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Pharmacology in the context of pathogenic and non-

pathogenic bacteria 

Janice Jia Ni Goh 

Abstract 

Since the invention of the microscope and the discovery of microorganisms, mankind has 

had a huge fascination with microbes – those that live inside us and around us. Despite not being 

seen by the naked eye, microbes can profoundly affect us in good ways e.g. gut microbes 

modulating host immunity, bad ways e.g. bacterial infections and curious ways e.g. how the gut 

microbiome can alter how we process drugs. To tackle such a broad range of issues, this thesis 

is thus split into two parts. Part 1 will focus on the use of PK-PD models in the context of drug 

development for infectious airborne microbiome mycobacterium tuberculosis (Mtb). Part 2 takes 

a different turn into the inside of the human body and will explore how the gut microbiome affects 

drug disposition. 

 

Part 1: A translational PK-PD toolkit using preclinical in vitro and in vivo data to inform clinical 

outcomes 

Tuberculosis (TB)  is once again the leading cause of death among infectious diseases 

as of 2022. This happens despite known cures, due to the long and complex 6 month regimen 

with good adherence required for TB treatment. There is thus a pressing need for new drugs and 

drug treatments that will shorten TB treatment. While multiple new drugs have been developed, 

and thus many new possibilities for novel drug regimens, drug development is expensive and only 

a fraction of these drugs and drug regimens can be used for testing. Using a translational PK-PD 

tool kit, we aim to make use of preclinical in vitro and in vivo data which is much less resource 

intensive, to predict and prioritize regimens prior to resource-intensive clinical trials.  
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Part 2: How the microbiome influences drug disposition 

 Drug clearance is highly dependent on CYP abundance and activity. However, significant 

interindividual variation in major liver enzyme CYP3A of up to 30- to 40-fold variation exists. 

Genetic polymorphisms alone cannot account for this variation. Recent evidence suggests the 

gut microbiome can modulate CYP expression and activity. Here, we aim to elucidate the 

functional consequences and mechanisms of the gut microbiome's modulation of CYP3A4 

activity. 
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Chapter 1 Translational predictions of phase 2a first-in-patient efficacy 

studies for antituberculosis drugs   

 

Abstract  

 

Background: Phase 2a trials in tuberculosis typically use early bactericidal activity (EBA), the 

decline in sputum colony forming units (CFU) over 14 days, as the primary endpoint for testing 

the efficacy of drugs as monotherapy. However, the cost of phase 2a trials can range from 7 to 

19.6 million dollars on average, while more than 30% of drugs fail to progress to phase 3. Better 

utilizing preclinical data to predict and prioritize the most likely drugs to succeed will thus help 

accelerate drug development and reduce costs. We aim to predict clinical EBA using preclinical 

in vivo pharmacokinetic-pharmacodynamic (PKPD) data and a model-based translational 

pharmacology approach. 

 

Methods and Findings: First, mouse PK, PD and clinical PK models were compiled. Second, 

mouse PKPD models were built to derive an exposure response relationship. Third, translational 

prediction of clinical EBA studies was performed using mouse PKPD relationships and informed 

by clinical PK models and species-specific protein binding. Presence or absence of clinical 

efficacy was accurately predicted from the mouse model. Predicted daily decreases of CFU in the 

first 2 days of treatment and between day 2 and day 14 were consistent with clinical observations.  

 

Conclusion: This platform provides an innovative solution to inform or even replace phase 2a 

EBA trials, to bridge the gap between mouse efficacy studies and phase 2b and phase 3 trials, 

and to substantially accelerate drug development. 
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Introduction  

 

Mycobacterium tuberculosis remains one of the deadliest infectious agents globally. 

Tuberculosis (TB) drug discovery and development activity has increased emphasis on shorter, 

more universal regimens to treat all TB cases independent of resistance status1. However, with 

an increasing number of new drugs and limited resources for clinical trials, further innovation of 

drug development is imperative to identify effective drugs and regimens more efficiently and with 

higher confidence1. A phase 2a early bactericidal activity (EBA) study is typically the first clinical 

evaluation of novel anti-TB drug efficacy with the primary purpose of detecting the presence and 

magnitude of EBA and informing possible dose-response relationships2. However, the cost of 

phase 2a trials can range from 7 to 19.6 million dollars on average, while more than 30% of drugs 

fail to progress to phase 33. This highlights the challenges inherent in translating results in 

preclinical models such as in vivo mouse models or in vitro hollow-fiber systems, into successful 

clinical endpoints and outcomes. FDA guidance for industry on drug development for pulmonary 

TB states appropriate animal models can serve as an important bridge between the identification 

of in vitro antimycobacterial effects of an investigational drug and the initiation of clinical trials4. 

However, traditional translation of findings from preclinical in vivo models, by pharmacokinetic 

modeling and allometric scaling to identify the dosing regimen in humans that best matches the 

efficacious drug exposure in animals, is insufficient as it only covers exposure, but not response. 

Mechanistic mouse-to-human pharmacokinetic-pharmacodynamic (PKPD) models that describe 

the bacterial kill and PKPD relationships are better at predicting clinical results, including the 

results of late-stage trials5. Therefore, our objective was to establish a relevant and robust model-

based translational platform that can reliably link preclinical to clinical drug development and 

predict early efficacy trials for anti-TB drugs across different compound classes (Figure 1.1). We 

compiled a comprehensive preclinical and clinical database of PK, PD, and baseline bacterial 
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growth data for ten drugs. The drugs used to develop and validate our proposed platform 

consisted of a bacteriostatic antibiotic, namely ethambutol (EMB); five bactericidal antibiotics, 

namely isoniazid (INH), delamanid (DLM), pretomanid (PMD), linezolid (LZD), and moxifloxacin 

(MXF); and four sterilizing antibiotics namely rifampin (RIF), rifapentine (RPT), pyrazinamide 

(PZA), and bedaquiline (BDQ), The translational platform in the present study intends to increase 

the accuracy of preclinical to clinical translation by enabling quantitative prediction of clinical 

studies from preclinical outputs and serves as a foundation for model-informed TB drug discovery 

and development. 
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Methods  
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Figure 1.1 The translational pharmacology approach to predicting early bactericidal activity in 
patients. 

Components necessary for translation include mouse PKPD and clinical PK (actual or scaled). 
The estimated relationship between drug concentration and bacterial kill is assumed to be 
portable after correction for protein binding and integrated with clinical PK. Using baseline 
bacterial burden from previous EBA trials as initial conditions, the early bactericidal activity is 
simulated with the translational model. 
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Drug dataset for model building and validation 

 

To build our model and evaluate its predictive accuracy for clinical EBA, ten first- and second-line 

anti-TB drugs (BDQ, DLM, EMB, INH, LZD, MXF, PMD, PZA, RIF, RPT) were selected for which 

mouse PK, mouse PD, human population PK models and human clinical EBA data were available.  

 

Data required to assess preclinical drug efficacy  

 

A large database of PK and PD data in mice for 10 TB drugs with clinical EBA data was 

collected (Figure 1.2, Table S1.1). Most experiments were performed at Johns Hopkins University 

(JHU), with the exception of DLM for which PK data came both from JHU as well as from literature 

for one dose level6, EMB for which PK data came from literature7, and LZD that had data from the 

Tuberculosis Alliance (TBA). PK experiments in BALB/c mice were dose-ranging (2-10 dose 

levels), single or multiple oral dosing for up to 8 weeks, with 29-238 observations of plasma 

concentration per drug. PD experiments in BALB/c mice infected through aerosol delivery were 

dose-ranging (2-15 dose levels) with treatment durations of 21-70 days, and 55-252 observations 

of lung CFU counts per drug. Lung CFU counts were measured by plating lung homogenates at 

designated time points. In the case where DLM mouse PK data showed the unexpected trend of 

a double peak with a single oral dose (Figure 2a), we confirmed the trend with the data provider, 

JHU. 
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Mouse PKPD model development 

 

An integrated mouse PKPD model involving a PK model to describe drug exposure, a 

bacterial dynamics model to account for the mouse immune system and a PD model describing 

the combined effect of bacterial dynamics and drug effect was developed for each drug. PK data 

were described using one- or two-compartment models with first order absorption with or without 

delay, and saturable elimination when necessary. The bacterial growth dynamics without 

treatment was described using our previously published baseline model (Eq. S1)8. The baseline 

model captures the decreased rate of growth over time and attributes the decline to time- and 

bacteria-dependent immune control over the infection. The drug effect, measured as the log10 

CFU drop independent of the immune effect over time, was incorporated using a sigmoidal Emax 

relationship (Eq. S2). A delay effect (Kdelay) was included to mouse PKPD models to establish an 

indirect relationship between plasma drug concentrations and drug effect at the site of action (Eq. 

S3 & S4). Detailed model development and model diagnostics can be found in the Supplemental 

materials. 

 

Prediction of the clinical EBA  

 

The PKPD relationship quantified in mice was used to predict the clinical EBA. Drug 

concentrations in humans were simulated based on clinical population pharmacokinetic models 

(Table S1.1) to drive the concentration-effect relationship in the clinical predictions. Where clinical 

population PK models were unavailable, allometric scaling from mouse PK was used9. Protein 

binding ratios between humans and mice (!
!
!"#$%&
#'()

) were used to convert unbound plasma drug 

concentrations from human to mouse to translate the mouse PKPD relationships (Table S1.1)10–

16.  



                    8 
 

Clinical predictions for 10 drugs were simulated, with 14 unique studies at several dose 

levels were used for validation by graphically overlaying simulated EBA from preclinical models 

with observed EBA from clinical trials. Predictions were done by simulating CFU decline in 1000 

virtual patients treated with the same dose as reported in the clinical EBA study. The baseline 

(Day 0) sputum values used were derived from the mean value for each arm reported in each 

study, and the variability in baseline bacterial burden between individuals used was the baseline 

variance among all clinical studies. The net growth and death of bacteria without treatment was 

assumed to be zero (Eq. S5). Predictions were reported as the mean and standard deviation of 

the predicted time course of CFU decline. For drugs where observed data were available, the 

data were overlayed for visual inspection. Finally, quantitative predictions of commonly reported 

parameters (change from baseline to Day 2 and from Day 2 to Day 14) were compared to the 

observed at various dose levels along a line of unity.  

 

Software and statistical method 

 

Preclinical and clinical PKPD modelling was performed in NONMEM (7.4.3) through Perl 

Speaks NONMEM (PsN) (4.8.1.). For LZD preclinical PK, Monolix (5.0.0) was used. Models were 

developed following numerical and graphical diagnostics, assessing drop in objective function 

value through the likelihood ratio test and parameter precision, as well as goodness-of-fit plots 

and visual predictive checks, respectively, in addition to pharmacological relevance. Data 

transformation and graphical output were performed in R (4.1.3) through the RStudio (2022.02.3) 

interface using the xpose4 and tidyverse packages.  
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Results 

  

 

Figure 1.2 A rich dataset of mouse and human PK and PD data for ten first- and second-line TB 
drugs was compiled for model building. 

Only minimum, median and maximum doses are represented as median lines when multiple 
doses were studied. Data points for all doses are plotted. Information on all doses is present in 
Table 1. 
(A) Mouse pharmacokinetic (PK) data presented for the following doses: BDQ 12.5, 25 
mg/kg; DLM 2.5, 3 mg/kg; EMB 10, 30, 1000 mg/kg; INH 1.56, 6.25, 25 mg/kg; LZD 5, 100, 500 
mg/kg; MXF 100, 200, 400 mg/kg, PMD 6, 28.8, 486 mg/kg; PZA 7, 100, 900 mg/kg; RIF 10, 15, 
40 mg/kg; RPT 5, 10, 20 mg/kg. All doses were given once daily unless otherwise stated.  
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(B) Mouse pharmacodynamic (PD) data presented for the following doses: BDQ 12.5, 25, 50 
mg/kg; DLM 3, 10, 100 mg/kg; EMB 100, 400, 1600 mg/kg; INH 0.1, 6.25, 100 mg/kg; LZD 100, 
300, 1000 mg/kg; MXF 25, 50, 100 mg/kg; PMD 6.25, 30, 600 mg/kg; PZA 3, 50, 900 mg/kg; 
RIF 2.5, 40, 640 mg/kg; RPT 5, 10, 20 mg/kg. All doses were given once daily, 5 days a week, 
unless otherwise stated. 
(C) Human PK simulations from validated population PK models presented for the following 
doses: BDQ 25, 200, 400 mg; DLM 100, 200, 400 mg; EMB 15, 25, 50 mg/kg; INH 9, 75, 600 
mg; LZD 600 mg once daily, 600 mg twice daily; MXF 400 mg; PMD 50, 200, 1200 mg; PZA 
2000 mg; RIF 600, 1350, 1950 mg; RPT 300, 600, 1200 mg. All doses were given once daily, 
unless otherwise stated.  
(D) Human Phase 2a early bactericidal activity study data presented for the following doses: 
BDQ 25, 200, 400 mg; DLM 100, 200, 400 mg; EMB 15, 25, 50 mg/kg; INH 9, 75, 600 mg; LZD 
600 mg once daily, 600 mg twice daily; MXF 400 mg; PMD 50, 200, 1200 mg; PZA 200 mg; RIF 
600, 1350, 1950 mg; RPT 300, 600, 900, 1200 mg. All doses were given once daily, unless 
otherwise stated. 
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Large preclinical and clinical PK and PD database of ten TB drugs   

 

We collated a rich longitudinal dataset of mouse PK (plasma concentrations, 1220 data 

points) and PD data (lung CFU counts, 1550 data points), as well as human population PK models 

and human PD data (sputum CFU counts) (Table S1). PD experiments were done mostly in 

mouse infection models infected via aerosol with an inoculum size no less than 3.5 log10 CFU/ml 

and incubation periods of 13-17 days, prior to the start of treatment. Exceptions were EMB and 

LZD, which had incubation periods of 7 and 5 days, respectively, but had a similar inoculation 

size of larger than 3.5 log10 CFU/ml, and RPT which had an incubation period of 41 days but a 

lower inoculation size than 3.5 log10 CFU/ml.  

Human PK data were simulated using published models from literature (Table S1.1 and 

Figure 1.2C). Human PD data with a total of 287 human sputum CFU datapoints originating from 

Phase 2a trials across 14 different studies ranging from 2 to 14 days were used to validate our 

Phase 2a EBA predictions.  
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Table 1.1 Parameter estimates of final PK models for ten TB drugs in mouse studies 

Complete equations for PK models are found in equations S6-12. 1 compartment model indicates 
that distribution and elimination phases of the drug were almost instantaneous and can be 
described by a single central compartment. 2 compartment model indicates that distribution and 
elimination phases of the drug were distinct and can be described by a central compartment and 
a peripheral compartment.  
Linear elimination indicates that elimination pathways were not saturated with higher doses for 
the tested dose range. Saturated elimination indicates elimination plateaus after a certain dose. 
This relationship can be described by a Michaelis Menten equation using Km and Vmax. 
Ka = rate of absorption, CL = linear clearance, Vc = central compartment volume, Vp = peripheral 
compartment volume, Q = flow between central and peripheral compartments, Km = concentration 
that produces half the maximum rate of elimination, Vmax = maximum rate of elimination. F1 = 
relative bioavailability of drug to lowest dose, CLint = intrinsic clearance describing saturated 
elimination, F=  the extent of drug absorbed from oral dosing compartment into systemic 
compartment, FDIF= the maximum difference in bioavailability from 100% (bound between 0% and 
100%), FD50= the dose achieving half maximal reduction in bioavailability, ALAG = absorption lag 
time.  
 

Drug Structural PK 

model 

PK parameters (RSE) Protein binding ratio  

(fu, human/mouse)  

BDQ 2 compartment, 

linear elimination 

Ka = 3.24 h-1 (15.1%)  

CL = 0.0243 L/h (5.9%)  

Vc = 0.24 L (11.4%)  

Vp = 0.822 L (29.3%)  

Q = 0.0127 L/h (11.5%)  

1.0 17 

DLM 1 compartment, 

linear elimination 

Ka=0.446 h-1 (25%) 

CL = 0.0092 L/h (8%) 

Vc=0.0747 L (1%) 

F3mg/kg=0.758 (5%) 

1.0 18 
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Drug Structural PK 

model 

PK parameters (RSE) Protein binding ratio  

(fu, human/mouse)  

EMB7 2 compartment. 

linear elimination 

CL = 0.0512 L/h (5.9%)  

Vc = 0.0436 L (12.8%) 

Vp = 0.0982 L (7.6%)  

Ka = 0.869 h-1 (9.9%)  

Q = 0.0352 L/h (13.5%)  

F = 0.64 (6.7%) 

ALAG = 0.0577 h (11.1)  

1.0 

 

INH  2 compartment, 

saturated 

elimination 

CLINT=31.5 mL/hr (8.1%)  

Km =13.1 ug/mL (23.2%)  

Ka=7.89 1/hr (89.4%)  

Vc=18.6 mL (45.0%)  

Q =13.3 mL/hr (97.7%) 3 

Vp =9.77 mL (66.4%)  

1.455 19,20  

LZD 2 compartment, 

saturated 

elimination 

ka = 10 h
-1

FIX 

CLINT=0.0526 L/h 

Vc = 0.0178 L  

Vp =0.00836 L 

Q = 0.00175 L/h 

Km = 8.03 mg/L 

0.986 13,21 
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Drug Structural PK 

model 

PK parameters (RSE) Protein binding ratio  

(fu, human/mouse)  

MXF 2 compartment, 

linear elimination 

Ka=0.0723 h-1 (10%) 

Q=0.1269 L/h (20%) 

Vc = 0.09423 L (7%) 

Vp = 0.3504 L (25%) 

CL=0.119 L/h (12 %) 

0.797 22 

PMD 2 compartment, 

saturated 

elimination and 

bioavailability 

ka = 2.94 h
-1 (31%) 

CLINT=0.0392 L/h (9%) 

Vc = 0.158 L (7%) 

Vp =0.00568 L (71%) 

Q = 0.00009 L/h (18%) 

Km = 2.74 mg/L (24%) 

FDIF=1 FIX 

FD50=363 mg/kg  

"=1 FIX 

0.71 19,23 
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Drug Structural PK 

model 

PK parameters (RSE) Protein binding ratio  

(fu, human/mouse)  

PZA 2 compartment, 

saturated 

elimination and 

bioavailability 

CLINT=14.4 ug/hr (12%)  

Km=82.9 ug/mL (61%)  

Ka = 100 1/hr FIX  

Vc=13.3 mL (49%)  

Q=3.11 mL/hr (19%)  

Vp =10.9 mL (37%)  

F17 mg/kg = 1 FIX 

FD50 = 18.2 mg*kg-1 (23%)  

FDIF = 0.574 (34%) 

0.925 24 

RIF 2 compartment, 

saturated 

elimination and 

bioavailability 

Vmax=15.2 ug/hr (6%)  

Km=1.16 ug/mL (20%)  

Ka=0.272 1/hr (10%)  

V1=3.39 mL (12%)  

Q=0.725 mL/hr (6%)  

V2=27.4 mL (39%)  

F110 mg/kg=1 FIX 

F115 mg/kg=0.743 (0%)  

F120 mg/kg=0.845 (1%) 

F140 mg/kg =0.493 (2%) 

4.545 20,25 
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Drug Structural PK 

model 

PK parameters (RSE) Protein binding ratio  

(fu, human/mouse)  

RPT 1 compartment, 

saturated 

elimination 

ka = 0.894 h
-1

 (31%)  

V = 0.0139 L (6%)  

Km = 75.8 ug/mL (31%)  

Vmax = 0.0333 ug/hr (24%)  

0.422 26,27 

  



                    17 
 

Table 1.2 Parameter estimates of final PKPD models for ten TB drugs in mouse studies 

Kdelay= the delay rate of the plasma concentration associated with drug effect, Emax= the 
maximal level of drug effect, EC50= the delayed concentration that results in half of the maximal 
drug effect, "= the steepness of the relationship between the delayed plasma concentration and 
drug effect. Equations are in equations S3-4.  
 

Drug PK/PD Model PK/PD Model Parameters Mouse infection model 

Type 

BDQ Direct Emax Function Emax = 0.515 day-1 (1%)  

EC50 = 0.228 mg/L (5%) 

Subacute 

DLM Delayed Emax 

Function 

Emax = 0.248 day-1(23%)  

EC50 = 1.02 mg/L (63%)  

Kdelay = 91.4 day-1 (0.2%)  

Subacute 

EMB Direct Emax Function Emax = 0.527 day-1 (2%)  

EC50 = 0.150 mg/L (17%) 

 

Acute 

INH Delayed Emax 

Function 

Emax = 0.901 day-1 (7.5%)  

EC50 = 0.00404 mg/L (55%) 

Kdelay = 7.51 day-1 (20%)  

Subacute 

LZD Delayed Sigmoidal 

Function 

Emax = 1 day-1 (FIX) 

EC50 = 2.77 mg/L (1%)  

" = 0.21 (3%) 

Kdelay = 6.75 day-1 (0%)  

Acute 

MXF Delayed Emax 

Function 

Emax = 0.553 day-1 (10%)  

EC50 = 0.0000586 mg/L (44%)  

= 0.0000708 day-1 (0.07%)  

Subacute 
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Drug PK/PD Model PK/PD Model Parameters Mouse infection model 

Type 

PMD Direct Sigmoidal 

Function 

Emax = 0.429 day-1 (0.1%)  

EC50 = 3.46 mg/L (0.3%)  

" = 0.375 (1%)  

Subacute 

PZA Delayed Emax 

Function 

Emax = 0.34 day-1 (10%)  

EC50 (AUC)= 13.6 mg*day/L 

(42%)  

Kdelay = 0.797 day-1 (0.2%)  

Subacute 

RIF Delayed Sigmoidal 

Function 

Emax = 0.678 day-1 (16%)  

EC50 = 1.92 mg/L (39%)  

" = 1.38 (24%) 

Kdelay = 1.34 day-1 (79%)  

Subacute 

RPT Direct Sigmoidal 

Function 

Emax = 0.299 day-1 (1%)  

EC50 = 6.02 mg/L (0%)  

" = 2.36 (7%) 

Chronic 
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Preclinical PK and PKPD models adequately described mouse data 

 

The final PK and PKPD model parameter estimates are shown in Table 1.1. A 2-

compartment model with saturated clearance described via the Michaelis Menten equation best 

described the mouse plasma concentration data for INH, LZD, PMD, PZA and RIF. BDQ, EMB, 

and MXF were best described using 2-compartment models with linear elimination, RPT by a 1-

compartment model with saturated elimination, and DLM by a 1-compartment model with linear 

elimination. Visual predictive checks of the final model for both mouse PK and PKPD data showed 

good fits (Figures S1.1 & S1.2). The exposure-response relationships for each drug in mouse 

infection models are summarized in Table 1 and Figure S3 and aligned with clinical knowledge of 

the efficacy of each drug.  
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Figure 1.3 Translational (mouse to human) PKPD model predicts clinical EBA trial results well. 

