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Abstract
Breast cancer is a leading cause of cancer death among women in the USA. Screening mammography is effective in reducing
mortality, but has a high rate of unnecessary recalls and biopsies. While deep learning can be applied to mammography, large-
scale labeled datasets, which are difficult to obtain, are required. We aim to remove many barriers of dataset development by
automatically harvesting data from existing clinical records using a hybrid framework combining traditional NLP and IBM
Watson. An expert reviewer manually annotated 3521 breast pathology reports with one of four outcomes: left positive, right
positive, bilateral positive, negative. Traditional NLP techniques using seven different machine learning classifiers were com-
pared to IBMWatson’s automated natural language classifier. Techniques were evaluated using precision, recall, and F-measure.
Logistic regression outperformed all other traditional machine learning classifiers and was used for subsequent comparisons.
Both traditional NLP and Watson’s NLC performed well for cases under 1024 characters with weighted average F-measures
above 0.96 across all classes. Performance of traditional NLP was lower for cases over 1024 characters with an F-measure of
0.83. We demonstrate a hybrid framework using traditional NLP techniques combined with IBMWatson to annotate over 10,000
breast pathology reports for development of a large-scale database to be used for deep learning in mammography. Our work
shows that traditional NLP and IBMWatson perform extremely well for cases under 1024 characters and can accelerate the rate
of data annotation.

Keywords IBM Watson . Machine learning . Artificial intelligence . Deep learning . Natural language processing (NLP) .

Pathology .Mammography

Introduction

Breast cancer is one of the leading causes of cancer death
among women in the USA [1, 2], and more than 310,000
new cases will be diagnosed in 2017 [3]. Screening mammog-
raphy has proven to be an effective tool for reducing breast

cancer mortality by allowing early detection of suspicious find-
ings such as masses, abnormal calcifications, architectural dis-
tortion, and asymmetries [4]. Sensitivity is reported upwards of
85% [5]; however, this is accompanied by a high proportion of
Brecall^ imaging for further evaluation of potentially suspicious
findings. To illustrate, per 1000 women who receive annual
mammographic screening, approximately 80 are required to
return for recall imaging, 30 must undergo biopsy, and this
ultimately results in the detection of only eight cancers [6].
Therefore, there is significant room for improvement in reduc-
ing unnecessary recall imaging and biopsies.

Deep learning has recently demonstrated exceptional perfor-
mance in medical image recognition tasks [7], including detec-
tion of breast and prostate cancers on histopathology slides [8],
diagnosis of Alzheimer’s disease from MRI/PET imaging [9],
and classification of skin cancer based on lesion photographs
[10]. Deep learning has also been applied to mammography
[11–15], but development of high-performance algorithms

* Hari M. Trivedi
hari.trivedi@gmail.com

1 Department of Radiology and Biomedical Imaging, University of
California, San Francisco, CA, USA

2 Institute for Computational Health Sciences, University of
California, San Francisco, CA, USA

3 University of California School of Medicine, San Francisco, CA,
USA

4 Department of Pathology, University of California, San
Francisco, CA, USA

Journal of Digital Imaging (2019) 32:30–37
https://doi.org/10.1007/s10278-018-0105-8

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-018-0105-8&domain=pdf
http://orcid.org/0000-0001-6648-8334
mailto:hari.trivedi@gmail.com


requires extremely large, well-annotated datasets for training. A
typical dataset consists of medical images annotated with
ground-truth labels such as pathologic outcome or clinical di-
agnosis. The deep learning algorithm then trains itself to recog-
nize underlying differences between negative and positive
cases. Unfortunately, the majority of medical imaging datasets
have only several hundreds or thousands of training examples,
and oftentimes are heavily imbalanced towards negative or be-
nign cases [16]. For comparison, the first deep learning model
to surpass human-level performance on general image classifi-
cation tasks trained on nearly 1.2 million images [17].

Development of large, well-annotated datasets is hindered
by several factors including lack of funding, prohibitive re-
quirements in time and medical expertise, and privacy issues
that complicate sharing [16]. For this reason, development of
these datasets has traditionally required manual efforts from a
large team (such as a through a clinical trial). However, the
sheer number of cases required for effective deep learning
makes these types of manual methods unfeasible, if not
impossible.

