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Abstract
1.	 Marine Protected Areas (MPAs) are being implemented worldwide, yet there are 
few cases where managers make specific predictions of the response of previously 
harvested populations to MPA implementation.

2.	 Such predictions are needed to evaluate whether MPAs are working as expected, 
and if not, why. This evaluation is necessary to perform adaptive management, 
identifying whether and when adjustments to management might be necessary to 
achieve MPA goals.

3.	 Using monitoring data and population models, we quantified expected responses 
of targeted species to MPA implementation and compared them to monitoring 
data.

4.	 The model required two factors to explain observed responses in MPAs: (a) pre‐
MPA harvest rates, which can vary at local spatial scales, and (b) recruitment 
variability before and after MPA establishment. Low recruitment years before MPA 
establishment in our study system drove deviations from expected equilibrium 
population size distributions and introduced an additional time lag to response 
detectability.

5.	 Synthesis and applications. We combined monitoring data and population models to 
show how (a) harvest rates prior to Marine Protected Area (MPA) implementation, 
(b) variability in recruitment, and (c) initial population size structure determine 
whether a response to MPA establishment is detectable. Pre‐MPA harvest rates 
across MPAs plays a large role in MPA response detectability, demonstrating 
the importance of measuring this poorly known parameter. While an intuitive 
expectation is for response detectability to depend on recruitment variability 
and stochasticity in population trajectories after MPA establishment, we address 
the overlooked role of recruitment variability before MPA establishment, which 
alters the size structure at the time of MPA establishment. These factors provide 
MPA practitioners with reasons whether or not MPAs may lead to responses of 
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1  | INTRODUC TION

Marine protected areas (MPAs) are an increasingly popular tool for 
marine resource management and conservation (Watson, Dudley, 
Segan, & Hockings, 2014). Global meta‐analyses show that on average 
we can expect MPAs to eventually lead to increased abundance of 
harvested marine species inside MPAs (Edgar et al., 2014; Lester et al., 
2009). However, there is a wide range of individual outcomes in those 
analyses: in any single MPA abundances may remain the same or even 
decrease, defying expectations (Edgar & Barrett, 2012; Lester et al., 
2009). Lack of population increase inside MPAs could be due to a 
number of factors, such as poor design (Claudet et al., 2008; Edgar et 
al., 2014) or weak enforcement (e.g. Giakoumi et al., 2017). In addition, 
MPA responses may not be detectable for reasons unrelated to MPA 
management. If the area was lightly harvested prior to MPA imple-
mentation, the cessation of harvest should not lead to an increase in 
harvested populations (Micheli, Halpern, Botsford, & Warner, 2004). 
Stochastic variability in the population can make a response difficult 
to detect (Blowes & Connolly, 2012; De Leo & Micheli, 2015), and par-
ticularly for some long‐lived species, adequate time since implemen-
tation is needed to detect a response (Molloy, McLean, & Cote, 2009; 
Starr et al., 2015). Indirect effects, such as competition or predation 
from other increasing species, can also prevent positive responses of 
species within MPAs (e.g. Micheli et al., 2004; Babcock et al., 2010).

Distinguishing the drivers of observed responses to MPA imple-
mentation, and differentiating between MPA management‐depen-
dent and ‐independent factors, is necessary to evaluate MPA success 
and engage in adaptive management. Adaptive management is an 
approach to policy implementation in which ecological responses to 
management actions are monitored and compared to expected re-
sponses, then differences between observations and expectations 
are used to refine management in an iterative process (Walters, 
1986). Such evaluation provides a first step in determining the factors 
impeding successful responses to MPA implementation. For MPAs, if 
a mismatch between outcomes and expectations occurs, refinement 
of management action could include adjusting the size, location, level 
of protection or degree of enforcement. Despite the consensus that 
adaptive management holds great promise to improve outcomes in 
ecosystem management (Allen, Fontaine, Pope, & Garmestani, 2011; 
Rist, Campbell, & Frost, 2013), including MPAs (Carr et al., 2017; Sale 
et al., 2005), there are few published cases that compare outcomes 
of management actions (i.e. observations from monitoring surveys) 
to expectations (i.e., predictions from population models) in any sys-
tem (Westgate, Likens, & Lindenmayer, 2013).

