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Abstract
1.	 Marine	Protected	Areas	(MPAs)	are	being	implemented	worldwide,	yet	there	are	
few	cases	where	managers	make	specific	predictions	of	the	response	of	previously	
harvested	populations	to	MPA	implementation.

2.	 Such	predictions	are	needed	to	evaluate	whether	MPAs	are	working	as	expected,	
and	 if	not,	why.	This	evaluation	 is	necessary	 to	perform	adaptive	management,	
identifying	whether	and	when	adjustments	to	management	might	be	necessary	to	
achieve	MPA	goals.

3.	 Using	monitoring	data	and	population	models,	we	quantified	expected	responses	
of	 targeted	 species	 to	MPA	 implementation	and	compared	 them	 to	monitoring	
data.

4.	 The	model	required	two	factors	to	explain	observed	responses	in	MPAs:	(a)	pre-
MPA	 harvest	 rates,	 which	 can	 vary	 at	 local	 spatial	 scales,	 and	 (b)	 recruitment	
variability	before	and	after	MPA	establishment.	Low	recruitment	years	before	MPA	
establishment	 in	our	 study	 system	drove	deviations	 from	expected	equilibrium	
population	 size	distributions	 and	 introduced	an	 additional	 time	 lag	 to	 response	
detectability.

5.	 Synthesis and applications.	We	combined	monitoring	data	and	population	models	to	
show	how	(a)	harvest	rates	prior	to	Marine	Protected	Area	(MPA)	implementation,	
(b)	 variability	 in	 recruitment,	 and	 (c)	 initial	 population	 size	 structure	 determine	
whether	a	response	to	MPA	establishment	is	detectable.	Pre-MPA	harvest	rates	
across	 MPAs	 plays	 a	 large	 role	 in	 MPA	 response	 detectability,	 demonstrating	
the	 importance	 of	 measuring	 this	 poorly	 known	 parameter.	While	 an	 intuitive	
expectation	 is	 for	 response	 detectability	 to	 depend	 on	 recruitment	 variability	
and	stochasticity	in	population	trajectories	after	MPA	establishment,	we	address	
the	overlooked	role	of	recruitment	variability	before	MPA	establishment,	which	
alters	the	size	structure	at	the	time	of	MPA	establishment.	These	factors	provide	
MPA	practitioners	with	reasons	whether	or	not	MPAs	may	lead	to	responses	of	
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1  | INTRODUC TION

Marine	protected	areas	 (MPAs)	 are	an	 increasingly	popular	 tool	 for	
marine	 resource	 management	 and	 conservation	 (Watson,	 Dudley,	
Segan,	&	Hockings,	2014).	Global	meta-analyses	show	that	on average 
we	can	expect	MPAs	 to	eventually	 lead	 to	 increased	abundance	of	
harvested	marine	species	inside	MPAs	(Edgar	et	al.,	2014;	Lester	et	al.,	
2009).	However,	there	is	a	wide	range	of	individual	outcomes	in	those	
analyses:	in	any	single	MPA	abundances	may	remain	the	same	or	even	
decrease,	defying	expectations	(Edgar	&	Barrett,	2012;	Lester	et	al.,	
2009).	 Lack	 of	 population	 increase	 inside	MPAs	 could	 be	 due	 to	 a	
number	of	factors,	such	as	poor	design	(Claudet	et	al.,	2008;	Edgar	et	
al.,	2014)	or	weak	enforcement	(e.g.	Giakoumi	et	al.,	2017).	In	addition,	
MPA	responses	may	not	be	detectable	for	reasons	unrelated	to	MPA	
management.	 If	 the	area	was	 lightly	harvested	prior	 to	MPA	 imple-
mentation,	the	cessation	of	harvest	should	not	lead	to	an	increase	in	
harvested	populations	(Micheli,	Halpern,	Botsford,	&	Warner,	2004).	
Stochastic	variability	in	the	population	can	make	a	response	difficult	
to	detect	(Blowes	&	Connolly,	2012;	De	Leo	&	Micheli,	2015),	and	par-
ticularly	for	some	long-lived	species,	adequate	time	since	implemen-
tation	is	needed	to	detect	a	response	(Molloy,	McLean,	&	Cote,	2009;	
Starr	et	al.,	2015).	Indirect	effects,	such	as	competition	or	predation	
from	other	increasing	species,	can	also	prevent	positive	responses	of	
species	within	MPAs	(e.g.	Micheli	et	al.,	2004;	Babcock	et	al.,	2010).

Distinguishing	the	drivers	of	observed	responses	to	MPA	imple-
mentation,	 and	 differentiating	 between	MPA	management-depen-
dent	and	-independent	factors,	is	necessary	to	evaluate	MPA	success	
and	 engage	 in	 adaptive	management.	 Adaptive	management	 is	 an	
approach	to	policy	implementation	in	which	ecological	responses	to	
management	actions	are	monitored	and	compared	to	expected	re-
sponses,	 then	differences	 between	observations	 and	 expectations	
are	 used	 to	 refine	 management	 in	 an	 iterative	 process	 (Walters,	
1986).	Such	evaluation	provides	a	first	step	in	determining	the	factors	
impeding	successful	responses	to	MPA	implementation.	For	MPAs,	if	
a	mismatch	between	outcomes	and	expectations	occurs,	refinement	
of	management	action	could	include	adjusting	the	size,	location,	level	
of	protection	or	degree	of	enforcement.	Despite	the	consensus	that	
adaptive	management	holds	great	promise	to	improve	outcomes	in	
ecosystem	management	(Allen,	Fontaine,	Pope,	&	Garmestani,	2011;	
Rist,	Campbell,	&	Frost,	2013),	including	MPAs	(Carr	et	al.,	2017;	Sale	
et	al.,	2005),	there	are	few	published	cases	that	compare	outcomes	
of	management	actions	 (i.e.	observations	from	monitoring	surveys)	
to	expectations	(i.e.,	predictions	from	population	models)	in	any	sys-
tem	(Westgate,	Likens,	&	Lindenmayer,	2013).

