in the matrix. Utilizing two separate decellularization techniques, we hope to determine and compare suitable methods to enrich for extracellular matrix proteins so that they can be adequately identified through mass spectrometry. We hypothesize that the absence of dystrophin and the DGC drives biochemical changes in the dystrophic matrix by upregulating or downregulating proteins in the matrixome. Identification of the changes in the matrixome between dystrophic and normal muscle will provide future therapeutic targets that may improve the success of current cellular therapies.

## CHAPTER 1: PROTEOMIC ANALYSIS OF THE ECM WITH TRANSVERSE SECTIONS

#### Introduction

The extracellular matrix (ECM) makes up only a small fraction of skeletal muscle. To perform biochemical analysis of the ECM, it is necessary to remove any cellular material prior to analysis to avoid any differences being masked by the presence of cellular material. This chapter described the development of protocols to: 1) isolate ECM from skeletal muscle and, 2) prepare ECM samples for proteomic analysis using mass spectrometry. Using these protocols, we will investigate changes in the biochemical properties of the ECM in *mdx* mice (murine model of DMD) relative to healthy wild-type controls.

#### **Materials and Methods**

#### Animals

Wild-type (C57BL/6J) and *mdx* male mice were purchased from Jackson Laboratories (Bar Harbor, ME, USA). Mice were maintained in the Terasaki Life Sciences Vivarium following guidelines established by the Institutional Animal Care and Use Committee at the University of California, Los Angeles (approval #2000-029-43) and approval for these studies was granted by the UCLA Animal Welfare Assurance (approval #A3196-01). All mice used in the study were 18-20 weeks old.

#### Tissue preparation

Wild type (n=3) and *mdx* mice (n=3) were euthanized by administering an overdose of isofluorane followed by cervical dislocation. The left and right quadriceps of each mouse were dissected and frozen with liquid nitrogen. Our laboratory previously determined that 30 minutes was the optimal exposure time to 1% SDS to successfully decellularize  $30\mu$ m muscle sections, as determined by the absence of cellular material and nuclear material following H&E and DAPI staining (unpublished). While this method is best for immunofluorescence analysis of matrix components, it is an inefficient preparation method for the large volume of tissue needed for proteomic analysis. In an effort to maintain uniform section thickness for decellularization, we chose to section tissue at the maximal thickness capability of our cryostat (200 µm). The quadriceps muscles were transversely sectioned into 200µm thick sections at -18°C with a Leica CM3050S Research Cryostat and stored at -80°C (Figure 1-1).

#### Time series decellularization

Decellularization was performed with 1% SDS for ninety minutes. Every ten minutes, the SDS solution was removed and saved, replaced with fresh 1% SDS, and the decellularization was allowed to continue. The SDS supernatant for each time point was spun down and the resultant pellet or gelatinous homogenate was collected and stored for analysis.

#### Confirmation of decellularization

SDS-PAGE analysis was used to detect the presence of proteins in each time fraction of

the time series decellularization. Twenty microliters from each time point were loaded with 1XLSB (loading sample buffer), containing SDS, sucrose, tris-HCl – pH7.4,  $\beta$ -mercaptoethanol, and bromophenol blue, on to a 6% SDS-PAGE gel. Gels were cast using the Mini-PROTEAN Tetra Handcast System for 1.5mm thick gels by Bio-Rad (Hercules, CA). A 30% acrylamide/bis solution, 19:1 from Bio-Rad (Hercules, CA) was used for the polyacrylamide stacking and separating gels. Bands were visualized by staining with Coomassie Blue for thirty minutes, followed by an overnight incubation in destain buffer (30% methanol, 10% glacial acetic acid). Imaging was performed with an Epson Perfection V19 scanner.

#### Determination of optimal decellularization time

Gels were stained with Coomassie Blue to detect whether bands were present in each time fraction. The most prominent band typically occurs between 35 and 55kDa and most likely corresponds to actin. The presence of bands was presumed to be predominantly cellular material being removed from the matrix and ending up in the supernatant. The optimal decellularization time was defined as the time when no bands were detected by Coomassie Blue staining.

#### Mass spectrometry

#### Tissue preparation

Four to five hundred milligrams of sectioned tissue per wild type and *mdx* sample were decellularized with 1% SDS at 50rpm for using the optimal time period as determined by the time series decellularization analysis. The samples were then rinsed in subsequent washes with

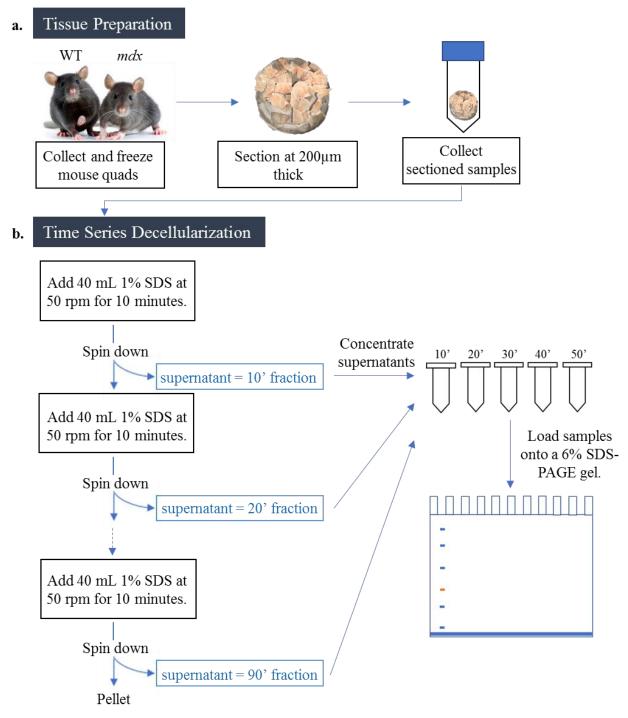
PBS, ddH<sub>2</sub>O, and finally PBS to remove any remaining cellular debris. The wet weight of the remaining insoluble pellet was measured before being frozen and stored at -80°C (Figure 1-2).

#### Enzymatic digestion

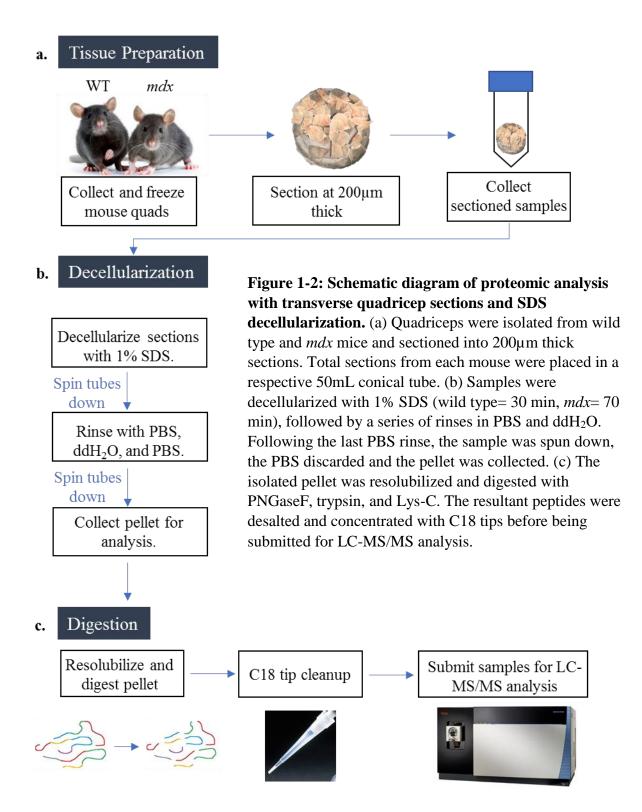
The digestion protocol utilizes an on-pellet digestion as previously described [28]. Samples were resolubilized with urea, reduced with dithiothreitol, and alkylated with iodoacetamide. Glycan residues were removed with PNGaseF from New England Biolabs (Ipswich, MA). Digestion was performed with Lys-C from Thermo Fischer Scientific (Waltham, MA) and trypsin from Thermo Fischer Scientific (Waltham, MA). The samples were spun down and the supernatant was collected for C18 tip cleanup.

#### C18 tip cleanup

Digested peptides were desalted and concentrated using Pierce C18 tips from Thermo Fisher Scientific (Waltham, MA). The C18 tips were wetted with 50% acetonitrile and equilibrated with 0.1% trifluoroacetic acid before being loaded with sample. The tips were then washed with 0.1% trifluoroacetic acid/ 5% acetonitrile and the peptides were eluted with 60% acetonitrile. The samples were speed vacuumed to near complete dryness and stored at -80°C.


#### Mass spectrometry

Samples were submitted to the UCLA Proteome Research Center (PRC) for analysis. All analysis was performed utilizing their established data analysis pipeline. In short, peptides were fractionated online with a 75 $\mu$ m inner diameter fritted fused silica capillary column with a [3-4 $\mu$ m] pulled electrospray tip packed in-house with 17cm of Luna C18(2) 3 $\mu$ m reversed phase

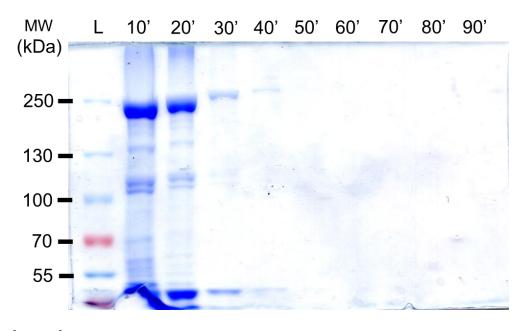

particles (Phenomonex) [29, 30]. An acetonitrile gradient was delivered through the column with the Dionex UltiMate<sup>TM</sup> 3000 ultra high pressure nanoflow liquid chromatography system (Thermo Fischer Scientific) to separate peptides via ultra-high pressure liquid chromatography. MS/MS spectra were produced with an Orbitrap Fusion Lumos (Thermo Fischer Scientific). Fragmentation spectra were searched against theoretical fragmentation spectra generated from a protein database consisting of all mouse ORFs using MS-GF+. The peptide identifications were then filtered at the peptide (q < 0.01) and protein level (q < 0.01) using decoy database-derived false discovery rates and the Percolator and Fido algorithms, respectively. Peptide-level quantitation was performed by generating MS1-level extracted ion chromatograms using the Skyline software suite and then assessing chromatogram quality using mProphet (q < 0.01). Peptide-level quantitation was further analyzed using the MSStats tool to model protein abundances and perform statistical comparisons between wild type and m*dx* samples.

Protein name, gene name, uniport ID, p-value and fold change for all proteins with a significant change of at least  $log_2 l$  between mdx vs. wild type were compiled into a table. Extracellular matrix proteins were determined through lists published by the Matrisome Project [31] and compiled into a separate table. Matrix proteins were organized into the groups: collagens, glycoproteins, proteoglycans, ECM regulators, and ECM affiliated proteins.

9



**Figure 1-1: Schematic diagram of time series decellularization.** (a) Quadriceps were isolated from wild type and *mdx* mice. Tissues were transversely sectioned ( $200\mu$ m) and placed in their respective 50mL conical tubes. (b) Samples were decellularized with 1% SDS. Every ten minutes, the tube was spun down at 3000rpm, supernatant was removed, and placed back on rotator with fresh SDS. Fractions were later concentrated and run on a 6% SDS-PAGE gel to detect whether predicted muscle proteins were present in each time fraction.