From a management perspective, a lack of prior predictions 
makes it impossible to quantify whether an MPA has met expecta-
tions. Management actions generally take place on a regional to local 
spatial scale and managers and stakeholders are often interested 
in evaluation of potential success on short‐time scales (<10 years). 
Therefore, adaptive management must place goals and expectations 
within the appropriate spatial and temporal context to avoid scale 
mismatch between ecological systems and decision‐making (Grafton 
& Kompas, 2005; Wilson et al., 2016). Projecting the future response 
to MPAs sets the time‐scale of change in an MPA, allowing managers 
to plan an appropriate time‐scale for assessment.

Different mechanistic modelling approaches are appropriate for dif-
ferent phases of MPA management. Typically, population models used 
for MPA design focus on the long‐term, equilibrium response of popula-
tions inside MPAs (e.g. White, Botsford, Moffitt, & Fischer, 2010). More 
recent models have focused on the short‐term, transient responses of 
fish populations following MPA implementation (Brown, Abdullah, & 
Mumby, 2014; Hastings, 2016; White et al., 2013). These efforts show 
that short‐term responses depend critically on the prior harvest mor-
tality rate, which sets the rate for filling‐in of the size/age distribution 
that was truncated by harvest as individuals are allowed to grow older 
and larger. Unfortunately, harvest mortality rates are usually estimated 
in stock assessments at the scale of hundreds of kilometres, rather 
than the local scale of MPAs where harvest rates vary due to distances 
from ports and other factors. Additionally, as a consequence of time 
lags associated with increases in reproductive output of populations in 
MPAs, trajectories of transient responses of population abundance and 
biomass may be flat or even decreasing during the short‐term, despite 
long‐term predicted increases (Hopf, Jones, Williamson, & Connolly, 
2016; White et al., 2013). This delay in population increase is more 
likely for species that are long‐lived with older ages of maturity, slow 
growth rates and/or infrequent recruitment events. While such delayed 
response can be more prominent when harvest mortality rates were 
high prior to MPA implementation, high harvest mortality also leads to 
a greater eventual magnitude of response with greater detectability.

In addition to these deterministic drivers, the population re-
sponse will depend on stochastic effects of environmental vari-
ability. In many coastal marine populations, an important source of 
stochasticity are post‐larval recruitment rates, which can fluctuate 
widely on seasonal or interannual scales due to ocean conditions 
and lead to large differences in cohort strength (Carr & Syms, 2006; 
Caselle, Wilson, Carr, Malone, & Wendt, 2010). This variability influ-
ences the initial age structure at implementation, seen as gaps (or 
peaks) in certain size classes corresponding with years of poor (or 

targeted species. Our overall approach provides a framework for a critical step of 
adaptive management.
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high) recruitment, which determine transient population trajecto-
ries (Mangel, 2000). Environmental stochasticity also causes uncer-
tainty in future recruitment, complicating predictions of near‐term 
responses.

Here, we apply a Bayesian state‐space integral projection model 
(IPM; Kimbro, White, & Grosholz, 2018; White et al., 2016) to pre‐MPA 
size frequency data to estimate parameters for a mechanistic model 
that we used to assess the response of a common nearshore fish to 
establishment of three California no‐take MPAs. We estimated both 
deterministic (local harvest rate) and stochastic (variable recruitment) 
components of the response. We used these estimates to compute 
deterministic and stochastic forward projections of population tra-
jectories, which we then compared to monitoring data in an adaptive 
management process. We first evaluate which factors are necessary 
in order to correctly predict the observed responses. This analysis 
informs the adaptive management step of determining whether ob-
served responses are due to natural factors or management actions, 
and whether changes in management actions might be necessary to 
achieve MPA goals. We then show how pre‐MPA harvest rates, vari-
ability in recruitment and initial population size structure determine 
when response to MPA establishment will be detectable. This anal-
ysis informs the adaptive management step of determining when an 
evaluation of MPA efficacy for consideration of management adjust-
ment is biologically reasonable. Our approach expands existing MPA 
theory focused on long‐term, equilibrium outcomes to descriptions of 
short‐term, transient responses that can then be compared to actual 
monitoring data to evaluate MPA efficacy.

