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1  | INTRODUC TION

Human‐caused climate change is expected to fundamentally alter 
Earth's forest ecosystems, degrade biodiversity, and disrupt ecosys‐
tem functioning, including the trillions of dollars in forest ecosystem 
services provided to humanity each year (Costanza et al., 1997; Field 
et al., 2014; Urban, 2015). Climate change has driven widespread shifts 
in tree species’ geographic ranges across multiple biomes (Chen, Hill, 
Ohlemüller, Roy, & Thomas, 2011; Colwell, Brehm, Cardelús, Gilman, & 
Longino, 2008; Esquivel‐Muelbert et al., 2019; Kelly & Goulden, 2008; 
Lenoir, Gégout, Marquet, De Ruffray, & Brisse, 2008) and climate 

extremes, such as severe drought, are projected to be an important 
driver of range shifts (Easterling et al., 2000; Zimmermann et al., 2009). 
Indeed, major drought‐induced tree mortality episodes have been ob‐
served on every vegetated continent in the past several decades linked 
to climate warming (Allen, Breshears, & McDowell, 2015; Allen et al., 
2010; Phillips et al., 2009). Drought‐induced tree mortality has exten‐
sive ecological and societal impacts, including the potential to flip the 
terrestrial carbon sink to a carbon source, thereby accelerating climate 
change (Adams et al., 2010; Anderegg, Kane, & Anderegg, 2013).

Prediction of drought‐induced tree mortality is still quite lim‐
ited and is thus a major uncertainty in coupled climate–carbon 
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Abstract
Drought‐induced tree mortality is projected to increase due to climate change, which 
will have manifold ecological and societal impacts including the potential to weaken 
or reverse the terrestrial carbon sink. Predictions of tree mortality remain limited, 
in large part because within‐species variations in ecophysiology due to plasticity or 
adaptation and ecosystem adjustments could buffer mortality in dry locations. Here, 
we conduct a meta‐analysis of 50 studies spanning >100 woody plant species glob‐
ally to quantify how populations within species vary in vulnerability to drought mor‐
tality and whether functional traits or climate mediate mortality patterns. We find 
that mortality predominantly occurs in drier populations and this pattern is more 
pronounced in species with xylem that can tolerate highly negative water poten‐
tials, typically considered to be an adaptive trait for dry regions, and species that 
experience higher variability in water stress. Our results indicate that climate stress 
has exceeded physiological and ecosystem‐level tolerance or compensating mecha‐
nisms by triggering extensive mortality at dry range edges and provides a foundation 
for future mortality projections in empirical distribution and mechanistic vegetation 
models.
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cycle projections (Anderegg et al., 2013; Hartmann et al., 2018; 
McDowell et al., 2011). While an improved mechanistic understand‐
ing and trait‐based approaches have shed light on which species 
in a community might be more vulnerable to mortality (Anderegg  
et al., 2016; Esquivel‐Muelbert et al., 2019; Greenwood et al., 2017; 
Hartmann et al., 2018; Trugman et al., 2018), we remain unable to 
answer a fundamental question: Which populations within a species 
will be most vulnerable to drought and other climate extremes? Two 
broad and conflicting patterns have been documented empirically 
(Allen et al., 2010; Camarero, Gazol, Sangüesa‐Barreda, Oliva, & 
Vicente‐Serrano, 2015). In some species, drought‐induced mortal‐
ity has been observed at the driest populations or driest edges of 
their geographic ranges (Carnicer et al., 2011; Fettig, Mortenson, 
Bulaon, & Foulk, 2019; Worrall et al., 2008), indicating that potential 
compensating mechanisms of physiological adaptation and plasticity 
along with ecosystem‐level reductions in density and leaf area did 
not compensate for harsh climatic conditions. This mortality may be 
due to drier populations crossing beyond the species’ “fundamental 
niche” and existing outside where the species can physiologically 
survive, either temporarily (representing die‐off with recovery) or 
permanently (representing local extirpation/geographic range con‐
traction). In other species, drought impacts have been more severe 
at “drought naïve” populations in the range core or wetter popu‐
lations that do not often experience drought (Isaac‐Renton et al., 
2018; Lloret & Kitzberger, 2018; Zuleta, Duque, Cardenas, Muller‐
Landau, & Davies, 2017), hinting that these non‐drought adapted or 
acclimated populations may be more vulnerable to extreme water 
deficits due to some combination of physiological vulnerability and 
“structural	overshoots”	at	 the	ecosystem	 level	 (Jump	et	al.,	2017).	
In these scenarios, compensating mechanisms such as within‐spe‐
cies drought response trait variation, for instance more embolism 
resistant xylem in drier populations (Anderegg, 2015; López et al., 
2013), and/or lower ecosystem‐level tree density or leaf area, may 
have allowed drier populations to suffer less mortality than wetter 
populations during the same drought. In this case, mortality does not 
represent a shift in the fundamental niche.

