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Abstract

Utilizing HPCs as a Method for Update Malware Detection

The daily use of mobile phones, and particularly smartphones, has become an integral part

of modern civilization. With the continued adoption of smartphones by users world wide,

an abundance of applications to meet their various demands is a necessity. A plethora

of applications are provided through markets, such as the Google Play Store, that allow

users to download applications directly to their device. As the Google Play Store is one of

the most popular markets, they provide considerably robust security, and users have trust

in their ability to properly vet hosted products. Be that as it may, there exists a subset

of society which seeks to exploit and take advantage of unsuspecting victims. Due to the

robustness of the security scanning, malware developers must circumvent marketplace

security controls. An example of an exploit is called piggybacking. In this case, a benign

application can be prepared for an update attack with the piggybacking technique that

injects the malicious code. Detecting this change in the application is the main focus of

the study. Because of the piggybacking technique, which is cleverly obfuscated, static

analysis is not a consistent method to detect malice; hardware performance counters

(HPCs) that are capable of dynamic analysis are adopted to explore whether the HPCs

have the potential to detect clandestine applications. HPCs were utilized to observe

the possibility of detection of piggybacked applications, furthermore, the piggybacked

applications that contain the update attacks. HPC data was collected via a rooted phone

with automated pipelines, and for the depth of the study, the comparison between static

data and dynamic data was provided with visualization, call graphs and scatter graphs.

Additionally, a machine learning tool, WEKA, was utilized to discover whether the data

can classify the applications into benign or malicious. Six different classifiers are selected,

and as a result, the Decision Tree classifiers achieved around 94% to 99% detect accuracy

proving that HPCs are a viable method to detect update malware. The result led us to

determine whether HPCs are utilizable to detect embedded malware.

-iv-



Acknowledgments

I would like to express my sincere appreciation to my committee chair, Professor Houman

Homayoun, who has provided invaluable guidance and support through the course of

study. I would not have successfully completed the study without his help.

I would also like to thank committee members Professor Hussain Al-Asaad and

Professor Rajeevan Amirtharajah, who were willing to engage in my research providing

wonderful advice for me to strengthen my thesis.

As a collaborator, Professor Houman Homayoun introduced Suraj Kesavan, who is in

visualization related field. He was not reluctant to offer me feedback of the framework we

both developed and to share resources to enable further discovery. He also did a fantastic

job of integrating the visualization part, as well as making the framework smooth by

adding the final touches.

Lastly, I would like to thank our family and friends who always give infinite support

and emotional relief during the tough time.

-v-



Chapter 1

Introduction

1.1 Application Updates and Associated Malware

The smartphone market has become saturated with a plethora of options; manufacturers

seeking to remain competitive keep producing updated designs nearly every year. As with

smartphones, the number of applications available for download in application markets

is continuously growing to meet the demand for new and updated products. In order

to provide the service continuously no matter what new features new smartphones have,

applications should be designed to stay current with new functionalities or specifications.

Fortunately, developers use an application update mechanism to support newly added

devices via Android marketplaces. At face value, the update mechanism seems to solve

the requirement of the application remaining current. The unfortunate reality is that

malevolent application developers seek to steal confidential and sensitive user data through

the same mechanism.

When users download applications directly from a trusted source, such as the Google

Play Store or Samsung’s Galaxy Store, they are able to obtain many applications and can

reasonably assume the applications are free of malware. However, there is a possibility

a user may want to download an application (.apk file) from an untrusted source. To

do so, users need to enable “trust unknown sources” or something similar depending on

the smartphone, typically found in the security tab of the smartphone’s settings. This

option was used in this research to download untrusted applications for research purposes.
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In this case, malicious applications could be downloaded immediately without any sort

of security check. In contrast, well-known and frequently used Android marketplaces

provide a respectable degree of security examination before the application is hosted for

download. Therefore, applications that have been vetted by the marketplace and have

been installed on a user’s smartphone are considered to be safe, and these applications

obtain trust between the user and where the application is hosted. Attackers may exploit

this trust by providing a malicious application update.