#### Results

#### Wild type and mdx sections decellularize at different rates

To determine the optimal time to decellularize wild type and *mdx* samples, we utilized a time series decellularization. Ten-minute supernatant fractions revealed different rates of decellularization between wild type and mdx (Figure 1-3). Wild type SDS rinses revealed intense bands in the ten and twenty minute fractions, with feint staining of bands in thirty and fortyminute time fractions. These are presumably cellular proteins as matrix proteins are often resistant to SDS degradation, insoluble, and therefore unable to run through the gel. A noticeable band occurring between 35 and 55kDa is most likely actin and its gradual decrease in intensity suggests the removal of these cellular contaminants. No further bands were detected after forty minutes. Mdx sections displayed strongly stained bands in the ten, twenty, and thirty-minute time fractions. Diffuse staining was found in the forty-, fifty-, and sixty-minute fractions. No further bands were detected in time fractions after sixty minutes. These time series decellularizations help validate the time needed to remove the maximum amount of cellular material while still maintaining the matrix proteins. Previous findings by our lab have noted the susceptibility of the wild type matrix to degradation by prolonged SDS treatment. On the contrary, the *mdx* matrix appears to be more resilient and requires more prolonged SDS treatment for adequate removal of cellular material. Based on our findings, and to ensure equal removal of cellular material, we selected thirty minutes as the optimal decellularization time for wild type, and seventy minutes for *mdx* samples.

a. WT



b. *mdx* 

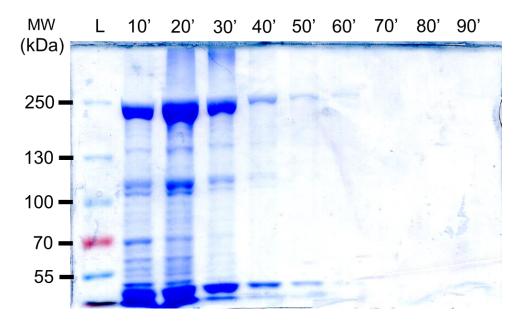



Figure 1-3: Wild type and *mdx* quadricep sections decellularize at different rates. Wild type (a) and *mdx* (b) transverse quadricep sections ( $200\mu m$ ) were decellularized with fresh 1% SDS every ten minutes for two hours. The first nine of the ten minute fractions were concentrated and analyzed through SDS-PAGE with a 6% gel and Coomassie stained. No bands were detected in the SDS washes after forty minutes for wild type and sixty minutes for *mdx*. Molecular weight markers (kDa) are indicated on the left.

#### Decellularization yield

To determine the decellularization yield, the wet weight of samples before and after decellularization was obtained (Table 1-1). While the average starting tissue weight for wild type samples was 404.6 mg, the average tissue remaining after decellularization was 25.9 mg, providing a yield of 6.4%. Due to fibrosis, *mdx* samples performed slightly better with an average pre-decellularization weight of 435.3 mg and a post- decellularization weight of 49.8 mg, for a yield of 12.0%.

#### Mass spectrometry detects significant changes in the mdx extracellular matrix

To determine the biochemical composition of the extracellular matrix, mass spectrometry was used to identify the digested peptides present in each sample. Although the samples were decellularized to remove the cellular material and enrich for matrix proteins, mass spectrometry analysis revealed that the decellularized matrix still retained many cellular proteins (Table 1-2). Most of these cellular proteins were of mitochondrial and cytoskeletal origin. Of the fifty-nine total identified proteins with a significant change between mdx vs. wild type, only twenty-five were matrisome or matrisome related proteins. These matrisome changes were from categories such as the collagens, glycoproteins, proteoglycans, regulators of the ECM, as well as ECM affiliated proteins (Table 1-3). The largest number of identified matrix changes came from the glycoproteins. While several types of collagen were identified, only collagen types I, III, and V were significantly upregulated in mdx. The only identified protein that was downregulated in mdx was EMILIN-3, a matrix glycoprotein.

| WT      | Pre-decell (mg) | Post-decell (mg) | Yield (%) |
|---------|-----------------|------------------|-----------|
| 1       | 406.4           | 28.4             | 7.0       |
| 2       | 403.9           | 15.1             | 3.7       |
| 3       | 403.4           | 34.2             | 8.5       |
| Average | 404.6           | 25.9             | 6.4       |

Table 1-1: Pre- and post-decellularization wet weights

| mdx     | Pre-decell (mg) | Post-decell (mg) | Yield (%) |
|---------|-----------------|------------------|-----------|
| 1       | 507.2           | 29.1             | 5.7       |
| 2       | 402.3           | 65.3             | 16.2      |
| 3       | 396.5           | 55.1             | 13.9      |
| Average | 435.3           | 49.8             | 12.0      |
| U       |                 |                  |           |

| <ul> <li>Dystrophin</li> <li>EMILIN-3</li> <li>Voltage-dependent anion-selective channel protein 1</li> </ul> |                                                               | Gene Name   | Uniprot LU | P-Value  | Fold Change |
|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|------------|----------|-------------|
|                                                                                                               |                                                               | DMD_MOUSE   | P11531     | 7.50E-06 | -15.36      |
| Voltage-dependent anion-select                                                                                |                                                               | EMIL3_MOUSE | P59900     | 0.01     | -12.43      |
| Complement decen acceleration                                                                                 | tive channel protein 1                                        | VDAC1_MOUSE | Q60932     | 0.04     | -3.43       |
| Comprehension accay-access and                                                                                | Complement decay-accelerating factor, GPI-anchored            | DAF1_MOUSE  | Q61475     | 0.04     | -3.32       |
| CDGSH iron-sulfur domain-containing protein 1                                                                 | ntaining protein 1                                            | CISD1_MOUSE | Q91WS0     | 0.04     | -3.05       |
| NADH dehydrogenase [ubiquir                                                                                   | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial | NDUV2_MOUSE | Q9D6J6     | 0.03     | -2.89       |
| Voltage-dependent anion-selective channel protein 3                                                           | tive channel protein 3                                        | VDAC3_MOUSE | Q60931     | 0.04     | -2.83       |
| Keratin, type I cuticular Ha4                                                                                 |                                                               | KRT34_MOUSE | Q9D646     | 0.02     | -2.48       |
| Mitochondrial carrier homolog 2                                                                               | 2                                                             | MTCH2_MOUSE | Q791V5     | 0.04     | -2.43       |
| NADH dehydrogenase [ubiquir                                                                                   | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 | NDUAB_MOUSE | Q9D8B4     | 0.02     | -2.43       |
| NADH dehydrogenase [ubiquit                                                                                   | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6   | NDUB6_MOUSE | Q3UIU2     | 0.04     | -2.20       |
| Myosin-8                                                                                                      |                                                               | MYH8_MOUSE  | P13542     | 0.04     | -2.19       |
| Myosin-11                                                                                                     |                                                               | MYH11_MOUSE | O08638     | 0.01     | -2.13       |
| Cytochrome b-c1 complex subunit 2, mitochondrial                                                              | unit 2, mitochondrial                                         | QCR2_MOUSE  | Q9DB77     | 0.04     | -2.10       |
| Microsomal glutathione S-transferase 3                                                                        | sferase 3                                                     | MGST3_MOUSE | Q9CPU4     | 4.69E-03 | -1.69       |
| ATP synthase subunit gamma, mitochondrial                                                                     | mitochondrial                                                 | ATPG_MOUSE  | Q91VR2     | 0.03     | -1.63       |
| Cytochrome c oxidase subunit NDUFA4                                                                           | NDUFA4                                                        | NDUA4_MOUSE | Q62425     | 0.04     | -1.52       |
| Cytochrome b-c1 complex subunit 1, mitochondrial                                                              | unit 1, mitochondrial                                         | QCR1_MOUSE  | Q9CZ13     | 0.03     | -1.46       |
| ATP synthase subunit epsilon, mitochondrial                                                                   | mitochondrial                                                 | ATP5E_MOUSE | P56382     | 0.04     | -1.30       |
| NADH-ubiquinone oxidoreductase chain 1                                                                        | tase chain 1                                                  | NUIM_MOUSE  | P03888     | 0.05     | -1.29       |
| NADH dehydrogenase [ubiquinone] 1 alpha                                                                       | none] 1 alpha subcomplex subunit 2                            | NDUA2_MOUSE | Q9CQ75     | 0.04     | -1.12       |
| Nidogen-2                                                                                                     |                                                               | NID2_MOUSE  | O88322     | 0.04     | 1.36        |
| Collagen alpha-1(I) chain                                                                                     |                                                               | CO1A1_MOUSE | P11087     | 8.85E-04 | 1.61        |
| Collagen alpha-2(V) chain                                                                                     |                                                               | CO5A2_MOUSE | Q3U962     | 0.01     | 1.76        |
| * Biglycan                                                                                                    |                                                               | PGS1_MOUSE  | P28653     | 0.04     | 1.87        |
| Electron transfer flavoprotein subunit alpha,                                                                 | ubunit alpha, mitochondrial                                   | ETFA_MOUSE  | Q99LC5     | 0.04     | 2.15        |
| Complement C4-B                                                                                               |                                                               | CO4B_MOUSE  | P01029     | 0.02     | 2.20        |
| Sushi repeat-containing protein SRPX2                                                                         | SRPX2                                                         | SRPX2_MOUSE | Q8R054     | 0.01     | 2.21        |

Table 1-2: Identified proteins with a significant change between *mdx* vs. wild type quadricep muscle

| a                                                         |                   | COLOR O |          |       |
|-----------------------------------------------------------|-------------------|---------|----------|-------|
| Clusterin                                                 | CLUS_MOUSE        | Q06890  | 0.04     | 2.39  |
| Fibrinogen gamma chain                                    | FIBG_MOUSE        | Q8VCM7  | 0.04     | 2.41  |
| Galectin-1                                                | LEG1_MOUSE        | P16045  | 0.01     | 2.43  |
| Inter-alpha-trypsin inhibitor heavy chain H2              | ITIH2_MOUSE       | Q61703  | 0.01     | 2.52  |
| Heterogeneous nuclear ribonucleoprotein K                 | HNRPK_MOUSE       | P61979  | 0.04     | 2.56  |
| Collagen alpha-1(V) chain                                 | CO5A1_MOUSE       | O88207  | 0.01     | 2.59  |
| Fibronectin                                               | FINC_MOUSE        | P11276  | 0.01     | 2.78  |
| Extracellular matrix protein 1                            | ECM1_MOUSE        | Q61508  | 0.01     | 2.93  |
| 40S ribosomal protein SA                                  | <b>RSSA_MOUSE</b> | P14206  | 0.04     | 3.17  |
| Protein kinase C and casein kinase II substrate protein 3 | PACN3_MOUSE       | Q99JB8  | 0.04     | 3.25  |
| Antithrombin-III                                          | ANT3_MOUSE        | P32261  | 0.02     | 3.31  |
| EMILIN-2                                                  | EMIL2_MOUSE       | Q8K482  | 0.02     | 3.43  |
| Kininogen-1                                               | KNG1_MOUSE        | O08677  | 0.03     | 3.70  |
| Periostin                                                 | POSTN_MOUSE       | Q62009  | 0.01     | 3.87  |
| Collagen alpha-1(III) chain                               | CO3A1_MOUSE       | P08121  | 0.01     | 3.88  |
| Hemicentin-2                                              | HMCN2_MOUSE       | A2AJ76  | 8.68E-04 | 4.14  |
| Lipoprotein lipase                                        | LIPL_MOUSE        | P11152  | 0.01     | 4.69  |
| Vitronectin                                               | VTNC_MOUSE        | P29788  | 0.01     | 4.98  |
| Eosinophil peroxidase                                     | PERE_MOUSE        | P49290  | 0.01     | 5.63  |
| Bone marrow proteoglycan                                  | PRG2_MOUSE        | Q61878  | 0.02     | 6.08  |
| Cartilage intermediate layer protein 1                    | CILP1_MOUSE       | Q66K08  | 6.42E-04 | 7.88  |
| Annexin A4                                                | ANXA4_MOUSE       | P97429  | 0.04     | 8.61  |
| Cathepsin B                                               | CATB_MOUSE        | P10605  | 0.03     | 12.27 |
| Apolipoprotein E                                          | APOE_MOUSE        | P08226  | 0.01     | 13.75 |
| Plasminogen                                               | PLMN_MOUSE        | P20918  | 0.02     | 14.04 |
| Prosaposin                                                | SAP_MOUSE         | Q61207  | 0.02     | 14.41 |
| Glia-derived nexin                                        | GDN_MOUSE         | Q07235  | 0.01     | 14.68 |
| 40S ribosomal protein S11                                 | RS11_MOUSE        | P62281  | 0.04     | 14.70 |
| Insulin-like growth factor-binding protein 7              | IBP7_MOUSE        | Q61581  | 0.02     | 15.46 |
| Cerine motease HTR A 1                                    | TTTDA1 MOLICE     | 000110  | 0.01     | C1 L1 |

