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Abstract

For sparse sampling that accelerates magnetic resonance (MR) image acquisition, non-linear 

reconstruction algorithms have been developed, which incorporated patient specific a prior 
information. More generic a prior information could be acquired via deep learning and utilized for 

image reconstruction. In this study, we developed a volumetric hierarchical deep residual 

convolutional neural network, referred to as T-Net, to provide a data-driven end-to-end mapping 

from sparsely sampled MR images to fully sampled MR images, where cartilage MR images were 

acquired using an Ultra-short TE sequence and retrospectively undersampled using pseudo-

random Cartesian and radial acquisition schemes. The network had a hierarchical architecture that 

promoted the sparsity of feature maps and increased the receptive field, which were valuable for 

signal synthesis and artifact suppression. Relatively dense local connections and global shortcuts 

were established to facilitate residual learning and compensate for details lost in hierarchical 

processing. Additionally, volumetric processing was adopted to fully exploit spatial continuity in 

three-dimensional space. Data consistency was further enforced. The network was trained with 

336 three-dimensional images (each consisting of 32 slices) and tested by 24 images. The 

incorporation of a priori information acquired via deep learning facilitated high acceleration 

factors (as high as 8) while maintaining high image fidelity (quantitatively evaluated using the 

structural similarity index measurement). The proposed T-Net had an improved performance as 

compared to several state-of-the-art networks.

Introduction

Sparse sampling and non-linear reconstruction algorithms have been extensively investigated 

to accelerate the acquisition of magnetic resonance (MR) images. In compressed sensing 
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(CS) [1], image sparsity has been explored in different domains (e.g. wavelet [1–3] and 

dictionary-based [4, 5] domains). It has also been applied with parallel imaging [6, 7]. 

Relatively high signal-to-noise ratio (SNR) as well as overall reduction in scan time have 

been achieved using CS [1], but unfortunately, difficulty in selecting parameters to optimize 

performance has limited the use of CS for real time application in routine clinical practice 

[8–10]. Meanwhile, patient specific a priori information has been incorporated into MR 

image reconstruction algorithms. Previous studies using a priori information have 

investigated the use of the support of signal [11, 12], the joint reconstruction of multi-

contrast images [13] as well as the joint reconstruction of multiple time frame images in a 

dynamic sequence [13–15]. The success of these methods has strongly provided evidence of 

the value of integrating a priori information.

More recently, non-patient specific a priori information has been acquired via deep learning 

and utilized for image reconstruction. In fact, deep learning [16] has led to a flood of 

breakthroughs in image processing [17, 18], which is changing the landscape of medical 

physics [19, 20]. In some pilot studies on MRI reconstruction, deep learned a priori was 

incorporated into the framework of model based reconstruction [21–23], where neural 

networks were trained to predict fully sampled images that would be used as the initial 

image in compressed sensing [21], or to estimate the optimal value of parameters defined in 

compressed sensing [22, 23]. Alternatively, neural networks that performed end-to-end 

optimization were likely to provide better solutions, where data consistency enforcement and 

image sparsification were integrated [24–29]. In this way, the sparse representation was 

learned in the joint optimization instead of being obtained via a transform based on standard 

basis functions.In this study, we propose a volumetric hierarchical deep residual 

convolutional neural network framework, namely T-Net, to provide an end-to-end mapping 

for improved MRI reconstruction, where the flexibility of MR data sampling schemes was 

investigated via simulation, and the degree of acceleration were explored. We incorporated 

recent developments in deep learning techniques into the network design. The hierarchical 

network architecture enabled the extraction of feature maps at different scales, resulting in 

higher degree of sparsity as well as increased receptive field, which provided a wide range of 

context information for signal synthesis and artifact suppression. Relatively dense local 

shortcut connections were established to facilitate residual learning, whereas global shortcut 

connections were employed for compensating details lost in down-sampling. Additionally, 

volumetric processing was adopted to fully exploit spatial continuity in three-dimensional 

space. To further enhance data consistency, k-space data of the predicted images were 

replaced by the original measurements. While the proposed framework was generic for 

image reconstruction, in this study it was mainly applied on cartilage MRI acquired using an 

ultra-short echo-time (UTE) sequence and retrospectively undersampled in various 

trajectories.