2  | MATERIAL S AND METHODS

2.1 | Monitoring data

We focus on three regions within central California containing 
well‐enforced no‐take MPAs established in 2007 and mandated to 
be monitored and managed adaptively: Point Lobos, Big Creek and 
White Rock (Botsford, White, Carr, & Caselle, 2014; Figure 1). The 
Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) 
has conducted annual surveys of kelp forest fishes in Central 
California since 1999, spanning MPA implementation in 2007. We 
focused on the numerically dominant species of rockfish, blue rock-
fish, Sebastes mystinus, which experienced both commercial and rec-
reational harvest in this region (Key, MacCall, Field, Aseltine‐Nellson, 
& Lynn, 2008; Starr, Carr, Malone, & Greenley, 2010). Blue rockfish 
are long‐lived (>40 year; Laidig, Pearson, & Sinclair, 2003) and have 
small home range sizes < 2 km2 (Freiwald, 2012; Starr et al., 2015). 
Since MPA implementation in 2007, no clear increase in blue rock-
fish density or size within nearshore MPA locations has been evident 
at any of the three regions (Figure S1 in Supporting Information).

Kelp forest fish surveys were conducted during June‐August 
each year, including the early post‐recruitment season (June) of blue 
rockfish. Fish were counted and sized to the nearest cm along mul-
tiple 30 × 2 × 2 m transects at two levels throughout the water col-
umn, benthic and mid‐water, where blue rockfish were numerically 

predominant. Because the number of transects varied slightly 
among years and locations, we normalized data by the number of 
transects. Data used for the state‐space IPM come from six loca-
tions in the Point Lobos region and four locations each in the Big 
Creek and White Rock regions, with half of the locations inside a 
no‐take MPA and half of the locations open to harvest. Data used 
for forward model projections came from one location in each region 
that became a MPA in 2007. We compare these projections to data 
from that site and the closest sampled harvested area.

2.2 | Integral projection model

We used an IPM to represent size‐structured blue rockfish popula-
tions. An IPM is conceptually similar to a traditional age‐structured 
Leslie matrix model, but it is an integrodifference model in which the 
state variable is a continuous size distribution (rather than a discrete 
age distribution), and the transition probabilities from size x to size 
y over a discrete time interval (including growth and survival) are 

F I G U R E  1  Map of study area along the California Central 
Coast with insets of study regions. Red dashed lines designate 
boundaries of no‐take MPAs prior to 2007, and red solid lines 
designate boundaries of no‐take MPAs implemented in 2007. 
Open circles indicate the centre of fish abundance monitoring 
areas. Black arrows show locations of the two closest ports to 
the MPAs; distance to port is indicated in each region's inset. Red 
arrows indicate locations that became MPAs in 2007 used for 
forward projections and comparisons to model output in Figure 
3. Blue arrows indicate locations with continued harvest used for 
comparisons to model output in Figure 3
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continuous, size‐dependent functions (Ellner, Childs, & Rees, 2016). 
Blue rockfish populations are likely to be demographically open at 
the scale of our study sites due to their long planktonic dispersal 
period of 3–5 months (Love, Yoklavich, & Thorsteinson, 2002). We 
constructed a demographically open IPM that describes the popula-
tion density N(y,t) at size y, time t + 1, as a product of the current 
population density and the projection kernel K(y,x) (the probability 
density of surviving and moving from size x to size y), integrated 
over all biologically reasonable sizes (Ω). New recruitment is added 
as the product of the density of juvenile recruits arriving at t, R(t), 
and the probability density function for initial recruit size ρ(y). Given 
our assumption of an open population with recruitment decoupled 
from local population size, we do not include density dependence in 
recruitment. A process error term ν(y,t) represents deviations from 
predicted densities due to variability in survival or growth for a given 
size at t (see Table 1 for list of symbols). The size‐structured popula-
tion dynamics are as follows:

K(y,x) included a von Bertalanffy growth function and size‐inde-
pendent mortality post‐recruitment, both taken from independent 
data (Key et al., 2008; Laidig et al., 2003). Full details of the IPM are 
described in White et al. (2016).