From	 a	 management	 perspective,	 a	 lack	 of	 prior	 predictions	
makes	it	impossible	to	quantify	whether	an	MPA	has	met	expecta-
tions.	Management	actions	generally	take	place	on	a	regional	to	local	
spatial	 scale	 and	managers	 and	 stakeholders	 are	 often	 interested	
in	evaluation	of	potential	success	on	short-time	scales	 (<10	years).	
Therefore,	adaptive	management	must	place	goals	and	expectations	
within	 the	appropriate	spatial	and	temporal	context	 to	avoid	scale	
mismatch	between	ecological	systems	and	decision-making	(Grafton	
&	Kompas,	2005;	Wilson	et	al.,	2016).	Projecting	the	future	response	
to	MPAs	sets	the	time-scale	of	change	in	an	MPA,	allowing	managers	
to	plan	an	appropriate	time-scale	for	assessment.

Different	mechanistic	modelling	approaches	are	appropriate	for	dif-
ferent	phases	of	MPA	management.	Typically,	population	models	used	
for	MPA	design	focus	on	the	long-term,	equilibrium	response	of	popula-
tions	inside	MPAs	(e.g.	White,	Botsford,	Moffitt,	&	Fischer,	2010).	More	
recent	models	have	focused	on	the	short-term,	transient	responses	of	
fish	populations	 following	MPA	 implementation	 (Brown,	Abdullah,	&	
Mumby,	2014;	Hastings,	2016;	White	et	al.,	2013).	These	efforts	show	
that	short-term	responses	depend	critically	on	the	prior	harvest	mor-
tality	rate,	which	sets	the	rate	for	filling-in	of	the	size/age	distribution	
that	was	truncated	by	harvest	as	individuals	are	allowed	to	grow	older	
and	larger.	Unfortunately,	harvest	mortality	rates	are	usually	estimated	
in	 stock	 assessments	 at	 the	 scale	 of	 hundreds	 of	 kilometres,	 rather	
than	the	local	scale	of	MPAs	where	harvest	rates	vary	due	to	distances	
from	ports	and	other	factors.	Additionally,	as	a	consequence	of	time	
lags	associated	with	increases	in	reproductive	output	of	populations	in	
MPAs,	trajectories	of	transient	responses	of	population	abundance	and	
biomass	may	be	flat	or	even	decreasing	during	the	short-term,	despite	
long-term	 predicted	 increases	 (Hopf,	 Jones,	Williamson,	&	Connolly,	
2016;	White	 et	 al.,	 2013).	 This	 delay	 in	 population	 increase	 is	more	
likely	for	species	that	are	long-lived	with	older	ages	of	maturity,	slow	
growth	rates	and/or	infrequent	recruitment	events.	While	such	delayed	
response	can	be	more	prominent	when	harvest	mortality	rates	were	
high	prior	to	MPA	implementation,	high	harvest	mortality	also	leads	to	
a	greater	eventual	magnitude	of	response	with	greater	detectability.

In	 addition	 to	 these	 deterministic	 drivers,	 the	 population	 re-
sponse	 will	 depend	 on	 stochastic	 effects	 of	 environmental	 vari-
ability.	 In	many	coastal	marine	populations,	an	important	source	of	
stochasticity	are	post-larval	 recruitment	 rates,	which	can	 fluctuate	
widely	 on	 seasonal	 or	 interannual	 scales	 due	 to	 ocean	 conditions	
and	lead	to	large	differences	in	cohort	strength	(Carr	&	Syms,	2006;	
Caselle,	Wilson,	Carr,	Malone,	&	Wendt,	2010).	This	variability	influ-
ences	 the	 initial	 age	 structure	at	 implementation,	 seen	as	gaps	 (or	
peaks)	 in	 certain	 size	 classes	 corresponding	with	years	of	poor	 (or	

targeted	species.	Our	overall	approach	provides	a	framework	for	a	critical	step	of	
adaptive	management.
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adaptive	management,	environmental	stochasticity,	fishing,	integral	projection	model,	marine	
conservation,	marine	reserve,	population	dynamics,	Sebastes mystinus
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high)	 recruitment,	 which	 determine	 transient	 population	 trajecto-
ries	(Mangel,	2000).	Environmental	stochasticity	also	causes	uncer-
tainty	 in	 future	 recruitment,	 complicating	predictions	of	near-term	
responses.

Here,	we	apply	a	Bayesian	state-space	integral	projection	model	
(IPM;	Kimbro,	White,	&	Grosholz,	2018;	White	et	al.,	2016)	to	pre-MPA	
size	frequency	data	to	estimate	parameters	for	a	mechanistic	model	
that	we	used	to	assess	the	response	of	a	common	nearshore	fish	to	
establishment	of	three	California	no-take	MPAs.	We	estimated	both	
deterministic	(local	harvest	rate)	and	stochastic	(variable	recruitment)	
components	of	the	response.	We	used	these	estimates	to	compute	
deterministic	and	stochastic	 forward	projections	of	population	 tra-
jectories,	which	we	then	compared	to	monitoring	data	in	an	adaptive	
management	process.	We	first	evaluate	which	factors	are	necessary	
in	order	 to	 correctly	 predict	 the	observed	 responses.	 This	 analysis	
informs	the	adaptive	management	step	of	determining	whether	ob-
served	responses	are	due	to	natural	factors	or	management	actions,	
and	whether	changes	in	management	actions	might	be	necessary	to	
achieve	MPA	goals.	We	then	show	how	pre-MPA	harvest	rates,	vari-
ability	in	recruitment	and	initial	population	size	structure	determine	
when	response	to	MPA	establishment	will	be	detectable.	This	anal-
ysis	informs	the	adaptive	management	step	of	determining	when	an	
evaluation	of	MPA	efficacy	for	consideration	of	management	adjust-
ment	is	biologically	reasonable.	Our	approach	expands	existing	MPA	
theory	focused	on	long-term,	equilibrium	outcomes	to	descriptions	of	
short-term,	transient	responses	that	can	then	be	compared	to	actual	
monitoring	data	to	evaluate	MPA	efficacy.