If an update occurs via Android marketplaces, as mentioned above, the marketplaces

regularly scan applications to search for the presence of malware. Though the scanning

does reduce the number of affected applications, there exists methods that can assist in

evading detection by the security scanner. Examples include utilizing time delay to avoid

security checking when registering an updated malicious version of a benign application,

as well as accumulating the permissions of every benign version update for hostile usage

later [1]. Similar to varying methods of evasion, application update attacks can occur

in different ways. One way is that nefarious developers inject virulent segments into an

existing application. Another way is that they modify the code and re-register it to a

market. Lastly, when a user starts an application, the application is connected to the

server, finds the differences between current file and updated files, and updates partially

while the user uses the application with full connection of the Internet. The first case refers

to piggybacked applications, the second case refers to repackaged applications [2], and

the latter refers to malware utilizing the update mechanism. Anserverbot and Plankton

are well known examples of this type of malware, where some of the update attacks

display a bogus update window to allure users to accept [3, 4]. The piggyback technique

could be considered to be a subset of the repackaging technique, and our focus is on

piggybacked applications to test the possibility of using HPCs to detect the update

malware. Distinguishing whether an application exhibits benign or malicious behavior

via piggybacking presents a challenge for the following reason: malicious source code is

injected and hidden within the benign package, making detection difficult using traditional

scanning methods. Malevolent developers use conditional variables stacked to wrap the
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malicious part safely, often evading detection by not allowing the malicious route to be

triggered instantaneously. Therefore, the application might not act differently from the

benign version and the scanner might not detect the presence of malware. This is one

of the reasons why malware can remain hidden for a long time and detection is unlikely

when the target notices no abnormal behavior. To prevent this, detecting malware as fast

as possible after introduction to a system and supporting treatment based on analysis

other than the given security scanning are equally important.

1.2 Why Hardware Performance Counters?

Some of the malware that is embedded within a legitimate application is obfuscated and of

an inconspicuous design; this is why some of the update malware is challenging to detect

with static analysis. Because of this, a different method was required, which is satisfied by

using dynamic analysis. Many tools and methods exist for dynamic analysis; Hardware

Performance Counters (HPCs) were chosen since the author has the prior research utilizing

HPCs with the x86 Intel IvyBridge Processor. Moreover, after observing previous work

with successful results in detecting malware with HPCs on the x86 architecture [5],

pursuit of this topic of research was inspiring. Mostly, update attacks require the internet

connection for the malevolent purpose, which cannot be one of the requirements for the

upcoming experiment due to both known and unknown risk. Even though the network

service cannot be used, the attempt to connect to the server suspiciously and more

frequently than the normal version of applications can be caught within the hardware

events, such as an extreme increase in usage of cache, and occurrence of cache misses.

Therefore, HPCs are utilized to detect the update malware, more specifically, piggybacked

update malware. The goal of the research is to determine the feasibility of using these

counters on them.

1.3 Contributions

Thus, our approach is to use HPCs in ARM architecture phones to observe the usability

and possibility for distinguishing the benign application and piggybacked malicious

application. In the process of collecting the dataset, the number of piggybacked
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applications are limited compared to the regular malware applications. Out of the

available malware databases, AndroZoo was chosen since they have an enormous collection

of Android applications, including piggyback type malware, and is actively managed

compared to other collections. With the dataset, each step, from downloading piggybacked

applications specifically to transforming the collected data to a comprehensive format for

the machine learning step, is time-consuming and complicated. Therefore, the automated

pipeline is desirable. The automated items will be covered in detail in the corresponding

section. Furthermore, the outcome of using different Machine Learning classifiers with

collected HPC data will be discussed at the end. To the best of my knowledge, applying

HPCs for the detection of update malware, specifically piggybacked applications, is being

explored for the first time.

1.4 Content Overview

Chapter 2 covers the background knowledge to understand what update malware,

piggybacked applications, and Hardware Performance Counters (HPCs) are, what

machine learning classifiers are useful in malware detection, and introduces some of

the papers that conducted different techniques in malware detection. Chapter 3 covers

the environment setup for the experiment, a tool, called Simpleperf, which assists the

manipulation of HPCs, dataset, automated pipelines, and Machine Learning classifiers

adopted in this paper. Chapter 4 discusses the results based on visualized data and

summarizes the evaluation of the classification, and Chapter 5 finalizes the thesis with

the conclusion.

4



Chapter 2

Background

2.1 Malware Types and Update Malware

2.1.1 Malware Types

As the number of applications grows, as does the footprint attackers have for immense

opportunities in exploitation. As proof, many different names and types of Android

malware exist, such as Smspay and Artemis as Riskware, DroidKungFu and Plankton as

Trojan, leaving Dowgin, Adwo, and Kuguo in the Adware category. The following is a brief

description of what each category of malware entails. Trojan refers to the malware that

contains a malicious hidden payload within a seemingly legitimate application, which may

allow an attacker to gain control of the device and all the data within it once the malware

is activated. Adware is a type of advertisement that could be invasive and bothersome

due to the pop-up style of the ad alerts. The developers of Adware earn money by

supplying advertisements to personal devices. Furthermore, the unintentional agreement

of downloading off a platform related to the ads might have exposed an unknown risk to

allured users. Another category of malware is Riskware, which is not severely harmful for

users as compared to other categories. It violates the application environmental policies,

such as affecting other applications, providing a route for other malware to invade, or

illegal permissions to use in a user’s country.
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2.1.2 Update Malware