2.3 | Estimation of pre‐MPA harvest and 
recruitment rates

We fit the IPM to PISCO size data using a Bayesian state‐space 
framework to estimate harvest rate and the annual recruitment 
magnitude during the pre‐MPA time period (1999–2007) for each 
region (Appendix S1; White et al., 2016), using harvest rate, F, 
from the regional stock assessment as the Bayesian prior (F = 0.09 
per year; Key et al., 2008). The model fitting process explicitly in-
cluded both process error (e.g. interannual variability in growth, 
mortality and recruitment) and observation error (e.g. variation 

in fish counts due to visibility, chance variation in observing fish 
aggregations).

2.4 | Simulating responses of populations to MPA 
implementation

We then used the IPM in a forward, non‐estimation mode to sim-
ulate fish population trajectories, following the above equations 
and parameters. The IPM was initialized in two ways: (a) starting 
from the expected stable size distribution under harvest (the ex-
pected starting point in the absence of monitoring data) and (b) 
starting with the size distribution from monitoring data for an indi-
vidual location within each region that became protected in 2007 
(Monastery, Point Lobos region; Dolan, Big Creek region; White 
Rock, White Rock region; Figure 1). We characterized detection 
of increases in population density after MPA implementation by 
simulating fish population trajectories under two scenarios: no 
harvest mortality, corresponding to the expected conditions inside 
an effective MPA, and with continued harvest at the estimated 
pre‐MPA harvest rate, such as would be expected if the MPA had 
not been implemented. For areas outside MPAs, responses will 
depend on whether harvest rates increase as effort is displaced 
(Byers & Noonburg, 2007; De Leo & Micheli, 2015); such displace-
ment would lead to a greater inside:outside difference in density as 
outside densities decrease from additional harvest. Our estimated 
trajectory without MPA establishment, simulating harvest rates at 
pre‐MPA levels, likely represents a conservative estimate of densi-
ties in sites outside of the MPA. The IPM tracks density at each 
size, accounting for the size structure of the population at each 
time step; we present results as the total density (abundance per 
area) of fish greater than or equal to the size limit for blue rockfish 
over time. We report density, as opposed to biomass, because cal-
culations of biomass from length data would amplify any errors in 
length estimation.

When starting simulations from the expected stable size distri-
bution under harvest, we first ran deterministic simulations then 
added noise for stochastic simulations. The major source of stochas-
ticity in this system is recruitment, which does not show evidence 
for interannual autocorrelation (Dorn, 2002). Deterministic simu-
lations had constant annual recruitment, allowing determination of 
the expected impact of pre‐MPA harvest on population responses 
to MPAs. We used the stochastic case to investigate the additional 
impact of variable recruitment on population trajectories by running 
1,000 model simulations in which each model simulation received a 
yearly recruitment density drawn from a Poisson distribution with 
the mean equal to the mean recruitment density estimated within 
each region from 1999 to 2007. We determined the number of sim-
ulations to run by generating 10 replicate sets of n simulations, with 
n increasing from 50 to 1,000. The standard deviation of the median 
population abundance in year 20, taken across each set of 10 simula-
tions, was stable for n > 500 simulations with variability across sets 
of simulations <1% of the median population density. Erring on the 
side of caution we used n = 1,000 simulations for all reported results.

N
(

y,t+1
)

= ∫
Ω

K (y,x)N (x,t) dx+R (t) � (y)+� (y,t).

TA B L E  1  Symbols used in this study

Symbol Definition

N(y,t) Probability density of individuals of size y at time t

K(y,x) Projection kernel giving the probability density of 
moving from size x to y

Ω Set of biologically reasonable sizes, x

R(t) Number of recruits in year t

ρ(x) Probability density function for initial recruit size

ν(y,t) Process error from deviations in densities due to 
variability in survival or growth

N Number of simulations

F Harvest rate (per year)
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We determined the expected stable size distribution without 
harvest by first running the model for 100  years with constant 
recruitment each year at the mean recruitment estimated within 
each region from 1999 to 2007; 100  years was more than re-
quired to reach >99% of the asymptotic population density. We 
then introduced each region's pre‐MPA harvest mortality rate for 
30 years (a timescale achieving <1% deviation from the asymptotic 
population density) to obtain the stable size distribution under 
harvest for the deterministic simulations. For the stochastic sim-
ulations, we began with the stable size distribution after harvest 
for 30 years with constant recruitment, which was similar to the 
median of 1,000 simulations with variable recruitment after har-
vest for 30 years.