| Protein                                      | Gene Name   | Uniprot ID | <b>P-Value</b> | Fold Change |
|----------------------------------------------|-------------|------------|----------------|-------------|
| Collagens                                    |             |            |                |             |
| Collagen alpha-1(I) chain                    | CO1A1_MOUSE | P11087     | 8.85E-04       | 1.61        |
| Collagen alpha-2(V) chain                    | CO5A2_MOUSE | Q3U962     | 0.01           | 1.76        |
| Collagen alpha-1(V) chain                    | CO5A1_MOUSE | O88207     | 0.01           | 2.59        |
| Collagen alpha-1(III) chain                  | CO3A1_MOUSE | P08121     | 0.01           | 3.88        |
| Glycoproteins                                |             |            |                |             |
| EMILIN-3                                     | EMIL3_MOUSE | P59900     | 0.01           | -12.43      |
| Nidogen-2                                    | NID2_MOUSE  | O88322     | 0.04           | 1.36        |
| Sushi repeat-containing protein SRPX2        | SRPX2_MOUSE | Q8R054     | 0.01           | 2.21        |
| Fibrinogen beta chain                        | FIBB_MOUSE  | Q8K0E8     | 0.04           | 2.32        |
| Fibrinogen gamma chain                       | FIBG_MOUSE  | Q8VCM7     | 0.04           | 2.41        |
| Fibronectin                                  | FINC_MOUSE  | P11276     | 0.01           | 2.78        |
| Extracellular matrix protein 1               | ECM1_MOUSE  | Q61508     | 0.01           | 2.93        |
| EMILIN-2                                     | EMIL2_MOUSE | Q8K482     | 0.02           | 3.43        |
| Periostin                                    | POSTN_MOUSE | Q62009     | 0.01           | 3.87        |
| Hemicentin-2                                 | HMCN2_MOUSE | A2AJ76     | 8.68E-04       | 4.14        |
| Vitronectin                                  | VTNC_MOUSE  | P29788     | 0.01           | 4.98        |
| Cartilage intermediate layer protein 1       | CILP1_MOUSE | Q66K08     | 6.42E-04       | 7.88        |
| Insulin-like growth factor-binding protein 7 | IBP7_MOUSE  | Q61581     | 0.02           | 15.46       |
| Proteoglycans                                |             |            |                |             |
| Biglycan                                     | PGS1_MOUSE  | P28653     | 0.04           | 1.87        |
| Bone marrow proteoglycan                     | PRG2_MOUSE  | Q61878     | 0.02           | 6.08        |
| ECM Regulators                               |             |            |                |             |
| Inter-alpha-trypsin inhibitor heavy chain H2 | ITIH2_MOUSE | Q61703     | 0.01           | 2.52        |
| Kininogen-1                                  | KNG1_MOUSE  | O08677     | 0.03           | 3.70        |
| Cathepsin B                                  | CATB_MOUSE  | P10605     | 0.03           | 12.27       |
| Plasminogen                                  | PLMN_MOUSE  | P20918     | 0.02           | 14.04       |
| Serine protease HTRA1                        | HTRA1_MOUSE | Q9R118     | 0.01           | 17.12       |
| ECM Affiliated                               |             |            |                |             |
| Annexin A4                                   | ANXA4_MOUSE | P97429     | 0.04           | 8.61        |

# Table 1-3: Identified matrix proteins with a significant change between mdx vs. wild type quadricep muscle

#### Discussion

Through proteomics, many previously established matrisome changes were identified. These include the upregulation of collagen types I, III, V, periostin, and fibronectin in the *mdx* matrix [32-35]. While the increased abundance of these proteins has been well described, many less well known protein changes were also captured. Emilin-3 was the only matrisome component that was significantly downregulated in *mdx* mice. This matrix glycoprotein inhibits TGF- $\beta$  signaling [36]. The TGF- $\beta$  signaling pathway is involved in inflammation and is normally upregulated in response to skeletal muscle damage [37]. Therefore, downregulation of EMILIN-3 in the *mdx* matrix would relieve the inhibition on the TGF- $\beta$ 1 upregulation also reduces the regenerative capacity of satellite cells by inhibiting their proliferation and differentiation [38]. Therefore, the observed downregulation of EMILIN-3 in *mdx* mice may play a role in DMD pathology.

There were also several proteins identified that have not been well described in the context of skeletal muscle. Extracellular matrix protein 1 (ECM1) is a matrix glycoprotein that binds to perlecan, a heperan sulfate proteoglycan that is an important component of the basement membrane through its role in cell proliferation and adhesion [39]. In skin, it is hypothesized that ECM1 acts as a "biological glue" that may interact with various growth factors and regulate the basement membrane [40, 41]. Mutations in ECM1 result in a disease known as lipoid proteinosis [40]. Of the many pathological features, notable ones include thickening of the basement membrane as well as easily damaged skin that leads to scarring [42]. It is hypothesized that the absence of ECM1 alters regulatory pathways that ultimately result in the overexpression of collagen type IV [42]. While we did not capture a change in collagen type IV in the current

analysis, it would be interesting to see whether the overexpression of ECM1 in *mdx* also results in reduced expression of collagen type IV in the dystrophic matrix. Whether this can be translated to the susceptibility of the sarcolemma to contraction-induced damage and resultant muscle fibrosis observed in DMD remains to be seen.

Insulin-like growth factor binding protein-7 (IGFBP-7) is another matrix glycoprotein that is significantly upregulated in the *mdx* matrix. It belongs to the larger IGFBP family that binds to insulin-like growth factors (IGF) and modulates various signaling pathways by regulating IGF activity [43-45]. While IGFBP-7 is known to be secreted by myoblasts, its exact role in skeletal muscle is poorly understood. In breast cancer cells, IGFBP-7 inhibited IGF-1 signaling and resulted in cellular apoptosis [46]. IGF-1 is especially relevant in the context of skeletal muscle as it is a major constituent of the IGF-1/AKT pathway that is involved with muscle growth [47]. If there is a similar mechanism in skeletal muscle, it may be possible that the significantly upregulated levels of IGFBP-7 in the *mdx* matrix also inhibits IGF-1 signaling and induces apoptosis of myocytes. Blocking IGFBP-7 expression may therefore be a potential therapeutic target for DMD.

The role of hemicentin-2 in vertebrate skeletal muscle remains poorly understood. Hemicentin-2 is a glycoprotein that is part of the fibulin family [48]. In C. elegans and zebrafish, hemicentin is capable of binding to perlecan in the basement membrane and may therefore be involved in the adhesion of the basement membranes between tissues [48, 49]. However, the cause of the significant upregulation of hemicentin-2 in *mdx* is not as readily apparent.

Although our initial screen of matrisome changes agrees with the previous literature, only twenty-five significant matrix changes were identified. This is a small fraction of the hundreds of proteins that exist in the extracellular matrix. Furthermore, the absence of laminin, perlecan, and type IV collagen, major components of the basement membrane, asks the question of whether or not our protocol is sufficiently isolating and detecting matrix components [28]. Another challenge with the decellularization protocol is the drastically different decellularization times needed for wild type and *mdx* samples. It is plausible that the increased fibrosis observed in *mdx* samples may be hindering not only the removal of cellular material out of the matrix, but also the accessibility of the matrix to the digestive enzymes needed for mass spectrometry analysis and subsequent protein identification. Future sample preparations should involve a more rigorous disruption of the muscle to not only normalize the decellularization times between *mdx* and wild type, but also ensure that the proteins can be easily digested for mass spectrometry analysis.

One of the biggest challenges with the current decellularization protocol is a poor decellularization yield. Wild type and *mdx* samples had an average decellularization yield of 6.4% and 12.0% respectively due to a significant loss of tissue during the rinses to remove any remaining SDS and cellular debris. Furthermore, there was irreversible binding of the sample to the sides of the tubes used for decellularization which further lowered the decellularization yield. This was more pronounced for wild type rather than *mdx* samples. In addition, the increased fibrosis present in *mdx* mice correspondingly increased the yield. While low, this yield may be somewhat realistic as the extracellular matrix occupies only 10% of skeletal muscle by volume [50]. Furthermore, while collagen is the most abundant protein in the extracellular matrix, it only contributes 1-10% to the muscle dry weight [51-53]. This agrees with our yield data for wild type and *mdx* mice. However, the significant loss of decellularized tissue during the decellularization process needs to be addressed as the eventual goal of this protocol is to analyze limited quantities of human biopsies.

# CHAPTER 2: PROTEOMIC ANALYSIS OF THE ECM WITH FRACTIONAL DECELLULARIZATION

#### Introduction

Although our previous method allowed for the successful detection of extracellular matrix proteins, very few matrisome changes were identified relative to the 274 proteins known to comprise the murine core matrisome [31]. To improve the detection of matrisome changes and to improve the removal of cellular contaminants, we utilized a fractionation based approach, allowing for isolation of specific muscle components. In addition, we explored the efficacy of homogenizing tissues to determine whether decellularization rates could be normalized between samples. We hypothesized that these protocol changes would increase the number of ECM protein changes identified through mass spectrometry.

#### **Materials and Methods**

#### Determining the effect of tissue homogenization

#### Tissue preparation

Quadricep muscles from eighteen to twenty-week-old wild type (n=1) and *mdx* mice (n=1) were obtained. For the proposed experiments, 100-200 mg of tissue was taken for each sample. Each sample was then homogenized using a chilled mortar and pestle before being stored at -80°C (Figure 2-1).

#### Time series decellularization

To assess the decellularization pattern of homogenized tissues, a time series decellularization was performed as previously described (page 6). Fractions were concentrated using Centriprep centrifugal filter units from EMD Millipore (Billerica, MA).

#### Confirmation of decellularization

The samples were then analyzed on a 7.5% SDS-PAGE gel that was cast using the SE600 Ruby Vertical Gel Unit from GE Healthcare Bio-Sciences (Pittsburgh, PA). A 7.5% separating/ 4% stacking gel was utilized to allow for improved separation of proteins on the larger gel. Fifty microliters from each time point were loaded with 1XLSB, and the gel was run overnight at 50mV. Visualization of the bands was performed as established before (page 7).

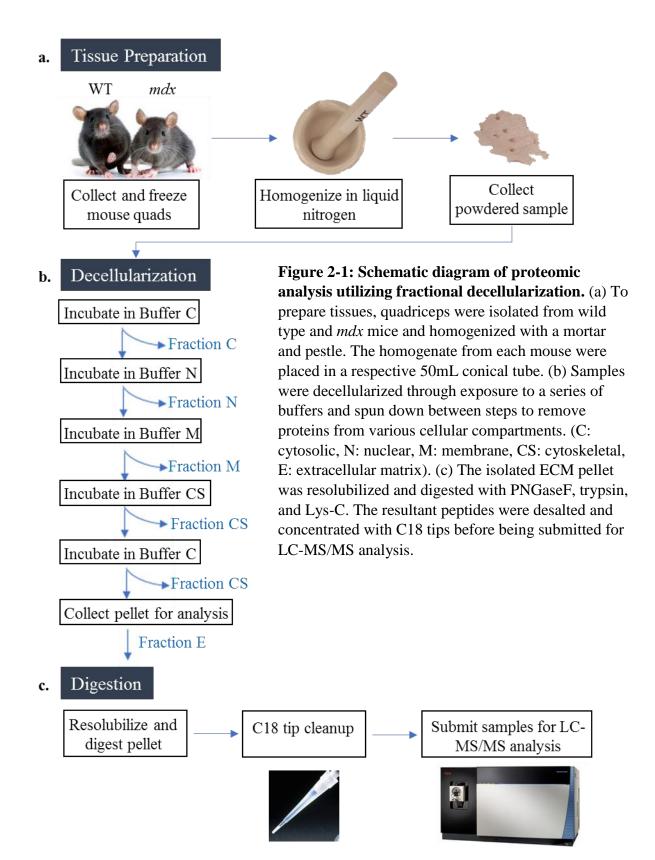
#### Mass spectrometry

#### Tissue preparation

Quadricep muscles from eighteen to twenty-week-old wild type (n=5) and *mdx* mice (n=5) were obtained. For the proposed experiments, 100-200 mg of tissue was taken for each sample. Each sample was then homogenized using a chilled mortar and pestle before being stored at -80°C (Figure 2-1).

