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1  | THE WRONG TOOL S FOR THE JOB

Do I need to know the precise polygonal geometries of Los Angeles and the University of Southern California 
(USC) to assert that the latter is within the former? No. My mind contains no such precise geometric model of 
points and lines, yet I know that USC is in Los Angeles. When humans reason with the real world, they focus 
on its objects, relations, and processes—rather than starting with geometry—because these are the keys to 
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understanding and explaining the real world. Our GIS tools, however, usually do the opposite. Built from the 
geometry up, around the legacy logic of traditional cartography (geometries and layers), most GIS tools today are 
restricted by that legacy’s limited ability to model objects, relations, and processes. A representational tension 
thus exists in GIScience between being a geometric information science and being an ontological, relational, and 
processual information science.

Computational tools help us reason with the world outside. Accordingly, their representations of reality should 
start with domain theory—well-substantiated systems of ideas to understand and explain phenomena—rather 
than the constraints of a certain technology or computing platform (Gahegan, 1999, 2018). For geographic re-
search questions, the relevant domain theory often utilizes object-oriented relations and processes, rather than 
Cartesian abstractions of space and geometry, even if our computational tools cannot. We need tools that funda-
mentally embody appropriate scientific theory rather than twisting theory to fit within their representational and 
computational limitations (Harris et al., 2017; Poorthuis & Zook, 2019). Although new data sources and knowledge 
discovery systems can help us wrestle with tricky questions, we impoverish our ability to reason with computers if 
we do not center theory when we create computational representations of the real world—even if we must rethink 
or advance our technologies and tools to do so.

It is relatively easy to level such critiques, but if we want better GIS tools to study sociospatial objects, rela-
tions, or processes, we need to build them. Urgent tool-building opportunities exist today across many geographic 
subdomains. As but one interdisciplinary example, consider recent advances in spatially informed graph models. 
Modeling spatial dynamics, relations, and topology too often took a back seat historically to geometry, but graphs 
offer possible ways forward. For instance, geographic knowledge graphs allow us to build spatial information 
systems around objects and relations1 rather than geometries, to better answer ontological spatial questions 
(Yan, Janowicz, Mai, & Zhu, 2019). Yet such tools remain in their infancy today. As another example—and the 
motivating example on which this article focuses—graph models of city transportation networks allow topological 
and dynamical inquiry into urban processes, flows, and structure (Barthelemy, 2011; Marshall, Gil, Kropf, Tomko, 
& Figueiredo, 2018). Yet such tools traditionally relied on network geometry rather than topology (due to data 
availability and computational constraints), incorporated domain theory poorly, and were usually ad hoc rather 
than generalizable, accessible, and reusable (Boeing,2017).

To conduct better science, we need to build better tools. Such tool-building allows academics to better opera-
tionalize and hypothesis-test theory and therefore forms an essential—but poorly incentivized—pillar of scholarly 
research. In this article, I reflect on my own tool-building experiences in urban planning and geography: facing 
the need for a better tool to model and analyze urban street networks in a scalable, theoretically sound way, I 
developed a new open-source Python-based software package called OSMnx. This article considers its history, 
motivation, and purpose, then reviews its recent use in the empirical street network science literature. In turn, this 
illustrates the utility of academic tool-building and its downstream—and upstream—value. The article concludes 
by proposing better alignment of academic incentives with the positive externalities of conducting open science 
and developing open-source spatial research software.