2  | MATERIAL S AND METHODS

2.1 | Monitoring data

We	 focus	 on	 three	 regions	 within	 central	 California	 containing	
well-enforced	no-take	MPAs	established	in	2007	and	mandated	to	
be	monitored	and	managed	adaptively:	Point	Lobos,	Big	Creek	and	
White	Rock	(Botsford,	White,	Carr,	&	Caselle,	2014;	Figure	1).	The	
Partnership	for	Interdisciplinary	Studies	of	Coastal	Oceans	(PISCO)	
has	 conducted	 annual	 surveys	 of	 kelp	 forest	 fishes	 in	 Central	
California	 since	1999,	 spanning	MPA	 implementation	 in	2007.	We	
focused	on	the	numerically	dominant	species	of	rockfish,	blue	rock-
fish,	Sebastes mystinus,	which	experienced	both	commercial	and	rec-
reational	harvest	in	this	region	(Key,	MacCall,	Field,	Aseltine-Nellson,	
&	Lynn,	2008;	Starr,	Carr,	Malone,	&	Greenley,	2010).	Blue	rockfish	
are	long-lived	(>40	year;	Laidig,	Pearson,	&	Sinclair,	2003)	and	have	
small	home	range	sizes	<	2	km2	(Freiwald,	2012;	Starr	et	al.,	2015).	
Since	MPA	implementation	in	2007,	no	clear	increase	in	blue	rock-
fish	density	or	size	within	nearshore	MPA	locations	has	been	evident	
at	any	of	the	three	regions	(Figure	S1	in	Supporting	Information).

Kelp	 forest	 fish	 surveys	 were	 conducted	 during	 June-August	
each	year,	including	the	early	post-recruitment	season	(June)	of	blue	
rockfish.	Fish	were	counted	and	sized	to	the	nearest	cm	along	mul-
tiple	30	×	2	×	2	m	transects	at	two	levels	throughout	the	water	col-
umn,	benthic	and	mid-water,	where	blue	rockfish	were	numerically	

predominant.	 Because	 the	 number	 of	 transects	 varied	 slightly	
among	years	 and	 locations,	we	normalized	data	by	 the	number	of	
transects.	Data	used	 for	 the	 state-space	 IPM	come	 from	six	 loca-
tions	 in	 the	Point	Lobos	 region	and	 four	 locations	each	 in	 the	Big	
Creek	 and	White	Rock	 regions,	with	 half	 of	 the	 locations	 inside	 a	
no-take	MPA	and	half	of	the	 locations	open	to	harvest.	Data	used	
for	forward	model	projections	came	from	one	location	in	each	region	
that	became	a	MPA	in	2007.	We	compare	these	projections	to	data	
from	that	site	and	the	closest	sampled	harvested	area.

2.2 | Integral projection model

We	used	an	IPM	to	represent	size-structured	blue	rockfish	popula-
tions.	An	IPM	is	conceptually	similar	to	a	traditional	age-structured	
Leslie	matrix	model,	but	it	is	an	integrodifference	model	in	which	the	
state	variable	is	a	continuous	size	distribution	(rather	than	a	discrete	
age	distribution),	and	the	transition	probabilities	from	size	x	to	size	
y	 over	 a	 discrete	 time	 interval	 (including	 growth	 and	 survival)	 are	

F I G U R E  1  Map	of	study	area	along	the	California	Central	
Coast	with	insets	of	study	regions.	Red	dashed	lines	designate	
boundaries	of	no-take	MPAs	prior	to	2007,	and	red	solid	lines	
designate	boundaries	of	no-take	MPAs	implemented	in	2007.	
Open	circles	indicate	the	centre	of	fish	abundance	monitoring	
areas.	Black	arrows	show	locations	of	the	two	closest	ports	to	
the	MPAs;	distance	to	port	is	indicated	in	each	region's	inset.	Red	
arrows	indicate	locations	that	became	MPAs	in	2007	used	for	
forward	projections	and	comparisons	to	model	output	in	Figure	
3.	Blue	arrows	indicate	locations	with	continued	harvest	used	for	
comparisons	to	model	output	in	Figure	3
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continuous,	size-dependent	functions	(Ellner,	Childs,	&	Rees,	2016).	
Blue	rockfish	populations	are	 likely	to	be	demographically	open	at	
the	 scale	 of	 our	 study	 sites	 due	 to	 their	 long	planktonic	 dispersal	
period	of	3–5	months	(Love,	Yoklavich,	&	Thorsteinson,	2002).	We	
constructed	a	demographically	open	IPM	that	describes	the	popula-
tion	density	N(y,t)	at	size	y,	 time	t	+	1,	as	a	product	of	 the	current	
population	density	and	the	projection	kernel	K(y,x)	 (the	probability	
density	 of	 surviving	 and	moving	 from	 size	 x	 to	 size	 y),	 integrated	
over	all	biologically	reasonable	sizes	(Ω).	New	recruitment	is	added	
as	the	product	of	the	density	of	 juvenile	recruits	arriving	at	t,	R(t),	
and	the	probability	density	function	for	initial	recruit	size	ρ(y).	Given	
our	assumption	of	an	open	population	with	recruitment	decoupled	
from	local	population	size,	we	do	not	include	density	dependence	in	
recruitment.	A	process	error	term	ν(y,t)	represents	deviations	from	
predicted	densities	due	to	variability	in	survival	or	growth	for	a	given	
size	at	t	(see	Table	1	for	list	of	symbols).	The	size-structured	popula-
tion	dynamics	are	as	follows:

K(y,x)	included	a	von	Bertalanffy	growth	function	and	size-inde-
pendent	mortality	post-recruitment,	both	 taken	from	 independent	
data	(Key	et	al.,	2008;	Laidig	et	al.,	2003).	Full	details	of	the	IPM	are	
described	in	White	et	al.	(2016).