#### Fractional decellularization

The fractional decellularization protocol performed was based on a previously described protocol by Naba et al [27]. The modified protocol utilized the compartmental protein extraction


kit from EMD Millipore (Billerica, MA). Homogenized samples were subjected to a series of buffers to extract the following fractions: (total tissue (TT), cytosolic (C), nuclear (N), membrane (M), cytoskeletal (CS), and a pellet that was enriched for the extracellular matrix (E). Ten micrograms of the pellet were removed from each sample for subsequent digestion, C18 tip cleanup, and analysis by mass spectrometry as described previously (pages 6-8).

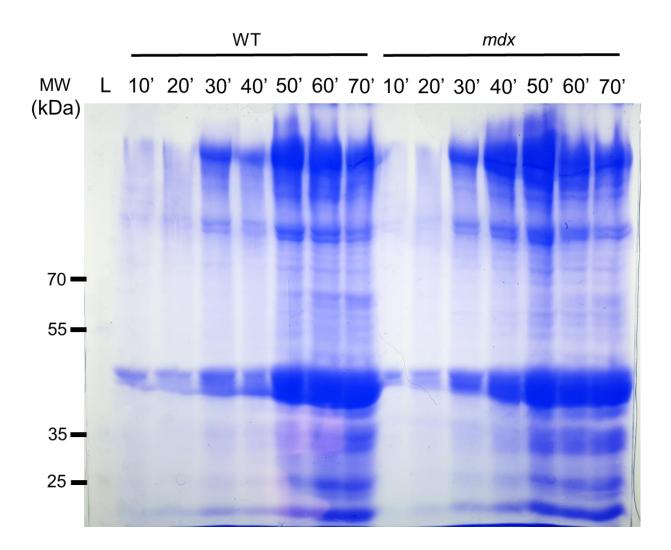
#### Confirmation of decellularization

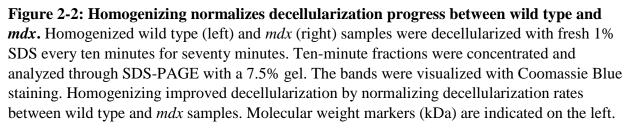
To determine whether the fractionated samples were adequately decellularized, the fractions were run on a 7.5% SDS-PAGE gel. Total tissue, cytosolic, nuclear, membrane, cytoskeletal fractions, and PBS rinses were mixed with 1x LSB containing 100mM DTT while the extracellular matrix fraction was mixed with 5x LSB containing 100mM DTT. Visualization of the bands was performed as established before (page 7).

#### Western Blotting

Proteins separated via SDS-PAGE were transferred onto nitrocellulose paper and visualized with Ponceau S staining. Following the transfer, the post-transferred SDS gel was stained with Coomassie Blue to confirm the successful transfer of proteins. Because changes in laminin in the *mdx* matrix were not detected in the previous protocol, the presence of laminin was probed to determine if there was an actual significant change between wild type and *mdx*, or if laminin was completely absent in the samples. To visualize the presence of laminin in each fraction, the nitrocellulose paper was incubated with an anti-laminin primary antibody (L9393, Sigma-Aldrich, concentration 1:1000), followed by the secondary antibody (ab6721, abcam, concentration 1:2000).




#### Results


#### Decellularization rate following homogenization

Time series decellularization of the homogenized tissue reveals that wild type and *mdx* muscles had a similar decellularization profile (Figure 2-2). Following SDS-PAGE and staining with Coomassie Blue, lightly stained bands were detected in both WT and *mdx* samples during the first twenty minutes of SDS rinses, with intense staining after fifty minutes. There is substantially more material loss at the later time points (fifty to seventy-minutes), which differs from the decellularization profile for sectioned tissues in which greater protein loss occurred during the first twenty-minutes.

#### Fractional decellularization greatly improves decellularization yield

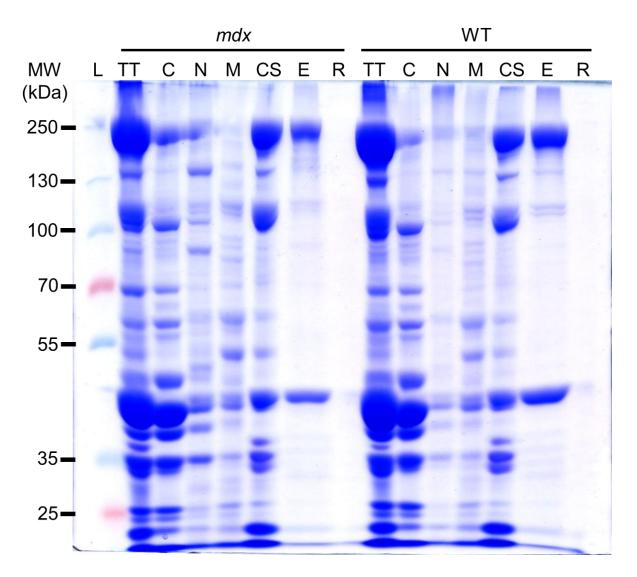
The wet weight of samples before and after decellularization is presented in Table 2-1. Wild type samples had an average pre-decellularization (total tissue fraction) weight of 124 mg and a post-decellularization (extracellular matrix fraction) weight of 82mg for a decellularization yield of 66%. *Mdx* samples had an average pre-decellularization weight of 130 mg and a postdecellularization weight of 84mg for a decellularization yield of 65%.





| WT      | Pre-decell (mg) | Post-decell (mg) | Yield (%) |
|---------|-----------------|------------------|-----------|
| 1       | 130             | 84               | 65        |
| 2       | 130             | 89               | 69        |
| 3       | 130             | 75               | 58        |
| 4       | 130             | 82               | 63        |
| 5       | 102             | 78               | 76        |
| Average | 124             | 82               | 66        |
|         |                 |                  |           |
| mdx     | Pre-decell (mg) | Post-decell (mg) | Yield (%) |
| 1       | 130             | 85               | 65        |
| 2       | 130             | 85               | 65        |
| 3       | 130             | 74               | 57        |
| 4       | 130             | 86               | 66        |
| 5       | 130             | 90               | 69        |
| 5       | 150             | 70               | 0)        |

Table 2-1: Pre- and post-decellularization wet weights


Average

### Compartmental fractionation decellularization isolates different muscle fractions

To confirm that the compartmental protein extraction kit successfully decellularized the samples, a 7.5% SDS-PAGE gel was run (Figure 2-3). Total tissue fractions (TT) revealed a large number of bands with particularly strong staining around 250 and 40 kDa. Cytosolic (C), nuclear (N), membrane (M), and cytoskeletal (CS) fractions display different band profiles, confirming that different distributions of proteins are eluted in each fraction. The extracellular matrix fraction (E) displayed only two prominent bands at 250 and 40 kDa. It was noted that only the soluble proteins were able to run through the SDS-PAGE gel. Because the extracellular matrix consists largely of insoluble proteins, a majority of these were trapped at the bottom of the well and unable to enter through the stacking and separating gels. The lack of bands in the matrix fractions suggests the removal of cellular debris through each of the earlier fractions. Furthermore, the decrease in band intensity of the 250 and 40kDa bands from the total tissue to the matrix fractions suggests an enrichment for the extracellular matrix and therefore suggests that decellularization occurred.

### Mass Spectrometry

One hundred total significant changes between *mdx* and wild type decellularized tissues were identified from mass spectrometry (Table 2-2). Of these total hits, only eleven were matrisome or matrisome-associated proteins (Table 2-3). Many of the cellular contaminants included contractile proteins such as myosin, as well as mitochondrial proteins. The largest group of identified proteins belonged to the glycoproteins. Laminin  $\beta$ 1 and  $\alpha$ 4 were significantly upregulated in the *mdx* matrix compared to wild type. Thrombospondin-4, asporin, and lumican were detected, something not observed in the previous protocol. Periostin, fibronectin, and cartilage intermediate protein 1 (CILP1) were identified as significantly upregulated in *mdx*.



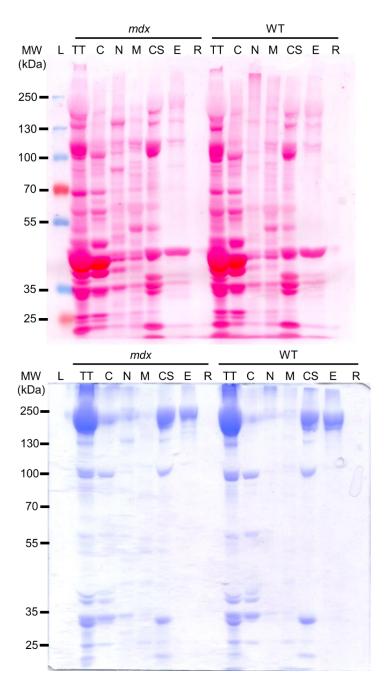
**Figure 2-3: Compartmental protein extraction isolates muscle fractions.** *Mdx* (left) and wild type (right) samples were decellularized utilizing EMD Millipore's compartmental protein extraction kit. A series of buffers were used to extract cytosolic, nuclear, membrane, cytoskeletal, and extracellular matrix proteins from the total tissue extract. Protein fractions were analyzed through SDS-PAGE with a 7.5% gel. The bands were visualized with Coomassie Brilliant Blue staining. (L: ladder, TT: total tissue, C: cytosolic, N: nuclear, M: membrane, CS: cytoskeletal, E: extracellular matrix, R: PBS rinse). Wild type and *mdx* matrix fractions both showed a vast removal of proteins from the total tissue fraction, enriching for insoluble extracellular matrix proteins that are unable to run through the gel. Molecular weight markers (kDa) are indicated on the left.