2  | IF YOU WANT SOMETHING DONE RIGHT …

Urban science, sitting at the intersection of city planning, geography, and computational data science, aims to ad-
vance our knowledge of cities’ fundamental patterns and relationships by modeling spatial big data (Alberti, 2017; 
Acuto, Parnell, & Seto, 2018; Batty, 2013, 2019; Barthelemy, 2019; Kang et al., 2019; Kitchin, 2016; Kontokosta, 
2018; Lobo et  al., 2020; Mattern, 2013; Sallis et  al., 2016; Solecki, Seto, & Marcotullio, 2013). Despite urban 
science’s recent bold claims to a “new kind of science,” urban geographers, sociologists, and planners have of 
course long investigated cities’ patterns and processes through spatial data, mathematical models, and the scien-
tific method (Batty, 1971, 1980; Behrend & Levin-Keitel, 2020; Bertuglia, Bianchi, & Mela, 1998; Branch, 1966; 
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Burgess, 1925; Derudder & van Meeteren, 2019; Hoyt, 1951; Johannesen, Olaisen, & Olsen, 1998; Lee, 1973, 
1994; O’Sullivan & Manson, 2015). Computational geography itself now has a long history, yet, too often, geo-
graphic science and domain theory fail to fully permeate our computational tools (Arribas-Bel & Reades, 2018; 
Gahegan, 1999, 2018, 2020; Harris et al., 2017; Singleton & Arribas-Bel, 2019).

Why is that? Reflecting on these insufficient links between GIScience—the scholarly field—and GISystems—
the software and tools, Gahegan (2018) highlights two themes of particular relevance here. First, he argues that 
the GIScience research community usually does not develop its own software tools because it is in nobody’s short-
term interests to do so. There are of course exceptions to this rule (some of which will be discussed later) but in 
general too little geographic science and theory make their way into reusable, accessible tools due to misaligned 
incentives, expectations, and training in academia. Second, and in turn, Gahegan argues that GIScientists must 
foster a more robust software development community to build and democratize better scientific research tools 
that are accessible and available to everyone.

Geography journals have witnessed a recent surge of attention to this under-appreciated importance of ac-
ademic tool-building. For instance, Poorthuis and Zook (2019, p. 8) argue that “as a discipline we need to take 
charge of building and maintaining our own software platforms. These platforms should be open, accessible, and 
modifiable by the entire academic community and reflect the diversity and heterogeneity of our discipline.” Yet, 
to date, such tools rarely materialize in practice because, as Gahegan (2018, p. 24) puts it, we have an “academic 
culture that fails to reward those who build or maintain tools and software and encourages a short-sighted and 
individualistic approach to research.” Along similar lines, Rey (2019, p. 7) recalls as a junior scholar being told to 
stop developing tools because “You need to be writing papers.” He continues, “My colleagues were being brutally 
honest and trying to reign in my idealism so that my efforts were more aligned with the realities of promotion and 
tenure cases at the time.”

The widespread disincentivization of academic tool-building produces several negative outcomes. First, most 
of our tools rely on impoverished representations of geographic theory because our theoreticians have little in-
centive or training to build tools. Second, most scientific computational workflows exist only as ad hoc scripts to 
answer a specific research question before being shelved, rather than being generalizable, documented, shared, 
and accessible.2 An enormous amount of scholarly effort is wasted as we endlessly reinvent each other’s wheels. 
Third and accordingly, reproducibility and replicability remain an outstanding challenge (Brunsdon, 2016; Kedron, 
Frazier, Trgovac, Nelson, & Fotheringham, 2019; Koster & Rowe, 2020). This has become a key motivation for the 
open-source and open-science movements (Donoho, 2017; Rey, 2009). But as a scientific community we need 
to go beyond mere reproducibility and replicability to consider the public reusability of our tools and workflows. 
Otherwise we fail to unlock the broader benefits and spillover effects of tool-building.

These problems plague most geographic disciplines, including the study of cities. Today, a consensus is grow-
ing around the importance of harnessing GIScience to the open-source and open-science movements to make 
urban scientific research more tractable, replicable, theoretical, impactful, and approachable for non-computer 
scientists. Yet urban science too often lacks open data sources and reusable, accessible, theoretically sound tools. 
Incentivizing authors to share their data and computational workflows when submitting journal articles is one 
nascent step in the right direction. Incentivizing and building reusable, accessible, theoretically sound tools is 
another.

3  | TOOL S FOR STREET NET WORK SCIENCE

Many of these challenges hit close to home for me. A few years ago, I wanted to conduct a nationwide study of 
US street network form to better understand the fundamental characteristics and outcomes of different urban 
planning paradigms. How did network structure change as planners reoriented cities around the spatial logic of 
the automobile? And what do we see in recently built neighborhoods, considering the rise of neotraditional urban 
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design practice? I was interested in the geometry of these networks, but more important was their topology and 
the sociospatial dynamics they underlie and organize.