Plankton, AnserverBot, BaseBridge, and DroidKungFu are referred to as the names of

the specific update malware type [3]. These update attacks download a typical update

segment embedding the malicious payload at runtime [4]. BaseBridge and DroidKungFu

are the same type of malware but the difference between them is that BaseBridge holds

the updated version whereas DroidKungFu approaches the updated version via network

connection, which will ask users for approval. The stealthier versions are Plankton and

AnserverBot because they bypass the agreements from users. Plankton uses a remote

server to download a jar file whereas Anserverbot fetches commands from a public blog

that has the update version [6]. The details of the update attack techniques are presented

in [7]: One way is to permit the execution of the code that was not initially included

in an application by loading compiled Android code (i.e. executable DEX files) using

Android’s DexClassLoader class. A .dex file is created by converting the Java Bytecode,

which is formed by compiling an application written in JAVA, to Dalvik Bytecode, which

forms Dalvik executable file (.dex). Another way is to download a binary shared object

file (.so library) or an executable file containing native code, executed at runtime using

Java’s Runtime class. The other way is to download a .mp3, .jpg, .flash, or .pdf file having

a malicious payload at runtime and execute the files by targeting vulnerabilities in the

system libraries. It is not only malware tailored specifically for update attacks; regular

benign applications can also be modified for use in update attacks. Attackers can reverse

engineer a benign application, modify some parts of the existing code in such a malicious

and secretive way that it will pass the security examination, and then recompile and

upload the repackaged version to a market. With respect to the study of malware, the

above describes the origin of the term repackaged applications, which will be discussed in

depth later on. Users will not notice the difference between the two different versions of the

application using their observation alone. For that reason, repackaging and piggybacking

techniques can assist benevolent applications to contain the update attacks.
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2.2 Repackaged and Piggybacked Applications

The nature of repackaged and piggybacked applications are different from other regular

malware where developers purposefully produce applications to be malicious whereas the

repackaged and piggybacked ones are slightly transformed from benign to malicious. [8,9]

describes the classification of two terms, and piggybacking is a subset of repackaging. The

difference is that the technique being used for repackaged applications in detail is that a

reverse engineering tool is used to decompile an .apk file originally running benevolently,

apply slight modifications, recompile, and re-sign them to upload to a marketplace [2],

while piggybacked applications inject malicious payload segments, a so called rider [10].

A malicious payload can be composed of two ways: the explicit way or implicit way.

The explicit way entails payloads that are integrated into the logic of the existing code. In

other words, the functionality can be disfigured to some extent from the original behaviors.

The implicit way is to use the conditional variables to conceal the malicious code execution.

In this case, the code might not be triggered for a long time unless the condition matches

what the developer intended. For example, the malicious payload might be executed at

a specific time or date or at a specific place. The usage of the two different nature of

payload is dependent on what the developers consider important. If they desire to take

advantage of victims immediately, then they will go for the explicit path. In contrast, if

the developers prefer to not get caught and slightly steal the user information, they would

choose the implicit path.

The following is an example of using the repackaging technique to infect an application

with Trojan and how long the disclosure took: the relatively popular Barcode Scanner

application turned out to be infected with Trojan malware [11]. At some point,

the publisher changed and the application was updated at least five times after the

original publisher, which includes the nature of the repackaging technique: resigning and

distribution. The updated fifth version was revealed to contain a malicious payload.

Moreover, disclosing the malware took approximately one month, which proves that

repackaged applications are difficult to detect and can be present even in a major Android

marketplace.
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In this research, I concentrated on piggybacked applications, based on the label

by AndroZoo, where the technique is a subset of repackaging. Additionally, for the

clarification on DroidKungFu and Plankton malware, which have regular and piggybacked

update attack versions, the application collection that is used for the experiment is the

piggybacked versions of DroidKungFu, Plankton, Kuguo, and Adwo.

2.3 Hardware Performance Counters (HPCs)

Hardware Performance Counters (HPCs) are considered to be special-purpose registers;

developers might not be aware of the existence of HPCs unless they have specific

objectives to achieve by using HPCs. HPCs are unique registers to profile the performance

of hardware events in numeric form (i.e. the number of instructions or branches

executed). The operation of HPCs is dependent on the sampling rate and duration;

during the specific amount of time, HPCs count how many times the hardware events

occurred within a certain interval [12]. Depending on the platform and the version,

supported hardware events vary, but typically, branch, cache and instruction related

events are common. Despite the unfamiliarity in utilization of HPCs, the benefits of using

hardware components for monitoring performance are clear. In software, monitoring the

performance of a target, such as a device or an application, and collecting the associated

data were not as precise as what direct hardware components can provide: HPCs increase

the accuracy of collected data.