| DMD_MOUSEP11531nitochondrialBDH_MOUSE $08000$ ASB2_MOUSE $08000$ MLF1_MOUSE $08042$ PLIN4_MOUSE $09003$ SNTA1_MOUSE $09003$ SNTA1_MOUSE $09023$ PLIN4_MOUSE $09023$ SNTA1_MOUSE $09023$ Recomplex subunit 7NDUA7_MOUSENDUA7_MOUSE $09023$ Aranched-chain alpha-keto acid $0023_MOUSE$ Nanched-chain alpha-keto acid $0012_MOUSE$ Recondrial $0012_MOUSE$ Recondrial $0013_MOUSE$ Recondrial $0012_MOUSE$ Recondrial $0013_MOUSE$ Recondrial $0013_MOUSE$ Recondrial $0013_MOUSE$ Recondrial $0013_MOUSE$ Recondrial $00023_MOUSE$ Recondrial $0000SE$ Recondrial $0000SE$ Recondrial $000SE$ Recondrial $000SE$ Recondrial $090C69$ Recondrial $090C69$ Recondrial $090C69$ Recondrial $090C69$ Recondrial $090C69$ Recondrial $000SE$ Recondrial $090C69$ Recondrial $090C69$ Recondrial $000SE$ Recondrial $090C69$ <th>Protein</th> <th>Gene Name</th> <th>UNIPROT ID</th> <th><b>P-Value</b></th> <th>Fold Change</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Protein                                                                                             | Gene Name         | UNIPROT ID | <b>P-Value</b> | Fold Change |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------|------------|----------------|-------------|
| BDH_MOUSEQ80XN0ASB2_MOUSEQ8K0L0MLF1_MOUSEQ9K0V4PLIN4_MOUSEQ9CWV4PLIN4_MOUSEQ9C069MPC2_MOUSEQ9C069MPC2_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9D023NDUA7_MOUSEQ9CQ84PRVA_MOUSEP53395ACO13_MOUSEQ9C084PRVA_MOUSEQ9C084PRVA_MOUSEQ9C083OdrialSDHB_MOUSENdrialSDHB_MOUSENDUA9_MOUSEQ9DC69SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ9T43MYOZ1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MSPD1_MOUSEQ9T643MSPD1_MOUSEQ9T643MSPD1_MOUSEQ9T643MSPD1_MOUSEQ9T643MSPD1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MSPD1_MOUSEQ9T643MYOZ1_MOUSEQ9T643MSPD1_MOUSEQ9T643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dystrophin                                                                                          | DMD_MOUSE         | P11531     | 0.00           | -21.14      |
| ASB2_MOUSE Q8K0L0<br>MLF1_MOUSE Q9QWV4<br>PLIN4_MOUSE Q9QWV4<br>PLIN4_MOUSE Q9Q69<br>MPC2_MOUSE Q9D023<br>NDUA7_MOUSE Q9D023<br>NDUA7_MOUSE Q9D023<br>NDUA7_MOUSE Q921P6<br>K2C1_MOUSE Q92196<br>K2C1_MOUSE Q92196<br>RYA_MOUSE Q92196<br>P04104<br>P04104<br>P04104<br>P0415_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9C112<br>SQRD_MOUSE Q9C112<br>SQRD_MOUSE Q9C112<br>SQRD_MOUSE Q9C43<br>CAZA2_MOUSE Q9C43<br>CAZA2_MOUSE Q9C69<br>SMYP1_MOUSE Q9DC69<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_MOUSE Q9DC60<br>SMYP1_ | D-beta-hydroxybutyrate dehydrogenase, mitochondrial                                                 | BDH_MOUSE         | Q80XN0     | 0.02           | -12.18      |
| MLFI_MOUSE Q9QWV4<br>PLIN4_MOUSE 088492<br>SNTA1_MOUSE 088492<br>SNTA1_MOUSE 061234<br>QCR8_MOUSE Q9D023<br>MPC2_MOUSE Q9D023<br>NDUA7_MOUSE Q9D1P6<br>K2C1_MOUSE Q921P6<br>K2C1_MOUSE Q921P6<br>R2C1_MOUSE Q921P6<br>P014104<br>P115_MOUSE P53395<br>ACO13_MOUSE P53395<br>ACO13_MOUSE Q9CQ84<br>P2140<br>P2145_MOUSE Q9CQ83<br>CAZA2_MOUSE Q9C43<br>CAZA2_MOUSE Q9C69<br>SMYD1_MOUSE Q9DC69<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MOUSE Q9DC60<br>SMYD1_MO    | Ankyrin repeat and SOCS box protein 2                                                               | ASB2_MOUSE        | Q8K0L0     | 0.02           | -11.04      |
| PLIN4_MOUSE088492SNTA1_MOUSE061234SNTA1_MOUSEQ61234QCR8_MOUSEQ9D023MPC2_MOUSEQ9D023NDUA7_MOUSEQ9Z1P6K2C1_MOUSEP04104P2C013_MOUSEP053395AC013_MOUSEP53395AC013_MOUSEP32848PDL15_MOUSEQ9CQR4PRVA_MOUSEQ9CQR4PRVA_MOUSEQ9CQR4PRVA_MOUSEQ9CQ83CAZA2_MOUSEQ9CQ33CAZA2_MOUSEQ9CQ93MdrialSDHB_MOUSEQ9CQ63SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ91K37MSPD1_MOUSEQ91K37KCC2A_MOUSEQ91K37MSPD1_MOUSEQ91K37MSPD1_MOUSEQ91K37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Myeloid leukemia factor 1                                                                           | MLF1_MOUSE        | Q9QWV4     | 0.02           | -7.83       |
| SNTAL_MOUSE Q61234<br>QCR8_MOUSE Q9CQ69<br>MPC2_MOUSE Q9D023<br>NDUA7_MOUSE Q9D023<br>NDUA7_MOUSE Q921P6<br>K2CL_MOUSE Q921P6<br>R2CL_MOUSE Q921P6<br>P223395<br>ACO13_MOUSE P53395<br>ACO13_MOUSE P53395<br>ACO13_MOUSE Q9CQ44<br>PRVA_MOUSE Q9CQ43<br>PPLL5_MOUSE Q64521<br>SQRD_MOUSE Q64521<br>SQRD_MOUSE Q64521<br>SQRD_MOUSE Q9743<br>MYPC2_MOUSE Q9743<br>MYPC2_MOUSE Q91C69<br>SMYD1_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37<br>KCC2A_MOUSE Q91K37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perilipin-4                                                                                         | PLIN4_MOUSE       | O88492     | 0.03           | -6.67       |
| QCR8_MOUSE     Q9CQ69       MPC2_MOUSE     Q9D023       NDUA7_MOUSE     Q9D023       NDUA7_MOUSE     Q9D104       KZC1_MOUSE     P04104       PRVA_MOUSE     P53395       AC013_MOUSE     P53395       AC013_MOUSE     P53395       AC013_MOUSE     P53395       PRVA_MOUSE     Q9CQR4       PRVA_MOUSE     Q9CQR4       PRVA_MOUSE     Q9CQR4       PDLI5_MOUSE     Q64521       SQRD_MOUSE     Q64521       SQRD_MOUSE     Q64521       SQRD_MOUSE     Q9CQA3       CAZA2_MOUSE     Q9CQA3       MYPC2_MOUSE     Q9CG93       SDHB_MOUSE     Q9T112       SQRD_MOUSE     Q9T754       MYPC2_MOUSE     Q9T63       MYPC2_MOUSE     Q9T63       SMYP1_MOUSE     Q9T63       SMYD1_MOUSE     Q9T63       MYOZ1_MOUSE     Q9T63       MYOZ1_MOUSE     Q9T63       MSPD1 MOUSE     Q9T63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alpha-1-syntrophin                                                                                  | SNTA1_MOUSE       | Q61234     | 0.02           | -6.07       |
| MPC2_MOUSE Q9D023<br>NDUA7_MOUSE Q9D023<br>NDUA7_MOUSE Q9ZIP6<br>K2C1_MOUSE P53395<br>AC013_MOUSE P53395<br>AC013_MOUSE Q9CQR4<br>PRVA_MOUSE Q9CQR4<br>PRVA_MOUSE Q64521<br>GPDM_MOUSE Q64521<br>SQRD_MOUSE Q64521<br>SQRD_MOUSE Q97112<br>CAZA2_MOUSE Q97112<br>MYPC2_MOUSE Q9743<br>CAZA2_MOUSE Q9743<br>MYPC2_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cytochrome b-c1 complex subunit 8                                                                   | QCR8_MOUSE        | Q9CQ69     | 0.03           | -4.74       |
| NDUA7_MOUSEQ9ZIP6K2C1_MOUSEP04104V2C1_MOUSEP53395ACO13_MOUSEP53395ACO13_MOUSEP32848PDLI5_MOUSEQ9CQR4PDLI5_MOUSEQ9CQR4PDLI5_MOUSEQ8C151GPDM_MOUSEQ64521SQRD_MOUSEQ9CQA3CAZA2_MOUSEQ9CQA3CAZA2_MOUSEQ9CQ33NDUA9_MOUSEQ9CG93SMYD1_MOUSEQ9DC69SMYD1_MOUSEQ9JK37KCC2A_MOUSEQ9JK37MSPD1_MOUSEQ8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mitochondrial pyruvate carrier 2                                                                    | MPC2_MOUSE        | Q9D023     | 0.00           | -4.29       |
| acid K2CL_MOUSE P04104<br>acid ODB2_MOUSE P53395<br>ACO13_MOUSE P53395<br>ACO13_MOUSE Q9CQR4<br>PRVA_MOUSE Q8C151<br>GPDM_MOUSE Q64521<br>SQRD_MOUSE Q9R112<br>SQRD_MOUSE Q9R112<br>Ddrial SDHB_MOUSE Q9R112<br>CAZA2_MOUSE Q9CG9<br>MYPC2_MOUSE Q9DC69<br>SMYD1_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>MSPD1_MOUSE Q8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit                                          | NDUA7_MOUSE       | Q9Z1P6     | 0.01           | -3.59       |
| o acid<br>ODB2_MOUSE P53395<br>ACO13_MOUSE P53395<br>ACO13_MOUSE Q9CQR4<br>PRVA_MOUSE Q9CQF1<br>GPDM_MOUSE Q64521<br>SQRD_MOUSE Q9R112<br>CAZA2_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9CG9<br>SMYD1_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>MSPD1_MOUSE Q8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Keratin, type II cytoskeletal 1                                                                     | K2C1_MOUSE        | P04104     | 0.01           | -3.24       |
| ACO13_MOUSE Q9CQR4<br>PRVA_MOUSE P32848<br>PDL15_MOUSE Q8C151<br>GPDM_MOUSE Q8C151<br>SQRD_MOUSE Q64521<br>SQRD_MOUSE Q9R112<br>CAZA2_MOUSE Q9R112<br>MYPC2_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9DC69<br>SMYD1_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>MSPD1_MOUSE Q8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lipoamide acyltransferase component of branched-chain alpha-ke dehydrogenase complex, mitochondrial |                   | P53395     | 0.01           | -3.12       |
| PRVA_MOUSEP32848PDLI5_MOUSEQ8CI51GPDM_MOUSEQ64521GPDM_MOUSEQ64521SQRD_MOUSEQ9R112SQRD_MOUSEQ97112MYPC2_MOUSEQ9CQA3CAZA2_MOUSEQ9CQA3MYPC2_MOUSEQ97KE0NDUA9_MOUSEQ97K37MYOZ1_MOUSEQ9JK37KCC2A_MOUSEQ9JK37MSPD1_MOUSE08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acyl-coenzyme A thioesterase 13                                                                     | AC013_MOUSE       | Q9CQR4     | 0.03           | -2.07       |
| PDLI5_MOUSE Q8CI51<br>GPDM_MOUSE Q64521<br>SQRD_MOUSE Q9R112<br>SQRD_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9CQA3<br>CAZA2_MOUSE Q9CQA3<br>MYPC2_MOUSE Q9DC69<br>SMYD1_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>MSPD1_MOUSE Q8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parvalbumin alpha                                                                                   | <b>PRVA_MOUSE</b> | P32848     | 0.01           | -2.00       |
| GPDM_MOUSEQ64521SQRD_MOUSEQ9R112SQRD_MOUSEQ9R112CAZA2_MOUSEQ9CQA3CAZA2_MOUSEP47754MYPC2_MOUSEQ9CC63NDUA9_MOUSEQ9DC69SMYD1_MOUSEP97443MYOZ1_MOUSEQ9JK37KCC2A_MOUSEQ9JK37MSPD1_MOUSEO8VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PDZ and LIM domain protein 5                                                                        | PDL15_MOUSE       | Q8CI51     | 0.02           | -1.95       |
| SQRD_MOUSEQ9R112ndrialSDHB_MOUSEQ9CQA3CAZA2_MOUSEP47754MYPC2_MOUSEQ5XKE0MYPC2_MOUSEQ9DC69SMYD1_MOUSEP97443MYOZ1_MOUSEQ9JK37KCC2A_MOUSEQ9JK37MSPD1_MOUSE08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glycerol-3-phosphate dehydrogenase, mitochondrial                                                   | GPDM_MOUSE        | Q64521     | 0.01           | -1.65       |
| ndrial SDHB_MOUSE Q9CQA3<br>CAZA2_MOUSE P47754<br>MYPC2_MOUSE P47754<br>MYPC2_MOUSE Q5XKE0<br>SMYD1_MOUSE P97443<br>MYOZ1_MOUSE Q9JK37<br>KCC2A_MOUSE Q1K37<br>MSPD1_MOUSE 08VEL0<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sulfide: quinone oxidoreductase, mitochondrial                                                      | SQRD_MOUSE        | Q9R112     | 0.00           | -1.58       |
| CAZA2_MOUSE P47754<br>MYPC2_MOUSE Q5XKE0<br>NDUA9_MOUSE Q9DC69<br>SMYD1_MOUSE P97443<br>MYOZ1_MOUSE Q9JK37<br>KCC2A_MOUSE Q9JK37<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitoch                                    |                   | Q9CQA3     | 0.01           | -1.52       |
| MYPC2_MOUSE Q5XKE0<br>NDUA9_MOUSE Q9DC69<br>SMYD1_MOUSE P97443<br>MYOZ1_MOUSE Q9JK37<br>KCC2A_MOUSE P11798<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F-actin-capping protein subunit alpha-2                                                             | CAZA2_MOUSE       | P47754     | 0.00           | -1.47       |
| NDUA9_MOUSE Q9DC69<br>SMYD1_MOUSE P97443<br>MY0Z1_MOUSE Q9JK37<br>KCC2A_MOUSE P11798<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Myosin-binding protein C, fast-type                                                                 | MYPC2_MOUSE       | Q5XKE0     | 0.00           | -1.37       |
| SMYD1_MOUSE P97443<br>MYOZ1_MOUSE Q9JK37<br>type II subunit alpha KCC2A_MOUSE P11798<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit mitochondrial                            |                   | Q9DC69     | 0.00           | -1.28       |
| MYOZ1_MOUSE Q9JK37<br>type II subunit alpha KCC2A_MOUSE P11798<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Histone-lysine N-methyltransferase Smyd1                                                            | SMYD1_MOUSE       | P97443     | 0.00           | -1.24       |
| type II subunit alpha KCC2A_MOUSE P11798<br>MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Myozenin-1                                                                                          | MY0Z1_M0USE       | Q9JK37     | 0.02           | -1.21       |
| MSPD1_MOUSE 08VEL0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calcium/calmodulin-dependent protein kinase type II subunit alpl                                    |                   | P11798     | 0.00           | -1.17       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Motile sperm domain-containing protein 1                                                            | MSPD1_MOUSE       | Q8VEL0     | 0.03           | -1.13       |