Methods

A volumetric hierarchical deep residual convolutional neural network (T-Net) was proposed 

to establish an optimal end-to-end mapping between sparsely sampled MR images and their 

fully sampled correspondences. In this study, with Institutional Review Board approval and 

HIPAA compliance, three hundred and sixty three-dimensional datasets of cartilage MRI 
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were acquired using UTE MRI and retrospectively undersampled in different acquisition 

schemes. During the training of the neural network, the optimal parameters were determined 

by iteratively minimizing the discrepancy between the predicted images and the fully 

sampled ground truth images via an advanced gradient descent method. After the neural 

network was trained, high quality images were predicted from sparsely sampled test images, 

which subsequently passed through the data consistency enforcement to form the final 

reconstructed images. The workflow is illustrated in Figure 1.

Image Acquisition and Retrospective Undersampling

Three hundred and sixty volumetric cartilage MR images were obtained at the University of 

California San Diego, each consisting of 32 slices [30]. The images were acquired on a 3 

Tesla scanner (GE Healthcare, Waukesha, WI) using an adiabatic inversion recovery spin-

lock prepared UTE sequence with different numbers of IR spin-lock pulses (2, 4, 6, 8, 12, 

and 16). Other imaging parameters were as follows: echo time of 32 μs, repetition time of 

500 ms, flip angle of 10°, in-plane resolution of 256 × 256, and voxel size of 0.586 × 0.586 

× 3 mm3.

Given fully sampled images, a pseudo-random variable-density Cartesian acquisition, 

CIRcular Cartesian UnderSampling (CIRCUS) [31], was simulated as illustrated in Figure 

2(a). Sparse sampling was performed on the ky-kz plane with partial acquisition (75%) 

applied in both directions. An acceleration factor of 4, 6 or 8 was achieved. The sparsely 

sampled k-space data were zero filled (without density compensation applied) and 

transformed back to the image domain using a three-dimensional inverse Fourier transform.

Similarly, the stack-of-stars radial acquisition [32] was simulated as shown in Figure 2(b). 

For each slice, the Radon transform was taken at undersampled projection angles, achieving 

an acceleration factor of 4, 6 or 8. The profiles were back-projected using the inverse Radon 

transform, and used as the input to the neural network.

Reconstruction Using Convolutional Neural Network

A deep convolutional neural network framework was proposed for the image reconstruction 

of sparsely sampled MRI. In general, deep neural networks could provide a mapping that 

enforced data consistency and image sparsity in a joint optimization, where predicted images 

iteratively approached fully sampled images x, as described by

minθ x − f cnn xZF θ

Here, fcnn was the forward mapping of the convolutional neural network that took the zero 

filled image xZF as input. fcnn was parameterized by θ= {Wi, Bi, ɑi} , where Wi and Bi 

represented the weights and biases in convolution operations, as defined in Fi(y) = Wi * 

Fi−1(y) + Bi; and ɑ was the coefficient defined in the PReLU (Parametric Rectified Linear 

Unit) function for nonlinear activation, PReLU = max(x, 0) + ɑmin(0, x) [33].

Throughout the network, volumetric processing was employed to exploit spatial continuity 

in three-dimensional space. This particularly facilitated acceleration in the through-plane 
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direction. Moreover, volumetric processing was applied to the whole image rather than to 

individual patches, which not only improved the computation efficiency by avoiding 

redundant computation between adjacent patches, but also provided valuable contextual 

information for signal synthesis and global artifact removal.

Architecture of the Neural Network

To reconstruct high-quality images from their sparsely sampled correspondence, a 

hierarchical convolutional neural network was developed, as shown in Figure 3. After the 

sparsely sampled input images were fed into the network, image features were extracted and 

reorganized at multiple levels with different resolutions. In addition, global shortcut 

connections were established between the corresponding levels of the two paths, whereas 

local shortcut connections were established within the same level of a single path.