Initially I assumed that some tool must already exist to automatically construct non-planar directed graph mod-
els from ubiquitously available street network topology data. I was wrong on both counts. On the tool side, while 
some scholars had previously studied similar topics, no one’s research software appeared to be publicly available, 
well documented for reuse, or sufficiently scalable. Meanwhile, on the data side, mapping platforms like Google 
Maps did not offer their spatial network data for download. What was ubiquitously available was the US Census 
Bureau’s TIGER/Line roads shapefiles, but they place primacy on geometry and contain insufficient topological 
information to properly model non-planar networks (Boeing, 2020c). I eventually turned to OpenStreetMap.

First launched in 2004, OpenStreetMap is a wiki-style worldwide mapping project and geospatial data re-
pository with good coverage and quality (Barron, Neis, & Zipf, 2014; Basiri et  al., 2016; Corcoran, Mooney, & 
Bertolotto, 2013; Girres & Touya, 2010; Haklay, 2010; Maier, 2014; Sehra, Singh, Rai, & Anand, 2020; Zielstra, 
Hochmair, & Neis, 2013). To date, over 1 million different users have contributed content, including 6 billion nodes 
(i.e., geospatial points), 600 million ways (i.e., geospatial lines and boundaries), and related descriptive data. It is 
not a perfect data source: researchers estimate that more than 95% of OpenStreetMap contributors are male, 
suggesting the possibility of correlated biases in content creation (Graham, De Sabbata, & Zook, 2015; Schmidt & 
Klettner, 2013). Nevertheless, OpenStreetMap is public, free, and an Open Source Initiative affiliate. Volunteers 
provide some editorial oversight of edits, but anyone may edit the map using tools such as Esri's ArcGIS Editor 
for OpenStreetMap. OpenStreetMap contains data on streets and highways, transit systems, building footprints, 
parks and plazas, pedestrian and bicycle infrastructure, political boundaries, and more (though non-road coverage 
varies around the world). But best of all, unlike a shapefile, OpenStreetMap’s data model centers spatial objects 
and their relations, including both geometric and non-planar topological information.

Researchers typically access OpenStreetMap data through its Overpass API or by downloading a prepack-
aged regional extract from third-party organizations like Geofabrik. These offer easily ingested street data, but 
the spatial networks’ topological relationships require substantial processing to generate a useful graph model. 
Researchers often have to write hundreds or thousands of lines of ad hoc code to process the data into a graph and 
conduct algorithmic analyses for a one-off study. Dozens of small computational and modeling decisions inevita-
bly go unreported in the subsequent peer-reviewed literature, yet these can drastically impact interpretation and 
replication when every research team codes its own models and analytics. Would it not be better to collectively 
contribute to and share a reusable, accessible, theoretically sound set of scientific tools?

One obstacle limiting this tool landscape is that high barriers to entry exist for all but those fluent in computer 
science and domain theory. When I first reviewed the urban spatial networks literature, I was struck by how many 
modeling methodologies made unexplained or even unjustified assumptions about either urban theory or spatial 
network theory. The landscape lacked tools to handle non-planar representations of space, which most spatial 
networks require due to overpasses and underpasses. For simplicity, many studies resorted to undirected graph 
models, which work fine for studies of form but poorly for studies of flows that obey directionality constraints. 
The precise handling of common street network features (such as self-loops, parallel edges, or culs-de-sac) often 
went undocumented. More fundamentally, the Overpass API was cumbersome to work with directly to pipe data 
into an appropriate model for spatial/network analysis.