Illuminating which populations are most vulnerable to drought 
and the associated scope of local adaptation and plasticity is foun‐
dational for forecasting range shifts via both empirical methods, 
such as species distribution models, and more mechanistic meth‐
ods, such as ecosystem and dynamic vegetation models (Dawson, 
Jackson,	 House,	 Prentice,	 &	 Mace,	 2011;	 Scheiter,	 Langan,	 &	
Higgins, 2013). Predicting range shifts will be crucial for forecasts 
of climate change's effects on biodiversity, species extinctions, 
ecosystem resilience, and the terrestrial carbon sink (Dawson  
et al., 2011; Esquivel‐Muelbert et al., 2019; Urban, 2015). With a few 
exceptions (e.g., Scheiter et al., 2013), most models and forecasts 
tend to ignore intraspecific variation (Anderegg, 2015; Dawson  
et al., 2011) and thus implicitly assume that drier populations will be 
most vulnerable to mortality as climate change pushes those pop‐
ulations across a climatic range constraint. This is a major assump‐
tion that has not been tested. Indeed, relatively large intraspecific 
functional trait variation, arising from an unknown combination of 

local adaptation and plasticity, has been documented in many spe‐
cies (Anderegg, 2015; Anderegg, Konings, et al., 2018; Messier, 
McGill, & Lechowicz, 2010), which could greatly buffer species 
from climate impacts. This intraspecific variation also differs 
substantially among species groups, with gymnosperms showing 
less within‐species variation in certain functional traits likely due 
to anatomical constraints (Anderegg, 2015; Anderegg, Konings, 
et	 al.,	 2018;	 Johnson,	 McCulloh,	 Woodruff,	 &	 Meinzer,	 2012).	
Thus, given the prevalence of intraspecific trait variation and the 
centrality in modeling mortality (Greenwood et al., 2017; López 
et al., 2013), there is an urgent need to quantify and assess the 
broad patterns of where drought‐induced mortality occurs within  
species' ranges.

Here, we conducted a meta‐analysis of mortality patterns in 50 
studies that span >100 woody plant species and global forest biomes 
(Table S1) and combine this mortality dataset with gridded climate 
data products and multiple plant functional trait databases. We com‐
piled information on species’ clade (angiosperm or gymnosperm), leaf 
habit (deciduous or evergreen), wood anatomy (conifer, ring porous, 
or diffuse porous), wood density (WD), specific leaf area (SLA), max‐
imum light‐saturated photosynthetic rate (Amax), rooting depth (RD), 
specific hydraulic conductivity (Ks), water potential at 50% and 88% 
loss of stem hydraulic conductivity (Ψ50, Ψ88), minimum measured 
water potential (Ψmin), and hydraulic safety margin (HSM: Ψmin	−	Ψ50 
or Ψ88). These functional traits capture important axes of species’ 
resource acquisition (Amax, SLA, WD, Ks) and drought tolerance (RD, 
Ψ50, Ψ88, Ψmin, HSM) strategies (see Section 2). To understand if or‐
ganismal physiology and/or ecosystem adjustments can adequately 
buffer dry populations from mortality, we asked: (a) are populations 
at dry range edges or in the core of species’ ranges more vulner‐
able to drought‐induced tree mortality, (b) what species attributes 
and functional traits mediate these mortality patterns, and (c) what  
climate metrics influence population‐level mortality patterns?