The access to the HPCs can be performed via system calls by the Linux kernel. For

example, PCs that use processors having the Performance Monitoring Unit (PMU) with

Linux OS can access to HPCs through system calls, in particular using the application

Perf. In Android smartphones based on the Linux kernel with ARM architecture having

PMU, HPCs are accessible using the system call as well. In the case of Android platform,

they provide the command-line CPU profiling tool called Simpleperf given in their Native

Development Kit (NDK) package. NDK package is a toolset providing the native language

support, such as C and C++. The profiling tool provides a total of 482 hardware-event

parameters including some software events (e.g. alignment-faults, context-switches, etc).
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Despite the numerous hardware events given by Simpleperf, there is the limitation of

the number of performance counters available depending on a phone’s specification;

the accurate number of performance counters differs depending on the version of ARM

architecture. Therefore, a few hardware events from the event list were selected. Based

on the specification or a version of a processor on a device, some of the 482 events

are not supported. However, generally four to six counters exist in a device and the

device can monitor a number of parameters equal to the number of counters; this occurs

simultaneously with full dedication of each performance counter. If more than four

parameters are utilized where the device has four counters, each counter shares itself across

the hardware events in a certain proportion. For instance, ARM Cortex-A5 supports only

two performance counters, which means two HPCs can monitor the hardware events.

ARM Cortex-A7 has 4 performance counters [13], and ARM Cortex-A9, A53, and A57

have 6 counters [14]. ARM cortex technical reference manual presents this information

on the official website. Therefore, acknowledgement of the version of ARM architecture

is important for the usage of HPCs.

2.4 Machine Learning for Classification

Historically, classification tasks that have an extensive amount of data have traditionally

been cumbersome for researchers; an opportunity to improve efficiency is present with

the use of machine learning. To do so, many classifiers are available for use in either

the algorithm format or as a tool, such as WEKA. The classifiers are divided into two

groups, supervised and unsupervised classifiers. Unsupervised classifiers require unlabeled

data and analyze the pattern of the data, such as discovering abnormal data, whereas

supervised classifiers use pre-labeled data. For instance, the collected data is applicable

with supervised classifiers since the data is categorized into benign and malicious under

each hardware feature. In terms of classifiers, the most popular classifiers are Decision

Tree, Naive Bayes Classifier, K-Nearest Neighbors (KNN), Support Vector Machines

(SVM), and Artificial Neural Networks, where Decision Tree, Naive Bayes Classifier, KNN,

and SVM belong to supervised classifiers, and Artificial Neural Network classifier belongs
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to either supervised and unsupervised. The classifiers specifically related to malware

detection are the following: [15] used Decision Tree, KNN, and Regression, [2, 16] used

ensemble classifier trained with KNN and one of Decision Tree classifiers, [17] used the

SVM classifier. Based on [18], they studied classifiers used in previous work relevant to

malware detection and concluded that the accuracy rate of malware detection is higher

using the Random Forest Tree classifier, one of the Decision Tree classifiers, as compared

to the SVM and Naive Bayesian classifiers. Based on the above research, OneR from

rule-based classifiers, J48, RandomForest, and RandomTree from Decision Tree-based

classifiers, KNN, and an ensemble classifier trained with KNN and Random Forest Tree

were chosen. OneR classifier was developed by Rob Holte in 1993, and the concept

is that one attribute does all the work. The classifier calculates the lowest error rate

predictor using the formula: TP + FP/T + F , where TP is the true positive rate, and

FP is the false positive rate. Then, the attribute with the lowest error rate classifies

the data. The terms, such as TP and FP, are derived from the confusion matrix in

machine learning, which will be discussed in Chapter 4. OneR is best fit for a simple

dataset, as well as small, noisy, and complex datasets, which proves the simple way

sometimes works the best. The J48 classifier selects good attributes for the root nodes by

choosing the purest nodes, the greatest information gain based on the information theory:

Entropy(p1, p2, . . . , pn) = −p1logp1 − p2logp2. . . − pnlogpn. This formula is to measure

the information in bits and the highest bits are selected as root nodes consecutively. It is

important to note that one significant drawback for the tree-based classifiers is that they

consume considerable memory while pruning the tree.