The hierarchical network had eleven levels. At each level, the resolution of feature maps was 

kept the same, and there were three convolutional blocks. Each convolutional block was 

composed of a convolutional layer and a nonlinear activation layer. At the convolutional 

layer, image features were extracted using 3×3×3 convolutional kernels, followed by zero-

padding that kept the size of the feature map constant. At the nonlinear activation layer, the 

PReLU (Parametric Rectified Linear Unit) function was applied. All the data passed through 

two paths - a contracting path on the left and a subsequent expanding path on the right. At 

the next level along the contracting path, the resolution of feature maps was halved, and the 

number of filters was doubled. Down-sampling was accomplished using 2×2×2 

convolutional kernels with a stride of 2 to replace the conventional max-pooling function, as 

suggested by [34]. On the contrary, at the following level along the expanding path, the 

resolution of feature maps was doubled, and the number of filters was halved; up-sampling 

was accomplished using 2×2×2 convolutional kernels as well. Finally, a 1×1×1 convolution 

kernel was adopted to merge information from multiple feature maps into one output image. 

Throughout this series of processing, the receptive field was continuously increased with 

convolution operations, resulting in large context with global constraints.

Moreover, ‘global’ shortcut connections were established between the two paths, aimed to 

compensate for the detailed information lost in down-sampling [35]. Meanwhile, ‘local’ 

shortcut connections were established within the same level of a single path to facilitate 

residual learning. In fact, relatively dense local shortcut connections were constructed by 

forwarding the input of a hierarchical level to all the subsequent convolutional blocks at the 

same level, unlike U-net that had no local shortcut connections or V-Net that had local 

simple shortcut connections, as compared in Figure 4. For shortcut connections, pointwise 

addition was adopted, where nonlinear activation was applied before the addition and 

identity mapping was conducted after the addition, as shown in Figure 5. This pre-addition 

activation scheme provided faster error reduction and lower training loss than the post-

addition activation method [36].

Data Consistency Enforcement

While the network output provided reasonable estimates for k-space coefficients at all data 

points, it was more accurate to replace the predictions by the original measurements at the 
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data points that were actually sampled. This enforcement of data consistency was 

incorporated into the loss function, which was the Root Mean Squared Error (RMSE): 

RMSE = ∑i = 1
n zi − xi

2 . Notice that x was the fully sampled image, and z was the 

predicted image with data consistency enforced, as formulated by zi = IFT h ki, kι . Here, k 

was the measured k-space data, k  was the predicted k-space data, which was the Fourier 

transform of the network prediction at the current iteration, k = FT f cnn xZF |θ , and ℎ was 

the data consistency enforcement function defined as

h ki, kι = I 0 ki ∗ kι + 1 − I 0 ki ∗ ki

where I was the indicator function. Alternatively, the data consistency enforcement function 

can be intuitively expressed as

h ki, kι =
ki i f ki ≠ 0

kι i f ki = 0

Training and Testing of the Neural Network

The neural network was trained to learn the optimal values of model parameters that were 

defined in convolutional filters or PReLU functions. The parameters in this deep neural 

network (total of 122,094) were initialized using the He method [33]. Errors between the 

reconstructed images z and the ground truth images x were back-propagated [16]. 

Parameters at all layers were updated accordingly using the Adam optimization method [37], 

which offered faster convergence than conventional stochastic gradient descent methods. We 

used an adaptive learning rate (starting from 0.001, halved every 2000 iterations), β1 of 0.9, 

β2 of 0.999, and ϵ of 10−8.

Given the trained neural network, test images were reconstructed, where undersampled test 

images first passed through the neural network processing, and then experienced the 

subsequent data consistency enforcement. Additionally, compressed sensing reconstruction 

using the Split Bregman method [13, 38] was applied to the undersampled k-space data for 

comparison. The performance of the prediction was evaluated both qualitatively and 

quantitatively. A quantitative metric, structural similarity index measure (SSIM), was 

measured to assess image quality, which was defined as 

SSIM x, y =
2μxμy + C1 2σxσy + C2

μx
2 + μy

2 + C1 σx
2 + σy

2 + C2
, where μx, μy, σx, and σx corresponded to the mean 

and standard deviation of signal intensity in the reconstructed image and the ground truth, 

whereas C1 and C2 were constants [37].