In this context I began to develop what eventually became OSMnx. The tool itself is documented3 in detail 
elsewhere (Boeing, 2017), and tutorials and usage examples4 are available online, but I briefly summarize its func-
tionality here. OSMnx is a Python package for collecting spatial network data from OpenStreetMap and then 
automatically constructing a directed non-planar graph model. It is built on top of the open-source geospatial 
Python stack (which I will return to later). OSMnx’s key feature is its ease of use. With just one line of code, the 
researcher can download and model the street network of any study site in the world: cities, towns, neighbor-
hoods, boroughs, counties, states, nations—any spatial boundary that OpenStreetMap has in its database. The 
researcher can specify the site’s drivable, walkable, or bikeable network. OSMnx includes a suite of visualization 
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tools and graph-theoretic analytics (both geometric and topological) for common transportation planning, urban 
design, and network science research questions. It can also automatically collect and model elevation, building 
footprint, and points-of-interest data. The code is documented and open-source, so its formal representations of 
theory are not black boxes.

This project began as a few lines of Python code in a Jupyter notebook, before being collected into a module, 
and later refactored into a formal package distributed online. I am not a software engineer per se, but I knew 
how to code and was conversant in the relevant domain theory. But, in the midst of working on this project for 
months on end, I realized that the next person interested in similar empirical questions would face the exact same 
laborious tool-building process I was then struggling through. Accordingly, I found it useful to make OSMnx open-
source for three primary reasons. First, it makes empirical work easier to review and reproduce. Second, it allows 
anyone else to contribute to the tool’s ongoing development. As discussed later, other researchers desiring useful 
extensions to its functionality have been willing to add them to the codebase. Third, it empowers others working 
in urban science and planning to advance their empirical research on real-world spatial networks with a reusable, 
accessible, theoretically sound tool. I discuss these latter outcomes in the following section.

4  | EMPIRIC AL STREET NET WORK SCIENCE WITH OSMnx

The teleology of tool-building suggests that the real value lies in the end use of the tool, rather than in its origins. 
The purpose of developing OSMnx was to conduct empirical research on urban form, travel dynamics, and the 
topological structure of transportation infrastructure. Since its public release three years ago, several such stud-
ies have been conducted—by myself and many others—using OSMnx for model generation, indicator calculation 
and visualization, and trip simulation. To illustrate the downstream benefits of tool-building, this section briefly 
reviews the recent empirical literature that uses OSMnx.

Across a variety of academic disciplines and study sites, researchers have recently used OSMnx to download 
data, generate models, and analyze real-world transportation networks. For example, Hofer, Jäger, and Füllsack 
(2018a, 2018b) model the street network of Graz, Austria, to simulate carbon dioxide emissions and traffic con-
gestion and avoidance behavior using mobility data. Saha, Schweitzer, Scaglione, and Johnson (2019) model the 
streets of Mesa, Arizona, to generate a synthetic feeder network for electrical distribution. Wang, Gao, Feng, 
Murray, and Zeng (2018) model Washington, DC’s street network to develop a geoprocessing framework for 
optimizing the meetup locations of multiple people under congested traffic conditions. Liu, Zhang, Jin, and Liu 
(2020) model Beijing’s walkable street network to explore spatial patterns of residents’ daily leisure activities. 
Natera Orozco, Battiston, Iñiguez, and Szell (2019) model “as-is” bicycle networks to demonstrate how cities can 
make small but targeted infrastructure investments to significantly increase their connectivity and directness. 
Dumedah and Eshun (2020) model Ghanaian street networks to investigate paratransit service coverage through 
GPS data. Riascos and Mateos (2020) model Manhattan’s street network for their study of more than 1 billion taxi 
trips in New York.

4.1 | Investigating new urban technologies

Studies such as these often investigate the frontier of new transportation and smart cities technologies, including 
autonomous vehicles, electric vehicles, ride-sharing, and bike-sharing. Beirigo, Schulte, and Negenborn (2018) 
use OSMnx to model service levels, operational and infrastructure costs, and fleet utilization in hybrid street 
networks with both autonomous-ready and not autonomous-ready zones. Lin, Deng, Sun, and Chen (2018) model 
Manhattan’s street network alongside travel demand data to optimize ride-share routing. Luo et al. (2020) model 
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Shanghai’s street network to predict demand for electric vehicle sharing systems, while Zhang, Lin, and Mi (2019) 
model Shanghai’s bicycle network to propose a framework for planning dockless bike-sharing services’ geofences.