To test for impacts of the initial size structure on population tra-
jectories in addition to recruitment variability, we began stochastic 
simulations with the observed size distribution from 2007 at loca-
tions that became MPAs in the three regions. Stable size distribu-
tions under harvest and the size distributions from 2007 monitoring 
data are shown in Figure S2.

2.5 | Calculating detectability of MPA responses

Receiver Operating Characteristics (ROC; Hanley & McNeil, 1982; 
Boettiger & Hastings, 2012) are a means of translating distributions 
of harvested and unharvested population trajectories at each point 
in time into a plot of the probability of a true positive (MPAs have led 
to greater density within the MPA, and that is detected) versus the 
probability of a false positive (MPAs have not led to greater density 
within the MPA, but an increase is detected).

We calculated ROC curves for the distributions of simulated 
density with a MPA and with continued harvest (no MPA) at a 
given site at 5, 10, 15 and 20  years post‐MPA implementation. 
The probability of detecting a true positive versus false positive 
depends on the “cutoff value”: the difference in abundance be-
tween harvested and unharvested populations that is required to 
declare whether there has been an increase. Each ROC plot con-
sists of a plot of these two probabilities as the cutoff threshold 
values range from the minimum density in the no‐MPA distribu-
tion to the maximum density in the MPA distribution; each set of 
cutoff threshold values would be unique to the scenario being 
analysed. For each cutoff value, we calculated the proportion of 
the no‐MPA distribution that was greater than the cutoff (false 
positive) and the proportion of the MPA distribution that was 
greater than the cutoff (true positive). The ROC curve plots those 
pairs of values across the range of possible cutoff values. If the 
two distributions between which the response is being assessed 
are quite similar (i.e. same mean, standard deviation) the ROC plot 
will be a straight line on the diagonal. If the distributions have 
little overlap (i.e. the difference in means is greater than the com-
bined standard deviations), the ROC plots will be bowed toward 
the upper left‐hand corner.

All analyses were performed using MATLAB software version 
R2015a.

3  | RESULTS

3.1 | Estimation of pre‐MPA harvest and 
recruitment rates

Across the three regions, using the value of pre‐MPA harvest rate 
from the regional stock assessment as the Bayesian prior (F = 0.09 
per year; Key et al., 2008), the posterior estimates of F ranged from 
near zero to twice the value in the regional stock assessment (Big 
Creek, F = 1.1 × 10–4 per year; White Rock, F = 0.10 per year; Point 
Lobos, F = 0.19 per year) and were inversely related to distance from 
port (see Figure 1 for distances).

Both modelled and observed recruitment magnitudes showed 
a general pattern of boom and bust years of recruitment that was 
echoed across the three regions and was close to zero leading up to 
and including 2007, the year the MPAs were implemented (Figure 2).

3.2 | Effects of pre‐MPA harvest rates

The results of deterministic forward projections with no recruitment 
variability show the impact of pre‐MPA harvest rates alone on popula-
tion responses to MPAs. As predicted from White et al. (2013), the 
expected increase in blue rockfish density after MPA implementation 
was greater at sites with higher pre‐MPA harvest rates (Figure 3a–c; 
dot‐dashed lines). The saturating nature of the unharvested trajecto-
ries in Figure 3a–c reflects the filling‐in of the previously harvested 
size distribution as unharvested cohorts reach larger sizes, eventually 
saturating at an equilibrium determined by the recruitment rate. The 
projected return to the unharvested size distribution occurred within 
10–15 years at Point Lobos and White Rock. There was no discernible 
difference between projected harvested and unharvested populations 
at Big Creek because of the near‐zero pre‐MPA harvest rate in that 
region. However, none of these projections matched the observed pat-
terns of density in post‐2007 monitoring data (data points in Figure 3a–
c), indicating that additional processes needed to be accounted for.