The network was implemented on a tensor-flow [39] based AI platform NiftyNet [40]. All 

computations were performed on a desktop computer running Linux operating system with 

an Intel i77700K CPU (4.2 GHz, and 32GB memory) and Nvidia GPU GeForce GTX1070.
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Results

The proposed T-net was trained with 336 three-dimensional images, each consisting of 32 

slices. With the support of all the advanced deep learning techniques employed, this large-

scaled neural network had fast convergence with a rapidly decreasing RMSE. After the 

network was trained, 24 three-dimensional images were tested. When the k-space data was 

reduced to one fourth of the fully sampled case, the images reconstructed using T-Net 

demonstrated high fidelity with the ground truth. Figure 6 showed the CIRCUS pseudo-

random Cartesian sampling case, and Figure 7 demonstrated the stack-of-stars radial 

sampling case. From left to right, the three columns corresponded to the zero filled (input), 

fully sampled (ground truth), T-Net reconstructed, and compressed sensing images, 

respectively. Each row represented an individual subject. The T-Net reconstructed images 

had significantly improved image quality as compared to the zero filled images and 

compressed sensing images - the micro-structures, textures, and edges were substantially 

recovered with an improved SNR and suppressed artifacts.

As the acceleration factor was increased from 4 to 6 and 8, the quality of T-Net 

reconstructed images was slightly degraded. However, substantial details were recovered 

from the very blurry zero filled images. Compared with the compressed sensing images, the 

T-Net reconstructed images had more high frequency details, improved SNR and suppressed 

artifacts. Figure 8 compared the T-net reconstructed images with zero filled and compressed 

sensing images, when different acceleration factors were achieved via retrospective 

undersampling in a pseudorandom Cartesian sampling pattern (CIRCUS). Figure 9 

demonstrated the case in which various acceleration factors were obtained using the stack-

of-stars radial sampling.

The high degree of image fidelity was further confirmed by quantitative measurement of 

SSIM, as shown in Figure 10. With a given acceleration factor of 4, the SSIM of images 

reconstructed using T-Net was higher than the SSIM of zero filled images and compressed 

sensing images in both CIRCUS Cartesian acquisition and stack-of-stars radial acquisition, 

demonstrating the efficacy of the proposed method. The SSIM of the radial acquisition was 

slightly higher than that of the Cartesian acquisition.

The influences of shortcut connections were investigated as well. Figure 11 compared the 

images reconstructed using hierarchical deep neural networks with different shortcut 

connection patterns, when retrospective Cartesian undersampling was applied with an 

acceleration factor of 4. The image reconstructed with relatively dense local shortcuts (as 

proposed in T-Net) was the most similar to the fully sampled ground truth images, better 

than the one reconstructed without local shortcuts (as in U-Net) or the one reconstructed 

with simple local shortcuts (as in V-Net). The same trend was confirmed quantitatively by 

measuring the average SSIMs obtained using different approaches, as shown in Table 1. The 

highest SSIM was achieved in images reconstructed with relatively dense local shortcuts (as 

employed in T-Net) than those obtained without local shortcuts (as in U-Net) or with simple 

shortcuts (as in V-Net).
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The effect of data consistency enforcement was demonstrated in Figure 12. The image 

obtained with data consistency enhancement had an apparently improved image quality as 

compared to the one without it in terms of reduced artifacts and better recovered micro-

structures.

After the network was trained, reconstruction for a three-dimensional image took as short as 

0.3 second.

Discussion

In this study, we proposed a deep learning based reconstruction strategy to establish the 

mapping between undersampled images and high-quality MR images. Instead of taking a 

transform based on standard basis functions, deep learning based processing was data 

driven, taking advantage of a priori information learned from a large population. The deep 

learning based image reconstruction method proposed here was an end-to-end joint 

optimization that promoted the sparsity of feature maps and enforced data consistency. It 

was observed that sparsity was explicitly imposed by convolutional layers [28]. Particularly, 

in the proposed hierarchical neural network, feature maps were extracted at different scales, 

resulting in higher degree of sparsity (similar to wavelet processing) and potentially 

improving the maximal degree of undersampling [1]. The transform for sparse 

representation was learned rather than explicitly enforced. Therefore, the end-to-end 

optimization should provide a better solution than the frameworks that only incorporated 

deep learned a priori information.