4.2 | Network structure and urban centrality

Other studies look for fundamental relationships between topological structure—particularly network central-
ity and robustness—and travel patterns and land use. Wang, Chen, Mu, and Zhang (2020) use OSMnx to model 
Atlanta’s street network to investigate ride-sharing accessibility as a function of network centrality and structure. 
Wang, Xu, and Guo (2018) model Shenzhen’s street network to explore the relationship between street central-
ity and land use intensity. Hellervik, Nilsson, and Andersson (2019) develop a preferential centrality measure to 
predict urban activity based on street network structure. D’Angelo, Ferretti, and Ghini (2017) model the street 
network of Fano, Italy, to identify locations of high betweenness centrality. Masias, Hecking, Crespo, and Hoppe 
(2019) operationalize a spatial capture–recapture methodology to model social media users as a function of walk-
able street network centrality indicators. Dingil, Rupi, and Stasiskiene (2019) compute and visualize indicators of 
connectivity, centrality, and clustering across 86 urban areas worldwide to identify the role of network design 
in easing traffic congestion. Torres, González, García, and Fernández (2019) and Morelli and Cunha (2019) use 
centrality indicators to measure street networks’ vulnerability to perturbation in Mexican and Brazilian cities, 
respectively (see also Baumann & Keupp, 2020; Sohouenou, Christidis, Christodoulou, Neves, & Presti, 2020).

4.3 | Computer science methodological research

Computer scientists and statistical physicists often adopt urban transportation networks as tractable, real-world 
systems that can be well represented by graphs. OSMnx has been used accordingly to generate input graphs and 
feature sets for methodological research in machine learning and network algorithms (Yin et al., 2020; Young & 
Eccles, 2020). Ren, Cheng, and Zhang (2019) model Chengdu’s street network then predict traffic flow with a 
deep spatiotemporal residual neural network. Law and Neira (2019) model the street networks at the centers of 
100,000 cities worldwide to train a convolutional autoencoder to analyze network structure. O’Keeffe, Santi, and 
Ratti (2019) train a recurrent neural network to reproduce vehicular mobility patterns, using taxi data and street 
network models. Martínez Mori and Samaranayake (2019) model several cities’ street networks to empirically 
demonstrate heuristic approximation algorithms that make certain network analyses computationally tractable. 
Feng and Porter (2020) model cities around the world to explore their topology through persistent homology. 
Samson, Velez, Nobleza, Sanchez, and Milan (2018) model Filipino cities to develop a genetic algorithm for op-
timizing paratransit services in developing countries. Senturk and Kebe (2019) model Turkish cities to develop 
a heuristic solution to a clustered variant of the classic traveling salesman problem. Neukart et al. (2017) model 
Beijing’s street network to develop a quantum annealer for traffic flow optimization on hybrid quantum comput-
ing hardware.

4.4 | Indicator calculation and visualization

Other researchers have used OSMnx for automated indicator calculation and visualization. Brandily and Rauch 
(2018) calculate street network indicators in 1,800 towns across sub-Saharan Africa to explore the relationship 
between street density and population growth. Holub (2017) calculates and visualizes indicators of bicycle net-
work structure and connectivity in Austin, Charlotte, Columbus, and Minneapolis. Quistberg et al. (2019) calculate 
transportation network indicators to build a new platform for conducting cross-country urban health studies. Van 
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Etten, Lindenbaum, and Bacastow (2019) and Verendel and Yeh (2019) visualize street network characteristics 
across their respective studies’ sites. Boeing (2020a) models the street networks of every US urbanized area, city/
town, and Zillow-defined neighborhood to calculate dozens of indicators across tens of thousands of study sites 
at multiple spatial scales, then shares these models and indicators in a public repository. Wang, Yu, et al. (2020) 
calculate network structure indicators to compare American and Chinese cities. Natera Orozco, Deritei, Vancso, 
and Vasarhelyi (2020) compute quality-of-life indicators in Budapest by modeling its pedestrian network and local 
amenities.