Medians and 95% confidence intervals of 1000 simulations from the translational model overlap 
with observed EBA data from clinical trials2,25,28–38. 
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Figure 1.4 Model-based prediction of daily change in log10 CFU/mL correlates well with 
clinically observed daily change in log10 CFU/mL for ten TB drugs at multiple dose levels of 
monotherapy between Day 0 to 2 (top) and Day 2 to 14 (bottom). 

For some drugs, Day 14 data were not available. Line of unity (dashed line) ± 0.25 (dotted lines). 
BDQ = bedaquiline, DLM = delamanid, EMB = ethambutol, INH = isoniazid, LZD = linezolid, MXF 
= moxifloxacin, PMD = pretomanid, PZA = pyrazinamide, RIF = rifampin, RPT = rifapentine. 
*regimen contained a loading dose 
 

Clinical EBA was well predicted by the translational platform 

 

The translational platform predicted clinical EBA in TB patients receiving monotherapy 

with the ten drugs as shown in Figure 1.3. Our predictions overlapped well with the observed data 

across multiple doses and time points for most of the drugs. BDQ and LZD had slight over 

predictions at the later time, and RPT showed activity up to 5 days after a single dose, whereas 

our model predicted limited declines in CFU.  

 

Agreement between predicted and observed quantitative change in CFU is shown in 

Figure 1.4 as a correlation plot for EBA at time intervals of 0-2 days and 2-14 days. Most 

predictions for 0-2 days fell within 0.25 log10 CFU/ml/day of the observed EBA as indicated by the 

line of unity and corresponding dotted lines. Predictions for 2-14 days were even closer to 

observed. Predictions were overall consistent with the observed data in the clinical EBA studies 

for all ten drugs, except for RPT where activity was underpredicted.  
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Discussion 

 

We established a mouse-to-human translational platform by integrating a bacterial 

dynamics model, mouse PKPD relationships, clinical PK and species-specific drug plasma protein 

binding and validated the platform with clinical EBA data (Figure 1). The changes in sputum CFU 

counts over the first two days and from Day 2 to Day 14 in TB patients receiving monotherapy 

with each of ten TB drugs in 14 clinical EBA studies spanning more than four decades were 

successfully predicted (Figure 3 and 4). Compared to the participants enrolled in more recent 

EBA studies (2007 to 2015)28–30,32,36,37,39 at the same site, the participants enrolled between 1992 

and 200531,33–35,38 had more severe disease and therefore higher baseline CFU counts in their 

sputum samples (mean baseline: 6.9 log10 CFU per mL). However, the predictive accuracy of our 

model was robust despite this large variation in baseline bacterial burden. For example, RIF had 

a good overlap of predicted and observed EBA (Figure 3) despite the study being conducted in 

2015 with the lowest median baseline of 4.58 log10 CFU per mL26,28,29.  

 

A key component to our model accuracy was the addition of the bacterial dynamics model. 

Mouse and human immune activation against TB infection differ significantly, therefore the 

underlying baseline of bacterial dynamics will differ. Subtracting the mouse immune effect on 

bacterial decline more accurately estimates the drug contribution to CFU decline. Without such 

consideration, the clinical CFU decline was overpredicted (Figure S4). Despite inherent 

differences between species in terms of drug PK, sampling (whole lung homogenate versus 

sputum), and infecting bacterial strain, the relationship between drug effect on bacteria and the 

concentration to achieve the effect appear, based on this analysis, to be portable between mice 

and patients. In addition, although the mouse strain used in the studies (BALB/c) models 

intracellular bacteria but not extracellular bacteria in caseous lesions28,30,31, the PKPD 
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relationships observed in this model, when derived in comparison to the baseline bacterial 

dynamics, appear to accurately reflect those observed in EBA studies. Other approaches or more 

information may be needed to fully account for drug exposures at the site of infection in cavities 

or other caseous lesions or any PK/PD relationships unique to those microenvironments.  

 

 Murine TB models are routinely and often exclusively used as in vivo efficacy 

models in preclinical TB drug development39,41,42. As the inoculum size and incubation period for 

bacterial infection in the lung prior to treatment can affect drug response43, we standardized our 

inclusion criteria to experiments using the most common design with the incubation duration of 

13-17 days and inoculum size to larger than 3.5 log10 CFU/ml. Incubation durations outside this 

range were considered only when data were otherwise not available, which was the case for EMB, 

LZD and RPT.  

 

Clinical EBA studies are the only acceptable way to evaluate a drug as monotherapy in 

TB patients despite their limitations on predicting long-term efficacy. In addition to detecting the 

presence of an EBA response, the trial can inform on the dose-response curve (e.g., INH and 

RIF), which could be used in dose selection for future trials44. We have shown here that our 

translational platform can adequately predict these EBAs for different doses. With limited 

resources, this costly clinical study can be designed more efficiently or avoided altogether by 

using our approach to predict a reliable result regarding clinical dose-response effects, and to 

provide useful information about dose and/or drug candidate selection for further clinical 

development. This scenario is well exemplified by the nitroimidazole, PMD. PMD has a dose 

response at doses up to 192 mg/kg in mice which, following the conventional allometric scaling 

method, approximates 1500 mg in humans. However, such translation is problematic as the 

clinical observations from two human EBA trials demonstrated no dose response above 200 mg 

in human EBA. Using our translational platform, we found that the drug effect of PMD reaches 
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plateau after 200 mg which is consistent with clinical observations (Figure S3). Therefore, our 

translational platform could serve as a powerful tool for, but not limited to, better dose selection 

for clinical trials design. By better informing dose selection, the translational modeling platform 

may reduce the time and effort spent in early clinical development, and therefore, accelerate 

progress to trials that are more informative of long-term outcomes.  

 

Phase 2a trials also gather information on initial safety and tolerability of compounds of 

interest that our translational framework is not designed to predict. However, when anti-TB drug 

development progresses directly to regimen efficacy studies, these safety data can already be 

captured during Phase 1 healthy volunteer monotherapy studies, especially the multiple 

ascending dose (MAD) study which is a dose ranging study for up to 4 weeks. The trial population 

of healthy volunteers is different from the patient population, but safety signals are more 

pronounced in this healthy population that is more sensitive to adverse events and less burdened 

by other symptoms. Treatment of healthy volunteers with rifapentine for example resulted in safety 

signals, but has been proven safe in patients with tuberculosis45. Furthermore, we can also get 

guidance on the optimal efficacious dose versus the safety range using the dose response curve 

by overlaying both exposures (Figure S3). All our studied drugs have been previously approved 

and are used clinically. Having all clinical dose exposures lower than safety limits was thus 

unsurprising and reassuring. Such dose response curves as visualization would also be helpful 

for determining the dose of new TB drugs as it provides a measure of both efficacy and safety.  

 

Of the clinical EBA studies included in our analysis, the RPT EBA trial was the only one in 

which EBA was assessed for multiple days after a single dose. Our human population PK model 

indicated RPT was mostly cleared from the body two days after a single dose, but the trial results 

indicated RPT was still exerting an effect on bacterial load between two and five days post-dose. 

It is possible that RPT has a post-antibiotic effect that was not sufficiently captured by the model. 



                    27 
 

The model overpredicted the EBA of BDQ. However, in the model, the active metabolite, BDQ-

M2, was not considered. In mice, M2 is estimated to contribute approximately 50 percent of the 

drug effect. One possible reason for the overprediction are the parent-to-metabolite ratios 

between species that differ, where mice have higher M2-to-BDQ ratios than humans46,47. Future 

studies can account for these differences.    

 

Our translational framework has been developed to predict clinical EBA in the typical adult 

patient population participating in EBA trials. Heterogeneity in the patient population is an 

important consideration in drug development and individualized medicine48. This is both from the 

perspective of representing patients in easy- or hard-to-treat phenotypes as we have observed in 

our clinical projects as a result from different risk factors (baseline bacterial burden, disease 

phenotype such as cavitation, gender, comorbidities or comedications), as well as from a diversity 

perspective to study pharmacology in underrepresented individuals49. Certain risk factors such as 

baseline bacterial burden are easily implementable in our clinical simulations, as well as for 

example the influence of comorbidities or comedications on the pharmacokinetics.  However, 

preclinical (mouse) models are traditionally more homogeneous to reduce noise in the data and 

be more sensitive to detect pharmacological signals. At the same time, the EBA trials with 

relatively small sample sizes (<15 per arm) will also not reflect clinical heterogeneity, and risk 

factors other than those described above have limited relevance for the prediction of the EBA 

(e.g. cavitation). Similar considerations are applicable to the prediction of EBA in children. 

Throughout their development, infants and children show changes in their pharmacology that are 

well established and can be incorporated in our quantitative model-based framework. 

Pharmacodynamically, the bacterial dynamics and the disease phenotype differences can be 

modelled based on different animal disease models. Children with tuberculosis younger than 1 

year have limited immunity which can be approximated through the immunocompromised athymic 

(nude) mouse model, while dose older than 1 year without lesion phenotypes can be 
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approximated through the BALB/c mouse model. One limitation of these preclinical models is their 

reliance of bacterial load measurement, which is complicated in the pediatric population in the 

context of sputum collection. Alternative models are being developed that are part of future 

collaborative work in our group. Pharmacokinetically, the development of the metabolic pathways 

responsible for the elimination of anti-tuberculosis drugs can be incorporated through the use of 

maturation functions. As a result, pediatric dosing can be projected that will reach similar exposure 

as in adults given a chosen dose, based on the understanding of the maturation of the relevant 

elimination pathways and the adult pharmacokinetics. 

 

 Building on our translational framework, we aim to predict the efficacy of combination 

regimens of TB drugs in long-term TB clinical outcomes for phase 2b and 3 from preclinical mouse 

data. Being able to better understand the time to stable culture conversion and relapse 6 months 

post treatment will better help us prioritize sterilizing regimens. We hope to achieve this by 

including the characterization of PKPD relationships in combination regimens by accounting for 

PKPD drug-drug interactions, as well as characterizing lesion-specific PKPD relationships. 

Technically, the bacterial dynamic parameters of the translational tool will be re-evaluated and 

possibly updated through Bayesian methods based on untreated control data of ongoing 

experiments with novel anti-TB drugs, benefiting from a larger data collection while keeping the 

structure of the translational tool. Clinical TB disease (e.g., caseation necrosis and cavitation) will 

be represented in the translational platform to include infection and efficacy data in animal models 

of TB with more human-like necrotic lesions, such as C3HeB/FeJ mice and New Zealand white 

rabbits50. This will allow us to have a comprehensive platform that informs us not only of 

monotherapy EBA but also a combination drug regimens efficacy in providing a stable cure and 

prevention of long term unfavorable outcomes.  
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 In summary, we established a foundation for translating the results from mouse efficacy 

models to clinical EBA studies through establishing quantitative relationships involving mouse PK 

and PD, as well as drug dose response in vivo. In the future, our platform will be expanded to 

include combination regimens and longer durations of treatment by accounting for PKPD drug-

drug interactions, and necrotic lesion penetration. This innovative platform will accelerate TB drug 

development and serves as a good example of model-informed drug discovery and development.  
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Supplemental Methods 

 

Study design 

 

This translational platform is designed to understand the PK/PD relationships of TB drugs 

in murine TB model and extrapolate the findings to predict the clinical outcomes of phase 2a 

studies (Figure 1). Ten drugs were included: bedaquiline (BDQ), delamanid (DLM), ethambutol 

(EMB), isoniazid (INH), linezolid (LZD), moxifloxacin (MXF), pretomanid (PMD), pyrazinamide 

(PZA), rifampin (RIF), and rifapentine (RPT). A baseline model using the preclinical data in murine 

TB model was established previously to quantitate the inhibitory effect of the adaptive immune 

response on bacterial growth, and a net drug effect can therefore be quantified to establish the 

PK/PD relationships for the experimental regimens in mice. It was assumed at the free drug 

concentration level in blood, the PK/PD relationships of TB drugs are comparable between mice 

and humans. As such, with simulated PK concentrations in humans, the corresponding drug effect 

of TB drugs in humans can be predicted using the same PK/PD relationships as in mice, as well 

as the clinical outcome of TB monotherapy regimens in phase 2a trials. 

 

Database 

 

The sources for all data involved in the translational platform development are listed in 

Table S1. Preclinical plasma PK concentrations and lung CFU counts as PD data of BDQ, DLM, 

EMB, INH, LZD, MXF, PMD, PZA, RIF and RPT were collected from published and unpublished 

studies or digitized from published studies using Plot Digitizer 

(http://plotdigitizer.sourceforge.net/). Subacute infection data was used for all drugs except EMB, 

RPT and LZD for which data from the subacute infection model were not available. Clinical PK 
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data were simulated using published human population PK models or models developed 

internally. CFU counts in sputum samples for the nine drugs were collected or digitized from 

published clinical studies. 

 

Model development 

 

All analyses were conducted using NONMEM (version 7.4) via Perl speaks NONMEM 

(PsN, 4.8.1), R (version 4.1.3) statistical program, and the xpose4 and tidyverse R packages were 

utilized for model diagnostics and data visualization. The first-order conditional estimation with 

interaction method (FOCE+I) was used. Mouse PK and PK/PD models were developed and 

selected based on graphical (goodness of fit plots), statistical (significant change in objective 

function value), and simulation-based diagnostics (visual predictive checks).  

 

Mouse PK models for all drugs except EMB for which no PK data was available,were 

developed by fitting the plasma concentration data to one- or two-compartment structural models 

with first-order absorption and linear or nonlinear (Michaelis-Menten) clearance. Saturable 

bioavailability was also tested. Additive, proportional, and combination residual error models were 

tested to describe the error in the observed data (Figure S1). An EMB mouse PK model was 

utilized from literature to simulate EMB PK7.  

 

Mouse PK/PD models were developed by incorporating drug effects into a bacterial 

infection model that describes the infection of M. tuberculosis in BALB/c mice (Eq. S1 &Eq. S2). 

Parameters of the bacterial infection model were re-estimated based on the control data for each 

drug, to fit the untreated bacterial burden over time for their respective experiment and reliably 

quantify the drug efficacy separate from the natural infection dynamic (Table S2)52–55. The 

inhibitory effect of the adaptive immune response during the treatment period was investigated 
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with certain assumptions. Plasma concentration was used as the independent variable to describe 

the treatment response for all mouse PD studies except that of PZA using cumulative AUC in 

acute and sub-acute infection model studies due to the time-varying PZA effect being dependent 

upon the pH of the microenvironment in the phagosomal compartment during the early treatment 

period which is, itself, a function of the time (#$%&"#$ × d)).  

 

PK/PD relationships for drug effect were optimized by fitting the log-transformed mouse 

PD data to linear, nonlinear, log-linear, Emax and sigmoidal functions. A delay effect was added to 

optimize the relationship between plasma exposures, time and treatment response (Eq. S3 & S4, 

Figure S2). An additive error model was used to describe residual error for the mouse PK/PD 

models. Visual predictive checks (VPCs) of 1000 simulations indicated that the observed data 

were consistently within the 95% prediction interval of the simulated plasma concentrations and 

bacterial numbers in the final PK and PK/PD models used for translation for each drug (Figure 

S2). 

 

%&

%'
= +( × , × -1 −

)*×&+*

&,-
+*+&+*

0 × 11 − ).×'+.
,,-+.+'+.

2 			− +% × ,									45. 71       

%&

%'
= +( × , × -1 −

)*×&+*

&,-
+*+&+*

0 × 11 − ).×'+.
,,-+.+'+.

2 			− +% × , − 488 × ,									45. 72      

 

,: bacterial number 

): incubation time since inoculation 

+(: bacterial growth rate 

+%: bacterial natural death rate 

+&: bacterial number-dependent maximal adaptive immune effect 

,-.: bacterial number that results in half of +& 
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:&: steepness of bacterial number-dependent immune effect relationship 

+,: incubation time-dependent maximal adaptive immune effect 

;-.: bacterial number that results half of +, 

:,: steepness of time-dependent immune effect relationship 

EFF: bacterial killing rate 

 

<=/0123
<)

= +%4567 × -
=8
>9
− =/01230 						45. 73 

 

Adelay: the delayed concentration level associated with drug effect 

Kdelay: the delay rate of the plasma concentration associated with drug effect 

 

488 =
=%4567
: × 4;6<
4#-.

: + =%4567
: 							45. 74 

 

Emax: the maximal level of drug effect 

EC50: the delayed concentration that results in half of the maximal drug effect 

g: the steepness of the relationship between the delayed plasma concentration and drug effect 

 

Clinical PK models were implemented from either published models or developed in 

NONMEM based on either internal clinical data or extracted literature data (Table S1.1). Single 

and multi-compartment PK models were tested for drugs modeled. Linear and nonlinear 

clearance, absorption and bioavailability were also tested when appropriate. Additive, 

proportional and combination residual error models were tested for the best fit.  
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Translational model development for EBA prediction 

 

The outcome of clinical EBA studies was predicted by translating the mouse exposure-

response relationships to TB patients. Either average patient covariates or no covariates were 

included for simulating human PK exposures for each drug. The outcomes of EBA studies were 

predicted by simulating the CFU counts in the sputum of TB patients based on the translatable 

PK/PD relationships identified in the mouse efficacy studies. Drug dose was as specified in the 

EBA publication, where weight-based dosing was multiplied by the median weight in the studied 

population and rounded based on available formulations. In the untreated control arm, typically 

minimal changes occur during the first two days of study (1-8). As such, the net CFU count change 

rate (+=4') during the first two days of study was considered to be 0 and the changes in CFU 

counts were only driven by the drug effect (Eq. S5).   

 

%&

%'
= +=4' × , − 488 × ,								45. 75     

 

Knet: the net rate of change in bacterial number in the sputum of TB patients 

 

EBA values were calculated as the daily change of CFU counts over specific days with 

treatment for ten drugs individually. A thousand simulations for predicting clinical studies were 

conducted for each drug. 
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Supplemental Results 

 

Mouse PK and PK/PD Model Development 

 

Mouse PK models of  nine out of the ten TB drugs, including BDQ, DLM, INH, LZD, MXF, 

PMD, PZA, RIF and RPT, were developed using plasma concentration data individually, among 

which partial data for DLM were digitized from a published study (3 mg/kg)6. EMB PK was 

simulated using a published mouse PK model7. Either a one-compartment or two-compartment 

structural model with first-order absorption and linear or non-linear clearance was used to 

describe the mouse PK data for each drug (Supplementary Figure S1, Table 1) (Eq. S6-S11). 

Saturable bioavailability was incorporated for PMD and RIF PK models (Eq. S12).   

First-order Absorption model: 

<=9
<)

= −+6 × =9						45. S6 

A1 is the amount of drug in the gastrointestinal tract absorbed into the systemic circulation 

Ka is the first-order absorption rate of the drug 

t is the time after the dos 

 

One-compartment PK model:  

<=8
<)

= +6 × =9 − +4 × =8						45. S7 

 

A2 is the amount of drug in the central compartment 

Ke is the elimination rate of the drug from the central compartment 

Two-compartment PK model:  
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<=8
<)

= +6 × =9 − +4 × =8 −
F
>9
× =8 +

F
>8
× =>						45. S8 

<=>
<)

=
F
>9
× =8 −

F
>8
× =>						45. S9 

A3 is the amount of drug in the peripheral compartment 

Q is the intercompartmental clearance 

V1 is the volume of the central compartment  

V2 is the volume of the peripheral compartment 

 

Linear clearance: 

+4 =
?@

A/
									45. 710       

 

CL is the clearance, which is defined as the volume of plasma completely cleared of a drug per 

unit time     

Non-linear clearance: 

 

+4 =
)#×?@'%

B)#+
01
2/
C×A/

										45. 711       

  

Vmax is the maximal clearance, which is defined as the maximal volume of plasma completely 

cleared of a drug per unit time     

Km is the concentration of drug that results in half of the maximal clearance 

CLin is the ratio between Vmax and Km. 

Saturable bioavailability: 

 

8 = 1 − D345×EFGH4IFGH46)7J
FGH4IFGH46)7+DF,-

								45. 712  
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F:  the extent of drug absorbed from oral dosing compartment into systemic compartment 

FDIF: the maximum difference in bioavailability from 100% (bound between 0% and 100%)  

Doseref: the reference dose that has 100% bioavailability 

FD50: the dose achieving half maximal reduction in bioavailability  
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SFigure 1.1 Visual predictive checks for final mouse PK models at representative doses. All 
doses are in mg/kg and orally administered unless otherwise state
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SFigure 1.2 Visual predictive checks for final mouse PD models at representative doses. All 
doses are in mg/kg and orally administered.
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SFigure 1.3 Comparison between human PK concentrations reached at clinical dose   

Upper limits of clinical dose levels were defined as concentrations up to the Cmax. Lower limits 

of safety ranges were defined as theCmax of the maximum tolerated dose tested in humans. 