A novel deep neural network was proposed and named as T-Net, since it was designed for 

MRI reconstruction applicable to T1 or T2 weighted images. Throughout the T-Net, 

volumetric processing was employed to exploit spatial continuity in three-dimensional space 

and support acceleration in the through-plane direction. Volumetric processing had been 

demonstrated to outperform two-dimensional processing with the same network architecture 

[35]. Moreover, the volumetric processing was applied to the whole image (rather than to 

individual patches as conducted in many super-resolution studies), providing valuable 

contextual information for signal synthesis and global artifact removal. In T-Net, fully 

connected network layers were not used. Converting a 2D/3D volume into 1D vector not 

only led to loss of spatial structures, but also increased the number of model parameters, 

which would consequently demand much more training data and more GPU memory. 

Furthermore, fully connected layers did not impose sparsity as convolutional layers [28].

T-Net has a hierarchical network architecture with global and local shortcut connections 

established for residual learning. Residual learning [41] has been shown for improving the 

performance of neural networks in a variety of tasks, including but not limited to image 

recognition [41], segmentation [17, 35, 42] and super-resolution [43]. Intuitively, it is easier 

to learn a residual image than the corresponding feature map since the former is much 

sparser [41]. In T-Net, relatively dense local shortcut connections were employed, going 

beyond the influential U-Net [17] and V-Net [44]. This was first inspired by the dense 

shortcut connections employed in Dense Net [45], which forwarded the output of every 

convolutional block to all the subsequent blocks. However, the necessity of large amount of 
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memory was problematic for 3D high resolution image sets. Motivated by an alternative 

shortcut connection pattern proposed in Deep Recursive Residual Network [43], we 

established ‘relatively dense’ local shortcut connections by forwarding the input of a 

hierarchical level to all the subsequent convolutional blocks at the same hierarchical level, 

reaching a good balance between the network performance and memory consumption. The 

comparison of different local short connection patterns is illustrated in Figure 13. In the 

context of image reconstruction, another interesting finding was that the local shortcuts at 

the first level of the contracting path slightly degraded the quality of reconstructed images, 

which may be due to the fact that the undersampling artifacts and blurring observed in input 

images were propagated to subsequent feature maps. Hence, the local shortcuts at the first 

level of the contracting path were excluded. The relatively dense local shortcut connections 

worked effectively, as demonstrated in Figure 11 and Table 1.

In this study, the T-Net was trained with MRI images that were consistently acquired. 

Domain adaptation, domain transfer, or more generically called transfer learning [16], was 

commonly applied in medical imaging due to limited data available for network training. 

Those neural networks were pre-trained using natural images or images in other sensor 

domain and fine-tuned with images in the same sensor domain. Although domain adaptation 

was effective in general, a neural network precisely trained with images in the same sensor 

domain would be more powerful since the model was adapted to input images that had 

realistic patterns of artifacts and noise. We collected large quantity of MRI images that were 

consistently acquired, and simulated undersampled images by obtaining k-space data from 

dicom images, which were not totally realistic. However due to the limited availability of k-

space data that were consistently acquired, the simulation still provides valuable insights on 

the degree of acceleration that could be possibly achieved as well as the influence of 

different sampling patterns and generalizable to real MRI experiments. While the network 

was trained using only healthy volunteers, we believe that it will not fail to reconstruct or 

change abnormal anatomic structure that did not exist in the training data.

We explored the flexibility of sampling trajectories, which was specific to MRI as compared 

to other imaging modalities. Two undersampling schemes were simulated – CIRCUS and 

stack-of-stars. CIRCUS mainly suffered from signal loss in some micro-structures, whereas 

stack-of-stars experienced undersampling streak artifacts. By visual inspection, removing 

streak artifacts in radial acquisition seemed to be more challenging. But in quantitative 

measurement, the stack-of-stars radial acquisition had a higher average SSIM than the 

pseudo-random Cartesian sampling. We started from zero filled images without conducting 

density compensation, which was not ideal for achieving a high acceleration factor but 

helped us to concentrate on the proposed deep learning strategy without considering the 

influence of other incorporated techniques. In both radial and cartesian acquisitions, an 

acceleration factor of 8 was achieved in cartilage UTE MRI. Higher acceleration factors 

could be possible using alternative sampling patterns or larger training sets, or combing with 

parallel imaging.