2  | MATERIAL S AND METHODS

2.1 | Study selection

We sought to identify peer‐reviewed studies that quantified drought‐
induced tree mortality across a climate gradient that spanned from 
wetter to drier populations. We set the following a priori study 
selection criteria. Studies had to: (a) determine that drought was a 
major driver of the examined tree mortality, (b) report a mortality 
rate (typically at the species‐level) or mortality risk metric at multi‐
ple locations across a climate gradient, (c) report mortality that was 
not primarily biotically driven (although biotic agents could play a 
contributing role—see below), and (d) avoid any co‐occurring distur‐
bance or other mortality driver (e.g., fire, harvest manipulation) that 
might bias mortality patterns.

We performed an extensive two‐pronged literature search. First, 
we compiled and examined all references in tables and citations from 
major synthesis papers of drought‐induced tree mortality and pop‐
ulation dynamics across species’ ranges in the past decade (Abeli, 
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Gentili, Mondoni, Orsenigo, & Rossi, 2014; Allen et al., 2010, 2015; 
Anderegg	 et	 al.,	 2016;	 Greenwood	 et	 al.,	 2017;	 Jump,	Mátyás,	 &	
Peñuelas, 2009). Second, we performed detailed searches on Web 
of Science and Google Scholar using various combinations of search 
terms of “drought,” “tree mortality,” “die‐off,” “dieback,” “landscape,” 
“spatial pattern,” “elevation,” and “range.”

Ultimately, we identified 182 potentially useful studies and read 
them for our criteria. A total of 50 studies comprising >100 spe‐
cies (100 individual species and a community‐level study with 828 
woody species—see below) met our selection criteria (Table S1). 
Within studies that presented mortality data for multiple species, 
we included only species that were native species and composed 
>10% of the ecological community to ensure an adequate number 
of individuals censused to provide an accurate mortality estimate. 
In several species (N = 8 species), biotic agents were identified as 
playing a contributing role to the drought‐induced mortality. We 
demarcated these species with a binary flag that allowed us to test 
that our results were robust with and without these species (see 
Section 2.5). In one case (Purves, 2009), drought was identified as 
an important mortality driver in the region by subsequent studies 
(Peters, Iverson, & Matthews, 2015; Zhang, Niinemets, Sheffield, 
& Lichstein, 2018) and we examined results with and without this 
study to ensure that our findings were robust (see Section 2.5).

In our selection criteria and identification of studies, we took 
great care to avoid two potential confounding factors: (a) that mor‐
tality patterns could be due to regional differences in drought sever‐
ity or (b) that mortality patterns could be due to changes in species 
composition across the gradient. To avoid the first, we primarily 
analyzed studies that reported mortality across small‐scale climate 
gradients where the regional drought signal is likely to be quite sim‐
ilar. The vast majority of studies reported mortality patterns in a 
small region across an elevation or topographic (e.g., north‐facing vs. 
south‐facing slopes) gradient that provides well‐documented vari‐
ation on temperature and water availability within the same broad 
hydroclimate stress. To avoid the second factor, we examined stud‐
ies where species‐specific mortality rates across the climate gradi‐
ent were presented, thereby entirely avoiding the impact of species 
composition changes, or a small number (N = 2 studies) that reported 
community‐level mortality rates but explicitly tested and ruled out 
the effect of species composition differences driving mortality rates. 
To ensure these multispecies studies did not bias our findings, we 
conducted analyses with and without these studies (see below).

2.2 | Mortality data and metrics

From each study, we extracted latitude, longitude, mean annual 
temperature (MAT, one value per study), mean annual precipitation 
(MAP, one value per study), study category (plot, inventory, remote‐
sensing), climate gradient used (e.g., elevation gradient, MAP gra‐
dient), tree species, tree age status (seedling vs. mature), a binary 
flag as to whether biotic agents were identified as contributing to 
mortality, and start and end year of both the drought and mortality 

measurement periods. For each species within a study, we extracted 
the area surveyed for mortality (in Ha), the mortality rate/risk of a 
wetter/core population, and the mortality rate of a drier/edge popu‐
lation. Following other meta‐analyses and demographic rate studies 
(Purves, 2009), we calculated our dependent variable as the log of 
the relative ratio between mortality (most often % stems/year or % 
basal area/year) at the dry edge and mortality at the core:

This metric is fairly standard in meta‐analyses and has sev‐
eral advantages. First, it normalizes out potentially different units 
across studies (e.g., % stems/year vs. % basal area/year). Second, it 
yielded a response variable that was roughly normally distributed 
where 0 represents equal mortality at edge versus core popula‐
tions, >0 represents higher mortality in dry edge populations, and 
<0 represents higher mortality in core populations. While studies 
presented mortality as either standing mortality (e.g., % basal area 
dead) or a mortality rate (e.g., % basal area dead/year), normalizing 
relative mortality via the ratio above within a study should allow di‐
rect comparison of both approaches, as the methods in each study 
were consistent across the climate gradient.

When studies presented mortality data from multiple regions or 
comparisons, we calculated the mortality ratio for each respective 
region and averaged the ratios to get a species‐level estimate. Five 
studies presented mortality data analyzed via multiple climate gra‐
dients—such as both elevation and topographic patterns in mortality 
within the same species—and we synthesized these multiple climate 
gradients into a single metric by calculating the mortality ratios sep‐
arately and averaging the ratios to yield a species‐level estimate 
within each study.

2.3 | Trait data

We selected 10 functional traits that capture important components 
of species’ rates of resource acquisition and drought stress tolerance, 
which likely trade‐off against each other (MacArthur, 1972; Reich, 
2014). These functional traits have been widely used in the drought 
literature to assess mortality risk factors and ecosystem resilience 
to drought (Anderegg, Berner, et al., 2018; Anderegg et al., 2016; 
Greenwood et al., 2017). While they may not be directly linked to 
mortality, traits that reflect high rates of resource acquisition (high 
Amax, high SLA, low WD, and high Ks) may be risk factors for elevated 
mortality rates due to their associated trade‐off against drought 
tolerance. Concerning drought tolerance traits that are likely more 
directly linked to mortality, species with more embolism‐resistant 
xylem (more negative Ψ50, Ψ88, Ψmin), deeper roots (higher RD), and 
less risky hydraulic strategies (larger HSM) may be less vulnerable to 
mortality, although the effects at wetter and drier populations will 
likely be mediated by the degree to which the drought exceeds the 
fundamental niche at these populations and potential compensating 
mechanisms.

Mortality ratio= log

(

mortalityedge

mortalitycore

)

.
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We compiled trait data for the tree species in our mortality data‐
base, which enabled capturing first‐order effects of how functional 
traits might mediate mortality patterns. We used the Global Wood 
Density Database (Zanne et al., 2009) to compile WD data for spe‐
cies and the TRY database for root depth data. We used the data‐
set presented in ref. (Maire et al., 2015) to compile species’ traits of 
light‐saturated maximum photosynthetic rate and specific leaf area. 
We used the Xylem Functional Traits database (Gleason et al., 2015) 
to compile the water potential at 50% and 88% loss of hydraulic con‐
ductivity and hydraulic safety margin from each of those, defined as 
the minimum water potential experienced minus Ψ50 or Ψ88, for each 
species. Full or partial trait data were available for 91% of individual 
species (see Table S2 for individual trait coverage); no trait data was 
used for the two community‐level mortality studies due to lack of 
species‐level mortality rates and insufficient trait and species abun‐
dance data to derive a community‐level trait mean. Due to a lack of 
studies that contain paired mortality and trait data, we were only 
able to use species‐level average traits for this analysis. From the 
above datasets and web searches, we identified the clade, leaf habit, 
and wood anatomy for each species as well.

2.4 | Climate data and metrics

We used the global gridded climate data of the Climatic Research 
Unit (CRU TS4.02) for monthly temperature and precipitation at 
0.5°	×	0.5°	resolution	(Harris,	Jones,	Osborn,	&	Lister,	2014).	We	also	
used gridded monthly precipitation data from Global Precipitation 
Climatology Center (GPCC v2.2; Schneider et al., 2014), poten‐
tial evapotranspiration (PET) calculated via the Penman–Monteith 
method (Sheffield, Wood, & Roderick, 2012), soil moisture from 
0 to 100 cm (Xia et al., 2012), and climatic water deficit (CWD; 
Abatzoglou, Dobrowski, Parks, & Hegewisch, 2018). These datasets 
cover a wide array of relevant hydroclimate variables, have been 
widely used in broad‐scale forest drought‐related studies in previous 
research (Anderegg et al., 2015, 2016), and provide a rigorous and 
internally consistent estimate of the mean and interannual variation 
of climate across studies/sites.