 

MXF PMD PZA RIF RPT

BDQ DLM EMB INH LZD

0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100

0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100 0.0001 0.01 1 100
0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Concentration (mg/L)

D
ru

g 
ef

fe
ct

 (1
/d

)



 

 49 

  

SFigure 1.4 The immune component of the model-based translational platform is essential for 
accurate prediction of early bactericidal activity. 

Comparison of prediction of sputum CFU counts in TB patients during treatment with bedaquiline 
(BDQ) and rifampin (RIF) at multiple dose levels using PKPD relationships from mathematical 
models when immune effect (imm) is accounted for and not accounted for. 
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Table S 1.1 Mouse and human PK and PD database of ten TB drugs. 

 Mouse PK 

PK data BDQ DLM EMB INH LZD MXF PMD PZA RIF RPT 

Observations 90 29 186 153 238 74 215 100 66 69 

Doses 

(mg/kg) 

12.5, 

25, 

single 

dose 

2.5, 3 

single 

dose 

10, 16, 

30, 100, 

300, 

1000 

mg/kg 

1.56, 

6.25, 

25, 

single 

dose 

3*, 5*, 

100, 

250, 

500 

single 

dose 

100, 

200, 

400 

daily 

for 32 

days 

6, 9, 12,18, 

28.8,50,54, 

162, 486 

single 

dose; 100 

daily for 4 

or 8 weeks 

7, 22, 100, 

300, 600, 

900, single 

dose 

10, 

15, 

20, 

40, 

daily 

for 2 

weeks 

5, 10, 

20, 

daily 

for 16 

days 

Data Source JHU51 

JHU50,55 

and 

published 

data6 

Published 

data7 
JHU57 

JHU50 

& TBA 
JHU51 JHU52–55 JHU53 JHU54 JHU51 

Protein 

binding(fu, 

Human/Mouse) 

1.0 

50,55 
1.0 18 1.0* 

1.455 

19,20 

0.986 

13,21 

0.797 

22 
0.99 23 

0.925 24 

(mouse data 

JHU 

unpublished) 

4.545 

20,25 

0.422 

26,27 

*personal communication  
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Mouse PD 

PD data BDQ DLM EMB INH LZD MXF PMD PZA RIF RPT 

Animal Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse 

Observations 57 56 54 414 261 63 283 84 203 75 

Doses 

(mg/kg) 

12.5, 

25, 50 
3,10,30,100 

100, 

200, 

400, 

800, 

1600 

0.1, 

0.3, 1, 

1.56, 3, 

3.13, 

6.25, 

10, 

12.5, 

25, 30, 

50, 100 

7.2, 10, 

20, 

21.4, 

30, 40, 

60, 72, 

100, 

200, 

300, 

335, 

1000 
 

25, 50, 

100 
50, 100 

3, 5, 10, 

15, 25, 

30, 37.5, 

50, 75, 

100, 150, 

300, 450, 

600, 900 

2.5, 5, 

10, 

20, 

40, 

80, 

160, 

320, 

640 

5, 10, 

20 

Treatment 

duration 

(days) 

70 56 28 21-56 28 28-56 14-28 28-56 14-56 56 

Data Source JHU64 

JHU65 and 

published 

data6 

JHU JHU67 
JHU68 

& TBA 
JHU69 JHU70 JHU71 JHU72 JHU73 
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Human PK 

Drugs PK Structure Model Doses 

No. of 

Patients / 

Samples 

References 

BDQ 

3-compartment 

model with transit 

absorption 

400 mg p.o. daily for 14 days 

and 200 mg p.o. three times 

per week for 24 weeks 

335 / 2,843 10 

DLM 

2- compartment with 

linear absorption and 

saturable 

bioavailability 

100, 200, 300, 400 mg p.o. 

daily for 14 days 
744 / 20,483 73 

EMB 

2- compartment with 

transit absorption 

and clearance 

800, 1000, 1200, 1500 mg p.o. 

5 days/week for ≥4 weeks 
189 / 1,869  74 

INH 

2- compartment PK 

model with linear 

absorption and 

clearance 

100, 225, 240, 300 and 400 mg 

p.o. daily, 5 days/week for 2 

weeks; 200, 300 and 450 mg 

p.o.daily, 7 days/week for 1 

week 

235 / 2,352 75,76 

LZD 
2- compartment with 

non-linear clearance 

300 mg, 600 mg or 1200 mg 

p.o. for 6 months 
104 / 497 77 

MXF 

2- compartment with 

transit absorption 

and linear clearance 

400 mg p.o. daily for 7 days 241 / 856 78 
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Drugs PK Structure Model Doses 

No. of 

Patients / 

Samples 

References 

PMD 

1- compartment 

model with transit 

absorption and dose-

dependent 

absorption, 

bioavailability, and 

volume 

200, 600, 1000, 1200 mg p.o. 

daily for 14 days 

1,054 / 

17,725 
79–83 

PZA 

1- compartment PK 

model with first order 

absorption and 

clearance 

1200, 1500 and 2000 mg p.o. 

daily, 5 days/week for 2 weeks; 

1000, 1500 and 2000 mg p.o. 

daily 7 days/week for 2 months 

227 / 3,092 84 

RIF 

1- compartment PK 

model (saturable 

bioavailability and 

elimination, transit 

absorption and auto-

induction) 

10, 20, 25, 30, 35, or 40 mg/kg 

p.o. daily over 2 weeks 

 

83 / 913 85 

RPT 

1- compartment PK 

model (saturable 

bioavailability, transit 

absorption and auto-

induction) 

300, 450, 600, 750, 900, 1050, 

1200, 1350, 1500, 1650, 1800 

mg p.o. once weekly up to 

twice daily for up to four 

months 

863 / 4,388 86 
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Human EBA studies 

Drugs Doses Baseline (log10 CFU/mL) References 

BDQ 

100, 200, 300 and 400 

mg 

(with 200, 400, 500, 700 

mg loading dose on first 

day and 100, 300, 400, 

500 mg on second day, 

respectively) 

 

25, 100, 400 mg 

6.302 (100 mg), 6.001 (200 mg), 6.071 (300 

mg), 6.625 (400 mg) 

 

 

 

 

6.66 (25 mg), 6.32 (100 mg), 6.82 (400 mg) 

28,29 

 

 

 

 

 

DLM 
100, 200, 300 and 400 

mg 

7.06 (100 mg), 6.75 (200 mg), 6.72 (300 

mg), 6.82 (400 mg) 
30 

EMB 15, 25, and 50 mg/kg 6.92  2 

INH 
9, 18.75, 37.5, 75, 150, 

300 and 600 mg 

6.491 (9 mg), 6.585 (18.75 mg), 7.169 (37.5 

mg), 7.031 (75 mg), 7.115 (150 mg), 6.504 

(300 mg), 6.995 (600 mg) 

31 

LZD 600 mg QD, 600 mg BD 6.34 (600 mg QD), 6.44 (600 mg BD) 32 

MXF 400 mg 
6.19 (400 mg Johnson), 7.15 (400 mg Pletz), 

7.23 (400 mg Gosling) 
33–35 

PMD 
50, 100, 150, 200, 600, 

1000, 1200 mg 

6.1 (50 mg), 5.8 (100 mg), 6 (150 mg), 6.1 

(200 mg Diacon 2012), 6.592 (200 mg 

Diacon 2010), 6.335 (600 mg), 6.309 (1000 

mg), 6.057 (1200 mg) 

36,67 
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Drugs Doses Baseline (log10 CFU/mL) References 

PZA 1500, 2000 mg 5.56 (1500mg), 6.910 (2000mg) 2,37 

RIF 
10, 20, 25, 30 and 35 

mg/kg 

4.88 (10 mg/kg), 4.00 (20 mg/kg), 5.39 (25 

mg/kg), 4.58 (30 mg/kg), 4.39 (35 mg/kg) 
25 

RPT 300, 600, 900, 1200 mg N/A 38 

*intravenous dosing 
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Table S 1.2 Final parameters for the bacterial infection model46 for each drug based on the 
control data. 

B50 = CFU counts to reach half of KB, BDQ = bedaquiline, CFU = colony forming units, DLM = 
delamanid, EMB = ethambutol, INH = isoniazid, Kg = bacterial growth rate, Kd = bacterial death 
rate, KB = bacterial inhibitory CFU-dependent adaptive immune effect, KT = bacterial inhibitory 
time-dependent adaptive immune effect, LZD = linezolid, MXF = moxifloxacin, PMD = pretomanid, 
PZA = pyrazinamide, RIF = rifampin, RPT = rifapentine, T50 = time to reach half of maximal time 
covariate, :B = steepness of the CFU-dependent adaptive immune effect curve, :T = steepness 
of the CFU-dependent adaptive immune effect curve. 
 

Parameter BDQ DLM EMB INH LZD MXF PMD PZA RIF RPT 

Kg (day-1) 

(≤ 4 days) 
0.509 0.370 1.11 0.512 0.845 0.461 0.423 0.512 0.512 0.509 

Kg (day-1)  

(> 4 days) 
1.2 

0.881

04 
1.11 1.217 1.510 1.106 1.194 1.217 1.217 1.11 

Kd (day-1) 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 

KB (%) 23.70 28.51 20.3 24.17 39 27.48 68.94 24.17 24.17 23.70 

B50 (log10 

CFU) 
6.991 7.024 7.86 7.051 8.339 6.914 7.761 7.051 7.051 6.991 

:B  2.328 1.232 0.203 2.194 2.9 1.788 0.206 2.194 2.194 2.328 

KT (%) 66.4 64.72 70.2 66.32 69.6 65.15 63.76 66.32 66.32 66.4 

T50 (day) 19.31 19.73 17.4 19.33 17.5 19.60 18.82 19.33 19.33 19.31 

:T 5.528 5.788 0.702 5.360 5.13 5.561 5.765 5.360 5.360 5.528 
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Chapter 2 An in vitro tool kit to predict in vivo monotherapy efficacy for 

tuberculosis 

 

Abstract  

 

Multiple in vitro assays mimicking different tuberculosis (TB) infection niches are used to test a 

new compound's drug efficacy. However, there is no consensus on which assays are most 

predictive of in vivo drug potency. Earlier, we have shown that in vivo EC50 is portable between 

mouse models and patients with TB after adjusting for protein binding and can be used to predict 

dose-response in early clinical trials. Our goal is to extend this translational platform and develop 

a further link between preclinical assay results with in vivo estimates of EC50 from mouse infection 

models. 

 

Thirty-three unique in vitro assays were compiled from literature and collaborator data for ten  1st 

and 2nd line TB drugs. After, feature selection was based on data availability and feature 

correlation resulting in 15 informative in vitro assays.  

 

To prevent overfitting of the models, in vivo EC50 was binned into four distinct bins (< 0.1, 0.1-1, 

1-10 and 10-100 mg/L). A multinomial regression was then applied to all possible 1-15 assay 

combinations and the performance accuracy measured using leave-one-out cross-validation. 

Based on accuracy metrics, we concluded that 1-3 in vitro assays were sufficient for in vivo EC50 

prediction, depending on the mouse infection model.  This model was then validated by predicting 

the in vivo mouse EC50 of 6 new TB drugs with good accuracy. We then used the median of the 

binned EC50s as an input into our mouse PK-PD models to simulate mouse CFU predictions. The 

majority of our in vitro informed PK-PD simulations overlap well with observed data for all sixteen 
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TB drugs and their dose ranges, demonstrating that our in vitro to in vivo prediction was 

informative of animal study outcomes.  

 

Our recommendations on the in vitro assays to conduct prior to animal studies can help us to 

prioritize which drugs are the most likely to succeed clinically, as well as help inform us of the 

optimal dose range for animal testing, saving resources and accelerating development. 
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Introduction  

 

Tuberculosis (TB) is back to being the top killer among infectious diseases in the world as of 

202271. A standard therapy consisting of a cocktail of four drugs exists72, but the long treatment 

duration with the strict adherence required make it difficult for TB to be eradicated73. There is thus 

an urgent need for the development of new drugs that can shorten treatment duration. Many novel 

drugs have been developed in recent years. However, the process of clinical trials is often long 

and expensive. Thus, there is a need to better prioritize which drugs are the most likely to succeed 

clinically.  

 

In vitro assays are typically used to test a new compound for activity even before animal studies 

are done. Traditionally, the minimum inhibitory concentration (MIC) is used to determine a drug’s 

potency and efficacy against mycobacterium tuberculosis (Mtb)74. However, these assays are 

often carried out in a nutrient-rich media that promotes rapid bacteria growth and are not 

representative of the physiological conditions in which Mtb often grows in clinically. Over the 

course of treatment, Mtb growth slows, making it less susceptible to drug treatment74. MIC alone 

might thus be an overestimate of a drug’s actual effect for TB cure. Numerous novel in vitro assays 

have since been developed to mimic this persister state better, through different methods such 

as depriving Mtb of key nutrients like oleic acid or oxygen, and even the addition of immune cells 

to simulate what happens in an actual infection74. However, there is no consensus on which 

assays are most predictive of in vivo drug potency and thus informative for furthering drug 

development. 

 

Previously we have developed an integrated pharmacokinetic-pharmacodynamic (PK-PD) model 

with bacterial dynamics that allows us to estimate the in vivo potency (EC50) of a drug in mice 
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after accounting for the immune effect75. We then found that EC50 from mice was portable to 

humans and could be used to estimate clinical early bactericidal activity (EBA) outcomes in Phase 

2a trials. Using in vivo EC50 from mice as a standard, we thus wanted to ask two questions: 

1) Which in vitro assays, or combination of in vitro assays were the most useful in the 

prediction of in vivo EC50? 

2) Are these in vitro predictions of in vivo EC50 useful for the prediction of both in vivo 

preclinical animal efficacy and clinical efficacy? 
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Methods  

 

 

Figure 2.1 A three step translational platform to find the most predictive in vitro assays for 
translation into in vivo outcomes in mice. 

In vitro assay potencies were compared against in vivo EC50 from integrated mouse PK-PD 
models with bacterial dynamics to determine the best assay combination. The predicted in vivo 
EC50 from the multinomial regression model was then used to predict the mouse CFU profile. 
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Compiling a rich dataset of in vitro data  

 

A total of ten drugs were chosen for the study. These drugs were bedaquiline (BDQ), delamanid 

(DLM), ethambutol (EMB), isoniazid (INH), moxifloxacin (MFX), linezolid (LZD), pretomanid 

(PMD), pyrazinamide (PZA), rifampicin (RIF) and rifapentine (RPT). Drugs were chosen based 

on the criteria that they had a corresponding integrated bacterial dynamics PK-PD model built, as 

well as a minimum of 5 in vitro assay results from feature selection prior to imputation for analysis. 

 

In vitro assays and their reported drug potencies e.g. EC50 were compiled from both published 

literature, as well as from our collaborators. To ensure fair comparison across drug potencies, all 

drug concentrations were standardized to mg/L and different measure outcomes e.g. EC90, EC80, 

EC99 were converted to EC50 using the assumption that the Hill coefficient in a log-logistic dose-

response curve was 1. This held true for most assays we tested where a full dose response curve 

was available (SFig 2.1). When the percent activity was not stated for MIC, we assumed it to be 

EC50.  

 

Building a translational mouse- human PK-PD dataset and model repository  

 

Our mouse model repository was built on rich longitudinal data pooled from both in-house 

databases and literature, including observed or published mouse PK and PD data (lung CFU 

counts) and human PD data (sputum CFU counts), as well as simulated human PK data using 

published models as detailed in our previous publication76,77. In total, mouse PK and PD data were 

collected from 2,770 BALB/c mice. Multiple dose levels were investigated in both mouse PK and 

efficacy (PD) studies and human PK and EBA (PD) studies. All the drugs were administered orally 

in mouse and human PK and PD studies. Mouse plasma samples were collected after either a 

single dose or multiple doses of treatment, while human plasma samples were collected only after 
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multiple dosing. Depending on the size of the infectious dose and the duration of incubation before 

treatment started, mouse efficacy studies were grouped as acute infection (inoculum size no less 

than 3.5 log10 CFU/ml and incubation period no more than 8 days), sub-acute infection (inoculum 

size no less than 3.5 log10 CFU/ml and incubation period between 10 and 17 days) and chronic 

infection studies (inoculum size less than 3.5 log10 CFU/ml and incubation period no less than 

21 days). Mice were dosed five days per week and CFU counts were collected 3 days after the 

last dose for any given mouse. In human EBA studies, the treatment duration ranges between 1 

day and 14 days. Integrated PK-PD models with bacterial dynamics were applied to the mice data 

to elucidate the in vivo exposure response using NONMEM 7.5.1 and Perl Speaks Nonmem (PsN) 

5.3.0 . Detailed methods on the model building can be found in Ernest et al78.  

 

Exploratory analyses and machine learning to determine translatable assays 

 

Computational analyses were done using R 4.1.3. Initial exploratory analyses were done using 

tidyverse, pheatmap, drc, nnet and cor R packages. Feature selection was carried out using the 

following criteria (Fig 2.2a).  

1) In vitro assay must contain information for at least 3 drugs of interest  

2) Between highly correlated assays, the most representative assay with the most pairwise 

correlations (> 6 edges in a network plot) would be chosen.  

In vitro assays were first evaluated together using both multivariate and multinomial regression. 

Models to predict in vivo mouse EC50 were done individually for each mouse infection type as the 

in vivo EC50 trends changed between infection models for the same drug. 

 

After, we carried out feature perturbation to test which in vitro assays were most informative, both 

multiple linear regression and multinomial linear regression were applied to the dataset to predict 

in vivo EC50 from in vitro EC50. All possible 1-15 combinations of in vitro assays were generated 
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for evaluation of a good in vitro assay combination. Due to a small dataset, we did leave one out 

cross validation (LOOCV) instead of traditional 80:20 training:testing for machine learning. Our 

metrics for a good model were accuracy and R2 for multiple linear regression, and accuracy, 

defined as the number of times the left out drug was predicted in the correct bin for multinomial 

linear regression. The bins for in vivo EC50 were decided based on the distribution of all in vivo 

EC50 values in the dataset. For drugs with missing assay values, the assay values were imputed 

as the median potency of all the other drugs. 

 

Combining PK models from mice with in vitro-in vivo predicted exposure response 

   

 

To find out how well our in vitro-in vivo (IVIV) predicted exposure-response was able to predict 

drug efficacy in mice, we combined that relationship with mouse PK models from our model 

repository. The Emax in each exposure-response curve was estimated as the median Emax of 

all ten drugs for each mouse infection model. Simulations of bacterial burden in mice (CFU) over 

time were done using both the raw EC50 values for selected in vitro assays as well as the median 

of the binned EC50 values as predicted by our multinomial regression algorithm. The PK-PD 

simulations were done using NONMEM 7.5.1 without parameter estimates. Variability was 

simulated using PK variability in the models and variability in CFU at day 0 in mice prior to 

treatment. The model predictions were evaluated using visual predictive checks (VPCs), by 

overlaying the median and 95% prediction interval of the model over observed results from mouse 

studies. A good model would have the prediction intervals overlapping well with the observed 

data.  

 

Combining PK models from humans with in vitro-in vivo predicted exposure response   
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To predict clinical EBA, the predicted in vivo exposure-response relationship was combined with 

previously validated population PK models from literature to build a PK-PD model that was then 

used for simulation. Similarly, our models were evaluated using VPCs against observed clinical 

EBA data from 14 different studies for all 10 drugs.   
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Model validation using 6 new TB drugs 

 

 

To further validate our model, we compiled a list of the best performing in vitro assays from our 

initial multinomial classification and reached out to various collaborators to help us test new 

compounds against these in vitro assays. We then input the in vitro assay EC50 values from our 

multinomial classifier trained using the original to predict the in vivo mouse EC50 for these new 

compounds. The new compounds were sutezolid (SUT), TBAJ587, TBAJ876, TBI223, MK7762 

and BTZ043, all of which are drugs currently being developed for the treatment of TB. We 

retrained the model using all 16 drugs using an 80:20 training:testing split only if the initial model 

did not perform well.  

 

 

  



 

 73 

Results  

 

Figure 2.2 A total of 33 in vitro assays were compiled for 10 TB drugs 

Overview of assays and drugs available in database as heatmap with hierarchical clustering – 
drug potency alone was unable to account for drug efficacy. Drugs reported as inactive at highest 
concentration tested were assigned a value of 9999. Drugs in the dataset were ranked by their 
efficacy, defined as the change in bacterial burden at day 28 of treatment using the maximum 
dose in the dataset into either the top or bottom 50%.  
 

A rich dataset of in vitro assays was compiled  

 

We compiled 33 unique assays for 10 drugs with corresponding PK-PD models and clinical data 

available. Most of these assays only had reported drug potencies rather than a full dose-response 

curve. Hence, we focused on EC50 rather than Emax to generate the exposure-response.  

 

Out of these 33 assays, 5 were macrophage assays involving the addition of an immune cell line 

to Mtb, 24 were a change in culture condition, either via a media formulation or oxygen 
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deprivation, 3 were nutrient-rich conditions e.g. MIC and 1 was an ex vivo assay using harvested 

caseum from New Zealand White rabbits (Fig 2.2).  