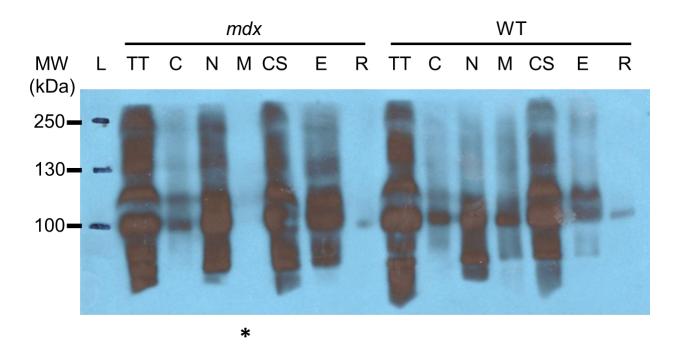
Table 2-2: Identified proteins with a significant change between *mdx* vs. wild type quadricep muscle

|    | LIM domain-binding protein 3                                         | LDB3_MOUSE  | Q9JKS4        | 0.02 | -1.06 |
|----|----------------------------------------------------------------------|-------------|---------------|------|-------|
|    | Cytochrome b-c1 complex subunit 6, mitochondrial                     | QCR6_MOUSE  | P99028        | 0.00 | -1.05 |
|    | Cytochrome c1, heme protein, mitochondrial                           | CY1_MOUSE   | <b>Q9D0M3</b> | 0.04 | -1.03 |
|    | ATP synthase subunit d, mitochondrial                                | ATP5H_MOUSE | Q9DCX2        | 0.02 | -1.02 |
|    | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial | NDUS4_MOUSE | Q9CXZ1        | 0.00 | -1.01 |
|    | Transmembrane emp24 domain-containing protein 10                     | TMEDA_MOUSE | Q9D1D4        | 0.03 | 1.07  |
|    | 40S ribosomal protein S14                                            | RS14_MOUSE  | P62264        | 0.02 | 1.15  |
|    | Histone H4                                                           | H4_MOUSE    | P62806        | 0.01 | 1.16  |
|    | 40S ribosomal protein S9                                             | RS9_MOUSE   | Q6ZWN5        | 0.00 | 1.18  |
|    | 40S ribosomal protein S16                                            | RS16_MOUSE  | P14131        | 0.03 | 1.20  |
|    | Ras-related protein Rab-10                                           | RAB10_MOUSE | P61027        | 0.00 | 1.23  |
| *  | Asporin                                                              | ASPN_MOUSE  | Q99MQ4        | 0.02 | 1.28  |
|    | Mast cell carboxypeptidase A                                         | CBPA3_MOUSE | P15089        | 0.02 | 1.36  |
| 3  | Polymerase I and transcript release factor                           | PTRF_MOUSE  | 054724        | 0.01 | 1.45  |
| 32 | Stromal interaction molecule 1                                       | STIM1_MOUSE | P70302        | 0.01 | 1.45  |
|    | Kelch-like protein 40                                                | KLH40_MOUSE | Q9D783        | 0.00 | 1.48  |
|    | Plasma membrane calcium-transporting ATPase 1                        | AT2B1_MOUSE | G5E829        | 0.01 | 1.50  |
| *  | Laminin subunit beta-1                                               | LAMB1_MOUSE | P02469        | 0.00 | 1.65  |
|    | 60S ribosomal protein L10a                                           | RL10A_MOUSE | P53026        | 0.05 | 1.67  |
|    | Starch-binding domain-containing protein 1                           | STBD1_MOUSE | Q8C7E7        | 0.00 | 1.73  |
|    | Kinectin                                                             | KTN1_MOUSE  | Q61595        | 0.03 | 1.84  |
|    | Gelsolin                                                             | GELS_MOUSE  | P13020        | 0.00 | 1.95  |
|    | Myomesin-3                                                           | MYOM3_MOUSE | A2ABU4        | 0.00 | 2.11  |
|    | Mitochondrial import receptor subunit TOM22 homolog                  | TOM22_MOUSE | Q9CPQ3        | 0.03 | 2.13  |
|    | Integrin alpha-7                                                     | ITA7_MOUSE  | Q61738        | 0.00 | 2.37  |
| *  | Lumican                                                              | LUM_MOUSE   | P51885        | 0.03 | 2.48  |
|    | Prelamin-A/C                                                         | LMNA_MOUSE  | P48678        | 0.00 | 2.49  |
|    | NADH-cytochrome b5 reductase 3                                       | NB5R3_MOUSE | Q9DCN2        | 0.04 | 2.73  |

|   | Vimentin                                                  | VIME_MOUSE  | P20152 | 0.00 | 3.25  |
|---|-----------------------------------------------------------|-------------|--------|------|-------|
|   | Elongation factor 2                                       | EF2_MOUSE   | P58252 | 0.00 | 3.48  |
|   | PRA1 family protein 3                                     | PRAF3_MOUSE | Q8R5J9 | 0.03 | 3.49  |
|   | Electron transfer flavoprotein subunit beta               | ETFB_MOUSE  | Q9DCW4 | 0.03 | 3.63  |
|   | Calpain-1 catalytic subunit                               | CAN1_MOUSE  | 035350 | 0.04 | 3.84  |
| * | Thrombospondin-4                                          | TSP4_MOUSE  | Q9Z1T2 | 0.00 | 5.07  |
|   | Muscle-related coiled-coil protein                        | MURC_MOUSE  | A2AMM0 | 0.03 | 6.54  |
|   | Spectrin beta chain, non-erythrocytic 1                   | SPTB2_MOUSE | Q62261 | 0.02 | 6.61  |
|   | FH1/FH2 domain-containing protein 1                       | FHOD1_MOUSE | Q6Р9Q4 | 0.04 | 6.86  |
|   | Heat shock protein beta-7                                 | HSPB7_MOUSE | P35385 | 0.04 | 7.38  |
|   | Calcium uniporter protein, mitochondrial                  | MCU_MOUSE   | Q3UMR5 | 0.02 | 7.55  |
|   | 26S protease regulatory subunit 8                         | PRS8_MOUSE  | P62196 | 0.05 | 7.65  |
|   | Protein kinase C and casein kinase II substrate protein 3 | PACN3_MOUSE | Q99JB8 | 0.02 | 7.88  |
| _ | Elongation factor 1-beta                                  | EF1B_MOUSE  | O70251 | 0.00 | 8.02  |
|   | 40S ribosomal protein SA                                  | RSSA_MOUSE  | P14206 | 0.01 | 8.04  |
| * | Annexin A2                                                | ANXA2_MOUSE | P07356 | 0.02 | 8.15  |
|   | 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma      | PLCC_MOUSE  | Q9D517 | 0.04 | 8.29  |
| * | Laminin subunit alpha-4                                   | LAMA4_MOUSE | P97927 | 0.03 | 8.34  |
|   | Unconventional myosin-Ic                                  | MY01C_M0USE | Q9WTI7 | 0.02 | 8.68  |
|   | Heterogeneous nuclear ribonucleoprotein M                 | HNRPM_MOUSE | Q9D0E1 | 0.03 | 8.92  |
|   | 60S ribosomal protein L3                                  | RL3_MOUSE   | P27659 | 0.00 | 8.99  |
|   | Myosin light chain 4                                      | MYL4_MOUSE  | P09541 | 0.04 | 9.00  |
|   | Myosin light chain 6B                                     | MYL6B_MOUSE | Q8CI43 | 0.01 | 9.61  |
|   | IsoleucinetRNA ligase, cytoplasmic                        | SYIC_MOUSE  | Q8BU30 | 0.02 | 10.21 |
|   | Beta-2-glycoprotein 1                                     | APOH_MOUSE  | Q01339 | 0.03 | 10.71 |
|   | 40S ribosomal protein S3                                  | RS3_MOUSE   | P62908 | 0.03 | 10.75 |
|   | SUN domain-containing protein 2                           | SUN2_MOUSE  | Q8BJS4 | 0.02 | 10.82 |
|   | Glutathione peroxidase 1                                  | GPX1_MOUSE  | P11352 | 0.05 | 11.34 |


| Sideroflexin-3                           | SFXN3_MOUSE  |    | Q91V61 | 0.01 | 11.60 |
|------------------------------------------|--------------|----|--------|------|-------|
| Major vault protein                      | MVP_MOUSE    |    | Q9EQK5 | 0.00 | 11.72 |
| Protein NDRG2                            | NDRG2_MOUSE  |    | 097G0  | 0.02 | 11.87 |
| Manganese-transporting ATPase 13A1       | AT131_MOUSE  |    | Q9EPE9 | 0.00 | 12.03 |
| Lamin-B2                                 | LMNB2_MOUSE  |    | P21619 | 0.01 | 12.19 |
| Myosin-9                                 | MYH9_MOUSE   |    | Q8VDD5 | 0.00 | 12.73 |
| T-complex protein 1 subunit beta         | TCPB_MOUSE   |    | P80314 | 0.02 | 13.25 |
| Serpin B6                                | SPB6_MOUSE   |    | Q60854 | 0.01 | 14.35 |
| Annexin A11                              | ANX11_MOUSE  |    | P97384 | 0.00 | 15.04 |
| Clusterin                                | CLUS_MOUSE   |    | Q06890 | 0.00 | 16.60 |
| Receptor of activated protein C kinase 1 | RACK1_MOUSE  |    | P68040 | 0.00 | 16.66 |
| Filamin-A                                | FLNA_MOUSE   |    | Q8BTM8 | 0.00 | 16.99 |
| Periostin                                | POSTN_MOUSE  |    | Q62009 | 0.00 | 17.30 |
| Eosinophil peroxidase                    | PERE_MOUSE   |    | P49290 | 0.00 | 17.72 |
| Fibronectin                              | FINC_MOUSE   | P1 | P11276 | 0.00 | 17.99 |
| Extended synaptotagmin-1                 | ESYT1_MOUSE  |    | Q3U7R1 | 0.00 | 18.38 |
| Myosin-3                                 | MYH3_MOUSE   |    | P13541 | 0.00 | 19.47 |
| NAD(P) transhydrogenase, mitochondrial   | I NNTM_MOUSE |    | Q61941 | 0.00 | 20.02 |
| Cartilage intermediate layer protein 1   | CILP1_MOUSE  |    | Q66K08 | 0.00 | 21.64 |

| Protein                                | Gene Name   | <b>Uniprot ID</b> | <b>P-Value</b> | Fold Change |
|----------------------------------------|-------------|-------------------|----------------|-------------|
| Glycoproteins                          |             |                   |                |             |
| Laminin subunit beta-1                 | LAMB1_MOUSE | P02469            | 0.00           | 1.65        |
| Thrombospondin-4                       | TSP4_MOUSE  | Q9Z1T2            | 0.00           | 5.07        |
| Laminin subunit alpha-4                | LAMA4_MOUSE | P97927            | 0.03           | 8.34        |
| Periostin                              | POSTN_MOUSE | Q62009            | 0.00           | 17.30       |
| Fibronectin                            | FINC_MOUSE  | P11276            | 0.00           | 17.99       |
| Cartilage intermediate layer protein 1 | CILP1_MOUSE | Q66K08            | 0.00           | 21.64       |
| Proteoglycans                          |             |                   |                |             |
| Asporin                                | ASPN_MOUSE  | Q99MQ4            | 0.02           | 1.28        |
| Lumican                                | LUM_MOUSE   | P51885            | 0.03           | 2.48        |
| Matrisome-associated                   |             |                   |                |             |
| Annexin A2                             | ANXA2_MOUSE | P07356            | 0.02           | 8.15        |
| Serpin B6                              | SPB6_MOUSE  | Q60854            | 0.01           | 14.35       |
| Annexin A11                            | ANX11_MOUSE | P97384            | 0.00           | 15.04       |


# Table 2-3: Identified matrix proteins with a significant change between mdx vs. wild type quadricep muscle

## Western Blotting

To determine the cause for the low number of changes detected by mass spectrometry, Western Blotting was performed on the fractionated samples. Not all of the bands present in each fraction were efficiently transferred to the nitrocellulose membrane (Figure 2-4). Ponceau S staining of the membrane and Coomassie staining of the post-transferred gel revealed less intense staining for bands greater than 100kDa and less than 35kDa. Bands of approximately 250kDa were especially difficult to transfer to the membrane. One of the significant changes detected during mass spectrometry, laminin, was chosen to understand which fraction it eluted from during the fractionation protocol. Western Blotting showed that laminin was detected in every fraction for both wild type and *mdx* (Figure 2-5), with the exception of the membrane fraction for *mdx* which possibly resulted from an error in loading the original sample. Furthermore, there is a poor enrichment for laminin in the extracellular matrix fraction. Instead, it appears laminin is non-selectively removed at each step of the fractionation protocol and appears in the nuclear and cytoskeletal fractions just as prominently as the matrix fractions.