For climate metrics, we extracted annual values for each variable 
over a 1948–2008 climatology period for each study and species 
based on the published or estimated latitude/longitude coordinates. 
We note that we were not able to extract climate data for core and 
dry edge populations separately because relatively few studies pro‐
vided the geographic coordinates required, and thus this climate 
data was extracted for each individual study. We then calculated 
the mean, standard deviation, and coefficient of variation of each 
variable, leading to 12 climate metrics (4 variables [temperature, two 
precipitation datasets, and PET] × 3 statistics) for each study and 
species. To estimate an average water budget for each species, we 
further calculated mean annual P‐PET, using both precipitation data‐
sets, mean soil moisture, and mean CWD. For each of temperature, 
precipitation, and PET, we also assessed whether the trend in mean 
or ratio of the standard deviations between the first 30 years and 
the second 30 years of the period, which assesses where increasing 

variability in climate may be occurring, was important. None of the 
trend in mean or standard deviation ratio variables was significant 
in the univariate analyses and these variables were not included in 
further analyses. Finally, to assess the accuracy of using gridded  
climate datasets for this analysis, we included two additional vari‐
ables of MAT and MAP reported by studies themselves (available 
in N = 30 studies) and compared these two variables to the same 
variables estimated from gridded data. These study‐reported  
metrics performed no better than gridded climate data and thus for 
consistency we performed further analyses with 16 climate metrics 
(12 above plus two P‐PET metrics, soil moisture, and CWD) from 
gridded data.

2.5 | Analyses and statistics

All statistical analyses were performed in the R computing envi‐
ronment (R Core Team, 2012). Meta‐analysis of effect sizes for all 
species and subgroups of species (clade, leaf habit, wood anatomy) 
was performed using the rma function of the metafor package 
(Viechtbauer, 2010). Following common meta‐analysis practices, 
because standard errors or variances were unavailable in the 
vast majority of our studies, we weighted studies by their sample 
sizes, quantified as Ha surveyed for mortality. We observed that 
there was an 800,000,000‐fold variation in Ha surveyed (range 
0.04–3,000,000+ Ha) across studies, because our sample included 
a combination of plot‐based studies, forest inventory‐based stud‐
ies, and remote‐sensing (mostly airborne remote‐sensing; Table S1). 
Notably, however, these methods certainly differ in their accuracy 
in detecting and attributing mortality, with remote‐sensing stud‐
ies covering much broader spatial domains but also having lower 
accuracy in mortality determination, typically capturing standing 
dead trees, than field‐based studies, which had a mean and me‐
dian length of measurement period of 11 and 8 years respectively. 
Thus, we weighted each species by the square‐root of the log of 
(Ha surveyed + 1) for each species, which resulted in an approxi‐
mately 60‐fold difference in weighting between the lowest‐ and 
highest‐weighted studies (Figure S1). We tested to ensure that the 
single community‐level study (Zuleta et al., 2017) did not bias the 
findings, which is highly unlikely because it provides only a single 
data‐point of community‐level mortality, by running all analyses 
with and without that study. Importantly, we performed all analy‐
ses with and without weighting and all of our results were robust to 
both scenarios.

Publication bias is an important consideration and challenge in 
any meta‐analysis, but we do not believe it is a major issue here for 
several reasons. First, the vast majority of our studies included was 
descriptive in nature and included a broad suite of findings and anal‐
yses, which decreases the likelihood of a single null‐result remain‐
ing unpublished. Second, all of our potential outcomes for mortality 
patterns—higher mortality at range edges, higher mortality at range 
cores, or equal mortality across populations—are mechanistically 
plausible and scientifically important patterns and thus would not 
drive any strong publication bias. Finally, we also examined a funnel 
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plot (which plots study treatment effect against study precision) of 
our studies and did not observe any bias or systematic heterogeneity 
that would indicate a risk of publication bias.