 

Drug potency (EC50) alone was insufficient to predict in vivo efficacy in mice 

  

 

The drugs were then ranked by efficacy using the maximum tested dose in animal studies against 

their total drop in CFU at 28 days from baseline in a subacute mouse infection model. A subacute 

model was chosen for evaluation as these were the models we used previously for translation to 

clinical EBA predictions. Despite there being an extensive database, there was no clear 

separation of drug effect in mice based on drug potency alone, suggesting that considering the 

PK profile and thus exposure of each drug would be important too in determining the early efficacy 

of a drug (Fig 2.2).  
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(c) 

 

Figure 2.3 Feature selection criteria for in vitro assays prior to multivariate and multinomial 
regression to predict in vivo EC50 

(a) Feature selection pipeline for multivariate and multinomial regression pipeline for the robust 
prediction of in vivo EC50 from in vitro EC50. For multinomial regression, in vivo EC50 values 
were binned based on their distribution and the median of each bin used to estimate the exposure 
response relationship in vivo.  
(b) High correlations between in vitro assays exist for 25 assays. Assays were highly correlated 
when pairwise correlation (r) was larger than 0.9. The assays highlighted in red have more than 
6 high correlations among in vitro pairwise comparisons and were chosen as representative of 
other highly correlated in vitro assays.  
(c) Ranked in vitro EC50 correlations among 15 selected features against in vivo EC50 values. 
Caseum consistently held top correlations across mouse infection models among chosen assays. 
The associated plots are available in SFig1.   
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Feature selection picked in vitro assays most representative of the dataset 

 

To reduce the amount of redundancy in the model, we carried out feature selection on all 33 

assays, selecting assays that had information on more than 3 drugs of interest, as well as assays 

with a high number of pairwise correlations (>6 edges in a network plot of pairwise in vitro assay 

EC50 correlations) (Fig 2.3a). 3 assays did not have sufficient information about drugs of interest 

and were discarded. Using pairwise correlation, we found 58 in vitro assay pairs with |R| >0.9 

indicating strong pairwise correlation. Five assays, caseum, CARA MBC, THP1 hypoxia, LORA 

MIC and RAW264.7 did not have high pairwise correlations with other assays and were selected 

as features. Out of the remaining 25 drugs, 8 drugs with more than 6 edges in the large cluster 

were chosen and the other assays based on the highest number of connected edges within a 

smaller cluster. NARA MBC NR and WCC were also chosen as they were representative of their 

clusters (Fig 2.3b). A total of 15 in vitro assays were selected for further testing. 
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Figure 2.4 Feature perturbation to find minimum number of features to make reliable predictions 

(a) Feature perturbation to find minimum number of features to make reliable prediction. Despite 
moderate correlations between features and in vivo EC50, prediction accuracy of multivariate and 
multinomial regression was low, prompting investigation using feature perturbation.  
(b) Single assays were able to classify in vivo EC50 with reasonable accuracy.  
(c) Feature perturbation suggests 4 assays or less produced decent prediction accuracy across 
all infection models. This suggests feature interactions are detrimental to model accuracy.  
(d) test drug results from leave one out cross validation of all 10 drugs with the best performing 
combinations.  
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Table 2.1 Suggested in vitro assays for in vivo EC50 predictions based on 10 drugs 

Mouse 

infection 

model 

Median in vivo Emax Best performing assay combinations  

Acute 0.968 • Dormancy, RAW264.7  

• Acidic, TBDA cholesterol  

• Acidic, Valerate, WCC 

Subacute 0.594 • TBDA cholesterol 

• LORA MIC, RAW264.7, Valerate  

• Human Macrophage, Butyrate, 

BA Cholesterol, LORA MIC  

Chronic 0.421  • Acidic, Butyrate, RAW264.7  

• Acidic, Butyrate, WCC  

• Caseum 

• Butyrate  

 

 

Caseum assay shows good univariate correlation against in vivo EC50 across all infection 

models  

 

To further understand how each assay might contribute to the prediction of in vivo EC50, we did a 

univariate correlation analysis of each in vitro assay EC50 against their corresponding in vivo EC50 

(Fig 2.3c). The ranking shows that caseum was the top assay in both acute and subacute mouse 

infection models, and third to CARA MBC and RAW264.7 assays in the chronic mouse infection 
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model. This suggests that the caseum assay would be a good robust predictor for in vivo mouse 

EC50 prediction. 

 

Feature perturbation suggests 4 or less in vitro assays gave a good prediction of in vivo 

EC50 across mouse infection model types 

 

Multivariate regression was unable to give good predictions using all 15 selected features due to 

overfitting of the training dataset (SFig2.3a). We then tried multinomial regression by classifying 

the in vivo EC50 values into four bins (very low <0.1, low 0.1-1, mid 1-10, high > 10). While the test 

prediction improved slightly, it was still insufficient to get a reliable classification of the in vivo 

EC50(SFig2.3b). However, as we saw low to moderate correlations against in vivo mouse EC50 for 

all correlations (SFig2.2), it was possible that there were multiple interacting features within the 

dataset, leading us to attempt feature perturbation to find the minimum number of features 

required to make a reliable prediction. We simulated all possible 1-15 combinations of in vitro 

assays based on the 15 assays from feature selection (Fig 2.4a). Accuracy from LOOCV showed 

that a combination of 3 assays gave good predictions (>70%) for all mouse infection models. 

Individual assay performance using LOOCV was sufficient for subacute and chronic mouse 

infection models using TBDA cholesterol and caseum assay respectively. A single assay was not 

able to predict acute mouse infection EC50 with good accuracy (Fig 2.4b). Based on the accuracy 

of the best performing combination of assays, we suggest that 4 assays or less are sufficient to 

predict in vivo mouse EC50 (Fig 2.4c). We suggest the following combinations for each mouse 

infection model based on which combinations gave the highest accuracy with LOOCV and how 

often an assay appeared among the top combinations. If two combinations were equally ranked, 

we then chose the assay that was less biologically complex as the preferred assay. Our 

suggestions on assay combinations are in Table 2.1.  
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Figure 2.5 New TB drugs used as validation with selected in vitro assays could also be 
predicted with reliable accuracy 

(a) Data overview of 6 new TB drugs with the original 10 TB drugs used for testing with selected 
best performing assays from multinomial classification.  
(b) In vivo EC50 distribution into 4 bins per mouse infection model type. Error bars represent the 
upper and lower bounds of the classification bin. 
(c) Selected assay combinations were generalizable to new drugs 
(d) Retrained subacute assay containing human macrophage, butyrate, BA cholesterol and LORA 
MIC had reasonable predictions in both training and testing set using a 80:20 split. 
 

Selected in vitro assay combinations work well in predicting in vivo EC50 of new drugs in 

acute and chronic mouse infection models 

 

Using the model trained on all 10 drugs, we input newly generated in vitro data from 6 drugs into 

their respectively trained mouse infection models (Fig 2.5a). TBI223 and MK7762 had in vivo EC50 

in the acute infection model while TBAJ876 and TBAJ587 had in vivo EC50 in the subacute mouse 

infection model. BTZ043 was tested in a chronic mouse model and SUT had in vivo EC50 in all 

mouse infection models.  

 

The acute combination that worked best was tied between acidic+TBDA cholesterol and 

dormancy+RAW264.7. As perturbing the media for both acidic and TBDA cholesterol was simpler 

than doing a co-culture of mouse macrophages with Mtb, acidic+TBDA was the preferred 

combination (Fig 2.5a). Surprisingly, the caseum assay alone performed much better than both 

combinations of three in vitro assays in the chronic mouse model. Due to a lack of in vitro assay 

information for subacute, we were unable to reliably make predictions for new drugs with the 

exception of our four in vitro assay combination human macrophage, butyrate, BA cholesterol and 

LORA MIC. 
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When we retrained the model by compiling all the drugs together and doing a new 80:20 

training:test split, we were able to achieve good predictions in the dataset for both training and 

testing drugs.  
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Figure 2.6 Using predicted in vivo EC50, we could approximate mouse CFU drop over time with 
drug treatment across different mouse infection models. 

(a) The original 10 TB drugs used to build the prediction model and their simulated prediction 
intervals over observed mouse data.  
(b) new TB drugs and their simulated prediction intervals from predicted in vivo EC50 over 
observed mouse data. 
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Binned EC50 values gave good predictions of mouse CFU profile 

 

After predicting the in vivo EC50 from the best performing combo of in vitro assays, we took the 

median of each bin the predicted in vivo EC50 was in, along with the median Emax per mouse 

infection model as the exposure-response relationship in mice in our integrated PK-PD model 

with bacterial dynamics. This allowed us to predict the outcome in mice over time over a range of 

drug doses for all 10 training drugs (Fig 2.6a). Interestingly, while we were able to accurately 

predict the in vivo EC50 values for the new drugs, we were not able to capture the mouse CFU 

profile as successfully as we did with the original 10 drugs, suggesting the new drugs might differ 

in other exposure response parameters too. 
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 Figure 2.7 Clinical EBA prediction using in vivo exposure response relationships from in vitro 
data 
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In vitro to in vivo exposure response predictions for subacute mouse infection models were used 
with clinical PK models to generate the exposure response relationship. Blue line depicts the 
median model prediction while the blue ribbon is the 95% prediction interval. Points represent 
observed clinical data from 14 different studies.  
 

Predicted in vivo exposure response was useful for the prediction of clinical EBA 

 

Similarly, by combining clinical drug exposure with our predicted exposure-response, we were 

able to get EBA predictions for all 10 drugs over 15 different studies. Our results were largely 

similar to our preclinical mouse to human predictions, with most predictions overlapping well with 

the observed clinical data, except for BDQ which had an overpredicted EBA, and RPT, which was 

likely underpredicted due to a post-antibiotic effect unaccounted for by the current PK-PD model. 

This demonstrates that exposure-response relationships can be translatable between systems, 

provided in vivo PK is well described.  
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Discussion 

 

In vitro assays are the least resource intensive way of screening a drug for efficacy in the drug 

development pipeline. However, reported in vitro drug potency should be coupled with drug 

exposure to gain better understanding of a drug’s in vivo efficacy. Using our in vivo mouse PK-

PD parameters, we have successfully identified which in vitro assays are informative for the 

prediction of mouse bacterial burden with drug treatment, as well as short-term clinical outcomes. 

Furthermore, we have demonstrated our predicted exposure-response relationship allows us to 

predict in vivo EC50 using a set of 3 in vitro assays. This is useful both in designing animal studies 

as well as suggesting what are reasonable first in human (FIH) doses for clinical testing.  

 

Binned EC50 allows for a robust, reproducible prediction of drugs across datasets 

 

 

Our initial dataset was limited in that we only had 10 drugs against a total of 15 features split 

across three different mouse infection models. We thus employed LOOCV as our method of 

cross-validation instead of the traditional 80:20 training to testing ratio. Trying to predict in vivo 

EC50 as a continuous variable using multiple linear regression led to large amounts of model 

overfitting in the training set, but very poor predictions in our left out testing drug. Binning the in 

vivo EC50 into bins, while less accurate, still provided a good estimate of the in vivo EC50, while 

allowing the model to be more robust to make reliable predictions of the left-out testing drug. The 

median of the bin also provided a good estimate for the overall exposure-response as seen with 

the prediction of mouse CFU burden with drug treatment overlapping well with observed 

experimental data.  
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While initial clustering and data exploration was done in µM, we decided to do the binning and 

predictions of EC50 in mg/L as that is the concentration that is commonly reported for PK studies 

and we wanted to be as consistent as possible with those models. As the main driver of the drug’s 

effect is its exposure characterized as mg/L over time, rather than its potency directly, the 

predictions in mg/L are more translatable for directly adding into a PK-PD model without additional 

unit conversions.  

 

Four or less in vitro assays were required for the robust prediction of in vivo EC50 in 

mice 

 

Due to high correlation between the in vitro assays, it was no surprise that a smaller set of in vitro 

assays would be representative of the various TB pathophysiology states. With TB 

pathophysiology being extremely heterogeneous, both acute and subacute mouse infection 

models required more than one assay to have reliable prediction of in vivo EC50, suggesting 

different assays describing different biological niches were required for in vivo EC50 prediction. 

Interestingly, the chronic mouse infection model was well described by the caseum assay alone 

despite Balb/c mice not forming necrotic lesions. It is possible that after the initial inoculation, the 

bacteria have reached a more steady state equilibrium, thus allowing for a single assay to reflect 

in vivo drug potency well.  

 

Insufficient data in the low in vivo EC50 bin of the subacute infection model led to initial 

poor predictions 

 

Initially, the only drug present in the low bin of the subacute infection model was BDQ. As 

TBAJ876 and TBAJ587 both have in vivo EC50 in the low bin too, the model might not have had 
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sufficient information to make a good classification. Upon compiling both old and new drugs and 

retraining the dataset, we were able to achieve much better predictions.   

 

Limitations and future directions 

 

Due to data availability, our dataset was small and biased toward drugs that had already been 

approved or are in clinical development for TB. This was disadvantageous in being able to 

understand the significance and weights of each assay within the multinomial regression as our 

sample size was too small to have significant p-values despite the good accuracy. Having more 

drugs to validate the pipeline, including drugs that did not make it into in vivo testing would be 

useful to test the robustness of the model to help aid decisions on the best compounds to move 

forward. Furthermore, this study is currently limited to only single drugs and short-term EBA. 

Further work is on going to predict the efficacy of drug combinations.  

 

Conclusion 

 

 

Using our integrated mouse PK-PD model with bacterial dynamics, we were able to reliably 

measure in vivo EC50 from mouse infection models across 3 different infection loads and 

incubation times. This allowed us to use in vivo EC50 as a standard to compare against reported 

in vitro assay potencies and thus find which assays were most informative for further drug 

development. Despite the limitations of a small dataset, we have successfully created a pipeline 

that allows us to predict exposure responses from in vitro studies to in vivo studies. This is a novel 

piece of work that shows how we can use PK-PD concepts to further help us translate our in vitro 

results to predict in vivo outcomes both in animal and clinical studies.  
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Supplementary figures 

 

  

SFigure 2.1 A log logistic regression with hill coefficient of 1 was sufficient to fit all the data 
points. 
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SFigure 2.2 Correlation plot of in vitro EC50 to in vivo EC50 by in vitro assay across all 3 mouse 
infection models. 

 

(a) 

 

(b) 

 

SFigure 2.3 Using all 15 selected features led to poor prediction accuracy. 

Leave one out drug cross validation prediction of left one out drug in vivo EC50 using  
(a) multivariate regression (b) multinomial regression both had over fitted models with the training 
dataset and were not able to achieve good accuracy with the left one out drug.  
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SFigure 2.4 In vivo Emax and EC50 trends across mouse infection models 

Emax shows a general downward trend with lower bacterial inoculation and longer incubation 
time while EC50 does not hold a clear trend against mouse infection model. The median Emax of 
each infection model was thus used for mouse PKPD simulations along with the predicted in vivo 
EC50 from in vitro assays.  
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Chapter 3 The human and mouse gut microbiomes modulate host hepatic 

CYP3A4 enzyme activity 

 

Abstract  

 

Drug clearance is highly dependent on CYP abundance and activity. However, significant 

interindividual variation in major liver enzyme CYP3A of up to 30- to 40-fold variation exists. 

Genetic polymorphisms alone cannot account for this variation. Recent evidence suggests the 

gut microbiome can modulate CYP expression and activity. Hence, we aim to elucidate the 

functional consequences and mechanisms of the gut microbiome's modulation of CYP3A4 

activity. We compared midazolam’s rate of elimination between conventionally-raised (CONVR) 

mice against germ-free (GF) mice and found that GF mice had a higher rate of elimination despite 

a lower expression of hepatic Cyp3a11, the mouse ortholog of human CYP3A4, compared to 

CONVR mice. Similarly, mice colonized with a human (HUMD) microbiome displayed an 

increased Cyp3a11 (ortholog of human CYP3A4) expression but no significant change in the rate 

of midazolam elimination. The decrease in CYP3A4 expression and activity was also observed 

with the human liver cell line HepaRG. We then characterized the inhibitor using microsomal 

assays which revealed the inhibitor had sphingolipid characteristics. We further observed 

decreased binding affinity (Km) of liver microsomes and decreased membrane fluidity in CONVD, 

HUMD, and CONVR mice compared to GF mice. This supported our hypothesis that gut microbial 

sphingolipids influenced enzyme activity by altering membrane fluidity. Lastly, we incubated four 

unique human stool water samples with HepaRG, which reduced CYP3A4 clinical index 

substrate, midazolam’s clearance to differing extents, suggesting the microbiome may contribute 

to interindividual variation in drug clearance. Our findings demonstrate that both human and 

mouse microbiomes are capable of inducing CYP3A4, but also inhibiting its function, potentially 
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via an alteration in membrane fluidity. With both induction and inhibition capabilities, the gut 

microbiome has the potential to influence interindividual variation in CYP3A4, which the in vitro 

HepaRG assay demonstrates. Characterizing the unique gut microbiome of an individual may 

thus be the next key in helping us to predict CYP3A4 mediated drug clearance more effectively.  

 

Introduction 

 

CYP3A4 is a major hepatic drug metabolizing enzyme with large interindividual variation  

 

Nearly 75% of marketed drugs are acted upon by CYPs, with ~50% of those metabolized by 

CYP3A4 1. Differences in CYP3A4 activity have broad consequences for drug efficacy and toxicity 

2,3; decreased CYP3A4 activity can lead to severe adverse events, while increased CYP3A4 

activity can lead to poor therapeutic efficacy. 

CYP3A4 has great variability, 30- to 40-fold at basal levels 4. Despite multiple CYP3A4 

polymorphisms, there has been no clear genetic association to account for all the variation in 

CYP3A4 function 5. 

 

The murine gut microbiome influences Cyp expression in mice 

 

Multiple studies have characterized the effect of the gut microbiome by comparing germ-free (GF) 

mice against conventionally raised (CONVR), or conventionalized (CONVD) mice6–10. All have 

concluded that having a microbiome induces Cyp3a11 expression in mice, as measured via RNA-

seq, qPCR, or a mouse liver microsomal assay. Furthermore, we know that the microbiome has 

diverse metabolic capabilities and can produce a large number of small molecules, some of which 
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are biologically active and influence CYP activity11. The gut microbiome could thus help to explain 

CYP3A4 interindividual variation.  
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The effect of the human microbiome on CYP expression has not been well characterized 

 

Humans and mice share approximately 85% mRNA similarity12 and mouse microbiomes are 

largely different from human microbiomes13. Studying the effect of the human microbiome in both 

in vivo gnotobiotic mouse models as well as in vitro human cell lines would thus make these 

findings more translational for clinical use.  

 

Furthermore, pharmacokinetic (PK) experiments for drugs proposed to be influenced by the 

microbiome have been done mostly via oral administration9,14,15, which leads to a PK profile 

confounded with absorption parameters16,17, another area the microbiome is reported to influence. 

Administration of intravenous (IV) drugs will thus allow for a clearer picture in understanding 

hepatic drug metabolism as we can measure drug clearance directly by bypassing the drug 

absorption process16. 

 

Our study thus aims to characterize the functional consequences of gut microbial colonization in 

both human and mouse models of hepatic clearance, as well as the potential mechanisms by 

which this can occur.  

 

Employing drug-drug interaction tools to study gut microbe drug interactions  

 

To understand the gut microbiome's effect on drug metabolism in a rigorous and well-validated 

manner, we adapted most of our methods from the Food and Drug Administration’s drug-drug 

interaction guidance2. We first performed a total RNA-seq analysis on GF, humanized (HUMD), 

CONVD, and CONVR mice livers to understand the broad impact of colonization on hepatic gene 

expression. This was followed by pharmacokinetic studies in mice and mechanistic studies in both 

mouse and human in vitro systems.  
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Functional consequences of gut microbial colonization were characterized by administering 

midazolam, an FDA clinical index Cyp3a11 substrate, via IV tail vein administration to either GF, 

HUMD, or CONVR mouse models and measuring midazolam’s rate of elimination and systemic 

exposure over time. 