**Figure 2-4: Not all proteins are efficiently transferred to the nitrocellulose membrane.** (a) *Mdx* (left) and wild type (right) samples decellularized with EMD Millipore's compartmental protein extraction kit, run through SDS-PAGE, and transferred onto nitrocellulose paper. Transferred bands were visualized with Ponceau S staining. (L: ladder, TT: total tissue, C: cytosolic, N: nuclear, M: membrane, CS: cytoskeletal, ECM: extracellular matrix, R: PBS rinse.) (b) The post-transferred gel was Coomassie stained to determine transfer efficiency. Bands greater than 100 kDa, especially at 250 kDa, and bands lower than 35 kDa were not completely transferred to the nitrocellulose membrane. Molecular weight markers (kDa) are indicated on the left.



**Figure 2-5: Laminin is present in each fraction.** *Mdx* (left) and wild type (right) samples were decellularized with EMD Millipore's compartmental protein extraction kit, run through SDS-PAGE, and transferred onto nitrocellulose paper. Laminin was present in every fraction for both *mdx* and wild type with the exception of the membrane fraction for *mdx*. Laminin, a matrisome protein, was especially present in the nuclear, cytoskeletal, and extracellular matrix fractions. Due to extensive laminin loss in fractions other than the matrix fraction, fractionation is a poor method for enrichment of laminin. L: ladder, TT: total tissue, C: cytosolic, N: nuclear, M: membrane, CS: cytoskeletal, ECM: extracellular matrix, R: PBS rinse. \* represents possible loading error during SDS-PAGE. Molecular weight markers (kDa) are indicated on the left.

# Discussion

One of the advantages of the fractionation protocol was the use of homogenization. When compared to decellularizing sectioned tissue, decellularizing homogenized tissue increases the ability of SDS to remove proteins from the matrix over time. For a similar starting predecellularization weight, both wild type and *mdx* ended up with similar post-decellularization weights, confirming that homogenizing tissues prior to decellularization normalizes the decellularization rates between wild type and *mdx*. Therefore, homogenization improved the treatment protocol by establishing a single time for decellularization and allowed a greater degree of consistency between samples.

Although it was expected that decellularization with the compartmental protein kit would increase the number of matrisome changes, mass spectrometry analysis of the extracellular matrix fraction produced fewer hits than with analysis of the decellularized sectioned tissues. Of the 100 total significant changes between *mdx* and wild type, only 11 were matrisome proteins. This is drastically different from the previous chapter where we identified 59 total significant changes between *mdx* and wild type, of which 25 were identified as components of the matrisome. While the previous protocol identified several collagens, the fractionation protocol identified no significant differences in collagens. Furthermore, several proteins identified before were absent from this round of mass spectrometry. Despite fractionating the samples, large amounts of cellular contaminates such as mitochondrial proteins and myosin still appeared in the matrix fractions.

Given the high tissue yield following the fractional decellularization protocol, we expected to detect many more matrix proteins. The yields for both wild type and *mdx* was 66%

and 65% respectively, were nearly eleven times greater for wild type and five times greater for *mdx* than the yields observed when decellularizing with SDS. However, these yields are higher than would be expected since the matrix is only 1-10% of the total tissue by dry weight. The high yield may be a result of insufficient decellularization which would explain the large number of muscle proteins changes and low number of matrisome changes. In addition, the fractionation protocol did not seem to result in the correct proteins being extracted in their appropriate cellular fractions. Laminin staining revealed laminin present not only in the matrix fraction, but in all the fractions. If other matrix proteins are being extracted at earlier fractions and are not fully retained in the extracellular matrix, it is not possible to accurately quantitate matrisome changes between *mdx* and wild type.

Considering that glycoproteins make up a relatively small fraction of the matrisome compared to structural proteins such as collagen, the inability to retain matrix components through fractionation makes it even more difficult to detect these small changes. Using the same fractions produced by this protocol, other members of our lab have stained for various sarcolemmal and cytosolic proteins and have noted that these proteins of interest end up in more than just the fractions they are expected to be found in. The buffers in the compartmental protein extraction kit do not seem to be able to cleanly extract for proteins by compartment and fractionation is therefore not an effective method to enrich for extracellular matrix proteins. While Naba and colleagues [28] had success with the fractionation protocol, this may be due to the choice of tissues they used, carcinoma and diaphragm. These two tissues are very different from skeletal muscle and are expected to have much less contractile proteins. It may be unrealistic to sufficiently remove these cellular contaminants in skeletal muscle to unmask all of the biological changes that are occurring between *mdx* and wild type. Due to this difficulty, a

future direction may be to remove the cellular contaminants from the spectral data before running the statistical analysis.

Despite these shortcomings, the fractionation protocol was still able to identify the upregulation of laminin, an important component of the basement membrane that we had previously not been able to detect, as a significant change between *mdx* and wild type. Furthermore, periostin and fibronectin showed up again as major changes in the *mdx* matrix. Another glycoprotein, cartilage intermediate protein 1 appeared as the largest change in the *mdx* matrix. While we observed this change in the previous mass spectrometry protocol, we had dismissed its importance, as it appeared to be a glycoprotein that was more relevant in chondrocytes. Although CILP1 is more thoroughly studied in the context of cartilage, it has been found to be expressed in other tissues such as heart and skeletal muscle [54]. In degenerative conditions such as aging and osteoarthritis, CILP1 expression can be induced by TGF-beta signaling in cartilaginous tissue, which subsequently inhibits IGF-1 signaling and reduces cellular proliferation [55]. Although TGF-beta signaling initially induces the expression of CILP1, high CILP1 levels in turn inhibit TGF-beta signaling in cardiac fibroblasts through a negative feedback loop and block their differentiation into myofibroblasts [56]. While CILP1 is constantly involved with general homeostasis in cartilaginous tissues, CILP1 is only expressed after injury in cardiac muscle [56]. The significant increase in CILP1 in the *mdx* matrix is therefore puzzling as high expression of CILP1 should reduce TGF-beta signaling and ameliorate the fibrosis observed [37]. Because myocardial infarction is an acute injury, the high levels of CILP1 in *mdx* may be due to dysregulation of the TGF-beta signaling cascade and negative feedback loop due to chronic inflammation and injury in DMD [56]. Further research into this altered cascade may provide clues to the cause of the aberrant signaling.

## CONCLUSION

Through proteomic analysis of the extracellular matrix of dystrophic and wild type mice, we were able to identify several proteins that are upregulated and downregulated in the matrix in DMD. These not only captured previously established changes such as fibronectin, periostin, and various collagens, but also proteins that are not so well known in the context of DMD such as EMILIN-3, ECM1, CILP1, and HMCN1. We compared two protocols to decellularize and analyze the matrix through mass spectrometry. In the first method, we found that sectioning the tissues and decellularizing with SDS resulted in low decellularization yield. In the second method, homogenizing tissue and fractionation improved the decellularization yield but resulted in a greater number of cellular contaminants which obscured many matrisome changes. Future studies will aim to combine these two protocols, utilizing the homogenization from the fractionation protocol, but decellularizing with SDS instead of the fractionation protocol. While previous attempts in our lab have failed using homogenized tissue for SDS decellularization and subsequent mass spectrometry analysis, this is most likely due to improper times of decellularization that resulted in too much sample loss.

The importance of utilizing proteomics to study how the matrix changes in DMD is paramount as it allows a broader identification of proteins than would be possible through Western Blotting alone. Identification of these changes may elucidate additional biomarkers for DMD as well as the discovery of novel therapeutic targets. Future directions will examine: 1) whether human samples display similar matrisome changes as mdx, and 2) whether the inflammatory process and subsequent matrix remodeling by acute damage through cardiotoxin injections is different in mdx.

# REFERENCES

[1] Hor, K.N., Taylor, M.D., Al-Khalidi, H.R., Cripe, L.H., Raman, S.V., Jefferies, J.L., . . . Mazur, W. (2013). Prevalence and distribution of late gadolinium enhancement in a large population of patients with Duchenne muscular dystrophy: effect of age and left ventricular systolic function. Journal of Cardiovascular Magnetic Resonance, 15(1), 107. doi:10.1186/1532-429X-15-107

[2] Kharraz, Y., Guerra, J., Pessina, P., Serrano, A. L., Muñoz-Cánoves, P. (2014). Understanding the Process of Fibrosis in Duchenne Muscular Dystrophy. BioMed Research International, 2014, 1-11. doi:10.1155/2014/965631

[3] Zanotti, S., Bragato, C., Zucchella, A., Maggi, L., Mantegazza, R., Morandi, L., Mora, M. (2016). Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients. Life Sciences, 145, 127-136. doi:10.1016/j.lfs.2015.12.015

[4] Aliverti, A., Lomauro, A., Dangelo, M. G. (2015). Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. Therapeutics and Clinical Risk Management, 11, 1475-1488. doi:10.2147/tcrm.s55889

[5] Konieczny, P., Swiderski, K., Chamberlain, J.S. (2013). Gene and cell-mediated therapies for muscular dystrophy. Muscle & Nerve, 47(5), 649-663. doi:10.1002/mus.23738

[6] Goudenege, S., Lamarre, Y., Dumont, N., Rousseau, J., Frenette, J., Skuk, D., Tremblay, J. P. (2010). Laminin-111: A Potential Therapeutic Agent for Duchenne Muscular Dystrophy. Molecular Therapy, 18(12), 2155-2163. doi:10.1038/mt.2010.165

[7] Irintchev, A., Rosenblatt, J.D., Cullen, M.J., Zweyer, M., Wernig, A. (1998). Ectopic skeletal muscles derived from myoblasts implanted under the skin. Journal of Cell Science, 111(22),3287–3297.

[8] Nishimura, T. (2015). Role of extracellular matrix in development of skeletal muscle and postmortem aging of meat. Meat Science, 109, 48-55. doi:10.1016/j.meatsci.2015.05.015

[9] Kishioka, Y., Thomas, M., Wakamatsu, J., Hattori, A., Sharma, M., Kambadur, R., Nishimura, T. (2008). Decorin enhances the proliferation and differentiation of myogenic cells through suppressing myostatin activity. Journal of Cellular Physiology, 215(3), 856-867. doi:10.1002/jcp.21371

[10] Li, Z.B., Kollias, H.D., Wagner, K.R. (2008). Myostatin Directly Regulates Skeletal Muscle Fibrosis. Journal of Biological Chemistry, 283(28), 19371-19378. doi:10.1074/jbc.m802585200

[11] Streuli, C.H., Schmidhauser, C., Kobrin, M., Bissell, M.J., Derynck, R. (1993). Extracellular matrix regulates expression of the TGF-beta 1 gene. The Journal of Cell Biology, 120(1), 253-260. doi:10.1083/jcb.120.1.253

[12] Hyytiäinen, M., Penttinen, C., Keski-Oja, J. (2004). Latent TGF-β Binding Proteins: Extracellular Matrix Association and Roles in TGF-β Activation. Critical Reviews in Clinical Laboratory Sciences, 41(3), 233-264. doi:10.1080/10408360490460933

[13] Yu, Q., Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF- $\beta$  and promotes tumor invasion and angiogenesis. Genes & Development, 14(2):163-176.