We undertook several sensitivity analyses of our primary find‐
ings. We meta‐analyzed our mortality patterns when considering 
(a) weighted versus unweighted by study quality (area measured 
for mortality; see above), (b) including study type (plot, inventory, 
or remote‐sensing) as a moderating factor, (c) including or excluding 
studies where biotic agents were mentioned as a contributing factor 
in mortality, and (d) including or excluding studies where there may 
have been a slight risk of confounding factors of either (i) differential 
drought severity across the plots or (ii) a role of species composi‐
tion in influencing mortality rate. We note that our study design was 
based on avoiding these two factors, but even after care in selecting 
studies, we felt that five studies may still have had a slight risk of 
these factors and thus analyzed our main findings with and without 
these studies. In all cases analyzed above, our primary result of in‐
creased mortality at range edges was robust (Figure S2).

We performed univariate analyses of the mortality metric 
against standardized trait metrics and standardized climate variables 
using mixed effects models via the lme4 package (Bates, Maechler, 
& Bolker, 2011) with study as a random effect and weighting studies 
as detailed above. We performed a multiple hypothesis‐testing cor‐
rection for each group of models using Sidak correction (Zar, 1984) 
method and present the corrected p values in the text.

Model selection on climate predictors of mortality patterns 
was performed using the dredge function in the MuMln package 
(Barton, 2009). Because variable importance estimates can be 
biased by collinear predictor variables, we first used a matrix of 
pairwise correlations and removed any variable with high correla‐
tions (R > .5) with other predictor variables. Each pairwise correla‐
tion was performed and the variable with the lower correlation 
with the dependent variable was removed. We further verified 
this with variance inflation factors (VIF) and confirmed that the 
removed variables had the highest VIF, typically VIF >2. The model 
selection technique of “all possible models” (i.e., all permutations 
of predictor variables—after removing collinear predictors) was 

used with all predictor variables standardized to z score prior to 
implementation, which allows rigorous estimation of variable im‐
portance via AIC weights and comparison among variable coef‐
ficients. Model selection was not done for trait analyses due to 
a limited set of species (16%) for which all traits were available. 
Statistical assumptions of linear models were verified by examin‐
ing residual and quantile plots of the models. All maps were gener‐
ated using the raster (Hijmans & van Etten, 2014) and rworldmap 
(South, 2011) package.

3  | RESULTS

Considering all studies and species (Figure 1), dry range edges ex‐
perienced increased drought‐induced mortality relative to range 
cores (Figure 2; p < .0001). Populations at dry range edges, typically 
identified in studies as low elevations, south aspects, or areas with 
lower MAP, experienced on average 33% more mortality (95% CI: 
17%–51%) in a given drought than populations at the range core. 
This pattern was robust to various assumptions about weighting 
and inclusion/exclusion of studies, such as excluding studies where  
biotic agents were identified as playing a role (Figure S2). Higher 
range edge mortality was significant in both clades (pgymno < .0001, 
pangio = .02) and evergreen (p < .0001), but not deciduous leaf habits 
(p = .09). Higher range edge mortality was more prominent in gym‐
nosperm and evergreen species (Figure 2), although they were not 
statistically significantly different from angiosperm and deciduous 
species (p = .19 and .11, respectively).

We found that one plant hydraulic functional trait was signifi‐
cantly associated with mortality patterns. Specifically, higher range‐ 
edge mortality was more prominent in species with more negative 
Ψ88 (Figure 3; p = .01). No other plant functional traits, including WD, 
SLA, Amax, rooting depth, or other hydraulic traits, were significantly 
associated with relative mortality risk (Figure 3; p > .05).

Among climate predictors of mortality patterns, higher mor‐
tality at range edges was most prominent in sites with high inter‐
annual variation in PET (Figure 4; p = .01). Along with interannual 

F I G U R E  1   Map of studies included 
in the meta‐analysis (N = 50) overlaid on 
global forest biomes. Size of the circle is 
proportional on a log‐scale to the number 
of species included in a study. Global 
forest biomes from a global land‐cover 
dataset where evergreen forests (tropical 
and boreal) are shown in dark green, 
deciduous forests in light green, and 
savannas and woodlands in light gray
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variation in PET, mean CWD and interannual variation in tem‐
perature and precipitation were the most important variables re‐
tained in multivariate model selection analyses (Table S3). Taken 
together, these results suggest that mortality at dry range edges is 
more a function of those sites’ high climate variability than harsh 
mean climate, per se, indicating that populations forced to cope 
with highly unpredictable water availability are most vulnerable 
to extremes.