 

After, we used HepaRG cells, a well-validated human hepatocyte cell line, to study both inhibition 

and induction capabilities of the microbiome on human hepatocytes. Lastly, mouse microsomes 

derived from GF or colonized mice were used to understand the mechanism of action.  
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Materials 

Table 3.1 Reagents used 

Reagent Source Identifier 

Stool water fractions and portal vein blood reagents 

MilliQ Water Filtered in-house   

Heparin Sodium Crude Sigma-Aldrich 

SIAL-H5515-

25KU 

Sodium Chloride, NaCl, Molecular/Proteomic Grade Fisher Scientific 60-037 

0.22 µm syringe filter VWR International 28145-501 

10 kDa centrifugal filters Millipore Sigma UFC510024 

Chloroform Fisher Scientific 288306-1L 

Methanol Sigma-Aldrich 34860-4X4L-R 

Methyl-tertbutylether (MTBE) Fisher Scientific 177040010 

Acetonitrile Fisher Scientific 34998 

Nitrogen gas industrial grade UCSF logistics 13515105 

Mild Alkaline hydrolysis 

Potassium hydroxide (KOH) Fisher Scientific LC193701 

Hydrochloric acid Fisher Scientific 258148-4L 

Methanol Sigma-Aldrich 34860-4X4L-R 
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Reagent Source Identifier 

HepaRG cell culture, maintenance and differentiation 

HPR101 proliferative state HepaRG cells  Biopredic International HPR101 

Fetal Bovine Serum, qualified, heat inactivated Gibco 10438026 

William's E Medium, no glutamine 

LifeTechnologies 

Corporation 12551032 

Penicillin-Streptomycin (10,000 U/mL) 

LifeTechnologies 

Corporation 15140122 

GlutaMAX™ Supplement Gibco 35050061 

Insulin from bovine pancreas MilliporeSigma I0516-5ML 

Dimethyl sulfoxide, ReagentPlus®, ≥99.5% Sigma-Aldrich D5879-100ML 

Hydrocortisone Cayman chemical 20739 

Rifampicin Cayman chemical 14423 

Dulbecco's Phosphate-Buffered Saline Corning 21-031-CV 
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Reagent Source Identifier 

HepaRG activity assays 

CYP3A4 P450-Glo™ Assays with Luciferin-IPA Promega V9002 

Midazolam Hydrochloride USP reference standard  Sigma-Aldrich 1443602 

Acetonitrile Fisher Scientific 34998 

Alamar blue Avantor BUF012A 

CyQUANT™ LDH Cytotoxicity Assay Kit Thermo Scientific C20301 

CellTiter 96® Non-Radioactive Cell Proliferation 

Assay (MTT) Promega G4000 

Rifampicin Cayman chemical 14423 

Microsome preparation, quantification and activity 

Sucrose, Ultrapure Bioreagent, for Density Gradient 

Centrifugation Fisher Scientific 02-004-331 

Protease Inhibitor Cocktail EDTA Free Abcam ab270055 

Pierce™ BCA Protein Assay Kit  Thermo Fisher Scientific 23225 

Mouse Cytochrome P450 3A4 ELISA Kit Abclonal RK02730 

Benzyloxy resorufin (BzRes) Cayman chemical 18077 

NADPH Regeneration System A and B Promega V9510 

Tween80 Fisher Scientific 

RES3063T-

A103 

Midazolam Hydrochloride USP reference standard  Sigma-Aldrich 1443602 
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Reagent Source Identifier 

Mouse in vivo IV midazolam clearance 

Midazolam 25 mg/5 mL IV injection Covetrus NA 72622 

Sodium citrate tribasic dihydrate Sigma-Aldrich C3434-250G 

Innovative Med Tech Plastic Capillary Tubes 20 µL 

Innovative Med Tech 

100020 22757115 

Midazolam LC/MS/MS analysis 

Midazolam Hydrochloride USP reference standard  Sigma-Aldrich 1443602 

1-OH midazolam Cayman chemical 10385 

d4-midazolam Cayman chemical 20199 

QTRAP 6500 LC-MS/MS System Sciex   

Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2 

mm, Ea Phenomenex 00B-4424-B0 

Shimadzu Nexera X2 HPLC  Shimadzu   
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Reagent Source Identifier 

Targeted sphingolipid panel 

QTRAP 6500 LC-MS/MS System Sciex   

Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2 

mm, Ea Phenomenex 00B-4424-B0 

Shimadzu Nexera X2 HPLC  Shimadzu   

Sphingolipid activity assay in HepaRG cells 

D-erythro-Sphinganine Cayman chemical C835A97 

Sphingosine-1-phosphate Cayman chemical C789A42 

N-myristoyl-D-sphinganine MilliporeSigma 80760 
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Reagent Source Identifier 

RNA extraction and library preparation 

2-Mercaptoethanol Bio-Rad 1610710 

PureLink™ RNA Mini Kit Thermo Fisher Scientific 12183018A 

TURBO™ DNase (2 U/µL) Invitrogen AM2238 

RNAClean XP 

Beckman Coulter Life 

Sciences A66514 

Agilent RNA 6000 Nano Kit Agilent 5067-1511 

NEBNext® rRNA Depletion Kit v2 

(Human/Mouse/Rat)  New England BioLabs E7400X  

NEBNext® Ultra™ II Directional RNA Library Prep 

Kit for Illumina New England BioLabs E7760L 

NEBNext® Multiplex Oligos for Illumina® (Index 

Primers Set 1 and 2) New England BioLabs E6442S, E6440S  

Agilent DNA 1000 Kit Agilent 5067-1504 
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Reagent Source Identifier 

16S and metagenomic sequencing 

ZR-96 BashingBead Lysis Rack Zymo Research S6012-50 

ZymoBIOMICS 96 MagBead DNA Kit Zymo Research D4302 

PicoGreen 

Quant-It dsDNA, Life 

Technologies P11496 

SequalPrep Normalization Plate Kit Invitrogen A1051001 

MinElute PCR Purification Kit Qiagen  28004 

QIAquick Gel Extraction Kit Qiagen  28706X4 

600 cycle MiSeq Reagent Kit Illumina MS-102-3003 

PXR reporter assay 

Human PXR Reporter Assay System, 1 x 96-well 

format assays Indigo biosciences IB07001 
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Methods 

Stool and cecal water preparation  

 

The protocol for making stool and cecal water was adapted from M.Beaumont et al.18. Frozen 

stool or cecal samples stored at -80°C were partially thawed and a small sample was aliquoted 

and weighed. For every 100 mg of stool, 1 ml of MQ water was added. A large glass bead was 

then added and the samples were homogenized in a Biospec minibeadbeater96 for 1 min. 

Samples were immediately transferred to a refrigerated centrifuge set at 4°C and spun for 15 min 

at 21130g. After the supernatant was collected it was sterile filtered using a 0.22 µm filter. For 

treatment in HepaRG cells, stool water was diluted in serum-free cell media to 0.5% v/v before 

being filter-sterilized again and added immediately to cells. Unused stool water was stored at -

20°C and thawed at room temperature before use.  

 

Hepatic portal vein blood collection  

 

To prevent the influence of anesthetics on the liver18,19, portal vein blood was collected from 

freshly euthanized mice by opening up the mouse abdominal cavity and adding 600 µL of 

heparinized saline (50 IU/ml) to it. An aliquot (100 µL) of heparinized saline was first collected 

from the cavity as a negative control.  After, the portal vein was cut and the blood collected from 

within the cavity. The collected blood is then spun at 2000g, 4°C for 15 min before plasma is 

collected and frozen at -80°C.  
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PXR reporter assay  

 

A Pregnane X receptor (PXR) assay kit from Indigo biosciences was used according to the 

manufacturer’s instructions. Reporter Cells (200 µl) were dispensed into wells of the assay plate 

and preincubated for 4-6 h. Following the pre-incubation period, culture media was discarded and 

200 µl/well of the prepared 1X-concentration treatment media were added. Following 22-24 h 

incubation, treatment media was discarded, and Luciferase Detection Reagent was added. The 

intensity of light emission (in units of 'Relative Light Units'; RLU) from each assay well was 

quantified using a plate-reading luminometer. 

 

Inhibitor size selection  

 

Stool water was spun down in 10 kDa centrifugal filters for 30 min at 14000g at room temperature, 

per the manufacturer’s protocol recommendations. To collect the fraction > 10 kDa, the filter was 

turned upside down and respun at 1000g for 2 min.  

 

Methyl-tert butyl ether (MTBE)/acetonitrile (ACN) extraction  

 

As a general extraction method to desalt and deproteinate stool water, a 50/50 solution of MTBE 

and ACN was used. MTBE/ACN (1200 µL) was added to 300 µL of stool water and vortexed on 

high for 2 h. The samples were then centrifuged at 4°C for 15 min at 2000g, separating them into 

a polar bottom phase and a nonpolar top phase. Precipitate at the bottom of the tube was 

discarded.  All layers were then separated and evaporated to dryness using a constant stream of 

N2 gas at 10 psi for 1 h at room temperature. The individual layers were reconstituted in a final 

volume of 300 µL MQ water.  
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Folch’s method for lipid extraction  

 

A two-step Folch’s method optimized for bacterial lipid extraction20 was used to fractionate stool 

water. First, 800 µL of chloroform and 400 µL of methanol were added to 300 µL stool water (8:4:3 

chloroform/methanol/water) and vortexed on high for 2 h. The samples were then centrifuged at 

4°C for 15 min at 2000g. The mixture separates into 3 layers, a top methanol/water layer, a middle 

precipitate layer, and a chloroform layer at the bottom. The top methanol/water layer was saved 

in a fresh tube, and 0.9% NaCl was added to the remaining layers. The mixture was then vortexed 

again briefly and spun down. All layers were then separated and evaporated to dryness using a 

constant stream of N2 gas at 10 psi for 1 h at room temperature. The individual layers were 

reconstituted in a final volume of 300 µL MQ water.  

 

Mild alkaline hydrolysis to test for sphingolipids  

 

Methanol (400 µl) was added to 100 µl of stool water and vortexed for 2 h. The samples were 

spun down at 4°C, 21100g for 15 min and 450 µL of supernatant was collected. The sample was 

treated with 9 µl of 1 N KOH (final concentration 0.02 N) or 1 N HCl (final concentration 0.02 N) 

and incubated for 30 min at 37°C 21.  After an equal volume of either 1 N HCl or 1 N KOH was 

added to neutralize the reaction the samples were evaporated to dryness. Samples were 

reconstituted in 100 µL of MQ water.   

 

HepaRG cell culture, maintenance, and differentiation  

 

HepaRG cells were purchased from Biopredic international and cultured according to the 

suggested conditions22–24. Growth media consisted of Williams E Media supplemented with 10% 
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fetal bovine serum, 5 µg/ml insulin  , 50µM hydrocortisone, 5 µg/ml penicillin-streptomycin, and 2 

mM GlutaMAX™-I. A differentiating media consisted of the same ingredients as the growth media, 

but with the addition of 1.7% DMSO. Serum-free cell media had the same ingredients as the 

growth media without the addition of fetal bovine serum. All cell media was sterilized using a 0.22 

µm filter before use. All concentrations stated are final concentrations. HepaRG cells were first 

seeded at 2x106 cells per T75 flask in growth media for 2 weeks and the media changed every 2-

3 days before the addition of 0.85% DMSO in growth cell media for 3 days, followed by 

differentiating media for another 11 days. After, the cells were then seeded at a density of 60 000 

cells/well in differentiating media, with media changed every 2-3 days for another 12 days before 

use.  

 

HepaRG induction experiments for CYP3A4 function  

 

Initially, to screen for CYP3A4 inducers, HepaRG cells were put in DMSO free growth media 48 

h before treatment to bring CYP3A4 expression back to a basal state24. After, treatments in serum-

free cell media were added for 72 h. All treatments were done in quadruplicate. Stool water and 

its extracts were used at 0.5% v/v, while hepatic portal vein blood was used at 20% v/v. DMSO 

was kept to a maximum concentration of 0.1% v/v. Cell viability was measured using Alamar 

blue25 at 40X dilution and fluorescence was measured at 570/590nm in a plate reader. After, cells 

were washed in PBS, and 50 µL of serum-free cell media containing CYP3A4glo-luciferin IPA 

(1:1000 dilution) was added. The cells were incubated for 1 h at 37°C, 5% CO2, before adding an 

equal volume of luciferin detection substrate to measure CYP3A4 activity.  An aliquot (80 µL) of 

each reaction per well was then transferred into a white, opaque 96 well plate, and luminescence 

was read using a plate reader.  

 

 



 

 117 

HepaRG inhibition experiments for CYP3A4 function 

  

To measure CYP3A4 activity, HepaRG cells were put in DMSO-free growth media 48 h before 

treatment. Treatments were added along with 0.1 µM rifampicin to induce CYP3A4 activity for 72 

h before CYP3A4glo-luciferin IPA was added to measure CYP3A4 activity via luminescence using 

the same protocol as stated above. Cell viability was measured using the same procedure as 

stated above. 

 

HepaRG rapid inhibition assay for CYP3A4 function  

 

Similar to the inhibition experiment, HepaRG cells were put in DMSO free growth media 48 h 

before treatment. The cells were then treated for 72 h with only 0.1 µM rifampicin to induce 

CYP3A4. The cells were washed with PBS and 50 µL of treatments were added and incubated 

for 1 h at 37°C, 5% CO2 along with 5 µl of 4X diluted Alamar blue to check cell viability. Cell 

viability was measured and then 50 µL of luciferin-IPA substrate (1:1000) in serum-free media 

was added and the mixture incubated for 1 h at 37°C, 5% CO2. An equal volume of luciferin 

detection reagent was added and 160 µL of reaction mixture was transferred to a white 96 well 

plate and luminescence read on a plate reader. Dose response curves were fitted using log 

logistic regressions in R to obtain IC50 and Hill coefficients26. 

 

HepaRG intrinsic clearance assay with midazolam  

 

To mimic the closest possible expression to primary hepatocytes, the vehicle was serum-free cell 

media with 1.7% DMSO for treatment23. The protocol was adapted from B.Bonn et al.27. The cells 

were treated with 0.22 µm filtered 0.1% stool water from human donors for 72 h. The cells were 

then washed and 100 µL of 1 µM midazolam in 1.7% DMSO serum-free cell media was added to 
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each well. At time points (0, 15, 30, 60, 90, 120 and 180 min), the reactions were stopped by 

taking 80 µl from the respective wells, and lysing the cells by the addition of 160 µL of ACN spiked 

with 0.1 µM d4-midazolam as an internal standard. Both the cell media and ACN were combined 

and quenched samples were kept on ice. The collection plate was centrifuged at 3000 rpm for 30 

min at 4°C to pellet any remaining proteins before the supernatant was collected and midazolam 

quantified via LC-MS/MS. Cell viability was measured using the same procedure as stated above. 

 

Dynamic light scattering of stool water and its fractions from organic solvent extractions  

 

Stool water and its extracted fractions from MTB/ACN and Folch’s method were tested 0-5% v/v 

in 0.22 µm filtered PBS in 4-fold dilutions for 8 concentrations. Each sample (30 µL) was loaded 

into a black, 384 well plate with a clear bottom in quadruplicates. The plate was then read by the 

DynaPro II Plate Reader DLS (Wyatt Technologies) to characterize our samples for colloid 

formation. Colloid characteristics such as Auto correlation function (ACF), radius, normalized 

intensity, and sum of squares were calculated using the DynaPro II software. 

 

Liver microsome preparation 

 

 We adapted our microsome preparation protocol from M.Bodero et al28. Fresh livers collected 

from euthanized mice were washed in PBS and flash-frozen in liquid nitrogen before preparation. 

The frozen livers were weighed and then homogenized using prechilled Dounce homogenizers 

on ice until homogenous, using 250 mM sucrose with 1% v/v protease inhibitor cocktail as 

homogenization buffer. A volume of 1 ml of homogenization buffer was added for every 100 mg 

of liver. The homogenates were then spun at 10,000g for 10 min to remove tissue debris, and the 

supernatant further spun at 20,000g for 2 h to pellet microsomes. The microsomes were then 

resuspended in homogenization buffer and stored at -80°C. Microsome yield was quantified using 
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a Pierce™ BCA Protein Assay Kit for total protein content. Microsomes were then diluted to 

working concentrations of either 2500 µg/ml or 5000 µg/ml in homogenization buffer and stored 

at -80°C until use. Microsomes used for mechanism of inhibition studies were made in bulk from 

GF mice donated by the UCSF gnotobiotic core. 

 

Microsome Cyp3a11 ELISA quantification   

 

Liver microsomal Cyp3a11 content was quantified by diluting working microsome stocks of 5000 

µg/ml at 200X dilution in 100 mM phosphate buffered saline (PBS), before quantification using 

the Mouse Cytochrome P450 3A4 ELISA Kit according to the manufacturer’s protocol.  

 

Microsome reversible inhibition assay with stool water  

 

Stool water was tested as a reversible inhibitor using benzyloxy resorufin (BzRes) as the CYP3A4 

specific probe substrate29. Experiments were performed in 96-well plates and all treatments were 

carried out in triplicate. BzRes (0, 0.156, 0.3125, 0.625, 1.25 µM) was preincubated at 37°C for 5 

min with 100 µg/ml microsomes, NADPH B, and 100 mM potassium phosphate buffer (pH 7.4) 

with multiple concentrations of stool water (0-5% v/v, 5 concentrations in 2-fold dilutions). The 

reactions were initiated by the addition of 5 µl NADPH A, yielding a final incubation mixture of 100 

µl with 2% ACN (v/v)30. Incubation was carried out at 37°C for 30 min before an 80 µl aliquot was 

removed and quenched with 160 µL of ice-cold ACN. The plate was then read for fluorescence 

intensity (560/590 nm, excitation/emission), and the appropriate blanks were subtracted from the 

reads. All subsequent data analysis was done in R. Nonlinear regressions 31 were fitted and Km 

and Vmax parameters were extracted from the curves. 
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Microsome test for tight binding inhibition 

  

Stool water was tested as a tight binding inhibitor32 using BzRes as the probe substrate.  BzRes 

was used at a fixed concentration of 20 µM. Experiments were performed in 96-well plates and 

all assays were carried out in triplicate. Stool water (0-5% v/v, 8 concentrations in 2-fold dilutions), 

NADPH B, and 100 mM potassium phosphate buffer (pH 7.4) were preincubated at 37°C for 5 

min with multiple concentrations of microsomes (50, 100, 200, 400µg/ml). The reactions were 

initiated by the addition of 5 µl NADPH A, yielding a final incubation mixture of 100 µl with 2% 

ACN (v/v)30. Incubation was carried out at 37°C for 30 min before an 80 µl aliquot was removed 

and quenched with 80 µL of ice-cold ACN. The plate was then read for fluorescence intensity 

(560/590 nm, excitation/emission), and the appropriate blanks were subtracted from the reads. 

All subsequent data analysis was done in R. Nonlinear regressions were fitted and IC50 of stool 

water for each microsome concentration was determined.  

 

Microsome test for time dependent inhibition - BzRes was used as the probe substrate in this 

experiment. Incubations (n = 3) were conducted in 96-well plates. Primary incubation mixtures 

comprising either MW water 5% v/v or stool water 5% v/v were preincubated at 37°C for 5 min 

with microsomes (500 µg/ml) and NADPH B in potassium phosphate buffer (100 mM, pH 7.4). To 

initiate the enzymatic reaction, either 5 µl NADPH A or 5 µl of potassium phosphate buffer was 

added to the primary incubation. The final primary incubation mixture volume was 100 µl and 

contained 2% (v/v) organic solvent30. At different preincubation time points (0, 5, 10, 15, 20, 25 

and 30 min) after the addition of NADPH A, 10 µl aliquots of the primary incubation were 

transferred to 90 µl of the secondary incubation containing 20 µM BzRes, the NADPH 

regenerating system, and 100 mM potassium phosphate buffer (pH 7.4) to yield a 10-fold dilution. 

The secondary incubation mixtures were incubated at 37°C for 30 min before 80 µl aliquots were 

removed and quenched with an equal volume of ice-cold ACN. The plate was then read for 
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fluorescence intensity (560/590 nm, excitation/emission), and the appropriate blanks were 

subtracted from the reads. Linear regressions were fitted and tested for statistical significance in 

R.  

 

Microsomal Michaelis Menten kinetics with midazolam  

 

To characterize the kinetics of liver microsomes derived from mice with different gut microbial 

colonization states with their midazolam pharmacokinetic profiles, midazolam was used as a 

probe substrate33. Experiments were performed in 96-well plates and all samples were carried 

out in triplicate. Midazolam (0, 3.9, 7.8, 15.6, 31.25, 62.5, 125, 250 µM) was preincubated at 37°C 

for 5 min with NADPH B, 100 mM potassium phosphate buffer (pH 7.4) and microsomes (50 

µg/ml) derived from individual mice (GF n=4, CONVD n = 4, CONVR n=4, SPF n=4). The 

reactions were initiated by the addition of 5 µl NADPH A, yielding a final incubation mixture of 100 

µl with 2% ACN (v/v). Incubation was carried out at 37°C for 30 min before an 80 µl aliquot was 

removed and quenched with 160 µL of ice-cold ACN containing 0.1 µM d4-midazolam (internal 

standard). The plate was then centrifuged at 4°C, 1500g for 30 min and the supernatant was 

collected for LCMS/MS analysis. Quantification of samples was done using Analyst 1.6.2 software 

and subsequent analyses were done in R.  

 

Microsome membrane fluidity assay  

 

Membrane fluidity was characterized using a membrane fluidity kit (Abcam). Microsomes were 

incubated for 1 h at room temperature protected from light in a labeling solution consisting of 5 

µM pyrenedecanoic acid (PDA) and 0.08% v/v pluronic F127 in PBS to a total volume of 100 µL 

per replicate. Each microsome sample was assayed in triplicate. Unincorporated PDA was 

removed by the addition of 1000 µL of 250 mM sucrose and centrifuging at 4°C, 21130g for 1 h. 
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The supernatant was then removed and resuspended in PBS, and fluorescence was read at both 

400 nm (monomer) and 450 nm(excimer) using the appropriate filter for excitation at 350 nm. 

 

Mouse studies 

 

Mice housing and conditions  

 

All mouse experiments were approved by the University of California San Francisco Institutional 

Animal Care and Use Committee. Housing conditions are specified (either gnotobiotic or SPF as 

described below). The mice were housed at temperatures ranging from 19-24°C and humidity 

ranging from 30-70%. No mice were involved in previous procedures before experiments were 

performed. The initial gnotobiotic colonization experiments examining gut microbial composition 

and host gene expression were done in male C57/B6 mice. After we found Cyp3a11 as a top hit, 

we switched to female Balb/C mice for easier IV administration were used in this study. Female 

mice were also preferred due to their higher basal expression of Cyp3a11 which would make 

differences in Cyp3a11 expression and function more evident. 

 

Gnotobiotic mouse studies  

 

Balb/c mice (females ages 10-14 weeks) for midazolam time profile studies or C57/B6 mice 

(males ages 8-14 weeks) for microsome and gene expression studies were obtained from the 

University of California, San Francisco (UCSF) Gnotobiotics core facility (gnotobiotics.ucsf.edu) 

and housed in gnotobiotic Iso positive cages (Tecniplast) for the duration of each experiment 

(Class Biologically Clean). Mice were colonized via oral gavage with either human stool or mouse 

cecal samples. In the host gene expression study, mice were colonized for 6 weeks and fecal 
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pellets collected every week to monitor colonization. For harvesting microsomes and midazolam 

pharmacokinetic experiments, mice were colonized for 2 weeks.  

 

Preparation of inoculation media for complex colonizations in GF mice 

 

Colonization media was prepared using BHI with supplements 0.05% Cysteine-HCl, 1 µg/mL 

Vitamin K, 5 µg/mL Hemin and 15% glycerol before filter sterilization with a 0.22 µm filter. The 

colonization media was then equilibrated in an anaerobic chamber for at least 5 days prior to use. 