F I G U R E  2  The number of blue rockfish recruits per transect 
at Big Creek (x), White Rock (□) and Point Lobos (○) from 1999 to 
2007, leading up to implementation of the MPAs. Observed mean 
and standard deviation across all monitoring locations within each 
region (both inside and outside MPAs) are indicated with black 
symbols and error bars. Recruitment estimated from the state‐
space IPM are indicated with red symbols. Note that observed data 
for all three regions were not available until 2002, and that from 
2005 to 2007 observation and modelled data overlap at zero for all 
sites. Recruits were counted as fish <10 cm
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3.3 | Effects of variable recruitment and initial 
size structure

Recruitment variability, while not altering the mean population 
outcome across simulations, obscured differences between har-
vested and unharvested populations (overlap of blue and red 
shaded regions in Figure 3a–c). The amount of overlap was in-
versely related to pre‐MPA harvest rates: at Point Lobos the tra-
jectories eventually diverged, as opposed to White Rock and Big 
Creek. Still, the monitoring data did not match model projections 
(data points in Figure 3a–c).

When simulations started with the observed 2007 size struc-
ture, forward projections with variable recruitment more closely re-
sembled the monitoring data (Figure 3d–f). In these projections, the 
overlap in distributions of stochastic trajectories reduces the ability 
to detect a difference between unharvested populations and har-
vested populations for well over 15 years, if at all (Figure S3 provides 
density distributions for specific time points). At Big Creek where 
pre‐MPA harvest was low, there was no expectation of increased 

density (Figure 3d). For sites with detectable harvest before reserve 
establishment, simulations predicted initial decreases after MPA 
implementation (Figure 3e,f) due to the gap in size structure cre-
ated by years of repeatedly low recruitment prior to implementation 
(Figure 2). The model over‐predicted densities at White Rock, where 
observed recruitment continued to be close to zero through 2014, 
however the model captured the shape of the empirical trajectory 
in the monitoring data.

3.4 | Time‐scale of response detectability

 Correct detection of MPA effects is more likely with a higher pre‐
MPA harvest rate (Figure 4), and when the projection starts from 
a steady‐state condition (Figure 4a–c). With low pre‐MPA harvest 
rates, accounting for the actual initial conditions of the populations 
provides more realistic conditions, but only slightly changes the ROC 
detectability (Figure 4d,e). At Big Creek, with low pre‐MPA harvest, 
we cannot ever expect to detect a difference in density between 
the harvested and MPA scenarios. At White Rock, the ROC curve 

F I G U R E  3  Forward projections of blue rockfish densities of fish greater than the fished size in the Big Creek (left), White Rock (middle), 
and Point Lobos (right) regions under scenarios with continued harvest at estimated pre‐MPA harvest rates, F, (blue lines with shading) or 
as a no‐take MPA (red lines with shading). The population densities in (a–c) start from equilibrium abundances of the stable size distribution 
with harvest. The population abundances in (d–f) start from densities observed in 2007, when MPAs were implemented. Dot‐dashed lines in 
(a–c) indicate abundances with constant recruitment magnitude each year. Shaded areas indicate the envelope of outcomes from 5%–95% of 
all simulations with variable recruitment with the median of outcomes shown by the solid line. Note that dot‐dashed and solid lines overlap. 
Markers indicate monitoring data from no‐take MPA (red) and harvested (blue) sites, displayed as means with standard deviation computed 
for transects across zones within a location. For Big Creek (panels (a) and (d)), the red and blue lines and shading overlap. Note that we are 
addressing whether a harvested population would respond to MPA implementation as compared to a population where harvest persisted. 
We show data from a nearby site outside the MPA (blue markers) to show that predictions for continued harvest match those of a nearby 
harvested site
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converges on the same result obtained under assumed stable‐state 
initial conditions, which indicates lower detectability than at Point 
Lobos where the harvest rate was highest. The ROC curve at White 
Rock does not improve, even 25  years after implementation. At 
Point Lobos, the ROC plots indicate steadily increasing detectability 
through time, however, departure from the stable‐state greatly di-
minishes detectability (Figure 4f); high probabilities of correct detec-
tion (>80%) are only possible with high probabilities of false positives 
(>25%) until ≥15 years after implementation, when the ROC curve 
steepens.