4  | DISCUSSION

Multiple convergent lines of evidence indicate that plasticity, 
local adaptation, and ecosystem adjustments have been unable 
to buffer dry populations to severe droughts in most species. 
Elevated dry population mortality is most prevalent in gymno‐
sperm species and evergreen species, groups expected to exhibit 
relatively lower degrees of plasticity in many traits due to ana‐
tomical	constraints	(Johnson	et	al.,	2012),	and	species	with	higher	
drought tolerance (more negative Ψ88). These species may be al‐
ready existing at the driest places where their physiology permits, 
where the realized niche is closest to the fundamental niche, and 
thus have a limited range for adaptation or acclimation to tolerate 
still drier conditions.

The importance of climate variability in mediating mortality pat‐
terns, where more variable sites experienced higher dry edge mortal‐
ity, further underscores this conclusion. High interannual variability 
might lead plants to shift structural allocation in order to remain 

F I G U R E  2   Drought‐induced mortality is higher in drier, 
range‐edge populations than in wetter, range‐core populations. 
Effect sizes of the log of mortality (Mort) ratio (Mortedge/Mortcore) 
and 95% confidence intervals are plotted for all species (black), 
gymnosperm (Gymno) and angiosperm (Angio) clades (red), 
evergreen (Ever) and deciduous (Decid) species (green), and wood 
anatomy categories of conifer (Conif), diffuse‐porous (DiffPor), and 
ring‐porous (RingPor) species (brown). Numbers at the left indicate 
the number of studies represented in each category. Inset shows 
the probability density function of all species with both axes the 
same as the larger plot and diamonds the mean of the distribution

F I G U R E  3   Drought‐induced mortality is higher in drought‐
adapted species. Trait coefficient of the plant functional trait in a 
univariate model explaining the effect size of the log of mortality 
ratio (Mortedge/Mortcore) and 95% confidence intervals on the 
coefficient where positive coefficients indicate higher dry range‐edge 
mortality with higher values of the trait. Colors indicate trait category 
of leaf (green), wood (brown), or hydraulic (blue) traits. Traits include 
the light‐saturated maximum photosynthesis rate (Amax), specific leaf 
area (SLA), rooting depth (RD), wood density (WD), specific stem 
hydraulic conductivity (Ks), water potential at 50% (Ψ50) and 88% 
(Ψ88) loss of stem hydraulic conductivity, minimum water potential 
measured (Ψmin), and hydraulic safety margin from Ψ50 (HSM50) and 
Ψ88 (HSM88). Numbers at the left indicate the number of unique 
species‐study combinations for each trait

F I G U R E  4   Drought‐induced mortality is more prominent at sites 
with high historical drought variability. The standardized coefficient 
of each climate variable as a univariate predictor explaining the 
mortality ratio. Climate variables include the 1948–2008 mean (M), 
interannual standard deviation (SD), and interannual coefficient 
of variation (CV) of annual temperature (“Temp,” red), annual 
precipitation (“Pcp”) from two different datasets (blue), potential 
evapotranspiration (PET; dark red), precipitation minus PET (P‐PET; 
darkblue), mean soil moisture (SM; brown), and mean climatic water 
deficit (CWD; brown). Error bars show the 95% confidence intervals 
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competitive in wet years, such as increased allocation to leaf area, 
which would increase stress and mortality during extreme drought, 
an	extension	of	 the	concept	of	 “structural	overshoot”	 (Jump	et	al.,	
2017; Trugman et al., 2019). These results emphasize that under‐
standing the timescales over which trees “optimize” and respond to 
environmental variability, for example in adjusting allocation patterns 
or hydraulic/anatomical traits, may be quite important for modeling 
the vulnerability of forests to climate‐induced mortality events.