For every 1g of either cecal content or human stool sample, 10 ml of colonization media was 

added. The mixture was then vortexed thoroughly until homogenous and strained with a 100 µm 

mesh strainer to remove large debris. The resulting inoculum was stored at -80°C and transferred 

into a BSL2 hood for colonization via oral gavage before the inoculated mice were transferred to 

techniplast cages. Inoculation media (100 μL) was delivered by oral gavage using a 20-gauge 

feeding tube with a rounded tip. Animals were monitored carefully over the following 10 min and 

again the next day for complications of gavage or colonization. 

 

CONVR mouse studies  

 

Balb/c mice (females, ages 10-14 weeks) were ordered from Jackson Labs. The mice were kept 

in specific pathogen-free facilities until the day of the experiment.  
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IV Midazolam PK studies  

 

IV midazolam 10 mg/kg was administered to mice via tail vein injection. All experiments were 

done in biosafety cabinets to ensure the environment remained sterile. Blood was drawn via tail 

vein into heparinized plastic capillaries, and 20 µL of blood was collected at various time points 

(15, 30, 60, 120, 180, 360 and 480 min) and added to 60 µL of 0.1 M sodium citrate solution as 

the anticoagulant. Blood samples were kept on ice and centrifuged at 4°C, 2000g for 15min, and 

the plasma supernatant collected for LC/MS/MS quantification. At the end of the time course, 

mice were euthanized and their livers, portal vein blood, and cecal samples were collected for 

further analyses. Due to midazolam’s sedative properties, mice were given 1 ml of normal saline 

via subcutaneous injection to ensure hydration. Samples were extracted by adding 5 µl of plasma 

to 145 µl of ACN with 50 ng/ml d4-midazolam. Samples were centrifuged at 2000g for 30 min at 

4°C and supernatant was taken for LC/MS/MS analysis.  

  

Measurement of midazolam and 1-OH midazolam metabolite formation via LC/MS/MS  

 

All samples were analyzed using a Shimadzu Nexera X2 HPLC (Agilent Technologies Inc., Santa 

Clara, CA, USA) interfaced with the AB SCIEX QTRAP 6500 tandem mass spectrometry (MS/MS) 

system (AB SCIEX, Framingham, MA, USA). Separation was performed on a Phenomenex 

Synergi 4µm Fusion-RP 80 A LC column 50X2 mm. The column and sample temperatures were 

maintained at 25°C and 4°C, respectively. Samples were delivered using an injection volume of 

5 µL. The aqueous mobile phase (A) was 0.1% v/v formic acid in milli-Q water whereas the organic 

mobile phase (B) consisted of 0.1% formic acid v/v in methanol. The gradient program was as 

follows: The flow rate was set to 0.6 mL/min. A linear gradient was used, with the initial mobile 

phase consisting of 5% solvent B, which was increased to 95% over a period of 3 min and 
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maintained for 1 min before returning to 5% solvent B, with column equilibration for 1 min between 

injections. The retention times of midazolam, d4 midazolam, and 1’-hydroxymidazolam were 1.9, 

1.9, and 2.1 min respectively. All analyses were performed in ESI positive mode. The MS source 

conditions were as follows: The optimized MS/MS method for this analysis used the transitions 

m/z 326→291, m/z 342→324, and m/z 330→295 for midazolam, 1’-hydroxymidazolam, and d4-

midazolam, respectively. The collision energy voltages used for midazolam, 1’-

hydroxymidazolam, and d4 midazolam were 26, 20, and 26 V, respectively. Parameters that were 

kept constant for all the analytes were the capillary temperature which was set at 270°C and the 

vaporizer temperature at 300°C, collision pressure was set to 1.5 mTorr and the sheath gas 

pressure was 60 arbitrary units and the auxiliary gas pressure was 20 arbitrary units. 

Chromatographic peak integrations were performed with Analyst software ver. 1.6.2 (Applied 

Biosystems).  

 

Standard curves for measuring midazolam in vivo in mice over time- Midazolam and 1-OH 

midazolam were quantified using a standard curve from concentrations of 0, 3.75, 5, 7.5, 15, 25, 

50, 125, 250, 500, 1000 and 1500 ng/ml; quality controls of 10, 100 and 750 ng/ml were run in 

triplicate. Internal standard was 50 ng/ml d4-midazolam. Standard curves were fitted using linear 

regression, 1/x weighting in Analyst 1.6.2. An acceptable range for quality controls was within 

±20% of accuracy from known concentrations. To ensure that the sample concentrations fell 

within the standard curve, we diluted samples with a predicted high concentration from 180 min 

and below in MQ water 10X before extraction. Standards were prepared similarly to samples, with 

5 µl of blank mouse plasma spiked into 145 µl of ACN containing standard and internal standard.  

 

Standard curves for microsome assays - For microsome assays, only 1-OH midazolam was 

quantified using a standard curve from concentrations of 0, 0.00625, 0.0125, 0.025, 0.05, 0.1, 

0.2, 0.3 and 0.4 µM. Quality controls were run in triplicate at concentrations of 0.02, 0.08, and 
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0.15 µM. Standards were prepared in a similar method to samples. An acceptable range for 

quality controls was within ±20% of accuracy from known concentration. 

 

Standard curves for HepaRG intrinsic clearance  

 

For HepaRG intrinsic clearance, only midazolam was quantified with a standard curve from 

concentrations of 0, 0.03125, 0.0625, 0.125, 0.25, 0.5, 0.75 and 1 µM. Quality controls were run 

in triplicate at 0.05 and 0.6 µM. An acceptable range for quality controls was within ±20% of 

accuracy from known concentrations. 

 

Targeted metabolomics using sphingolipid panel - This method was modified in reference to 

an in-house targeted sphingolipid panel of 35 known sphingolipids from the UCSF Quantitative 

Metabolite Analysis Center (QMAC). All samples were analyzed using a Shimadzu Nexera X2 

HPLC (Agilent Technologies Inc., Santa Clara, CA, USA) interfaced with the AB SCIEX QTRAP 

6500 tandem mass spectrometry (MS/MS) system (AB SCIEX, Framingham, MA, USA). 

Separation was performed on a Synergi 4µMm Fusion-RP 80 A LC column 50X2 mm (Agilent 

Technologies Inc., Santa Clara, CA, USA). Samples were delivered using an injection volume of 

1 µL. The aqueous mobile phase (A) was 0.1% v/v formic acid in milli-Q water whereas the organic 

mobile phase (B) consisted of 0.1% formic acid v/v in methanol. Mobile phases were delivered at 

a flow rate of 0.6 mL/min. The gradient program was as follows: A linear gradient was used, with 

the initial mobile phase consisting of 90% solvent B, which was increased to 100% after 3 min 

and maintained for 3 min before returning to 90% solvent B, with column equilibration for 2 min 

between injections. Individual compound MS parameters and retention times are available under 

supplementary materials.  
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RNA-seq of mouse liver from complex colonizations - Total RNA was extracted from either 

flash-frozen or tissue stored in RNA later® using a pure link RNA miniprep kit with 1% v/v beta-

mercaptoethanol in lysis buffer. The standard kit protocol was followed and samples were cleaned 

up with turboDNAse and RNAcleanXP magnetic beads (1.8X beads to sample). RNA quality was 

then checked using a Bioanalyzer and RNA nano reagents to calculate the RIN scores. Samples 

with RIN scores <4 were re-extracted or discarded if insufficient sample was left.  

 

Nebnext rRNA depletion kit was used to deplete abundant rRNA reads and total RNA libraries 

prepared using NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina. Samples were 

indexed with NEBNext® Multiplex Oligos for Illumina® (Index Primers Set 1 and 2). Samples were 

checked for size and quantified using a bioanalyzer and DNA 1000 reagents before pooling to an 

even DNA concentration per sample. A preliminary MiSeq run was carried out before a Novaseq 

S4 2 lane run for a 300 bp library was used for deep sequencing.  

 

Sample reads were demultiplexed before being trimmed and filtered using FastP34. Libraries from 

both lanes were merged and STAR was used to align the reads to host index MM2735. After, 

featureCounts36 was used to annotate the genes from the aligned reads.  

FeatureCount tables were analyzed in R, and samples were visualized using principal component 

analysis (PCA) and DESeq237 for differences between colonization groups. Pathway analyses 

were carried out using PathFindR38. 

 

To identify genes regulated by PXR and CAR, we utilized a previously published database from 

J. Cui et al. which details gene changes in the mouse liver transcriptome using PXR and CAR 

specific agonists39.  
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16S rRNA Sequencing and Analysis 

 

Human stool samples, mouse pellets, and cecal contents were homogenized with bead beating 

for 5 min (Mini-Beadbeater-96, BioSpec) using the ZR BashingBead lysis matrix containing 0.1 

and 0.5 mm beads and the lysis solution provided in the ZymoBIOMICS 96 MagBead DNA Kit. 

The samples were then centrifuged for 5 min at 3,000 g and the supernatant was transferred to 1 

mL deep-well plates. The DNA was then purified using the ZymoBIOMICS 96 MagBead DNA Kit 

according to the manufacturer's instructions. 

 

For human samples, 16S rRNA gene PCR was carried out using GoLay-barcoded 515F/806R 

primers 40 targeting the V4 region of the 16S rRNA gene according to the methods of the Earth 

Microbiome Project (earthmicrobiome.org). Amplicons were quantified with PicoGreen and 

pooled at equimolar concentrations. For other samples, 16S rRNA gene PCR was carried out as 

per reference protocol and primers 41. Amplicons were pooled and normalized using the 

SequalPrep Normalization Plate Kit. For both mouse and human samples, aliquots of the pools 

were then column (MinElute PCR Purification Kit, Qiagen) and gel purified (QIAquick Gel 

Extraction Kit, Qiagen). Libraries were then quantified and sequenced with a 600 cycle MiSeq 

Reagent Kit (250x250; Illumina) with ~15% PhiX. 

 

Sequencing reads were demultiplexed using QIIME before denoising and processing with 

DADA242. Taxonomy was assigned using the DADA2 implementation of the RDP classifier43 using 

the DADA2 formatted training sets for SILVA123 (benjjneb.github.io/dada2/assign.html). A 

phylogenetic tree was constructed using FastTree 44 with midpoint rooting. Sequence variants 

were filtered such that they were present in more than one sample with at least a total of 10 reads. 

The PhILR Euclidean distance was calculated by first carrying out the phylogenetic isometric log 

ratio transformation (philr, PhILR 44,45) followed by calculating the Euclidean distance (vegdist, 



 

 129 

Vegan 46,47). Principal coordinate analysis (PCoA) was carried out using the pcoa function of 

APE46. ADONIS calculations were carried out (adonis, Vegan) with 999 replications on each 

distance metric. The Wald test in the DESeq2 package 37,46,47was used to analyze differential 

abundances on count data, using features that represented at least 0.05% of total sequencing 

reads. Centered log2-ratio (CLR) normalized abundances were calculated as Aclr=[log2(A1/ga), 

log2(A2/ga),… log2(An/ga),], where A is a vector of read counts with a prior of 0.5 added and ga 

is the geometric mean of all values of A. Time-course analyses were carried out using linear 

mixed effects models (lmerTest 48) using mouse as a random effect to account for repeated 

sampling across time. Corrections for multiple hypothesis testing to false discovery rate (FDR) 

using the Benjamin-Hochberg method 48,49 were performed where applicable. 

 

Metagenomic Shotgun Sequencing and Analysis - Fecal DNA from human stool, mouse 

pellets, and cecal samples were isolated as described above. Whole-genome shotgun libraries 

were prepared using the Nextera XT DNA Library Prep Kit (Illumina). Paired ends of the libraries 

were sequenced on the Illumina NovaSeq 6000 platform. Raw Illumina reads underwent quality 

trimming and adaptor removal using FastP34 and host read removal by mapping to the human 

genome (GRCh38) with BMTagger50. Taxonomic profiling and annotation were performed using 

Metaphlan 3.0.151.   
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Results  

 

 

Figure 3.1 Gut microbial colonization with both mouse and human microbiomes impacts drug 

metabolism pathways in the liver. 

(A) Experimental setup for RNA-seq in mice with complex colonizations. Mice were gavaged with 
either a human stool (HUMD, n = 6) or mouse cecal sample (CONVD, n=6) or kept germ-free 
(GF, n=6) and housed in a gnotobiotic isolator for 6 weeks prior to sac.  
 (B) Principal coordinates analysis (PCoA) plot of 16S rRNA sequencing characterizing the 
uniqueness of each complex microbial community in the colonized mice after 6 weeks of 
colonization showed each colonization has its own unique microbial community. Oval represents 
95% confidence interval. 
(C) Principal component analysis (PCA) plot of RNA-seq data in the liver between mice with 
different colonizations shows colonization results in significantly different transcriptomic profiles 
between different colonization groups (adonis test, padj < 0.01, R2 = 0.195).  
(D) Odds ratio of the proportion of genes significantly expressed in PXR/CAR regulated genes 
against the proportion of all significantly expressed genes in the whole mouse genome from 
differential expression analysis comparisons between colonized and GF mice. The proportion of 
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significant genes regulated by PXR/CAR was significantly enriched compared to the overall 
proportion of significant genes. (Chi-squared test, pval < 2.2*10-16) 
(E) Pathway enrichment analysis of the top 10 enriched pathways by fold enrichment shows that 
the majority of genes that changed significantly between GF and colonized mice are related to 
Cyps involved in endo- and xenobiotic metabolism. All pathways containing Cyps were highlighted 
in red text.  
(F) Volcano plots of gene expression in colonized mice compared to germ-free (GF) show 
Cyp3a11 is significantly and highly differentially expressed in all 3 complex colonization groups in 
the liver but not the intestine.  
(G) PXR luminescence reporter assay shows the presence of PXR agonists in cecal water from 
CONVD and HUMD mice. 
 

GF mice colonized with either human stool (HUMD) or mouse cecal content (CONVD) had 

unique microbiomes 6 weeks post colonization 

 

To first get a broad overview of the gut microbiome’s effect on drug metabolism, we colonized 

germ-free (GF) mice with a human (HUMD, n = 6) or a mouse microbiome (CONVD, n = 6) for 6 

weeks. Uncolonized GF mice and conventionally raised mice (CONVR) were also similarly 

housed in the gnotobiotic isolator and used as comparisons (Fig 3.1A). 16S rRNA sequencing on 

mouse pellets collected post 6 weeks of colonization showed 3 distinct complex gut microbial 

communities (CONVD, CONVR, HUMD) without overlap on a PCoA (Fig 3.1B). CONVR and 

CONVD notably had differences in gut microbial composition too, despite both being murine 

sources, likely due to sample handling in preparing the inoculation media for CONVD mice. There 

was a much larger difference between HUMD and CONVD, being separated mainly by PC1, 

which was expected as the inoculations came from different species. Notably, when comparing 

relative abundances between HUMD and CONVD, Bacteroidetes stood out as a phyla that had a 

large number of differences (Supplementary Fig 3.1C). More information on colonization 

efficiency, gut microbial composition over time and alpha diversity are available in Supplementary 

Fig 3.1. 
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Total RNA-seq reveals an enrichment of PXR and CAR related genes in both CONVD and 

HUMD mice 

 

Livers from these mice were collected and their total RNA extracted and sequenced. Differential 

expression analysis (DESeq) 37 of RNA-seq data from each of these unique microbiome 

comparisons (Fig 3.1B) against GF mice showed that there was an enrichment of genes regulated 

by PXR and CAR 39 (Chi-squared test, p.value < 0.01 for all 3 groups) (Fig 3.1D). PXR and CAR 

are xenobiotic sensing nuclear receptors that regulate a large number of drug metabolizing 

enzymes and transporters 52.  
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Cyp3a11, the mouse ortholog of human CYP3A4 is highly upregulated in the livers of 

both CONVD and HUMD mice 

 

We also found that across colonizations, endobiotic and drug metabolism pathways involving 

Cyps were highly enriched in the top 10 pathways using PathFindR 38 (Fig 3.1E). More notably, 

we found that one of the most significant hits in the dataset was the major hepatic drug 

metabolizing enzyme, Cyp3a11, the mouse ortholog of human CYP3A453 (Fig 3.1F). This finding 

has previously been reported in several other studies 6–8,10. A follow up screen using a PXR 

reporter assay helped us confirm the presence of PXR agonists within cecal water samples of 

CONVD and HUMD mice (Fig 3.1G) used in the gene expression study (Fig 3.1A).  
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Figure 3.2 Gut microbial colonization with both mouse and human microbiomes induce Cyp3a11 

expression but does not increase hepatic clearance of the Cyp3a11 substrate midazolam. 

(A) ELISA quantification of Cyp3a11 in mouse liver microsomes show that CONVR mice have 
higher levels of microsomal Cyp3a11 compared to GF (Student’s t.test, p.val < 0.05). 
(B) IV midazolam 10 mg/kg concentration-time profiles in CONVR (n = 8) and GF (n =7) mice for 
both parent drug (midazolam) and primary metabolite (1-OH midazolam).  
(C) Elimination rate constant describing midazolam elimination in CONVR and GF mice as 
determined by noncompartmental analysis shows GF mice have a larger midazolam elimination 
rate constant than CONVR mice. (Student’s t.test, p.val < 0.05). 
(D) Volume of distribution in CONVR and GF mice as determined by noncompartmental analysis 
shows no difference. (Student’s t.test, p.val > 0.10), 
(E) Total systemic exposure (area under the curve, AUC) of midazolam in CONVR and GF mice 
shows mean AUC in CONVR mice was 1.66 times higher compared to GF. (Student’s t.test, p.val 
> 0.1)  
(F) Maximum metabolite concentration (Cmax) of 1-OH midazolam in CONVR and GF mice shows 
CONVR produces a higher 1-OH midazolam Cmax compared to GF mice. (Student’s t.test, p.val 
<0.1).  
(G) Time to maximum metabolite concentration (tmax) of 1-OH midazolam in CONVR and GF mice 
shows CONVR mice have a shorter tmax. (Student’s t.test, p.val <0.1) 
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(H) AUC of 1-OH midazolam in CONVR and GF mice shows CONVR mice have a smaller 
systemic exposure of metabolite compared to GF. Student’s t.test (p.val < 0.1). 
(I) ELISA quantification of Cyp3a11 in mouse liver microsomes show that HUMD mice have higher 
levels of microsomal Cyp3a11 compared to GF. (Student’s t.test, p.value < 0.05)  
(J) IV midazolam 10mg/kg concentration-time profiles in HUMD (n = 5) and GF (n =6) mice for 
both parent drug (midazolam) and primary metabolite (1-OH midazolam).   
(K) Midazolam elimination rate constant in HUMD and GF mice as determined by 
noncompartmental analysis. (Student’s t.test, p.val > 0.10).  
(L) Volume of distribution (Vd) in HUMD and GF mice as determined by noncompartmental 
analysis. (Student’s t.test, p.val > 0.10) 
(M) Total systemic exposure (area under the curve, AUC) of midazolam in HUMD and GF mice. 
(Student’s t.test, p.val >0.1) 
(N) Maximum metabolite concentration (Cmax) of 1-OH midazolam in HUMD and GF mice. 
(Student’s t.test, p.val >0.1) 
(O) Time to maximum metabolite concentration (Tmax) of 1-OH midazolam in HUMD and GF 
mice. (Student’s t.test, p.val >0.1) 
 (P) AUC of 1-OH midazolam in HUMD and GF mice. (Student’s t.test, p.val > 0.1). 
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Cyp3a11 protein expression increased with colonization with both mouse and human 

microbiomes  

 

To determine if the increase in Cyp3a11 gene expression also led to increased protein content, 

we ran a Cyp3a11 ELISA to quantify its actual protein expression. We observed a significantly 

higher abundance of Cyp3a11 protein per mg of microsome in both CONVR and HUMD mice (Fig 

3.2A, 3.2G). The 38% mean increase with CONVD and 35% mean increase with HUMD Cyp3a11 

expression compared to GF should lead to a similar increase in midazolam rate of elimination as 

well 54.  

 

Cyp3a11 substrate midazolam rate of elimination in mice did not correlate with increased 

Cyp3a11 expression  

 

Interestingly, increased Cyp3a11 expression did not correlate with our in vivo pharmacokinetic 

studies using midazolam. Midazolam was the probe substrate of choice due to its clearance being 

mainly by hepatic Cyp3a11 and its high permeability and solubility as a BDDCS class 1 drug, 

making it susceptible to few transporter effects 55. IV midazolam 10 mg/kg administered to either 

GF or CONVR mice showed the rate of elimination in CONVR mice (mean ke 0.621 h-1 , standard 

deviation 0.178 h-1) to be approximately 40% lower compared to GF mice (mean ke 0.986 h-1 , 

standard deviation 0.337 h-1) (Fig 3.2B, C). While the study was powered to detect a difference in 

Ke of 60% or more using t.test with n = 6 mice per group, standard deviation 33.7%, and power 

0.8, we still saw a clear difference in magnitude as CONVR mice were hypothesized to have 

faster clearance, but instead had lower clearance compared to GF mice. 

 

In the metabolite profile of primary metabolite 1-OH midazolam, we noticed a shorter tmax in 

CONVR mice compared to GF (1.5 h, standard deviation 0.55 h, CONVR vs 2.3 h, standard 
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deviation 0.76 h, GF). The mean maximum metabolite concentration (Cmax) and AUC in CONVR 

mice were 4.5 times lower compared to GF (Fig 3.2F-H, t.test, p.value < 0.1). This further supports 

our hypothesis that complex gut microbiomes produce an inhibitor that alters enzyme affinity of 

Cyp3a11 to midazolam.  