We postulate that the burden of dataset construction can be
significantly reduced by automating the structuring and anno-
tation of existing routine clinical records. However, the ma-
jority of relevant clinical information is stored as free-text,
making extraction into a structured format laborious and ex-
pensive. At least part of this difficulty arises from a high level
of noise in the data such as misspellings, abbreviations, acro-
nyms, poor grammatical structure, and variations in reporting
styles which makes automatic interpretation challenging [18].
Many of these issues are addressed by existing natural lan-
guage processing and machine learning frameworks such as
cTakes andWEKA [19–24], but their implementation requires
significant domain expertise and programming knowledge. In
recent years, however, newer automated solutions such as
IBM Watson have been developed to provide the ability to
perform text classification with little domain knowledge
[25–27].

In this paper, we present a semi-automated framework that
combines and compares traditional natural language process-
ing techniques (traditional NLP) with the proprietary IBM
Watson Natural Language Classifier (Watson NLC). Our
aim was to label more than 10,000 free-text breast pathology
reports with the final pathologic diagnosis to serve as ground
truth for annotating mammographic images.

Materials and Methods

Patient Characteristics/Study Cohort

Pertaining to 7237 women (mean age = 51.8 years),
10,420 reports from 1997 to 2014 were extracted from
an in-house pathology database. Report types included

all breast specimens, including fine needle aspirations
(FNA), core biopsies, lumpectomies, and mastectomies.
Only the Bfinal diagnosis^ section (inclusive of any ad-
denda) was considered in analysis; additional fields such
as clinical history and comments were not utilized. Due to
input length limitations in IBM Watson’s natural language
classifier, reports over 1024 characters (n = 522) were sep-
arated for later analysis (long set), resulting in 9898 re-
maining reports under 1024 characters. From these, a ran-
dom sample of 3099 reports was selected (standard set).
Both the standard set and long set were manually labeled
by an expert reviewer with the aid of a board-certified
pathologist. Ductal carcinoma in situ (DCIS), invasive
ductal carcinoma (IDC), invasive lobular carcinoma
(ILC), and metastatic nodal disease were considered pos-
itive. All other findings, including lobular carcinoma in
situ (LCIS) or pre-malignant lesions such as radial scar,
were considered negative. Indeterminate lesions or insuf-
ficient samples were also considered negative as these
were typically followed up by more conclusive sampling.

In order to devise a labeling structure appropriate for
all reports, the reports were first divided by the
laterality of the reported specimen: left, right, or bilat-
eral. Unilateral reports could be positive (left positive,
right positive) or negative. Bilateral reports could be
positive for a single breast (left positive, right positive),
positive for both breasts (bilateral positive), or negative
for both breasts (negative). Thus, a four-class labeling
system could be utilized for all reports: negative, left
positive, right positive, and bilateral positive. The dis-
tribution of cases for the standard and long sets is
shown in Table 1.

Table 1 Distribution of cases in the standard set (< 1024 characters) and
long set (> 1024 characters) by class

Report laterality Class Short set Long set

Bilateral Bilateral positive 13 81

Left positive 43 112

Right positive 40 35

Negative 232 128

Total 328 356

Left Left positive 450 92

Negative 954 4

Total 1404 96

Right Right positive 421 70

Negative 855 0

Total 1276 70

Not Specified Negative 91 0

Total 91 0

Grand Total 3099 522
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Using this labeling scheme, we developed an annotation
framework using a combination of traditional NLP and IBM
Watson’s NLC, an overview of which is shown in Fig. 1.

Traditional Natural Language Processing

For traditional natural language processing and classification,
a standard pipeline was used consisting of three steps: pre-
processing, text mining, and classification.

Text Mining: Pre-Processing

The main challenge with text mining in the clinical domain is
the high level of noise in the corpus and training data. This is
largely due to unknown words (misspellings, medical termi-
nology, or acronyms), non-words (punctuation, numbers),
common prepositions, and sentence fragments. For the pur-
poses of this study, all non-words were removed. Sentence
fragments and prepositions are addressed by tokenization
and term frequency-inverse document frequency (TF-IDF),
as described below.