2.3 | Estimation of pre‐MPA harvest and 
recruitment rates

We	 fit	 the	 IPM	 to	PISCO	size	data	using	 a	Bayesian	 state-space	
framework	 to	 estimate	 harvest	 rate	 and	 the	 annual	 recruitment	
magnitude	during	the	pre-MPA	time	period	(1999–2007)	for	each	
region	 (Appendix	 S1;	 White	 et	 al.,	 2016),	 using	 harvest	 rate,	 F,	
from	the	regional	stock	assessment	as	the	Bayesian	prior	(F = 0.09 
per	year;	Key	et	al.,	2008).	The	model	fitting	process	explicitly	in-
cluded	both	process	 error	 (e.g.	 interannual	 variability	 in	 growth,	
mortality	 and	 recruitment)	 and	 observation	 error	 (e.g.	 variation	

in	fish	counts	due	to	visibility,	chance	variation	 in	observing	fish	
aggregations).

2.4 | Simulating responses of populations to MPA 
implementation

We	then	used	the	IPM	in	a	forward,	non-estimation	mode	to	sim-
ulate	 fish	 population	 trajectories,	 following	 the	 above	 equations	
and	parameters.	The	 IPM	was	 initialized	 in	two	ways:	 (a)	starting	
from	the	expected	stable	size	distribution	under	harvest	 (the	ex-
pected	 starting	 point	 in	 the	 absence	 of	monitoring	 data)	 and	 (b)	
starting	with	the	size	distribution	from	monitoring	data	for	an	indi-
vidual	location	within	each	region	that	became	protected	in	2007	
(Monastery,	 Point	 Lobos	 region;	Dolan,	 Big	 Creek	 region;	White	
Rock,	White	 Rock	 region;	 Figure	 1).	We	 characterized	 detection	
of	 increases	 in	 population	 density	 after	MPA	 implementation	 by	
simulating	 fish	 population	 trajectories	 under	 two	 scenarios:	 no	
harvest	mortality,	corresponding	to	the	expected	conditions	inside	
an	 effective	MPA,	 and	 with	 continued	 harvest	 at	 the	 estimated	
pre-MPA	harvest	rate,	such	as	would	be	expected	if	the	MPA	had	
not	 been	 implemented.	 For	 areas	 outside	 MPAs,	 responses	 will	
depend	 on	whether	 harvest	 rates	 increase	 as	 effort	 is	 displaced	
(Byers	&	Noonburg,	2007;	De	Leo	&	Micheli,	2015);	such	displace-
ment	would	lead	to	a	greater	inside:outside	difference	in	density	as	
outside	densities	decrease	from	additional	harvest.	Our	estimated	
trajectory	without	MPA	establishment,	simulating	harvest	rates	at	
pre-MPA	levels,	likely	represents	a	conservative	estimate	of	densi-
ties	 in	 sites	outside	of	 the	MPA.	The	 IPM	tracks	density	at	each	
size,	 accounting	 for	 the	 size	 structure	 of	 the	 population	 at	 each	
time	step;	we	present	results	as	the	total	density	(abundance	per	
area)	of	fish	greater	than	or	equal	to	the	size	limit	for	blue	rockfish	
over	time.	We	report	density,	as	opposed	to	biomass,	because	cal-
culations	of	biomass	from	length	data	would	amplify	any	errors	in	
length	estimation.

When	starting	simulations	from	the	expected	stable	size	distri-
bution	 under	 harvest,	 we	 first	 ran	 deterministic	 simulations	 then	
added	noise	for	stochastic	simulations.	The	major	source	of	stochas-
ticity	 in	this	system	is	recruitment,	which	does	not	show	evidence	
for	 interannual	 autocorrelation	 (Dorn,	 2002).	 Deterministic	 simu-
lations	had	constant	annual	recruitment,	allowing	determination	of	
the	expected	 impact	of	pre-MPA	harvest	on	population	responses	
to	MPAs.	We	used	the	stochastic	case	to	investigate	the	additional	
impact	of	variable	recruitment	on	population	trajectories	by	running	
1,000	model	simulations	in	which	each	model	simulation	received	a	
yearly	 recruitment	density	drawn	from	a	Poisson	distribution	with	
the	mean	equal	 to	 the	mean	recruitment	density	estimated	within	
each	region	from	1999	to	2007.	We	determined	the	number	of	sim-
ulations	to	run	by	generating	10	replicate	sets	of	n	simulations,	with	
n	increasing	from	50	to	1,000.	The	standard	deviation	of	the	median	
population	abundance	in	year	20,	taken	across	each	set	of	10	simula-
tions,	was	stable	for	n	>	500	simulations	with	variability	across	sets	
of	simulations	<1%	of	the	median	population	density.	Erring	on	the	
side	of	caution	we	used	n	=	1,000	simulations	for	all	reported	results.

N
(

y,t+1
)

= ∫
Ω

K (y,x)N (x,t) dx+R (t) � (y)+� (y,t).

TA B L E  1  Symbols	used	in	this	study

Symbol Definition

N(y,t) Probability	density	of	individuals	of	size	y	at	time	t

K(y,x) Projection	kernel	giving	the	probability	density	of	
moving	from	size	x	to	y

Ω Set	of	biologically	reasonable	sizes,	x

R(t) Number	of	recruits	in	year	t

ρ(x) Probability	density	function	for	initial	recruit	size

ν(y,t) Process	error	from	deviations	in	densities	due	to	
variability	in	survival	or	growth

N Number	of	simulations

F Harvest	rate	(per	year)
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We	determined	the	expected	stable	size	distribution	without	
harvest	 by	 first	 running	 the	model	 for	 100	 years	 with	 constant	
recruitment	each	year	at	 the	mean	recruitment	estimated	within	
each	 region	 from	 1999	 to	 2007;	 100	 years	 was	 more	 than	 re-
quired	 to	 reach	>99%	of	 the	 asymptotic	 population	density.	We	
then	introduced	each	region's	pre-MPA	harvest	mortality	rate	for	
30	years	(a	timescale	achieving	<1%	deviation	from	the	asymptotic	
population	 density)	 to	 obtain	 the	 stable	 size	 distribution	 under	
harvest	for	the	deterministic	simulations.	For	the	stochastic	sim-
ulations,	we	began	with	the	stable	size	distribution	after	harvest	
for	30	years	with	constant	recruitment,	which	was	similar	to	the	
median	of	1,000	simulations	with	variable	recruitment	after	har-
vest	for	30	years.