 

HUMD and GF mice similarly showed no significant change in midazolam elimination rate 

constant (Fig 3.2K) despite the increase in Cyp3a11 in HUMD mice. Similarly, we noticed that in 

the profile of primary metabolite 1-OH midazolam, HUMD mice had a mean 14% higher Cmax and 

shorter tmax (mean 1.5 h, standard deviation 0.58 h) compared to GF mice (mean 1.8 h, standard 

deviation 0.84 h), suggesting midazolam metabolism to 1-OH midazolam was more efficient in 

the initial first 2 hours (Fig 3.2M-N).  

 

The clearance of 1-OH midazolam in both CONVR and HUMD mice was lower compared to GF 

as seen by the shallower slope (Fig 3.2B, J) and higher metabolite AUC (Fig 3.2H, P). This 

suggests that phase 2 glucuronidation of 1-OH midazolam might also be affected by colonization. 

RNA expression of Ugts in mice livers for both CONVR and HUMD were not significantly 

downregulated (Supplementary Fig 3.2) compared to GF however, pointing to the possibility of 

an Ugt inhibitor being present as well. Having the clearance either reduced or not changed despite 

the higher Cyp3a11 expression in both HUMD and CONVR mice shows that this effect is 

generalizable across both human and mouse gut microbiomes.  
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Figure 3.3 Mouse cecal and human stool water inhibit CYP3A4 in HepaRG cells at concentrations that 

are non-toxic to cells. 
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(A) MTT assay for cell viability post 72 h incubation with cecal water from both CONVR and GF 
mice show that cecal water at tested concentrations was not significantly toxic to HepaRG cells. 
(Spearman’s correlation test)  
(B) Log-logistic regression of HepaRG Cyp3a11 activity measured using luciferin-IPA against 4-
fold dilutions of CONVR mouse cecal water show CYP3A4 is inhibited in a dose-dependent 
manner.  
(C) MTT assay for cell viability post 72h incubation with human stool water shows stool water 
should be tested at concentrations <0.5%   
(D) Log-logistic regression of HepaRG Cyp3a11 activity measured using luciferin-IPA against 2-
fold dilutions of human stool water shows a dose-dependent inhibition of stool water on HepaRG 
cells.  
(E) qPCR of CYP3A4 in HepaRG cells treated with 20% cecal water shows a decrease in CYP3A4 
gene expression greater than 2-fold with CONVR cecal water. 
(F) qPCR of CYP3A4 in HepaRG cells treated with 0.5% human stool water shows a decrease in 
CYP3A4 gene expression greater than 2-fold.  
(G) HepaRG cells incubated with sterile filtered cecal water 2.5% v/v from GF (n =4), CONVD 
(n=4), or HUMD (n=4) mice for 72 h in cell media show a decrease in CYP3A4 activity as seen 
with decreased luminescence of CYP3A4glo IPA substrate. Each point represents a mean of 4 
technical replicates in a 96 well plate. ANOVA with Tukey hsd post hoc test was used to determine 
statistical significance.  
(H)  Pooled hepatic portal vein plasma 20% v/v from CONVR mice (n=3) incubated with HepaRG 
cells for 72h does not show a difference in cell viability measured by MTT cell viability assay. 
(Student’s t.test, pval > 0.05)  
(I) Pooled hepatic portal vein plasma 20% v/v from CONVR mice (n=3) incubated with HepaRG 
cells for 72h show a decrease in HepaRG CYP3A4 activity compared to the vehicle of 20% 
heparinized normal saline. Each point is a technical replicate. (Student’s t.test, pval < 0.05).  
 

Establishing HepaRG as a reliable screening tool for gut microbial metabolites  

 

Initial screenings of stool water using microsomes yielded very strong inhibition effects due to the 

high propensity for enzyme sequestration due to the high amount of colloid formation in stool 

water 56. This resulted in microsomal inhibition being much stronger than it was in reality. An intact 

CYP enzyme system such as a HepaRG assay that was less susceptible to such in vitro artefacts 

was preferable 57. 

 

Screening gut microbial metabolites from stool in cell culture was a challenge due to the high 

amount of toxic metabolites present in stool 58. While DMSO was a key component in 

differentiating media to maintain a high level of CYP expression in HepaRG cells, it also causes 

a high amount of stress to cells 59, making cells easily susceptible to toxicity from treatments. By 
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using a low dose of 0.1 µM rifampicin to induce CYP3A4 rather than DMSO however, we were 

able to establish a robust and sensitive model and preparation method for stool water to screen 

for CYP3A4 inhibitors produced by the microbiome without significant cell toxicity. Unlike most 

papers that establish cell viability using the lactodehydrogenase (LDH) assay 60, we had to use 

Alamar blue which measures cell viability via metabolic function 61 instead as our biological 

matrices, stool water, and portal vein plasma, contained high levels of LDH 62,63, which significantly 

confounded our cell viability results. We further validated the cell viability results using the MTT 

assay, which measures cell viability using mitochondrial activity 64 to demonstrate that the cells 

were viable at the stool water concentrations tested. While cecal water could be tested at 

concentrations up to 20% v/v(Fig 3.3A), stool water had to be highly diluted, with the maximum 

nontoxic concentration to be used at 0.5% v/v  (Fig 3.3C).  

 

One caveat of this method, however, was that strong CYP3A4 inhibitors also tended to give higher 

viability readouts with Alamar blue, as seen with our positive control ketoconazole, making it 

possible that the cell viability for certain stool water fractions was smaller than we observed. This 

is why visual observation of the cells for monolayer integrity and morphology 65was carried out as 

well to ensure overall cell health. We defined cell toxicity as a statistically significant change in 

correlation of cecal water/stool water concentration to resazurin fluorescence (Spearman’s 

correlation) and/or disruption of the HepaRG monolayer. Alamar blue cell viability results for 

subsequent experiments are available in Supplementary Fig 3.3.  
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Mouse cecal and human stool water contain Cyp3a11 inhibitor that decreases both 

expression and function 

 

Based on the multiple PXR and CAR genes being upregulated (Fig 1C), we hypothesized that 

mouse cecal water from both HUMD and CONVD mice would induce CYP3A4 in HepaRG cells, 

a validated human hepatocyte cell line commonly used for the study of drug induction of CYP 

enzymes. At the concentrations that were deemed to be nontoxic, we found that both human stool 

and CONVR cecal water inhibited CYP3A4 in a dose-dependent fashion instead (Fig 3.3B, D).  

 

We then quantified HepaRG CYP3A4 gene expression via qPCR with both mouse cecal water 

and human stool water. CONVR cecal water 20% v/v inhibited CYP3A4 expression (log2 fold 

change to vehicle -4.65 +/-  sd 1.49) to a larger extent compared to GF cecal water 20% v/v (log2 

fold change to vehicle -1.16 +/- sd 0.271) (Fig 3.3E). Similarly, human stool water 0.5% v/v also 

inhibited CYP3A4 gene expression by 2-fold (Fig 3.3F). When we tested for function, we found 

that cecal water from HUMD and CONVD mice 2.5% v/v inhibited CYP3A4 activity (79% and 65% 

decrease in activity to vehicle) to a much greater extent compared to GF cecal water (24% 

decrease in activity to vehicle) (Fig 3.3G). This further supported our hypothesis that these 

microbiomes were also producing an inhibitor. 

 

To ensure that the compound was also bioavailable to the liver, we harvested hepatic portal vein 

plasma from CONVR mice (n=3) and treated HepaRG cells with them in a similar manner. The 

plasma was pooled to get sufficient volume for experiments. We also observed strong CYP3A4 

inhibition (~80% decrease in activity to vehicle) (Fig 3.3I) without significant cell toxicity (Fig 3.3H), 

indicating that the inhibitor was able to get past the intestine walls into the portal vein and thus 

reach the liver to exert its effect.  
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Figure 3.4 The Cyp3a11 inhibitor has colloidal properties and can rapidly cause inhibition in both 

microsomal and intact cell systems. 
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(A) HepaRG cells incubated with human stool water size selected for either larger or small than 

10 kDa show loss of activity in fractions smaller than 10 kDa. ANOVA with Tukey hsd post hoc 

test was used to determine statistical significance.  

 

(B) Characterizing the inhibitor’s mechanism of inhibition using an increasing concentration of 

stool water against increasing concentrations of Cyp3a11 specific substrate benzyloxy resorufin 

reveals the mechanism is not competitive.  

 

(C) Tight binding assay characterizing the effect of increasing microsome concentration on IC50 

of stool water shows an increasing IC50 with increasing microsome concentration.  

 

(D) Time dependent inhibition of microsomes with stool water with or without NADPH cofactor 

present in preincubation shows that the inhibitor exhibits NADPH independent time dependent 

inhibition.  

 

(E) Testing for the presence of colloidal aggregates in stool water by addition of a nonionic 

surfactant Tween 80 to disrupt aggregates and recover Cyp activity in microsomes.  

 

(F) Centrifuged sterile filtered stool water at 4°C, 21130g, tested in HepaRG cells for CYP3A4 

activity showed that the inhibitor was not easily pelleted.  

 

(G) Dynamic light scattering of stool water and its organic solvent extractions at 0.3125% v/v. 

Folch’s method reveals the inhibitor was released from its colloid in its aqueous fractions but 

continued to show activity as observed in Fig 4B.  
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(H) MTBE/ACN extract has less activity compared to unfractionated stool water in microsomes, 

indicating organic solvent extraction reduces the propensity for non-specific colloidal aggregation. 

 

(I) Folch’s method also yields less activity in microsomes compared to unfractionated stool water. 

Of note, the methanol/water layer increased Cyp3a11 activity. 

 

(J) A two-step Folch’s method applied to stool water reveals the inhibitor is amphiphilic, with the 

inhibitory activity present in all layers of extraction, both polar and nonpolar when tested against 

HepaRG.  

 

(K) A 1h incubation of stool water extracted with MTBE/ACN (50/50) in HepaRG cells shows that 

the inhibitor rapidly decreases CYP3A4 activity. 
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Characterizing the inhibitor’s chemical properties and mechanism of action 

 

With CYP3A4 inhibition being reproduced both in vivo in mice and in vitro in HepaRG cells, we 

sought to characterize the inhibitor’s properties. We first attempted to characterize the inhibitor 

by size selection using HepaRG as a screening tool before characterizing its mechanism of 

inhibition using mouse liver microsomes for both reversible and tight binding inhibition. 

Characterizing the inhibitor for its mechanism of inhibition would help us to better understand its 

inhibitory potency and chemical properties to isolate the compound more effectively.   
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Size selection by filtration revealed the compound was >10 kDa in stool water 

 

Thinking that the inhibitor was likely to be a small molecule, we first did size selection using 

centrifugal filters. To our surprise, we found that stool water fractions < 10 kDa did not inhibit 

HepaRG CYP3A4 activity (ANOVA with Tukey hsd post hoc, pval > 0.1), but rather, the active 

component remained in the filter residue >10 kDa with ~66% decrease in CYP3A4 activity 

compared to control (ANOVA with Tukey hsd post hoc, pval < 0.01) (Fig 3.4A). This decrease in 

activity was similar to unfiltered stool water. This was consistent with the molecule either being a 

macromolecule, highly protein bound, or a colloidal aggregator. 

 

Reversible inhibition assay shows stool water does not act via competitive inhibition 

 

Reversible inhibition of CYP3A4 by stool water using BzRes as the probe substrate showed that 

with increasing stool water concentration, Vmax was reduced, but Km remained relatively consistent 

(Km at 0% v/v stool water 0.56 µM, Km at 5% v/v stool water 0.32 µM) (Fig 3.4B), with none of the 

values being more than 2-fold different from vehicle control20,32. This suggested that the mode of 

reversible inhibition was not competitive.  

 

Increased microsome concentration increases IC50, suggesting tight binding  

 

We then tested the inhibitor for tight binding by testing increasing stool water concentrations 

against increasing microsome concentrations. As stool water resulted in increasing IC50 (0.685, 

0.859, 1.61 and 3.26% v/v for microsome concentrations 50, 100, 200 and 400 µg/ml respectively) 

and steeper dose responses with increasing microsome concentrations, this pointed toward the 
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molecule being a tight binder (Fig 3.4C). Tight binders will have increased IC50 with increased 

microsome concentration due to a 1:1 binding ratio with the enzyme 32.  

 

The inhibitor showed NADPH independent time dependent inhibition 

 

As the molecule showed tight binding, further testing for time dependent inhibition was warranted. 

Stool water’s inhibition of Cyp3a11 increased over time with or without the presence of NADPH 

in the primary incubation to an equal magnitude (Kobs without NADPH 0.011min-1 (0.0102-0.0119 

min-1, 95% confidence interval), Kobs with NADPH  0.0102min-1 (0.00907-0.0113 min-1, 95% 

confidence interval)) (Fig 4D), indicating that the time dependency was NADPH independent and 

likely not CYP mediated such as via mechanism-based inhibition 32.  

 

Inhibitor forms colloidal aggregates whose inhibitory activity can be attenuated by 

detergent 

 

All three inhibition assays (Fig 3.4B-D) suggested that the inhibitor was a colloidal 

aggregator13,56,57. It was likely that the inhibitor was sequestering enzyme activity via aggregation. 

This was confirmed by adding small amounts of nonionic detergent, tween 80, to an enzyme 

incubation of 5% v/v stool water and comparing its activity against vehicle (Fig 4E) 32. Activity was 

almost fully recovered with the addition of 0.1%v/v tween 80.  

 

The inhibitor could not be easily pelleted unlike most aggregate forming molecules 

 

Small molecule aggregates are usually easily removed via centrifugation57. However, despite 

spinning the stool water down at 21130g, 4°C for 30 min, the supernatant still retained most of 

the stool water’s activity when compared with unspun stool water (ANOVA with Tukey post hoc 
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test, pval > 0.05) (Fig 3.4F). The colloidal properties along with the aggregate being hard to pellet 

suggest the inhibitor could be a lipid.  
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Dynamic light scattering confirms the presence of colloids in stool water and its 

extracted fractions 

 

Dynamic light scattering was employed to confirm the presence of colloids in stool water and its 

fractions. At the concentration closest to our usual HepaRG assay stool water concentration of 

0.5% v/v, we found that stool water contained colloids, as seen by a well-defined sigmoidal curve 

(Fig 3.4G). Organic solvent fractions (methanol/water fraction of Folch’s method and MTBE/ACN 

nonpolar fraction) however caused the release of the inhibitor from the colloid as observed in the 

MTBE/ACN nonpolar fraction and methanol/water fraction of Folch’s method(Fig 3.4G). These 

fractions were shown to have much lower activity in microsome assays (Fig 3.4H-I) but were still 

highly active in inhibiting HepaRG CYP3A4 activity (Fig 3.4J). This points toward a separate 

mechanism from nonspecific aggregation inhibiting CYP3A4 activity. 

 

The inhibitor was likely to be amphipathic and was present in both polar and nonpolar 

layers of Folch’s method 

 

When we tested all three layers from Folch’s method against HepaRG cells we found that 

inhibitory activity was present in all layers, with a preference toward the polar and unextractable 

middle layers (Fig 3.4J). This suggested that the compound had amphiphilic properties, potentially 

being a charged lipid.  
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Testing for aggregation in a cell-based HepaRG assay shows activity possibly separate 

from aggregation 

 

The above findings shed light that our molecule is likely to be colloidal and that microsome and 

other in vitro enzyme assays may not be suitable to estimate true enzyme activity values due to 

the in vitro enzyme sequestration that occurs due to aggregation. Unlike microsomes which are 

enzyme containing vesicles from fragmented rough endoplasmic reticulum, HepaRG cells contain 

fully intact organelles with CYPs attached within its membranes, making it much more difficult for 

aggregation to occur57,66.  

 

To ensure that the inhibition was still occurring in an intact system and that the molecule was not 

a protein, we extracted the inhibitor from stool water using MTBE/ACN (50:50 v/v) which would 

precipitate and denature most proteins63 and incubated its reconstituted extract for an hour with 

HepaRG before immediately measuring CYP3A4 activity. The MTBE/ACN extract rapidly inhibited 

CYP3A4 activity, in a dose-response manner (Fig 3.4K). Curve fitting using log-logistic regression 

showed fixing the Hill coefficient to 1 (drc LL.4, Akaike’s information criterion (AIC) -10.2) had a 

similar fit to having a Hill coefficient greater than 1 as defined by the model fitting (drc LL.5, AIC -

8.42). A general rule of thumb for a significant change in AIC value would be a difference of 10 or 

more67. This implied that the dose response was not unusually steep and that the inhibition was 

less likely to be via aggregation, which tends to produce steep dose-response curves57,67. 
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Figure 3.5 Sphingolipids present in stool water extracts can inhibit CYP3A4 activity in HepaRG cells.  

(A) Mild alkaline hydrolysis is a process that selects for sphingolipids. Although some activity was 
lost compared to stool water without hydrolysis, mild alkaline hydrolysis still retained inhibitory 
activity. (ANOVA with Tukey post hoc test) 
(B) Structures of known sphingolipids selected for testing. These compounds were easily 
purchased commercially, present in the active fractions of Folch’s method, and were structurally 
diverse from one another. 
(C) Targeted abundances of known sphingolipids in selected extraction methods compatible with 
LC/MS/MS analysis shows different sphingolipids were abundant in different fractions.   
(D) Selected sphingolipids tested at 2.5 µM showed CYP3A4 inhibition in HepaRG cells after 
coincubation for 72 h. This implies that more than one sphingolipid contributes to CYP3A4 
inhibition. 
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(E) Sphingosine-1-phosphate, which was highly abundant in the methanol/water layer from 
Folch’s method, shows dose dependent inhibition. 
 

Using mild alkaline hydrolysis to select for sphingolipids, an amphipathic class of lipids 

known to be produced by both host and the microbiome 

 

The gut microbiome is a known producer of sphingolipids, a class of charged lipids, which are 

known to be bioavailable in the host liver and exert a wide range of physiological effects68. Our 

previous tests using cecal water also showed that GF cecal water did inhibit CYP3A4 activity, 

although to a lesser extent compared to CONVD and HUMD cecal water (Fig 3.3E). This 

suggested that the compound could be also produced by the host, of which sphingolipids are 

known to be produced by both host and microbiome. We thus did a preliminary selection using 

mild alkaline hydrolysis in methanol, a technique known to select sphingolipids from other lipids69. 

Stool water post alkaline hydrolysis (51 ± 12.3% activity remaining) lost some inhibitory activity 

compared to the unhydrolyzed control (24 ± 26.2% activity remaining) (pval <0.05), but was still 

able to significantly inhibit CYP3A4 activity compared to vehicle (pval <0.01), giving us more 

confidence that the compound could be a sphingolipid (Fig 3.5A).  

 

A targeted sphingolipid panel identified structurally diverse and active sphingolipids 

present in different stool water fractions 

 

A targeted sphingolipid panel was then applied to different organic solvent extractions of stool 

water, where we aimed to identify a panel of 35 known sphingolipids in the different fractions. 

Sphinganine, sphingosine-1-phosphate, and N-myristoyl-D-Sphingosine were chosen for testing 

as these compounds were easily purchased commercially, present in the active fractions of our 

extractions (Fig 5C), and were structurally diverse from one another (Fig 3.5B). All of our 

compounds showed CYP3A4 inhibition in HepaRG cells (Fig 5D). Also, sphingosine-1-phosphate 
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demonstrated inhibition in a dose dependent manner, suggesting that it and similar compounds 

could be the inhibitor (Fig 3.5E).  

 

An interesting observation we noticed for N-Myristoyl-D-Sphingosine and sphinganine was that 

their dose responses were bell-shaped, unlike a normal sigmoidal dose response curve 

(Supplementary Fig 3.4). This is a known phenomenon for colloidal molecules which reflects the 

concentration of bioactive, monomeric compounds at low concentrations, before aggregating in 

solution at higher concentrations, sequestering the bioactive compound70.  
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Figure 3.6 Gut microbiome modifies microsome membrane fluidity and function 

(A) Michaelis Menten plot comparing enzyme kinetics of GF and CONVR mice using midazolam 
as a probe substrate shows GF microsomes are not as easily saturated with higher Km and Vmax. 
(B) Binding affinity (Km) extracted from fig 6A per mouse shows GF mice have a much lower 
binding affinity with higher Km compared to CONVR mice.  
(C) Maximum metabolite formation rate (Vmax) from fig 6A per mouse shows GF mice have higher 
Vmax compared to CONVR mice. 
(D) Michaelis Menten plot comparing enzyme kinetics of GF, CONVD and HUMD mice using 
midazolam as a probe substrate shows CONVD and HUMD mice have higher Vmax and also 
higher enzyme affinity as seen with lower Km values.  
(E) Binding affinity (Km) extracted from Fig 6D per mouse shows GF mice have a much lower 
binding affinity with higher Km compared to CONVD and HUMD mice.  
(F) Maximum metabolite formation rate (Vmax) from Fig 6D per mouse shows CONVD and HUMD 
mice have higher Vmax compared to GF mice. 
(G) Membrane fluidity assay of microsomes collected from GF, CONVD, HUMD and CONVR 
mice show GF mouse microsomes had the most fluid membranes.  
 

 



 

 155 

Characterizing mouse liver microsomes derived from GF and colonized mice  

 

Knowing that the inhibitor was likely acting on a site independent of the CYP enzyme (Fig 3.4B-

D) and that there were multiple possible sphingolipid inhibitors (Fig 3.5D), we hypothesized that 

the inhibition was likely occurring via membrane interactions. To investigate we characterized the 

Michaelis Menten kinetics and microsomal membrane fluidity of CONVR vs GF mouse 

microsomes, as well as CONVD, HUMD vs GF mouse microsomes using our optimized 

microsome method to preserve the effect of the gut microbiome on Cyp3a11 enzymes.   