4.5 | Urban morphology

Several morphological studies of urban form, sprawl, and density have used OSMnx as well. Gervasoni, Bosch, 
Fenet, and Sturm (2017) measure urban sprawl and network-constrained destination accessibility. Bristow (2019) 
compares alternative building density metrics in the context of urban morphology. Abdelkader, Boeing, Fasy, and 
Millman (2018) and Boeing (2020c) measure urban non-planarity to retheorize how planar assumptions impact 
street network analyses and to suggest better models. The World Bank collects building footprint data then 
trains a random forest model to identify OpenStreetMap coverage gaps that can inform future crowd-sourcing 
efforts and mapping campaigns (Jones, 2019). Boeing (2020b) explores the growing role of big data in computa-
tional urban morphology and visual analytics (Figure 1). Boeing (2019b) conducts a cluster analysis of urban street 

F I G U R E  1   One square mile of different cities’ street networks, held at the same scale to compare the urban 
form and grain (Boeing, 2020b)
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networks around the world to theorize how planners produce different forms of geometric spatial order, illus-
trated in Figure 2. Coutrot et al. (2020) build on this theory to explore how spatial order impacts a city’s residents’ 
spatial navigation, finding that residents of more grid-like places demonstrate worse ability.

4.6 | Network-constrained trip simulation

Finally, several studies have used OSMnx for simulating trips along a network. Waddell et al. (2018) build regional 
planning models that integrate land use simulation, travel demand modeling, and traffic assignment. Hernández-
Hernández, Siqueiros-García, Robles-Belmont, and Gershenson (2019) calculate commute routes and trip dis-
tances in a study of motorists’ emotions and expressions of anger in Mexico City. Boeing (2019a) compares driving 

F I G U R E  2   Polar histograms of street orientation in 100 world cities. Each histogram bin represents 10◦ 
around the compass, and each bar’s length represents the relative frequency of streets with compass bearings 
falling in that bin (Boeing, 2019b)
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and walking route circuity by simulating millions of trips across 40 city street networks. Merchán, Winkenbach, 
and Snoeck (2020) and Merchán and Winkenbach (2019) investigate last-mile logistics circuity in São Paulo and 
develop better approximation algorithms for urban route distance prediction. Padgham et al. (2019) examine hos-
pital siting by simulating network-constrained stroke service center catchment basins, while Lin, Zhang, Zhu, and 
Meng (2019) identify the determinants of bicycle catchment basins around Shanghai’s metro stations. Liao, Gil, 
Pereira, Yeh, and Verendel (2020) model street networks in several world cities to compare travel time by personal 
automobile and public transit. Finally, several recent studies have used OSMnx during the global Covid-19 pan-
demic for spatial epidemiology and health-care accessibility modeling (e.g., Adler et al., 2020; Kang et al., 2020).

4.7 | Summary

The preceding survey of recent studies covers a wide range of spatial topics and disciplines, from urban design 
to public health, transport engineering, and computer science. These research projects investigate various travel 
modes, from walking to cycling, driving, and ride-hailing. They study neighborhoods and cities in every inhabited 
continent. Most importantly, I could not have conducted most of these studies myself as they exceed my knowl-
edge and skill: by making OSMnx open-source and accessible, it has percolated into others’ research designs 
around the world. Academic tool-building thus entails upstream and downstream benefits for our field’s wider 
endeavor of scientific discovery and theory building.

5  | TOOL-BUILDING IN AC ADEMIA

A couple of years ago, I gave a talk which partly dove into OSMnx development and the benefits of academic 
tool-building and open science. At dinner that evening a senior faculty member asked if my development work 
continued. I said yes and listed a few features in development that would unlock exciting new spatial network ana-
lytics and research questions. The faculty member pushed back on this and—echoing Rey’s (2019) recollections as 
a junior scholar—suggested that if I were to continue in academia, that I must give up tool-building. To paraphrase: 
“You will become known merely as a tool builder rather than a serious scholar. A serious scholar cannot waste time 
on anything but empirical research and advancing theory.”