Text Mining: Tokenization

The pathology report text was converted to the ARFF file
format and imported to WEKA—a machine learning frame-
work which can be used for NLP [23]. Each report was first
tokenized, which is defined as demarcation of discrete sec-
tions within a string. In our case, each token was an N-gram
(a set of co-occurring words) in lengths of one to three words.
For example, the phrase Bno ductal carcinoma^ will result in
the following tokens: Bno,^ Bductal,^ Bcarcinoma,^ Bno
ductal,^ Bductal carcinoma,^ and Bno ductal carcinoma.^
Each pathology report was thusly tokenized into a vector of
N-grams to serve as the input for TF-IDF.

Text Mining: Term Frequency-Inverse Document Frequency

TF-IDF was used to assign importance to individual to-
kens within a report. Term frequency (TF) is defined as
the number of times a token appears in the report, which
serves as an estimate of its importance. However, this
leads to common but irrelevant tokens such as Bof^ and
Bthe^ being assigned high importance. To combat this,
inverse document frequency (IDF) is calculated based on
the uniqueness of the token in the overall corpus. The
product of the TF and IDF assigns a final, weighted im-
portance to each token.

Classification Using Machine Learning

Following construction of the TF-IDF matrix, seven super-
vised machine learning algorithms were tested to determine
the best performing classifier for predicting the label for each
report: PART, decision tables, AdaBoost, Naive Bayes,
multiclass logistic regression (one vs. all), support vector ma-
chine (SVM), and majority vote classifier (ZeroR). For our
dataset, logistic regression outperformed all other classifiers
(Fig. 2) and was chosen as the classifier for all subsequent
steps.

Watson Natural Language Classifier

The IBM Watson Natural Language Classifier was accessed
via the IBM Bluemix online portal for training and the appli-
cation program interface (API) for testing. Training data was
uploaded to the online portal as a spreadsheet containing the
free-text reports in one column and the corresponding ground
truth label in the second column. A classifier was then auto-
matically generated by training on this data. Test cases were
uploaded in batch through the API which returned the top

Fig. 1 Overview of the annotation pipeline demonstrating both the
traditional NLP and IBM Watson arms. Reports were divided by length,
as reports over 1024 characters (long set) could not be processed by
Watson. Reports under 1024 characters (standard set) were processed

using both traditional NLP and Watson’s NLC. Logistic regression was
the top-performing classified in preliminary testing of traditional NLP and
was therefore used for all subsequent comparisons
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three class predictions and the corresponding confidence
scores for each.

Experimental Setup and Evaluation Framework

Standard Set

The 3099 cases were randomly divided into 80% training/
20% test sets 10 times for performance of 10-fold cross vali-
dation, resulting in 2480 training and 619 test cases in each
fold. Both traditional NLP and Watson NLC were trained and
tested on each fold. The performance of each classifier was
averaged across all 10 folds to obtain a representative example
of its performance. Precision, recall, and F-measure were cal-
culated for each class, as well as the weighted averages of
these metrics across all four classes.

Long Set

All 522 cases in the long set were evaluated using traditional
NLP. Watson NLC could not be used due to its character
limitation. These cases were similarly randomly divided into
80% training/20% test sets 10 times for performance of 10-
fold cross validation, resulting in 420 training and 102 test
cases in each fold. The output from the traditional NLP clas-
sifier was recorded for each test case. Precision, recall, and F-
measure were calculated for each class, as well as the weight-
ed averages across all four classes.

Results

The mean length of each report across the entire dataset was
408.4 characters. The most common words in the corpus are
shown in Fig. 3.

Standard Set

The mean length of cases in this category was 239.2 characters.
Across all 10 folds, the mean number of the left positive, right
positive, bilateral positive, and negative cases in the test set
were 100.3, 88.9, 2.5, and 427.3, respectively. Both traditional
NLP and Watson NLC exhibited excellent performance for the
left positive, right positive, and negative cases, with average F-
measures greater than 0.9 (Fig. 4; Table 2). Watson NLC dem-
onstrated a slight performance advantage over traditional NLP.
The best performance was achieved in negative cases, with F-
measures around 0.99 for both traditional NLP and Watson
NLC. The worst performing category was the bilateral positive
cases with F-measures of 0.1 and 0.05 for traditional NLP and
Watson NLC, respectively. When considering weighted aver-
ages across all classes, both traditional NLP and Watson NLC
performed extremely well with F-measures above 0.96 (Fig. 5).