To	test	for	impacts	of	the	initial	size	structure	on	population	tra-
jectories	in	addition	to	recruitment	variability,	we	began	stochastic	
simulations	with	the	observed	size	distribution	from	2007	at	 loca-
tions	 that	became	MPAs	 in	 the	 three	 regions.	Stable	size	distribu-
tions	under	harvest	and	the	size	distributions	from	2007	monitoring	
data	are	shown	in	Figure	S2.

2.5 | Calculating detectability of MPA responses

Receiver	Operating	Characteristics	 (ROC;	Hanley	&	McNeil,	1982;	
Boettiger	&	Hastings,	2012)	are	a	means	of	translating	distributions	
of	harvested	and	unharvested	population	trajectories	at	each	point	
in	time	into	a	plot	of	the	probability	of	a	true	positive	(MPAs	have	led	
to	greater	density	within	the	MPA,	and	that	is	detected)	versus	the	
probability	of	a	false	positive	(MPAs	have	not	led	to	greater	density	
within	the	MPA,	but	an	increase	is	detected).

We	calculated	ROC	curves	for	the	distributions	of	simulated	
density	with	 a	MPA	 and	with	 continued	 harvest	 (no	MPA)	 at	 a	
given	 site	 at	 5,	 10,	 15	 and	 20	 years	 post-MPA	 implementation.	
The	probability	of	detecting	a	true	positive	versus	false	positive	
depends	on	 the	 “cutoff	 value”:	 the	difference	 in	 abundance	be-
tween	harvested	and	unharvested	populations	that	is	required	to	
declare	whether	there	has	been	an	increase.	Each	ROC	plot	con-
sists	of	a	plot	of	 these	two	probabilities	as	the	cutoff	 threshold	
values	range	from	the	minimum	density	in	the	no-MPA	distribu-
tion	to	the	maximum	density	in	the	MPA	distribution;	each	set	of	
cutoff	 threshold	 values	 would	 be	 unique	 to	 the	 scenario	 being	
analysed.	For	each	cutoff	value,	we	calculated	the	proportion	of	
the	no-MPA	distribution	 that	was	greater	 than	 the	 cutoff	 (false	
positive)	 and	 the	 proportion	 of	 the	 MPA	 distribution	 that	 was	
greater	than	the	cutoff	(true	positive).	The	ROC	curve	plots	those	
pairs	of	values	across	the	range	of	possible	cutoff	values.	 If	 the	
two	distributions	between	which	the	response	is	being	assessed	
are	quite	similar	(i.e.	same	mean,	standard	deviation)	the	ROC	plot	
will	 be	 a	 straight	 line	 on	 the	 diagonal.	 If	 the	 distributions	 have	
little	overlap	(i.e.	the	difference	in	means	is	greater	than	the	com-
bined	standard	deviations),	the	ROC	plots	will	be	bowed	toward	
the	upper	left-hand	corner.

All	 analyses	 were	 performed	 using	MATLAB	 software	 version	
R2015a.

3  | RESULTS

3.1 | Estimation of pre‐MPA harvest and 
recruitment rates

Across	the	three	regions,	using	the	value	of	pre-MPA	harvest	rate	
from	the	regional	stock	assessment	as	the	Bayesian	prior	(F = 0.09 
per	year;	Key	et	al.,	2008),	the	posterior	estimates	of	F	ranged	from	
near	zero	 to	 twice	 the	value	 in	 the	 regional	stock	assessment	 (Big	
Creek,	F	=	1.1	×	10–4	per	year;	White	Rock,	F	=	0.10	per	year;	Point	
Lobos,	F	=	0.19	per	year)	and	were	inversely	related	to	distance	from	
port	(see	Figure	1	for	distances).

Both	modelled	 and	 observed	 recruitment	 magnitudes	 showed	
a	general	pattern	of	boom	and	bust	years	of	 recruitment	that	was	
echoed	across	the	three	regions	and	was	close	to	zero	leading	up	to	
and	including	2007,	the	year	the	MPAs	were	implemented	(Figure	2).

3.2 | Effects of pre‐MPA harvest rates

The	results	of	deterministic	forward	projections	with	no	recruitment	
variability	show	the	impact	of	pre-MPA	harvest	rates	alone	on	popula-
tion	 responses	 to	MPAs.	As	predicted	 from	White	et	 al.	 (2013),	 the	
expected	increase	in	blue	rockfish	density	after	MPA	implementation	
was	greater	at	sites	with	higher	pre-MPA	harvest	rates	(Figure	3a–c;	
dot-dashed	lines).	The	saturating	nature	of	the	unharvested	trajecto-
ries	 in	Figure	3a–c	 reflects	 the	 filling-in	of	 the	previously	harvested	
size	distribution	as	unharvested	cohorts	reach	larger	sizes,	eventually	
saturating	at	an	equilibrium	determined	by	the	recruitment	rate.	The	
projected	return	to	the	unharvested	size	distribution	occurred	within	
10–15	years	at	Point	Lobos	and	White	Rock.	There	was	no	discernible	
difference	between	projected	harvested	and	unharvested	populations	
at	Big	Creek	because	of	 the	near-zero	pre-MPA	harvest	 rate	 in	 that	
region.	However,	none	of	these	projections	matched	the	observed	pat-
terns	of	density	in	post-2007	monitoring	data	(data	points	in	Figure	3a–
c),	indicating	that	additional	processes	needed	to	be	accounted	for.