Must scholars eschew tool-building in order to successfully further their field? I believe, rather, that we impov-
erish our field if we do not make our otherwise ad hoc, one-off research tools “open, accessible, and modifiable,” 
to return to Poorthuis and Zook’s earlier words. In particular, there are three primary benefits of open-source 
tool-building for academics: unlocking your own empirical research; advancing the collective scientific and theo-
retical endeavor; and impacting a broader audience.

5.1 | Unlocking individual research

First, tool-building unlocks your own research. Nearly all of us in the spatial sciences do some tool-building as we 
create simple macros, scripts, or libraries of code for routinizing mundane data-processing tasks or fitting models 
or generating graphical and tabular output for subsequent publication. In this era of big data and ubiquitous com-
putation, it is inefficient and limiting to rely on point-and-click interfaces to conduct scientific research. Coding 
skills thus increasingly appear in spatial science curricula as necessary components of any GIS skill set. Fostering 
such abilities is crucial as data science and coding grow central to spatial analysis. But most importantly, as re-
searchers motivated to ask new questions and develop new methods, we cannot assume that theory-rich tools 
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already exist to answer today’s important questions. We must build the right tools to answer the right questions—
and doing so can open up new personal research trajectories.

5.2 | Advancing the discipline

Second, once we have built these tools, they should be open-source and accessible to advance the wider disci-
pline. Fortunately, this philosophy already has traction in the GIScience and urban science communities. Efforts 
are under way today to build a national geospatial software center (Geospatial Software Institute, 2020) and other 
examples abound. Luc Anselin’s GeoDa and GeoDaSpace software for spatial analysis and econometric modeling 
are free and open-source (Anselin, Syabri, & Kho, 2006), as is Serge Rey’s Python Spatial Analysis Library (PySAL: 
Rey, 2019; Rey et al., 2015). Paul Waddell’s UrbanSim platform, a Python-based software library that supports 
urban land use and transportation modeling and simulation, is similarly free and open-source (Waddell, 2002). 
Beyond this sort of hero model of tool-building, many other community-driven open-source spatial software pro-
jects exist in the Python ecosystem and other programming languages (e.g., GDAL, geopandas, leaflet, PostGIS, 
QGIS, r-spatial, and even OpenStreetMap itself). Such projects often utilize a decentralized many hands model to 
grow a community around building better tools and collaborating synergistically around shared goals. Regardless 
of the exact model, academic-led projects can provide a theory-rich scaffolding on which research can be con-
ducted and other tools (like OSMnx) can be built. These tools and their ongoing development are also important 
for empowering students and scholars who cannot afford expensive proprietary software licenses. We must re-
duce such barriers to entry.

Academics too often pull up the gangplanks by placing scientific findings behind paywalls, hoarding useful 
data sets, or concealing their research software. The intertwined open-science, open-data, and open-source 
movements address these three respectively by publicly sharing scientific findings, data, and software for the 
good of society. This in turn disseminates knowledge and empowers the wider scientific community. If our goal as 
academics is to produce empirical research and advance theory, our time should focus on research and writing—
but we should also set aside time to build better theory-rich tools to answer difficult questions.

5.3 | Broader community impacts

Third, open-source tool-building impacts a broad community with bidirectional effects as the tools we build even-
tually underpin others’ work downstream, while other researchers contribute back to our projects upstream. 
As two examples of downstream effects, the mobile crowd-sensing platform CrowdSenSim now uses OSMnx 
to simulate urban environments (Montori et al., 2019; Tomasoni et al., 2018) and the transportation planning 
company Remix developed its platform—now deployed in hundreds of cities worldwide—initially using OSMnx to 
model street networks. Reciprocally, regarding the upstream direction, as an open-source project OSMnx has re-
ceived hundreds of code contributions from other scholars and members of the public. These contributors helped 
develop its points-of-interest module, its nearest-node and nearest-edge search algorithms, its building footprint 
functionality, and much more. I have reaped the benefits of dozens of others’ contributions that enhanced the tool 
in ways I subsequently used to answer my own research questions.