[14] Murphy-Ullrich, J.E., Poczatek, M. (2000). Activation of latent TGF- $\beta$  by thrombospondin-1: mechanisms and physiology. Cytokine & Growth Factor Reviews, 11(1-2), 59-69. doi:10.1016/s1359-6101(99)00029-5

[15] Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S. L., Wu, J., . . . Sheppard, D. (1999). A Mechanism for Regulating Pulmonary Inflammation and Fibrosis: The Integrin  $\alpha\nu\beta6$  Binds and Activates Latent TGF  $\beta1$ . Cell, 96(3), 319-328. doi:10.1016/s0092-8674(00)80545-0

[16] Worthington, J.J., Klementowicz, J.E., Travis, M.A. (2011). TGFβ: a sleeping giant awoken by integrins. Trends in Biochemical Sciences, 36(1), 47-54. doi:10.1016/j.tibs.2010.08.002

[17] Lyons, R.M., Keski-Oja, J., Moses, H.L. (1988). Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. The Journal of Cell Biology,106(5), 1659-1665. doi:10.1083/jcb.106.5.1659

[18] Vo, A. H., & Mcnally, E. M. (2015). Modifier genes and their effect on Duchenne muscular dystrophy. Current Opinion in Neurology, 28(5), 528-534. doi:10.1097/wco.00000000000240

[19] Mukund, K., Subramaniam, S. (2015). Dysregulated mechanisms underlying Duchenne muscular dystrophy from co-expression network preservation analysis. BMC Research Notes, 8(1), 182. doi:10.1186/s13104-015-1141-9

[20] Vidal, B., Ardite, E., Suelves, M., Ruiz-Bonilla, V., Janué, A., Flick, M.J., . . . Muñoz-Cánoves, P. (2012). Amelioration of Duchenne muscular dystrophy in mdx mice by elimination of matrix-associated fibrin-driven inflammation coupled to the  $\alpha$ M $\beta$ 2 leukocyte integrin receptor. Human Molecular Genetics,21(9), 1989-2004. doi:10.1093/hmg/dds012

[21] Turgeman, T., Hagai, Y., Huebner, K., Jassal, D.S., Anderson, J.E., Genin, O., . . . Pines, M. (2008). Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscular Disorders, 18(11), 857-868. doi:10.1016/j.nmd.2008.06.386

[22] Boldrin, L., Zammit, P.S., Morgan, J.E. (2015). Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Research, 14(1), 20-29. doi:10.1016/j.scr.2014.10.007

[23] Mercado, M.L., Amenta, A.R., Hagiwara, H., Rafii, M.S., Lechner, B., Owens, R.T., . . . Fallon, J.R. (2006). Biglycan targets dystrobrevin, syntrophin and nNOS to the muscle cell membrane. The FASEB Journal, 20(10):1724-1726. doi:10.1096/fj.05-5124fje.

[24] Ito, M., Ehara, Y., Li, J., Inada, K., Ohno, K. (2017). Protein-Anchoring Therapy of Biglycan for Mdx Mouse Model of Duchenne Muscular Dystrophy. Human Gene Therapy, 28(5), 428-436. doi:10.1089/hum.2015.088

[25] Jaalouk, D.E., Lammerding, J. (2009). Mechanotransduction gone awry. Nature Reviews Molecular Cell Biology, 10(1), 63-73. doi:10.1038/nrm2597

[26] Rooney, J.E., Gurpur, P.B., Burkin, D.J. (2009). Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences, 106(19), 7991-7996. doi:10.1073/pnas.0811599106

[27] Naba, A., Clauser, K.R., Hoersch, S., Liu, H., Carr, S.A., Hynes, R.O. (2011). The Matrisome: In Silico Definition and In Vivo Characterization by Proteomics of Normal and Tumor Extracellular Matrices. Molecular & Cellular Proteomics, 11(4). doi:10.1074/mcp.m111.014647

[28] Naba, A., Clauser, K.R., Hynes, R.O. (2015). Enrichment of Extracellular Matrix Proteins from Tissues and Digestion into Peptides for Mass Spectrometry Analysis. Journal of Visualized Experiments, (101). doi:10.3791/53057

[29] Kaiser, P., Wohlschlegel, J. (2005). Identification of Ubiquitination Sites and Determination of Ubiquitin-Chain Architectures by Mass Spectrometry. Methods in Enzymology Ubiquitin and Protein Degradation, Part B, 399, 266-277. doi:10.1016/s0076-6879(05)99018-6

[30] Wang, Q., Barshop, W., Bian, M., Vashisht, A., He, R., Yu, X., . . . Lin, C. (2015). The Blue Light-Dependent Phosphorylation of the CCE Domain Determines the Photosensitivity of Arabidopsis CRY2. Molecular Plant, 8(4), 631-643. doi:10.1016/j.molp.2015.03.005

[31] Naba, A., Clauser, K.R., Ding, H., Whittaker, C.A., Carr, S.A., Hynes, R.O. (2016). The extracellular matrix: Tools and insights for the "omics" era. Matrix Biology, 49, 10-24. doi:10.1016/j.matbio.2015.06.003

[32] Holland, A., Murphy, S., Dowling, P., Ohlendieck, K. (2015). Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics, 16(2), 345-366. doi:10.1002/pmic.201500158

[33] Foidart, M., Foidart, J., Engel, W.K. (1981). Collagen Localization in Normal and Fibrotic Human Skeletal Muscle. Archives of Neurology, 38(3), 152-157. doi:10.1001/archneur.1981.00510030046006

[34] Duance, V.C., Stephens, H.R., Dunn, M., Bailey, A.J., Dubowitz, V. (1980). A role for collagen in the pathogenesis of muscular dystrophy? Nature, 284(5755), 470-472. doi:10.1038/284470a0

[35] Cynthia Martin, F., Hiller, M., Spitali, P., Oonk, S., Dalebout, H., Palmblad, M., . . .'t Hoen, P.A. (2014). Fibronectin is a serum biomarker for Duchenne muscular dystrophy. Proteomics Clinical Applications, 8:269–278. doi:10.1002/prca.201300072

[36] Schiavinato, A., Becker, A.A., Zanetti, M., Corallo, D., Milanetto, M., Bizzotto, D., . . . Bonaldo, P. (2012). EMILIN-3, Peculiar Member of Elastin Microfibril Interface-located Protein (EMILIN) Family, Has Distinct Expression Pattern, Forms Oligomeric Assemblies, and Serves as Transforming Growth Factor (TGF-) Antagonist. Journal of Biological Chemistry, 287(14), 11498-11515. doi:10.1074/jbc.m111.303578

[37] Burks, T.N., Cohn, R.D. (2011). Role of TGF-β signaling in inherited and acquired myopathies. Skeletal Muscle, 1(1), 19. doi:10.1186/2044-5040-1-19

[38] Allen, R.E., Boxhorn, L.K. (1987). Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. Journal of Cellular Physiology, 133(3), 567-572. doi:10.1002/jcp.1041330319

[39] Mongiat, M., Fu, J., Oldershaw, R., Greenhalgh, R., Gown, A.M., Iozzo, R.V. (2003). Perlecan Protein Core Interacts with Extracellular Matrix Protein 1 (ECM1), a Glycoprotein Involved in Bone Formation and Angiogenesis. Journal of Biological Chemistry, 278(19), 17491-17499. doi:10.1074/jbc.m210529200

[40] Chan, I. (2004). The role of extracellular matrix protein 1 in human skin. Clinical and Experimental Dermatology, 29(1), 52-56. doi:10.1111/j.1365-2230.2004.01440.x

[41] Chan, I., El-Zurghany, A., Zendah, B., Benghazil, M., Oyama, N., Hamada, T., Mcgrath, J.A. (2003). Molecular basis of lipoid proteinosis in a Libyan family. Clinical and Experimental Dermatology, 28(5), 545-548. doi:10.1046/j.1365-2230.2003.01341.x

[42] Hamada, T. (2002). Lipoid proteinosis. Clinical and Experimental Dermatology, 27(8), 624-629. doi:10.1046/j.1365-2230.2002.01143.x

[43] Duan, C., Xu, Q. (2005). Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. General and Comparative Endocrinology,142(1-2), 44-52. doi:10.1016/j.ygcen.2004.12.022

[44] Henningsen, J., Rigbolt, K.T., Blagoev, B., Pedersen, B.K., Kratchmarova, I. (2010). Dynamics of the Skeletal Muscle Secretome during Myoblast Differentiation. Molecular & Cellular Proteomics, 9(11), 2482-2496. doi:10.1074/mcp.m110.002113

[45] Oh, Y., Nagalla, S.R., Yamanaka, Y., Kim, H.S., Wilson, E., Rosenfeld, R.G. (1996). Synthesis and characterization of insulin-like growth factor-binding protein (IGFBP)-7. Recombinant human mac25 protein specifically binds IGF-I and -II. The Journal of Biological Chemistry, 271(48): 30322-30325. doi:10.1074/jbc.271.48.30322 [46] Evdokimova, V., Tognon, C. E., Benatar, T., Yang, W., Krutikov, K., Pollak, M., . . . Seth, A. (2012). IGFBP7 Binds to the IGF-1 Receptor and Blocks Its Activation by Insulin-Like Growth Factors. Science Signaling, 5(255). doi:10.1126/scisignal.2003184

[47] Schiaffino, S., Mammucari, C. (2011). Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle, 1(1), 4. doi:10.1186/2044-5040-1-4

[48] Feitosa, N.M., Zhang, J., Carney, T.J., Metzger, M., Korzh, V., Bloch, W., Hammerschmidt, M. (2012). Hemicentin 2 and Fibulin 1 are required for epidermal–dermal junction formation and fin mesenchymal cell migration during zebrafish development. Developmental Biology, 369(2), 235-248. doi:10.1016/j.ydbio.2012.06.023

[49] Hopf, M., Gohring, W., Ries, A., Timpl, R., Hohenester, E. (2001). Crystal structure and mutational analysis of a perlecan-binding fragment of nidogen-1. Nature Structural Biology, 8(7):634–640. doi: 10.1038/89683

[50] Davies, J. A. (2001). Extracellular Matrix. ELS. doi:10.1038/npg.els.0001274

[51] Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., . . . Bugeon, J. (2016). How Muscle Structure and Composition Influence Meat and Flesh Quality. The Scientific World Journal, 2016, 1-14. doi:10.1155/2016/3182746

[52] Gillies, A.R., Lieber, R.L. (2011). Structure and function of the skeletal muscle extracellular matrix. Muscle & Nerve, 44(3), 318-331. doi:10.1002/mus.22094

[53] Lawrie, R. (1989). Connective tissue in meat and meat products. Meat Science, 26(4), 325-326. doi:10.1016/0309-1740(89)90016-8

[54] Bernardo, B.C., Belluoccio, D., Rowley, L., Little, C.B., Hansen, U., Bateman, J.F. (2011). Cartilage Intermediate Layer Protein 2 (CILP-2) Is Expressed in Articular and Meniscal Cartilage and Down-regulated in Experimental Osteoarthritis. Journal of Biological Chemistry, 286(43), 37758-37767. doi:10.1074/jbc.m111.248039

[55] Johnson, K., Farley, D., Hu, S., Terkeltaub, R. (2003). One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis & Rheumatism, 48(5), 1302-1314. doi:10.1002/art.10927

[56] Shindo, K., Asakura, M., Min, K., Ito, S., Fu, H.Y., Yamazaki, S., . . . Kitakaze, M. (2017). Cartilage Intermediate Layer Protein 1 Suppresses TGF-β Signaling in Cardiac Fibroblasts. International Journal of Gerontology. doi:10.1016/j.ijge.2017.01.002