F I G U R E  2  The	number	of	blue	rockfish	recruits	per	transect	
at	Big	Creek	(x),	White	Rock	(□)	and	Point	Lobos	(○)	from	1999	to	
2007,	leading	up	to	implementation	of	the	MPAs.	Observed	mean	
and	standard	deviation	across	all	monitoring	locations	within	each	
region	(both	inside	and	outside	MPAs)	are	indicated	with	black	
symbols	and	error	bars.	Recruitment	estimated	from	the	state-
space	IPM	are	indicated	with	red	symbols.	Note	that	observed	data	
for	all	three	regions	were	not	available	until	2002,	and	that	from	
2005	to	2007	observation	and	modelled	data	overlap	at	zero	for	all	
sites.	Recruits	were	counted	as	fish	<10	cm
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3.3 | Effects of variable recruitment and initial 
size structure

Recruitment	 variability,	 while	 not	 altering	 the	 mean	 population	
outcome	 across	 simulations,	 obscured	 differences	 between	 har-
vested	 and	 unharvested	 populations	 (overlap	 of	 blue	 and	 red	
shaded	 regions	 in	 Figure	 3a–c).	 The	 amount	 of	 overlap	 was	 in-
versely	related	to	pre-MPA	harvest	rates:	at	Point	Lobos	the	tra-
jectories	eventually	diverged,	as	opposed	to	White	Rock	and	Big	
Creek.	Still,	the	monitoring	data	did	not	match	model	projections	
(data	points	in	Figure	3a–c).

When	 simulations	 started	with	 the	 observed	 2007	 size	 struc-
ture,	forward	projections	with	variable	recruitment	more	closely	re-
sembled	the	monitoring	data	(Figure	3d–f).	In	these	projections,	the	
overlap	in	distributions	of	stochastic	trajectories	reduces	the	ability	
to	 detect	 a	 difference	between	unharvested	populations	 and	har-
vested	populations	for	well	over	15	years,	if	at	all	(Figure	S3	provides	
density	distributions	 for	 specific	 time	points).	At	Big	Creek	where	
pre-MPA	harvest	was	 low,	 there	was	no	expectation	of	 increased	

density	(Figure	3d).	For	sites	with	detectable	harvest	before	reserve	
establishment,	 simulations	 predicted	 initial	 decreases	 after	 MPA	
implementation	 (Figure	 3e,f)	 due	 to	 the	 gap	 in	 size	 structure	 cre-
ated	by	years	of	repeatedly	low	recruitment	prior	to	implementation	
(Figure	2).	The	model	over-predicted	densities	at	White	Rock,	where	
observed	recruitment	continued	to	be	close	to	zero	through	2014,	
however	the	model	captured	the	shape	of	the	empirical	trajectory	
in	the	monitoring	data.

3.4 | Time‐scale of response detectability

	Correct	detection	of	MPA	effects	is	more	likely	with	a	higher	pre-
MPA	harvest	 rate	 (Figure	4),	 and	when	 the	projection	 starts	 from	
a	steady-state	condition	 (Figure	4a–c).	With	 low	pre-MPA	harvest	
rates,	accounting	for	the	actual	initial	conditions	of	the	populations	
provides	more	realistic	conditions,	but	only	slightly	changes	the	ROC	
detectability	(Figure	4d,e).	At	Big	Creek,	with	low	pre-MPA	harvest,	
we	 cannot	 ever	 expect	 to	 detect	 a	 difference	 in	 density	 between	
the	harvested	and	MPA	scenarios.	At	White	Rock,	 the	ROC	curve	

F I G U R E  3  Forward	projections	of	blue	rockfish	densities	of	fish	greater	than	the	fished	size	in	the	Big	Creek	(left),	White	Rock	(middle),	
and	Point	Lobos	(right)	regions	under	scenarios	with	continued	harvest	at	estimated	pre-MPA	harvest	rates,	F,	(blue	lines	with	shading)	or	
as	a	no-take	MPA	(red	lines	with	shading).	The	population	densities	in	(a–c)	start	from	equilibrium	abundances	of	the	stable	size	distribution	
with	harvest.	The	population	abundances	in	(d–f)	start	from	densities	observed	in	2007,	when	MPAs	were	implemented.	Dot-dashed	lines	in	
(a–c)	indicate	abundances	with	constant	recruitment	magnitude	each	year.	Shaded	areas	indicate	the	envelope	of	outcomes	from	5%–95%	of	
all	simulations	with	variable	recruitment	with	the	median	of	outcomes	shown	by	the	solid	line.	Note	that	dot-dashed	and	solid	lines	overlap.	
Markers	indicate	monitoring	data	from	no-take	MPA	(red)	and	harvested	(blue)	sites,	displayed	as	means	with	standard	deviation	computed	
for	transects	across	zones	within	a	location.	For	Big	Creek	(panels	(a)	and	(d)),	the	red	and	blue	lines	and	shading	overlap.	Note	that	we	are	
addressing	whether	a	harvested	population	would	respond	to	MPA	implementation	as	compared	to	a	population	where	harvest	persisted.	
We	show	data	from	a	nearby	site	outside	the	MPA	(blue	markers)	to	show	that	predictions	for	continued	harvest	match	those	of	a	nearby	
harvested	site
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converges	on	the	same	result	obtained	under	assumed	stable-state	
initial	conditions,	which	 indicates	 lower	detectability	 than	at	Point	
Lobos	where	the	harvest	rate	was	highest.	The	ROC	curve	at	White	
Rock	 does	 not	 improve,	 even	 25	 years	 after	 implementation.	 At	
Point	Lobos,	the	ROC	plots	indicate	steadily	increasing	detectability	
through	time,	however,	departure	from	the	stable-state	greatly	di-
minishes	detectability	(Figure	4f);	high	probabilities	of	correct	detec-
tion	(>80%)	are	only	possible	with	high	probabilities	of	false	positives	
(>25%)	until	≥15	years	after	 implementation,	when	the	ROC	curve	
steepens.