Better tools and data models, spearheaded by academics, can help infuse theory into our field’s quantitative 
work. But if we want better tools, we have to build them. It is not Esri's job to satisfy all the theoretical needs of 
the spatial sciences. Recent important scholarly critiques have highlighted how today’s GIScience tool landscape 
is inaccessible, atheoretical, and ad hoc (e.g., Gahegan, 2018; Poorthuis & Zook, 2019). One clear path to bet-
ter link this academic critique with tangible real-world action is to build and incentivize better tools for praxis. 
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Collectively, we need to spend more time fixing the lack of high-quality accessible tools rather than just writing 
yet another thinkpiece lamenting their dearth.

6  | TOWARD BET TER TOOL S

Software often feels inevitable because its backstory is often invisible. We click a download link, run an installer, 
and suddenly have a new tool to use. Yet this conceals years of human decisions, experiences, and constraints 
shaping software outcomes that are in no way predestined. In many ways, open-source software parallels other 
public infrastructure such as highways and bridges. Humans plan and engineer infrastructure in specific social, 
economic, and technological contexts. Like an individual highway’s or bridge’s broader network of connected 
roads, any single piece of software represents a complex network of entanglements with many other software 
projects on which it depends. And like a highway or bridge, software requires years of maintenance, updates, and 
retrofits after its initial development: although splashy new capital projects often receive funding and adulation, 
critical routine maintenance work usually receives far less of either.

Tool-building, in all its facets, remains an essential but poorly incentivized pillar of academia today. 
Computational geographic tools too often impoverish quantitative analytics through poor representations of sci-
entific theory and squander precious time as everyone develops their own ad hoc scripts to solve similar problems. 
The case of urban street network science illustrated this. Building an open-source, reusable, accessible, theoret-
ically sound tool as public infrastructure has generated various downstream and upstream benefits. So what can 
we do to foster a robust tool-building community and collectively reap more of these benefits?

Incentives are key. First, academic tenure, promotion, and annual review guidelines should explicitly reward 
the scholarly value of open-source research software and open-data contributions to better acknowledge their 
significant value. They should also account for contributions to pre-existing and decentralized projects to en-
courage collaborative progress and maintenance of the open-source commons. An ideal system would better bal-
ance the respective value of research, publication, and tool-building to advancing science and theory. Second, we 
should train the next generation of practitioners and scholars to be better tool creators and consumers. Curricula 
should include coding and informatics courses, and pedagogy should emphasize hands-on learning, such as using 
computational notebooks. Third, academic publication must continue its nascent steps toward open science: jour-
nal editors should require the submission and publication of data sets and computational workflows alongside 
quantitative manuscripts. Finally, we should increase funding opportunities for building and maintaining research 
software to foster the positive externalities and downstream benefits they generate throughout the research 
community.

The goal of academic tool-building—and the hope of every such tool-builder—is to construct some kind of 
useful infrastructure for your field. With better scaffolding in place to connect theory, science, and analytics, we 
can conduct better research to explore important geospatial questions and foreground objects, relations, and 
processes. OSMnx has not changed the world or reinvented urban science, but it has made empirical street net-
work analysis a little easier and more reproducible for some urban scholars and practitioners. Hopefully it even 
unlocked a study or two along the way that otherwise could not have been conducted. Finally, there is one key 
lesson learned that I would like to share with other budding academic tool-builders: give your tool an easier name 
to remember and pronounce than “OSMnx.”
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ENDNOTE S
	1	 A simple example of these objects and relations would be: Los Angeles → is a → city; USC → is a → university; USC → 

is in → Los Angeles. 

	2	 The “rule of three” in computer programming states that if similar code will be used in three or more places, it should 
be extracted for general reuse to avoid duplication. We might consider similar guidelines in making our research tools 
publicly reusable. 

	3	 OSMnx installation instructions and user documentation are available online at https://osmnx.readt​hedocs.org/ and 
the open-source project itself is hosted at https://github.com/gboei​ng/osmnx. 

	4	 OSMnx tutorials and usage examples in Jupyter notebook format are available online at https://github.com/gboei​ng/
osmnx​-examples. 
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