 

Preserving the microbiome’s effect on liver microsomes required the addition of 

protease inhibitor during preparation 

 

An interesting observation we came across during this investigation was that the addition of a 

protease inhibitor cocktail during microsome preparation preserved the effect of the gut 

microbiome. In preparations without protease inhibitor cocktail, the microsomal activity of CONVR 

mice was much larger (approximately 2-fold increase in activity) compared to GF mice 

(Supplemental Fig 3.5A). With the protease inhibitor, GF mice have approximately 20% higher 

activity, which correlates more with our observed in vivo midazolam clearance in mice (Fig 3.1A). 

All methods, except for Tris HCl with protease inhibitor, were able to produce CYP450 CO 

spectrums, indicating intact and functional CYPs (Supplemental Fig 3.5B). As midazolam is highly 

cleared by hepatic CYP3A4 and not affected highly by transporter effects, its in vivo clearance 

should correlate highly with enzyme activity without other interferences71. Hence, we believe that 

the microsomal preparation with the addition of just protease inhibitor cocktail more accurately 

reflects enzyme activity in vivo compared to preparation without a protease inhibitor. It is likely 

that the protease inhibitor cocktail not only protects against enzyme degradation, but also 
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preserves membrane integrity, and thus is used in microsome preparations studying protein-

membrane interactions.   

 

GF mouse microsomes have lower binding affinity and lesser saturation compared to 

CONVR microsomes 

 

As microsomes had both lipid bilayer membrane and enzymatic components, we sought to 

characterize the microsome Michaelis Menten kinetics from GF and CONVR mouse microsomes 

using midazolam as a probe substrate. Midazolam was used instead of BzRes so we could make 

comparisons back to the in vivo pharmacokinetic midazolam profiles as well.  

 

One of the first striking differences we found was that GF mice had a lowered enzyme affinity for 

midazolam as noted by its increased Km compared to CONVR mice (Fig 3.6A, B). With the 

increased Km, GF microsomes did not reach saturation even at 250 µM midazolam which was 20 

times Km in CONVR mice. This is expected as Km is half of Vmax, implying that a higher Km would 

usually imply a higher Vmax when all Michaelis Menten assumptions hold 72. This helps to explain 

the 1-OH midazolam pharmacokinetic profile in CONVR vs GF mice, with CONVR mice having a 

shorter tmax due to higher enzyme binding affinity allowing for a faster initial reaction, and lower 

Cmax due to CONVR being more easily saturated compared to GF mice (Fig 3.2B). Notably, GF 

mice had a higher rate of elimination of midazolam which could be attributed to its lower saturation 

rate at higher midazolam concentrations. This means that its enzyme activity would continue 

increasing with increased concentrations of midazolam, compared to CONVR mice, which would 

have a constant rate of metabolite production at high concentrations of midazolam.  
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GF mice colonized with either mouse cecal (CONVD) or human stool (HUMD) also shows 

an increase in binding affinity compared to GF 

 

When we compared GF against CONVD and HUMD mice, both the colonized mice groups did 

have higher Vmax, which matches the ELISA results of higher Cyp3a11 expression per mg of 

microsome, which would expectedly give higher Vmax values. However, GF mice still had a higher 

Km compared to both CONVD and HUMD mice (Fig 3.6E). This was evident in the 1-OH 

midazolam metabolite profile of HUMD vs GF mice too, with GF mice having a longer tmax 

compared to HUMD mice (Fig 3.2J). Both results from CONVR vs GF and HUMD and CONVD 

vs GF mice imply that the gut microbial colonization changes Cyp3a11 binding affinity for 

midazolam. 

 

Gut microbial colonization reduces membrane fluidity in mouse microsomes  

 

Our measurement of membrane fluidity with lipophilic pyrene probes showed that GF mice had 

higher membrane fluidity (RFU 8.46 ± 0.48) compared to CONVD (RFU 7.74 ± 0.836) and HUMD 

mice (RFU 7.59 ± 0.782) (Fig 3.6G). CYP3A4 has been shown to be highly sensitive to changes 

in membrane fluidity73, suggesting this could be the mechanism by which the gut microbiome 

influences enzyme kinetics and thus hepatic clearance. Interestingly, sphingosine-1-phosphate 

increased membrane fluidity (Fig 3.6G). However, sphingolipids tend to form microdomains where 

cholesterol can bind in a more entropically favoured fashion74. This could in turn increase 

membrane rigidity instead which we observe with the colonized mice.  
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Alteration of enzyme kinetics by the gut microbiome is consistent across gender 

 

Our initial microsome studies comparing gene expression and microsome activities between GF, 

CONVD, and HUMD mice were done in C57/B6 male mice. However, upon confirming that 

Cyp3a11 was a target of interest, we switched to balb/c female mice, which were easier to 

administer IV drugs to and had generally higher basal levels of Cyp3a11 expression compared to 

male mice. The difference between sexes helps to explain the differences in Vmax between GF 

mice in Fig 3.6A and B. However, we still see a consistent signal of altered Km (Fig 3.6B, E) and 

Vmax (Fig 3.6C, F) values when comparing GF against colonized mice, indicating the effect was 

not limited to one gender. 

 

Time and of gut microbial colonization may influence the extent Cyp3a11 inhibition 

 

In Fig 3.6A, CONVR mice were colonized since birth, but in Fig 3.6B, CONVD mice were 

colonized for only 2 weeks as adult GF mice prior to sacrificing. Compared to GF, CONVD mice 

had a 4-fold higher Vmax while CONVR had a lower Vmax compared to GF. It is possible that the 

age at colonization and duration of colonization can have effects on how much the membrane 

fluidity is altered. Age dependent changes in membrane fluidity are a known phenomenon75,76. 

However, both CONVD and CONVR demonstrate a reduction in Km and membrane fluidity, 

indicating that the effect was still generalizable.   
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Figure 3.7 Unique human stool samples modulate midazolam metabolism in HepaRG cells. 

Midazolam metabolism was quantified in HepaRG cells incubated with stool water and showed 
different levels of CYP3A-mediated metabolism. (ANOVA test for difference between linear 
regressions was run only between samples with vehicle and ketoconazole controls excluded. 
Padj < 0.01) 
 

Human stool water from four unique donors alter CYP3A4-mediated midazolam 

metabolism in HepaRG cells to different extents 

 

Since human stool water was able to inhibit CYP3A4 activity, we investigated whether stool water 

from different human donors would affect CYP3A-mediated metabolism differently. After 

incubating HepaRG cells in serum-free differentiating media for 72 h with 0.1% v/v stool water, 

we measured HepaRG’s ability to metabolize midazolam over time. Each unique stool water 

sample produced a different extent of metabolism (ANOVA padj <0.01), supporting our hypothesis 

that the gut microbiome could be producing an inhibitor that modulates CYP3A4 activity that may 

contribute to inter-individual variation. While three out of four of our samples caused inhibition, 
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one sample resulted in a higher rate of midazolam metabolism than vehicle (Fig 3.7), suggesting 

that the microbiome both induces and inhibits CYP3A4 activity.  

Discussion  

 

Gut microbiomes of both mice and humans inhibit Cyp3a11 and CYP3A4 activity 

 

To the best of our knowledge, we are the first to report that the human gut microbiome decreases 

hepatic drug clearance and that alteration of membrane fluidity is a potential mechanism for this 

effect. In our quest to understand the functional consequences of the gut microbiome on CYP3A4 

mediated drug clearance, we have found that in in vivo mouse studies, gut microbial colonization 

with both human and mouse microbiomes induces hepatic mouse Cyp3a11 gene and protein 

expression. We also found that the gut microbiome produces Cyp3a inhibitors in both mouse and 

human microbiomes with CONVR and HUMD mice having a decreased rate of elimination or no 

change in rate of elimination, respectively, compared to GF. Screening of mouse cecal water and 

human stool water in human hepatocyte HepaRG cells also confirmed the presence of a human 

CYP3A4 inhibitor in both species.  

 

While we are the first to describe the IV profile of midazolam in gnotobiotic mouse models, our 

UCSF gnotobiotic core has advised us that GF mice tend to require higher doses of 

ketamine/xylazine compared to CONVR mice for surgical procedures. Both Ketamine and 

xylazine are cleared mainly by hepatic CYP3A4 77,78. This supports our hypothesis that the 

microbiome reduces Cyp3a11 mediated drug clearance.  
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The human gut microbiome produces inhibitors with sphingolipid properties that reduce 

CYP3A4 activity and might contribute to interindividual variability  

 

Further characterization of the CYP inhibitor using human stool water and its organic solvent 

extracts revealed the likelihood of multiple inhibitors. The inhibitors had sphingolipid-like 

properties, such as being hard to pellet by centrifugation, amphiphatic, and resistant to mild 

alkaline hydrolysis. Known sphingolipids, such as sphingosine-1-phosphate demonstrated 

inhibition of CYP3A4 activity in HepaRG cells. A separate study has shown similar inhibition of 

CYP3A4 expression with structurally related ceramides 79. Lastly, our screen of altered midazolam 

metabolism in HepaRG cells from four different human donors shows that different microbiomes 

inhibit CYP3A4 to different extents, suggesting the gut microbiome might play a role in explaining 

CYP3A4 variability.  

 

The importance of the administration route on CYP3A4 activity  

 

The majority of PK studies in gnotobiotic mice have been done via oral administration which can 

cause clearance to be confounded by other processes affecting bioavailability such as intestinal 

metabolism and absorption. IP administration also has effects of absorption and first pass 

metabolism processes despite avoiding gut microbial metabolism 80. IV administration bypasses 

these other processes, giving us a clear picture of hepatic clearance, and allowing us to conclude 

that gut microbial colonization inhibits Cyp3a-mediated clearance.  

 

Gut microbial sphingolipids are bioavailable to the liver and impact host physiology 

 

While most of our screenings were done using cecal water and stool water, we also ensured that 

our inhibitor was bioavailable by testing portal vein blood, which carries blood from the intestines 
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directly to the liver. Another study by Johnson et al. looking at sphingolipids produced by the gut 

microbiome has similarly shown that sphingolipids produced by gut bacteria can transit from 

bacterial cells to the gut epithelium and hepatic portal vein, and exert an effect on host 

physiology20. Sphingolipids are known to mediate host-microbiome interactions, and were shown 

to influence host lipid metabolism [20]. Gut microbial sphingolipid production impacting host drug 

metabolism is hence highly plausible too, as we have described in our study.  

 

 

Sphingosine-1-phosphate is produced by both the gut microbiome and host 

 

Finding that Sphingosine-1-phosphate was an active compound in CYP3A4 inhibition produced 

by both gut microbiome and host 20 further helped us to explain our results that GF cecal water 

caused CYP3A4 inhibition, but to a smaller extent compared to CONVD and HUMD samples (Fig 

3.3E). Interestingly, we did not observe significantly different changes in gene expression 

(DESeq2) to host sphingolipid metabolism or ceramide production in our liver samples with 

CONVD and HUMD samples compared to GF (Supplementary Fig 3.6).  

 

Alteration of membrane fluidity affects CYP function 

 

Sphingolipids are the second most abundant structural lipids after glycerolphospholipids 81. 

Sphingolipids are also known to form lipid rafts with cholesterol, decreasing membrane fluidity 

82,83. CYP3A4 activity decreases with decreased membrane fluidity, but the successful inhibitor 

Sphingosine-1-phosphate increased membrane fluidity (Fig 3.6G), and the methanol/water 

extract containing S1P increased Cyp3a11 microsomal activity compared to vehicle(Fig 3.4I). This 

is likely because cholesterol was missing within the in vitro system. Sphingolipids make 

membranes more fluid which helps cholesterol to bind, making membranes more rigid 84.  
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Although our proposed mechanism is novel for gut microbial metabolites, similar proposed 

modifications to membrane structure have also been proposed with nanoparticle interference of 

CYP activity via integration with the microsomal membrane and alteration of active site binding 

85.  

 

Variation in Bacteroidetes, a known phylum of sphingolipid producers, could help 

explain interindividual variability 

 

Our results with four different human donors demonstrate that different microbiomes can alter 

clearance to different extents (Fig 3.7). Notably, Bacteroidetes, one of the most abundant phyla 

in most human gut microbiomes86,87, have known sphingolipid producers, with  genomes of 

Bacteroides spp. and their relatives encoding serine palmitoyltransfease (SPT), allowing them to 

produce sphingolipids 68. As one of the dominant phyla in the human gut microbiome, 

Bacteroidetes also have high interindividual variability88–92. It is thus plausible that the gut 

microbiome affects CYP3A4 activity via its Bacteroidetes abundance and sphingolipid production. 
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Caveats 

 

Stool water preparation selects for hydrophilic compounds 

 

Stool water preparation selects for compounds that are soluble in water and that are not highly 

protein bound, as these compounds are likely to be pelleted with the solid debris during 

centrifugation. Lithocholic acid (LCA), a known PXR inducer and gut microbial metabolite, is highly 

protein bound93. LCA is directly extracted from feces via organic solvent extraction94. This could 

also explain why the treatment of HepaRG with stool water decreased CYP3A4 mRNA 

expression, rather than increased as expected from the presence of PXR agonists in stool water.  

 

Incubation time is important in determining the effect of gut microbial inhibitors on 

CYP3A4 activity 

 

In Fig 4H and I, the microsomes were pre-incubated with the stool water fractions for only 5 min 

prior to starting the assay. However, with HepaRG (Fig 3.4K) and membrane fluidity (Fig 3.6G) 

assays, stool water fractions/sphingolipids were incubated for an hour prior to any measurements 

being done. It is likely that the gut microbial inhibitors need time to diffuse into and incorporate 

with the membrane before a noticeable effect can be observed.  
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Future directions  

 

With the large metabolic capability of the gut microbiome, there are likely active CYP3A4 inhibitors 

that have yet to be characterized. Therefore, it would be worthwhile to carry out untargeted 

metabolomics on these stool water fractions to discover novel compounds that could be tested 

for effects on drug metabolism.  

 

Since cholesterol and sphingolipids tend to form lipid rafts together, it will be important to test 

sphingolipids with cholesterol in microsomes to find out if that makes the microsomal membrane 

more rigid, increasing binding affinity.  

 

We would also like to do more targeted metagenomic analyses between CONVR, CONVD, and 

HUMD on sphingolipid pathways. Our current analyses did not completely capture sphingolipid 

related pathways, and human gut microbiome genes were grossly overrepresented in the dataset 

compared to the less well characterized mouse gut microbiome (Supplementary Fig 3.7). 16S 

analyses however did point toward the Bacteroidetes phyla having the most differences between 

human and mouse microbiome in our study (Supplementary Fig 3.1C), which could account for 

differences in CYP induction and inhibition.  

 

To find out if our hypothesis of either increased Bacteroidetes or sphingolipid pathway 

abundances correlates with decreased clearance, we would also like to test more human stool 

samples on HepaRG clearance to get a larger effect size, and explore the differences in gut 

microbial composition between the unique human stool donors using both a targeted sphingolipid 

and untargeted metagenomic approach.  
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We would also propose testing individual strains of Bacteroidetes with and without serine 

palmitoyltransferase both in mice as monocolonization and in HepaRG by incubating extracted 

lipids from Folch’s method in bacterial culture to further test if bacterial derived sphingolipids are 

indeed causing the decrease in CYP3A4 activity. 
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Conclusion 

 

In conclusion, our study has shown that both human and mouse microbiomes induce but also 

inhibit Cyp3a11 in mice and CYP3A4 in humans. In vivo, colonized mice had higher Cyp3a11 

expression but did not necessarily have higher clearance. Screening using HepaRG cells showed 

high levels of CYP3A4 inhibition by both cecal and human stool water. Characterization of the 

inhibitor identified sphingolipids as a potential class of inhibitors, of which sphingosine-1-

phosphate was shown to be a CYP3A4 inhibitor. Due to the nature of Cyp3a inhibition we 

observed using microsomes, we propose that the microbiome alters CYP activity via sphingolipid 

production that changes hepatic endoplasmic reticulum membrane fluidity. Different human 

microbiomes can also cause differences in CYP3A4-mediated metabolism in HepaRG cells. 

These findings help to shed light on the possibility that the gut microbiome could be another 

paradigm to understand CYP3A4 interindividual variability between humans. 
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Supplementary materials  

 

 

 

SFigure 3.1 16S characterization of complex microbiomes reveals stable engraftment and differences 
between microbiomes 
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SFigure 3.2 Ugt expression in colonized mice did not decrease significantly compared to GF mice 
(criteria for significance was pval <0.1, absolute log2 Fold Change >1, DESeq2). 
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SFigure 3.3 Cell viability data from alamar blue cell viability assay. Each corresponding subpanel is 
labeled with its corresponding activity subpanel data.  
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SFigure 3.4 Dose response curves of 3 selected sphingolipids. 

N-Myristoyl-D-Sphingosine and Sphinganine exhibit bell-shaped dose responses, a 
phenomenon which reflects the concentration of bioactive, monomeric compound 70.  
 

 

SFigure 3.5 The level of Cyp activity between GF and CONVR mice can be altered based on the 
preparation method. 

While all preparation methods led to intact Cyps with P450 spectrums, their activity varied 
greatly suggesting other structural components such as membrane fluidity could be involved. 
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SFigure 3.6 Few sphingolipid genes were significantly changed between complex colonizations and GF 
mice. 

Gene list was as referenced from Johnson et al. 
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SFigure 3.7 Upset plot of metagenomic genes and pathways across colonization groups shows HUMD 
had the most characterized genes. 

(A) Upset plot of all genes present in each complex gut microbial colonization shows HUMD had 
4 times more genes characterized compared to both CONVR and CONVD. (B) Upset plot of all 
pathways enriched in each complex gut microbial colonization shows the majority of the pathways 
overlap across the colonization groups. (C) Common pathways in all complex colonizations did 
not include sphingolipid pathways, of which the key gene serine palmitoyltransferase was not 
identified in any sample, and no sphingolipid pathways were enriched in any sample. 
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Final discussion 

 

The work presented in this part 1 of this dissertation explores the curious trend of how we 

can utilize our understanding of pharmacokinetics and pharmacodynamics to help optimize dose 

and rank drug regimens against pathogenic microbe Mtb for testing in resource-intensive clinical 

trials. In part 2, we flip the narrative and explore how non pathogenic microbes that live as gut 

commensals can in turn shape host drug disposition too, possibly via sphingolipid production that 

can influence CYP3A4 enzyme activity. Both parts demonstrate how a good knowledge of PKPD 

is useful for both as a tool for knowledge integration to accelerate drug discovery, as well as a 

framework for asking mechanistic questions like how the gut microbiome can affect drug 

metabolism in the host. 

Part 1 demonstrated the utility of using preclinical mouse studies (Chapter 1) to predict 

clinical short-term monotherapy outcomes, as well as long-term drug combination outcomes. 

Traditional drug development has been empiric and fraught with trial and error despite how 

resource and time-intensive it is. PK-PD models allow us to be able to better use preclinical in 

vivo data from mice to predict clinical outcomes such as short term monotherapy. The success in 

translatable clinical predictions from preclinical mouse studies was due mainly to being able to 

characterize the immune response in mice using a bacterial dynamics model allowing us to get 

the true exposure-response relationship in mice, making it translatable between mouse and 

human.  

Chapter 2 further emphasizes the translatability of the system by demonstrating that in 

vitro exposure-response relationships can also be used to predict both preclinical mouse and 

clinical EBA in Phase IIa trials. Depending on the size of the initial infection, as well as how long 

the infected mouse was incubated for prior to treatment, the type of in vitro assay can vary. 

However, for all infection models, the use of RAW264.7 mouse macrophage cell line, as well as 
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growth of Mtb in an acidic media were good predictors of in vivo exposure response. Across all 3 

infection model types we tested, the top combinations consisting of 3 in vitro assays generally 

differed by 1 assay. The predicted exposure-response from the selected 3 in vitro assays can 

then be used to predict mouse CFU burden over time with drug treatment over a range of different 

drug doses.  

However a drawback of in vitro assays was that we have yet to find a good in vitro predictor 

for pharmacodynamic drug-drug interactions that would be translatable to in vivo outcomes as 

drug combinations. Further work would need to be done to identify a framework for rational drug 

combination design and ranking based on in vitro assay data.  

These preclinical tools to predict clinical outcomes will greatly help us to prioritize and 

better design clinical trials and accelerate drug development, a urgent and unmet need in the field 

of tuberculosis.  

 

In part 2 we then explored how nonpathogenic microbes such as commensal gut microbes 

could impact host drug disposition (Chapter 4). We first observed that despite a higher expression 

of Cyp3a11 in CONVR mice compared to GF mice, the elimination of midazolam was higher in 

GF compared to CONVR mice, suggesting an inhibitor was also being produced by the 

microbiome. Afterward, we also characterized Cyp3a11 kinetics using mouse microsomes 

derived from CONVR and GF mice and found that GF mice had a higher Vmax compared to 

CONVR mice, further suggesting that a possible structural change in the enzyme was present. 

Biochemical analysis and further cell based HepaRG assays showed that sphingolipids were 

possibly modulating Cyp3a11 activity in mice. We thus concluded that the microbiome could be 

modulating the effect of Cyp3a11 in mice via sphingolipid production.  

This potential mechanism of microbiome modulating Cyp3a11 activity would not have 

been elucidated without the necessary knowledge in pharmacology, as well as drug metabolism 

and pharmacokinetics (DMPK). For example, in order to prevent confounding variables in 
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absorption and first pass metabolism, all mouse PK experiments were done IV to measure the 

rate of elimination. Using microsome assays to characterize the kinetics of Cyp3a11 also allowed 

us to characterize the effect of gut microbial colonization on the structure, as well as the nature 

of the microbial Cyp3a11 inhibitor.  

This work thus demonstrates how PK-PD concepts are useful in both helping to accelerate 

drug development through making translational tools to predict clinical outcomes, as well as 

developing rigorous methods to better investigate phenomena in basic science.  
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