4  | DISCUSSION

We	found	that	spatial	variability	in	harvest	rate	and	temporal	envi-
ronmental	stochasticity	are	crucial	to	accurately	predicting	expected	
responses	to	MPA	establishment	and	therefore	to	adaptive	manage-
ment.	Local	pre-MPA	harvest	 rates	varied	substantially	across	our	
study	regions,	and	harvest	rates	were	inversely	related	to	proximity	
to	fishing	ports.	Assuming	uniform	harvest	rates	across	the	Central	
California	area	would	lead	to	erroneous	predictions	of	responses	to	
the	cessation	of	harvest	in	the	MPAs.

Accurate	transient	projections	further	require	not	only	incorpo-
rating	the	complexity	of	variable	future	recruitment	in	this	system,	
but	 also	 accounting	 for	 past	 variability	 that	 can	 cause	 departure	
from	 the	 steady	 state	 size	 distribution	 at	 the	 time	of	MPA	 imple-
mentation.	 The	 year	 the	 Central	 Coast	 MPAs	 were	 implemented	
corresponded	with	the	end	of	a	three-year	period	of	exceptionally	
low	recruitment	across	all	 regions	 (Figure	2;	 such	patterns	of	high	
interannual	recruitment	variability	is	common	for	nearshore	rockfish	

species;	Johnson,	2007;	Caselle	et	al.,	2010).	These	low	recruitment	
years	caused	initial	decreases	in	abundance	after	MPA	implementa-
tion,	as	low	recruitment	years	travelled	through	the	size	distribution	
and	impacted	future	year's	abundances.	This	echoes	previous	mod-
els	demonstrating	how	perturbation	from	a	stable	size	structure	can	
lead	to	transient	population	decrease,	even	in	populations	that	will	
increase	in	the	long-term	(Cohen,	1979;	White	et	al.,	2013).	Given	its	
effects	on	both	the	initial	conditions	and	the	spread	of	possible	post-
MPA	trajectories,	recruitment	variability	has	the	potential	to	double	
the	predicted	time-scale	over	which	post-MPA	population	increases	
become	detectable.	Stochasticity	likely	plays	a	role	in	other	locations	
around	the	globe	where	responses	to	MPAs	have	been	variable	and	
detectability	 of	 the	 response	 increases	 over	 time	 (Babcock	 et	 al.,	
2010;	Russ	&	Alcala,	2004).

Setting	 expectations	 for	 adaptive	 management	 of	 MPAs	 im-
plies	consideration	of	the	goals	for	which	the	MPA	was	established.	
California	MPAs	have	a	broad	range	of	goals,	such	as	“to	protect	the	
natural	 diversity	 and	 abundance	 of	 marine	 life”	 and	 “to	 help	 sus-
tain,	conserve	and	protect	marine	 life	populations”	 (CDFW,	2016).	
However,	in	California,	as	elsewhere,	abundance	serves	as	an	initial	
proxy	for	the	achievement	of	these	broader	goals	(Whiteman	et	al.,	
2013).	If	the	MPAs	are	not	meeting	expectations,	the	cause	would	be	
either	ineffective	management	or	inappropriate	expectations.	If	the	
former,	possible	actions	include	increased	enforcement,	changes	in	
MPA	status	(e.g.	partial	and	no-take),	and	changes	in	MPA	boundaries;	
if	the	latter,	the	relevant	action	is	to	update	expectations	based	on	
improved	scientific	knowledge.	Here,	we	show	that	simply	expecting	
an	increased	abundance	in	the	MPAs	analysed	can	be	a	misleading	
expectation.	Big	Creek	would	not	 show	an	 increase	 in	 abundance	
because	its	isolated	location	potentially	made	it	a	de	facto	MPA	prior	

F I G U R E  4  Receiver	Operating	
Characteristics	curves	for	distributions	
of	outcomes	from	forward	simulations	
with	recruitment	variability	comparing	
population	densities	in	no-take	MPAs	
to	densities	with	continued	harvest	
after	5,	10,	15	and	20	years	post-MPA	
implementation	for	Big	Creek	(left),	
White	Rock	(middle)	and	Point	Lobos	
(right).	The	initial	population	densities	in	
(a–c)	are	equilibrium	densities	from	the	
stable	size	distribution	with	harvest.	The	
initial	population	densities	in	(d–f)	are	
from	2007	densities	when	MPAs	were	
implemented.	Detectability	of	response	
to	MPAs	increases	with	distance	from	the	
45°	line
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to	2007	with	little	harvest.	While	it	might	at	first	seem	counter-intu-
itive	for	a	reserve	to	be	placed	in	an	area	of	no	fishing,	local	fishing	
mortality	rates	were	unknown	during	the	reserve	planning	process,	
and	many	factors,	ranging	from	socioeconomic	costs	to	biodiversity	
goals,	informed	the	siting	process	(Botsford	et	al.,	2014).	These	re-
sults	can	help	clarify	which	goals	different	MPAs	might	address;	Big	
Creek	may	not	help	rebuild	depleted	marine	populations,	but	it	may	
serve	to	protect	natural	diversity	and	abundance	(CDFW,	2016).

A	wide	array	of	MPA	goals	depend	on	 the	 initial	 “filling	 in”	 re-
sponse	modelled	here,	but	additional	goals	will	also	depend	on	dy-
namics	ignored	here	in	our	focus	on	the	most	immediate	and	direct	
expected	MPA	response.	MPA	responses	such	as	 increased	repro-
duction,	 spillover	 to	 harvested	 areas	 and	 subsequent	 effects	 on	
fishery	 yield,	 and	 cascading	 community-level	 changes	will	 depend	
on	 further	 uncertain	 processes	 such	 as	 larval	 connectivity,	 fisher	
behaviour	 in	 terms	 of	 redistributed	 effort,	 movement	 of	 target	
species,	 and	 species	 interactions	 (Baskett	&	Barnett,	 2015;	White	
et	al.,	2011).	Our	 findings	of	how	the	uncertain	processes	of	 local	
harvest	 mortality	 and	 recruitment	 variability	 significantly	 affect	
expectations	 demonstrate	 the	 potential	 challenges	 in	 creating	 ex-
pectations	for	longer-term	and	larger-scale	responses	as	uncertainty	
propagates.