Long Set

As previously mentioned, due to Watson NLC’s inherent char-
acter limit, only traditional NLP was used to classify cases over
1024 characters. The average length of cases in this category
was 1412.9 characters with a maximum length of 4586 charac-
ters. Across all 10 folds, the average number of left positive,
right positive, bilateral positive, and negative cases in the test
set was 39.6, 39.5, 15.8, and 7.1, respectively. Classifier perfor-
mance was lower for left positive, right positive, and negative
cases as compared to cases under 1024 characters (Fig. 4; Table
2). However, the performance for bilateral positive cases was
considerably higher. Furthermore, the vast majority of classifi-
cation errors in the bilateral positive class consisted of assigning
left or right positive labels, rather than a negative label. The
weighted average across all classes for F-measure across was
0.83, lower than that of cases in the standard set (Fig. 5).

Fig. 2 Accuracy of various machine learning classifiers for traditional NLP. Logistic regression achieved the best performance and was thus selected for
all subsequent comparisons
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Fig. 3 Word cloud demonstrating the most common words in our dataset of breast pathology reports
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Fig. 4 F-measures demonstrating
performance of traditional NLP
and Watson’s NLC for each class.
Performance for bilateral positive
cases was poor for the standard
set, likely due to the small number
of training and test cases.
Performance improved
considerably for bilateral positive
cases in the long set, but was
slightly worse for the remaining
classes, likely due to increased
complexity of the longer reports.
For the standard set, performance
between Watson’s NLC and
traditional NLP was comparable
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Discussion

In this work, we demonstrate the feasibility of creating a hy-
brid framework using traditional NLP and automated solu-
tions from IBM Watson to derive pathologic diagnosis from
free-text breast pathology reports. This technique significantly
accelerates the rate of extraction of meaningful data from clin-
ical free-text reports and has important implications for im-
proving the quantity and quality of large-scale datasets avail-
able for deep learning. To our knowledge, no such application
for processing of free-text pathology records has yet been
described.

Both traditional NLP and Watson’s NLC performed well
across all classes, particularly for cases in the standard set for
which both classifiers achieved overall F-measures over 0.96.
It is also worth noting that both techniques performed well

despite the innate high variability in the dataset which includ-
ed reports over a 17-year span, containing many different
specimen types, cancer types, verbiage, and the reporting
styles of dozens of pathologists.

The only class in which both classifiers performed poorly
was the bilateral positive class. This can be attributed to the
paucity of training examples, particularly in the standard set.
There was a mean of only 11.5 training examples per fold in
the standard set, representing less than 0.5% of cases. For
comparison, there was a mean of 65.2 training examples per
fold in the long set, and classification performance in this
category was markedly improved. Nevertheless, the small
sample size of test cases in either set makes these results dif-
ficult to interpret. It is also worth reiterating that the character
limit of IBM Watson prevented its application to cases over
1024 characters, which represented approximately 8% of our

Table 2 Detailed performance
statistics by class for traditional
NLP and Watson NLC classifiers
on the standard set and long sets

Traditional NLP
(standard set)

Watson NLC
(standard set)

Traditional NLP
(long set)

Precision Bilateral 0.100 0.050 0.726

Negative 0.980 0.991 0.812

Left positive 0.942 0.963 0.842

Right positive 0.941 0.953 0.862

Weighted average 0.965 0.977 0.837

Recall Bilateral 0.100 0.050 0.548

Negative 0.992 0.995 0.876

Left positive 0.925 0.963 0.898

Right positive 0.925 0.953 0.892

Weighted average 0.968 0.980 0.837

F-measure Bilateral 0.100 0.050 0.616

Negative 0.986 0.993 0.836

Left positive 0.933 0.963 0.867

Right positive 0.933 0.953 0.876

Weighted average 0.966 0.979 0.832
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0.977

0.837
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0.980
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0.800