4  | DISCUSSION

We found that spatial variability in harvest rate and temporal envi-
ronmental stochasticity are crucial to accurately predicting expected 
responses to MPA establishment and therefore to adaptive manage-
ment. Local pre‐MPA harvest rates varied substantially across our 
study regions, and harvest rates were inversely related to proximity 
to fishing ports. Assuming uniform harvest rates across the Central 
California area would lead to erroneous predictions of responses to 
the cessation of harvest in the MPAs.

Accurate transient projections further require not only incorpo-
rating the complexity of variable future recruitment in this system, 
but also accounting for past variability that can cause departure 
from the steady state size distribution at the time of MPA imple-
mentation. The year the Central Coast MPAs were implemented 
corresponded with the end of a three‐year period of exceptionally 
low recruitment across all regions (Figure 2; such patterns of high 
interannual recruitment variability is common for nearshore rockfish 

species; Johnson, 2007; Caselle et al., 2010). These low recruitment 
years caused initial decreases in abundance after MPA implementa-
tion, as low recruitment years travelled through the size distribution 
and impacted future year's abundances. This echoes previous mod-
els demonstrating how perturbation from a stable size structure can 
lead to transient population decrease, even in populations that will 
increase in the long‐term (Cohen, 1979; White et al., 2013). Given its 
effects on both the initial conditions and the spread of possible post‐
MPA trajectories, recruitment variability has the potential to double 
the predicted time‐scale over which post‐MPA population increases 
become detectable. Stochasticity likely plays a role in other locations 
around the globe where responses to MPAs have been variable and 
detectability of the response increases over time (Babcock et al., 
2010; Russ & Alcala, 2004).

Setting expectations for adaptive management of MPAs im-
plies consideration of the goals for which the MPA was established. 
California MPAs have a broad range of goals, such as “to protect the 
natural diversity and abundance of marine life” and “to help sus-
tain, conserve and protect marine life populations” (CDFW, 2016). 
However, in California, as elsewhere, abundance serves as an initial 
proxy for the achievement of these broader goals (Whiteman et al., 
2013). If the MPAs are not meeting expectations, the cause would be 
either ineffective management or inappropriate expectations. If the 
former, possible actions include increased enforcement, changes in 
MPA status (e.g. partial and no‐take), and changes in MPA boundaries; 
if the latter, the relevant action is to update expectations based on 
improved scientific knowledge. Here, we show that simply expecting 
an increased abundance in the MPAs analysed can be a misleading 
expectation. Big Creek would not show an increase in abundance 
because its isolated location potentially made it a de facto MPA prior 

F I G U R E  4  Receiver Operating 
Characteristics curves for distributions 
of outcomes from forward simulations 
with recruitment variability comparing 
population densities in no‐take MPAs 
to densities with continued harvest 
after 5, 10, 15 and 20 years post‐MPA 
implementation for Big Creek (left), 
White Rock (middle) and Point Lobos 
(right). The initial population densities in 
(a–c) are equilibrium densities from the 
stable size distribution with harvest. The 
initial population densities in (d–f) are 
from 2007 densities when MPAs were 
implemented. Detectability of response 
to MPAs increases with distance from the 
45° line
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to 2007 with little harvest. While it might at first seem counter‐intu-
itive for a reserve to be placed in an area of no fishing, local fishing 
mortality rates were unknown during the reserve planning process, 
and many factors, ranging from socioeconomic costs to biodiversity 
goals, informed the siting process (Botsford et al., 2014). These re-
sults can help clarify which goals different MPAs might address; Big 
Creek may not help rebuild depleted marine populations, but it may 
serve to protect natural diversity and abundance (CDFW, 2016).

A wide array of MPA goals depend on the initial “filling in” re-
sponse modelled here, but additional goals will also depend on dy-
namics ignored here in our focus on the most immediate and direct 
expected MPA response. MPA responses such as increased repro-
duction, spillover to harvested areas and subsequent effects on 
fishery yield, and cascading community‐level changes will depend 
on further uncertain processes such as larval connectivity, fisher 
behaviour in terms of redistributed effort, movement of target 
species, and species interactions (Baskett & Barnett, 2015; White 
et al., 2011). Our findings of how the uncertain processes of local 
harvest mortality and recruitment variability significantly affect 
expectations demonstrate the potential challenges in creating ex-
pectations for longer‐term and larger‐scale responses as uncertainty 
propagates.