Our preliminary trait analysis indicates that more drought‐
adapted species may be more prone to range edge die‐offs. The 
hydraulic trait Ψ88 is a relevant trait for drought‐induced mortality 
because while mortality mechanisms are complex, loss of hydrau‐
lic transport is considered to be the dominant pathway through 
which trees die from drought (Anderegg et al., 2012; Hartmann 
et al., 2018) and water potentials that cross Ψ88 have been sug‐
gested as an approximate threshold for drought‐induced mortal‐
ity in a number of angiosperm species (Urli et al., 2013; Venturas  
et al., 2018), although significant uncertainty about mortality 
thresholds remains in most species. While other studies have high‐
lighted the importance of the closely related Ψ50 trait (both arise 
from the hydraulic vulnerability curve) in cross‐species patterns of 
mortality (Anderegg et al., 2016), which is likely better suited to 
capture cross‐species differences in drought tolerance and vulner‐
ability	(Maherali,	Pockman,	&	Jackson,	2004),	the	importance	of	Ψ88 
in our analysis here may possibly be due to its potential to capture 
absolute mortality thresholds within a species. We hypothesize that 
the lack of significant patterns in other standard drought tolerance 
traits (e.g., RD, HSM) may be due to data limitations in the number 
of species with trait data, measurement technique or curve‐fitting 
differences in quantifying traits, or the use of species‐level average 
trait values rather than local, in situ trait values, which are inherent 
uncertainties in our meta‐analysis approach. Our results here are 
broadly consistent, however, with the critical role of the hydraulic 
vulnerability curve in mediating both spatial and cross‐species pat‐
terns in drought‐induced mortality (Choat et al., 2018).

While our results indicate that compensating mechanisms were 
not sufficient to buffer drier populations from higher mortality rates 
during drought, a number of potential compensating mechanisms 
could in theory operate at the tree or ecosystem level to reduce 
drought vulnerability of drier populations. Drier populations within 
a species may exhibit more drought‐tolerant traits, such as more em‐
bolism‐resistant xylem (Anderegg, 2015; López et al., 2013), root‐
ing distribution differences (Williams & Ehleringer, 2000), and lower 
leaf area per sapwood or root area (Martínez‐Vilalta et al., 2009; 
Rosas et al., 2019; Trugman et al., 2019). At a community/ecosystem 
level, lower tree densities and lower leaf area found in drier popu‐
lations can reduce water loss and local water stress during drought 
(Martínez‐Vilalta et al., 2009; Rosas et al., 2019; Trugman et al., 2019) 
and thus could buffer those populations from experiencing mortality.

Despite the fact that compensating mechanisms seem to be un‐
able to completely buffer dry populations, we do find evidence that 
they offer some mortality buffer, as indicated by the smaller edge 
mortality effect in angiosperm species, which have been documented 

to have more variable and plastic hydraulic traits compared to gym‐
nosperms (Figure 2). As a caveat, we note that some of the studies 
in our meta‐analysis examined local/regional range limits, rather than 
the full geographic range. However, examining population responses 
along a moisture gradient can be fruitful for understanding biotic and 
abiotic factors controlling biogeographic boundaries (Anderegg & 
HilleRisLambers, 2019). Furthermore, our results were robust when 
considering only those studies that examined large‐scale or full spe‐
cies ranges (Figure S2). Finally, we note that our compilation of studies 
is primarily focused on temperate, Mediterranean‐climate, and boreal 
regions, and contains only a handful of tropical studies (Table S1) due to 
a lack of studies that measure drought‐induced mortality of individual 
species across climate gradients in the tropics.

Our results provide a strong and independent validation of pro‐
jections of range shifts and dry edge mortality in species distribu‐
tion and mechanistic vegetation models, suggesting that current 
intraspecific variation in most cases has been insufficient to buffer 
dry populations. Furthermore, our synthesis provides guidance for 
development of mortality algorithms in large‐scale vegetation mod‐
els, which is a major priority in plant ecophysiology and Earth sys‐
tem modeling (Fisher et al., 2018; McDowell et al., 2011), by linking 
mortality sensitivity to functional traits and for land management 
decisions to prepare for and mitigate drought‐induced mortality trig‐
gered by climate change. Ultimately, improved understanding and 
prediction of drought‐induced tree mortality has a strong potential 
to inform projections of the impacts of climate change on biodiver‐
sity, species extinctions, and the land carbon sink in the 21st century.
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