We	developed	a	 framework	 that	 can	be	used	by	managers	 to	
build	expectations	of	responses	of	targeted	species	to	MPA	imple-
mentation,	which	includes	producing	robust	estimates	of	pre-MPA	
fishing	mortality	 rates,	 recruitment	 variability	 and	 size-structure,	
then	using	these	estimates	to	build	a	size-structured	demographic	
model	 to	project	population	dynamics	with	and	without	MPA	 im-
plementation.	Such	predictions	will	allow	managers	to	develop	ex-
pectations	 for	 how	 long	 it	may	 take	 before	 a	 significant	 increase	
in	 population	 abundance	 and	 size	 is	 expected,	 and	 how	 big	 that	
increase	might	be.	Key	to	this	approach	is	the	availability	of	 long-
term	monitoring	data.	Our	 results	 show	 the	value	of	before:after	
comparisons,	 especially	 in	 regards	 to	 stochastic	 events	 prior	 to	
implementation	 (Russ	&	Alcala,	 2004).	 Ideally,	 a	 full	 before-after-
control-impact	(BACI)	design	can	be	used,	increasing	the	ability	to	
control	 for	 spatial	 and	 temporal	 heterogeneity	 (Halpern,	 Gaines,	
&	Warner,	 2004).	 Comparing	 observations	 from	 a	 BACI	 study	 to	
model	outputs	can	validate	hypothesized	drivers	of	outcomes,	such	
as	whether	 stochastic	 population	 dynamics	 explain	 any	observed	
non-monotonic	trajectories,	as	is	the	case	here.	Indeed,	even	with	
a	full	BACI	comparison,	one	would	still	need	to	know	how	pre-MPA	
harvest	rates	varied	over	space,	both	to	ensure	that	“control”	sites	
are	representative	and	to	estimate	statistical	power	to	detect	be-
fore:after	changes.	When	stock-recruit	relationships	are	unknown,	
projections	with	competing	models	may	be	compared	over	time	to	
the	response.	If	a	population	is	closed,	trajectories	might	show	even	
more	intensified	initial	decreases	than	that	reported	here	(White	et	
al.,	2013).

An	important	part	of	the	adaptive	management	process	is	that	as	
additional	monitoring	data	are	collected,	managers	can	update	pro-
jections	with	new	information,	adjust	models	and	identify	additional	
drivers	 of	 population	 responses	 that	 require	 consideration.	 The	

steps	we	describe	here	–	predicting	the	initial	post-implementation	
trajectory—are	only	the	beginning	of	an	ongoing	adaptive	manage-
ment	 cycle.	 For	 example,	 new	 information	 on	 the	 actual	 levels	 of	
post-MPA	recruitment	could	adjust	projected	trajectories,	narrow-
ing	the	range	of	uncertainty	for	ongoing	assessment.	Additionally,	if	
appropriate	information	became	available,	site-specific	growth	and	
natural	mortality	rates	could	be	incorporated	(e.g.	Hamilton,	Wilson,	
Ben-Horin,	&	Caselle,	2011).

Projections	 may	 also	 help	 identify	 management	 gaps,	 such	 as	
lack	of	enforcement	and	poaching	(Brown	et	al..,	2018),	and	can	be	
used	to	explore	how	responses	might	change	if	MPAs	are	adjusted	
through	adaptive	management	or	as	climate	change	impacts	popu-
lations	(e.g.	if	recruitment	is	reduced).	In	this	example,	we	did	not	in-
vestigate	the	potential	role	of	poaching,	and	assumed	that	the	MPAs	
were	well-enforced,	 but	 poaching	would	 further	 decrease	 detect-
ability.	Using	the	framework	we	describe,	managers	could	make	pro-
jections	that	include	poaching	for	comparison	to	monitoring	data.	In	
addition,	 for	MPAs	where	harvest	 is	allowed,	projections	could	be	
run	for	different	levels	of	harvest.

Evaluation	of	MPAs	is	a	necessary	step	in	ecosystem	manage-
ment,	yet	examples	of	adaptive	management	studies	that	incorpo-
rate	monitoring	data,	let	alone	adequate	data	on	the	appropriate	
time	scales	 for	ascertaining	 responses	 to	management,	are	 lack-
ing	(Westgate	et	al.,	2013).	The	combination	of	data	and	models	
provides	 an	 opportunity	 to	 investigate	 the	 mechanisms	 behind	
observed	 patterns	 (Hastings,	 2016)	 and	 can	 advance	 the	 devel-
opment	of	expectations	and	monitoring	plans	 (Moffitt,	White,	&	
Botsford,	2013).	Without	such	model	predictions,	monitoring	can	
only	 inform	a	noise-sensitive	 “trial	 and	error”	 approach	 to	man-
agement	 that	bases	 future	choices	on	what	 is	observed	 to	work	
best,	as	opposed	to	a	more	proactive	approach	where	managers	
can	improve	both	management	and	scientific	understanding	based	
on	gaps	between	predictions	and	reality	(Walters	&	Hilborn,	1978;	
Walters	&	Holling,	1990).	The	integration	of	expectations	into	an	
adaptive	management	framework	can	help	managers	move	from	
interpreting	 population	 responses	 after	 management	 actions	 to	
including	predictions	in	MPA	design	and	in	the	adaptive	manage-
ment	 policy	 itself	 (Schindler	&	Hilborn,	 2015),	 thereby	 avoiding	
unforeseen	 costs	 of	 adjusting	 management	 actions	 (Morris	 &	
Green,	 2014).	 The	methods	 and	 framework	we	 have	 developed	
here	can	be	used	to	set	expectations	for	MPA	adaptive	manage-
ment,	especially	for	systems	where	observational	data	are	avail-
able	but	recruitment	variability	complicates	the	interpretation	of	
patterns.
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