We developed a framework that can be used by managers to 
build expectations of responses of targeted species to MPA imple-
mentation, which includes producing robust estimates of pre‐MPA 
fishing mortality rates, recruitment variability and size‐structure, 
then using these estimates to build a size‐structured demographic 
model to project population dynamics with and without MPA im-
plementation. Such predictions will allow managers to develop ex-
pectations for how long it may take before a significant increase 
in population abundance and size is expected, and how big that 
increase might be. Key to this approach is the availability of long‐
term monitoring data. Our results show the value of before:after 
comparisons, especially in regards to stochastic events prior to 
implementation (Russ & Alcala, 2004). Ideally, a full before‐after‐
control‐impact (BACI) design can be used, increasing the ability to 
control for spatial and temporal heterogeneity (Halpern, Gaines, 
& Warner, 2004). Comparing observations from a BACI study to 
model outputs can validate hypothesized drivers of outcomes, such 
as whether stochastic population dynamics explain any observed 
non‐monotonic trajectories, as is the case here. Indeed, even with 
a full BACI comparison, one would still need to know how pre‐MPA 
harvest rates varied over space, both to ensure that “control” sites 
are representative and to estimate statistical power to detect be-
fore:after changes. When stock‐recruit relationships are unknown, 
projections with competing models may be compared over time to 
the response. If a population is closed, trajectories might show even 
more intensified initial decreases than that reported here (White et 
al., 2013).

An important part of the adaptive management process is that as 
additional monitoring data are collected, managers can update pro-
jections with new information, adjust models and identify additional 
drivers of population responses that require consideration. The 

steps we describe here – predicting the initial post‐implementation 
trajectory—are only the beginning of an ongoing adaptive manage-
ment cycle. For example, new information on the actual levels of 
post‐MPA recruitment could adjust projected trajectories, narrow-
ing the range of uncertainty for ongoing assessment. Additionally, if 
appropriate information became available, site‐specific growth and 
natural mortality rates could be incorporated (e.g. Hamilton, Wilson, 
Ben‐Horin, & Caselle, 2011).

Projections may also help identify management gaps, such as 
lack of enforcement and poaching (Brown et al.., 2018), and can be 
used to explore how responses might change if MPAs are adjusted 
through adaptive management or as climate change impacts popu-
lations (e.g. if recruitment is reduced). In this example, we did not in-
vestigate the potential role of poaching, and assumed that the MPAs 
were well‐enforced, but poaching would further decrease detect-
ability. Using the framework we describe, managers could make pro-
jections that include poaching for comparison to monitoring data. In 
addition, for MPAs where harvest is allowed, projections could be 
run for different levels of harvest.

Evaluation of MPAs is a necessary step in ecosystem manage-
ment, yet examples of adaptive management studies that incorpo-
rate monitoring data, let alone adequate data on the appropriate 
time scales for ascertaining responses to management, are lack-
ing (Westgate et al., 2013). The combination of data and models 
provides an opportunity to investigate the mechanisms behind 
observed patterns (Hastings, 2016) and can advance the devel-
opment of expectations and monitoring plans (Moffitt, White, & 
Botsford, 2013). Without such model predictions, monitoring can 
only inform a noise‐sensitive “trial and error” approach to man-
agement that bases future choices on what is observed to work 
best, as opposed to a more proactive approach where managers 
can improve both management and scientific understanding based 
on gaps between predictions and reality (Walters & Hilborn, 1978; 
Walters & Holling, 1990). The integration of expectations into an 
adaptive management framework can help managers move from 
interpreting population responses after management actions to 
including predictions in MPA design and in the adaptive manage-
ment policy itself (Schindler & Hilborn, 2015), thereby avoiding 
unforeseen costs of adjusting management actions (Morris & 
Green, 2014). The methods and framework we have developed 
here can be used to set expectations for MPA adaptive manage-
ment, especially for systems where observational data are avail-
able but recruitment variability complicates the interpretation of 
patterns.
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