The proposed framework is a generic MRI reconstruction approach that can be applied to 

other pulse sequences and benefit various clinical applications. The reduction in scan time 

will be highly appreciated especially in time consuming scans, such as dynamic MRI that 
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requires high temporal resolution and quantitative MRI that are currently clinically 

infeasible due to their extended scan times. In addition, instantaneous reconstruction is 

another major advantage of the proposed method. While the training of the neural network 

takes time, the reconstruction of test images can be completed in real time, which facilitates 

its utility in clinical practice.

The current approach can be extended in several directions. First, a neural network can 

provide a direct mapping from k-space to the image domain. In addition, other loss functions 

can be adopted, such as the normalized MSE, L1 norm, SSIM, and mutual information. 

These efforts can potentially further improve the quality of reconstructed images.

Conclusions

The reported study established a generic deep learning framework for MR image 

reconstruction, which could significantly accelerate MR image acquisition. A volumetric 

hierarchical deep residual convolutional neural network, T-Net, was constructed to provide 

an end-to-end mapping from sparsely sampled images to high quality output images in real 

time. In cartilage MRI acquired using UTE and retrospectively undersampled using various 

sampling schemes, an acceleration factor of 8 was achieved, where reconstructed images had 

high fidelity to the ground truth with limited artifacts and high SNR. The proposed deep 

learning based image reconstruction method has the potential to be extended to a variety of 

MRI acquisition techniques as well as other imaging modalities (e.g. CT or PET).
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Figure 1. 
The workflow of deep learning based MR reconstruction. MR images were retrospectively 

undersampled in k-space and transformed back to the image domain. A deep convolutional 

neural network was trained to provide a mapping from sparsely sampled zero-filled images 

to fully sampled high quality images, where the loss between predicted images and ground 

truth images was back-propagated and used to update model parameters. The trained 

network model was employed to predict high quality images from undersampled test 

images, whose output subsequently passed through data consistency enforcement to form 

the final reconstructed images.
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Figure 2. 
Two k-space undersampling patterns retrospectively applied in this study. (a) CIRCUS: a 

pseudo-random variable-density Cartesian sampling pattern, where sparse sampling was 

performed on the ky-kz plane. (b) stack-of-stars radial sampling, where undersampling was 

conducted on the kx-ky plane.
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Figure 3. 
The hierarchical architecture of the proposed deep convolutional neural network, T-Net. It 

was composed of a contracting path (on the left) and a subsequent expanding path (on the 

right). Along the contracting path, the resolution of feature maps shrank at the next level, 

and the number of feature maps or convolutional kernels doubled as indicated. Along the 

expanding path, the resolution of feature maps expanded at the subsequent level, and the 

number of feature maps halved as indicated. In this way, image features were extracted and 

reorganized at multiple levels with different resolutions. Global shortcut connections were 

established between the corresponding levels of the two paths, whereas local shortcut 

connections were constructed within the same level of a single path. Finally, after 

convolving with a 1×1×1 kernel, output MR images were predicted.
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Figure 4. 
Comparison of the proposed local shortcut connection scheme in T-Net with the ones 

adopted in U-Net and V-Net. (a) no local shortcuts, as in U-Net (b) simple local shortcuts 

(forwarding the input of a hierarchical level to the output at the same level), as in V-Net (c) 

relatively dense local shortcuts (forwarding the input of a hierarchical level to all the 

subsequent convolutional blocks at the same level), as proposed in T-Net.
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Figure 5. 
Comparison of pre-addition activation and post-addition activation in residual learning. The 

pre-addition activation scheme was adopted in T-Net with identity mapping applied after 

addition, which was reported to provide faster error reduction and lower training loss than 

the conventional post-addition activation scheme.
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Figure 6. 
Comparison of zero filled, fully sampled, T-net reconstructed, and compressed sensing 

images, which were retrospectively undersampled in the CIRCUS pseudo-random Cartesian 

acquisition scheme with an acceleration factor of 4 achieved. Each row represented an 

individual subject. The micro-structures lost in the zero-filled images were significantly 

recovered in the T-net reconstructed images, which had high fidelity with the ground truth. 