0.850

0.900

0.950

1.000

Tradi�onal NLP (standard set) Watson NLC (standard set) Tradi�onal NLP (long set)
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Fig. 5 Weighted averages for
precision, recall, and F-measure
of each classifier across all four
classes. Overall performance of
Watson NLC and traditional NLP
was excellent for the standard set.
Overall performance of traditional
NLP for the long set was slightly
worse, likely owing to increased
complexity of the longer reports
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dataset. Truncation of longer reports was considered; howev-
er, the longest reports were disproportionately for bilateral
breasts which were reported in an arbitrary structure. For this
reason, we believe truncation would generate unpredictable,
and thus ultimately unreliable, results. To address both of
these issues and improve overall accuracy, future work in-
cludes chunking reports into individually labeled specimens
that should fall within Watson character limitations while also
providing a less noisy and thus more robust training set.

Despite these limitations, we demonstrate Watson’s auto-
mated natural language classifier provides a powerful tool for
interpreting medical pathology reports for breast cancer out-
comes. While traditional natural language processing tech-
niques can be powerful, their application requires technical
knowledge and programming experience to create a semi-
automated pipeline and iterative models must be evaluated
to produce optimal results. Conversely, Bblack-box^ proprie-
tary solutions, such as IBMWatson, require simply submitting
a labeled spreadsheet to a web portal to achieve reassuringly
comparable performance to traditional NLP techniques. For
clinicians and other annotators that may be devoid of an NLP
programming knowledge base, Watson and other black-box
methods can serve as a pragmatic Blitmus test^ of a dataset to
determine whether signal exists before devoting further re-
sources. However, depending on the used case, these benefits
may be outweighed by the cost and black-box nature of a
proprietary system with no ability to modify the algorithm to
improve performance.

The overall utility of these results for construction of a deep
learning database of labeled mammograms is worth consider-
ing. Independently, errors of 3–4% for the standard set and
17% for the long set may be considered unacceptable.
However, in our experience, nearly all positive cases of breast
cancer resulted in more than one positive pathology report
(i.e., FNA followed by core biopsy or lumpectomy).
Because only one positive pathology result is required to label
a mammogram as positive, almost all false-negative results
were superseded by a subsequent true positive result, thus
resulting in the mammogram being accurately labeled as pos-
itive. To validate this, we compared our results to the Breast
Cancer Screening Consortium (BCSC) across a random sam-
ple of 203 studies and achieved 99.5% agreement in labeling
of mammograms as positive or negative.

While this study demonstrated the feasibility and accept-
able performance characteristics of a hybrid framework for
processing clinical reports, there are multiple areas for future
work in addition to those described above. We noticed erro-
neous class predictions were typically accompanied by low
confidence scores. Moving forward, confidence thresholds
could be implemented to flag certain cases for manual review.
This would decrease the overall error rate while still dramat-
ically reducing the amount of manual effort required for data
annotation. Furthermore, alternate methods of text pre-

processing such as inclusion of certain punctuation to deter-
mine end-of-sentence and numerics to capture tumor size
could be considered.

Our technique’s generalizability to other medical datasets
also remains to be seen, particularly those that may be less
structured. Further investigation on datasets of different sizes,
numbers and distribution of classes, and combinations of
structured and unstructured data is needed. It is also unclear
whether data from multiple cross-institutional datasets can be
combined without jeopardizing performance. Finally, we
would like to expand this work to investigate several other
automated solutions such as Microsoft Azure Text Analytics,
Facebook fastText, Amazon Comprehend, and Google
AutoML.

Conclusion

We demonstrate a framework capable of assigning labels to
free-text pathology records using both traditional natural lan-
guage processing techniques and IBM Watson. IBM Watson
performed favorably for reports under 1024 characters which
comprised 92% of cases in our dataset, thus significantly low-
ering the barrier to entry and domain knowledge required for
natural language processing. Future work will focus on
expanding this process to other medical records such as radi-
ology reports and clinical notes as well as testing other auto-
mated solutions from Facebook, Google, Amazon, and
Microsoft. We hope to design an automated pipeline for
large-scale clinical data annotation so that existing clinical
records can be efficiently utilized for development of deep
learning algorithms.
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