Furthermore, the image quality of the T-Net reconstructed images was improved as 

compared to that of the compressed sensing images.
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Figure 7. 
Comparison of zero filled, fully sampled, T-net reconstructed, and compressed sensing 

images, which were retrospectively undersampled in the stack-of-stars radial acquisition 

scheme with an acceleration factor of 4 achieved. Each row represented an individual 

subject. The undersampling streak artifacts appearing in the zero filled images were 

significantly suppressed in the T-Net reconstructed images, which was more consistent with 

the ground truth. Additionally, the image quality of the T-Net reconstructed images was 

improved as compared to that of the compressed sensing images.
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Figure 8. 
Comparison of T-net reconstructed, compressed sensing, and zero filled images, which were 

obtained via retrospective undersampling in the CIRCUS pseudo-random Cartesian 

acquisition pattern with different acceleration factors achieved. As the acceleration factor 

was increased from 4 to 6 and 8, the quality of T-Net reconstructed images was slightly 

degraded with some micro-structures hard to differentiate (in the posterior regions of the 

knee). However, substantial details were recovered from the very blurry zero filled images. 

Even when compared with the compressed sensing images, the T-Net reconstructed images 

still had more high frequency details, improved SNR and suppressed artifacts.
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Figure 9. 
Comparison of T-net reconstructed, compressed sensing, and zero filled images, which were 

obtained via retrospective undersampling in the stack-of-stars radial acquisition pattern with 

different acceleration factors achieved. As the acceleration factor was increased from 4 to 6 

and 8, global undersampling streak artifacts and local blurring (loss of micro-structures in 

the posterior regions of the knee) became more obvious across all images. In the T-Net 

reconstructed images, substantial high frequency details were recovered with SNR increased 

and streak artifacts suppressed. The T-Net reconstructed images had apparently improved 

image quality as compared to the compressed sensing images.
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Figure 10. 
The SSIM of images acquired with (a) the CIRCUS Cartesian sampling and (b) the stack-of-

stars radial sampling. For a given acceleration factor of 4, the SSIM of T-Net reconstructed 

images was higher than that of zero filled images and compressed sensing images. The 

SSIM of the radial acquisition was slightly higher than that of the Cartesian acquisition.
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Figure 11. 
Comparison of images reconstructed using hierarchical deep neural networks with different 

shortcut patterns, when retrospective Cartesian undersampling was applied with an 

acceleration factor of 4. (a) ground truth, (b) image reconstructed without local shortcuts (as 

in U-Net), (c) image reconstructed with simple local shortcuts (as in V-Net), (d) image 

reconstructed with relatively dense local shortcuts (as in T-Net). The image reconstructed 

with relatively dense local shortcuts was the most similar to the ground truth.
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Figure 12. 
Comparison of images reconstructed using T-Net with or without data consistency 

enforcement. (a) ground truth, (b) images reconstructed without data consistency 

enforcement, and (c) images reconstructed with data consistency enhancement. The data 

consistency enforcement helped to improve the image quality. The undersampling artifacts 

were reduced, and the lost micro-structures were better recovered.
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Figure 13. 
Several dense shortcut connection schemes that motivated the design of T-Net. (a) T-Net, in 

which the input of a network level was forwarded to all the subsequent convolutional blocks 

at the same level, (b) Dense Net, in which the output of every convolutional block was 

forwarded to all the subsequent blocks, and (c) Deep Recursive Residual Network, which 

had shortcut connections with various ranges of influence. Here, the origins of the shortcuts 

were close to the input of the network level.
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Table 1.

The average SSIMs of images reconstructed using deep neural networks with different shortcut connections. 

Images reconstructed with relatively dense local shortcut connections (as adopted in T-Net) had a higher SSIM 

value than the ones reconstructed with simple local shortcuts (as in V-Net) or those reconstructed without local 

shortcuts (as in U-Net). This quantitative result was consistent with the observation in Figure 11.

Image Avg SSIM

T-Net reconstructed images without local shortcuts 0.8484

T-Net reconstructed images with single local shortcuts 0.8549

T-Net reconstructed images with relatively dense local shortcuts 0.8603
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