2.5 Malware Visualization Technique

Visualization concentrates on exemplifying malware features in a graphical form. For

static analysis, visualization techniques have been actively used in a range from typical

bar, dot, and pie graphs to Treemap, Thread Graph, and Linked Graph [19]. The Treemap

technique is to describe the behavioral events in nested rectangles, while the Thread

Graph technique may be considered the advanced version of Treemap where it presents
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the behavioral features chronologically. The Linked Graph technique is used to present

the hierarchy or the relationship of the network using nodes and edges. One example

of a Linked Graph, a call graph, is generated with only an .apk file without execution

and is widely chosen as a major static analysis method in malware detection. The call

graph is composed of the starting points of an application pruning vertices and edges

representing methods and functions that are called by callers. The vertices include the

information whether an attribute is defined in a DEX file or APIs that are not defined in

the DEX file. [20] used the call graph to extract the structural features for use of machine

learning input as a training set and fed the training set to the deep graph convolution

network. [21] extracted the information of the call graphs and implanted the graphs into

a low dimensional feature vector to train Deep Neural Networks (DNNs), using similarity

detection for training and testing in machine learning and discovering whether a target

is malware or benign. In this thesis, the call graph given as an API by Androguard is

utilized to show the visual difference of static analysis between the benign and malicious

versions of the same applications to strengthen the effectiveness of HPCs, even in tough

obfuscations at an application level.

2.6 Related Work

To conduct malicious update studies, many researchers use either network or

permission-based research to detect updating malware due to the update characteristics;

as many as three patents related to application updates using networks were released in

2020 [22–24] In one of the studies, researchers analyze the abnormality in bytes of packets

incoming and outgoing via the network [7, 25]. In another study, they translated Java

Bytecode of .class files to formal models of Calculus of Communication Systems (CCS)

process specification, and used Mu-calculus logic to get the logic semantics, then arose the

Concurrency Workbench of the New Century (CWB-NC) model that determines whether

malware exists in an application [3]. The last case is that permission-based method is used

to devise an attack [7] as well as detecting the update attack [26]. [2] adopted a recursive

and self-learning process in their application of machine learning, and [27] developed
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a command-line based Python tool that reproduces the repackaging that malignant

developers do. [16] used voting classifier trained with KNN and Random Forest with

static features by extracting them from the AndroidManifest.xml components, such as

permissions, API calls, and dynamic features by using the random UI-manipulation tool

Droidutan, which gives UI elements of activities.

2.6.1 Network pattern-based detection

[7, 25] targets the self-updating malware based on the analysis of network behavior

observing the abnormal network behavior at the application-level. The process consists

of feature extraction, feature aggregation, local learner, and anomaly detection. Feature

extraction collects the data in a certain amount of time based on the features, such

as sent/received bytes, network state, or application states whether running in the

background or foreground. Then, the authors filtered features that can be useful in

the machine learning phase: feature aggregation. During the local learner phase, the

network pattern on each application was learned using the C4.5 Decision Tree algorithm

to find any abnormal behavior in the anomaly detection phase. Also, the two classifiers,

Decision Table and Decision/Regression tree (REPTree), measured five different levels of

anomaly acceptance rate (i.e. 5%, 10%, 15%, 20%, 25%) on multiple network patterns

from the different and same versions of applications, discovering up to what percentage

the abnormal events are accepted in the regular applications. The anomaly acceptance

rate resulted in around 20% and 25% within network patterns from the same version of

applications, whereas a few of the patterns from different versions of applications behaved

somewhat unpredictable. Therefore, they brought an alarm strategy, for example, if

abnormal instances are detected three times consecutively, the pattern is considered to be

a true warning. With the premise, classifying different versions of the same application

and detecting self-updating malware with their system were evaluated with Decision Table

and Decision/Regression tree (REPTree). For the first evaluation, detection accuracy

achieved 87% with 20% of anomaly acceptance rate on Decision Table algorithm, whereas

REPTree algorithm reached 94% accuracy with 25% anomaly acceptance rate. For the

self-updating malware detection evaluation with their system, one of the applications
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that contain update malware that they obtained from the application market and one

of self-updating malware applications reached a considerably low true positive rate (i.e.

67.9% and 45%) even though those applications are considered to be less obscured with

malicious payload. They discussed the reason why it obtained such a low result is that

the main functionality of the application remains in the infected one. Other than those

cases, mostly from 90% to 100% true positive rate and from 0% to 10% false positive rate

are achieved.

2.6.2 Feedback-loop depicting active learning (Aion)

The author of [2] considered the detection of repackaged applications to be a search

problem, because the execution path towards the malicious payload could be veiled

profoundly and never occur during the examination. Aleieldin Salem devised an

architecture and a platform having a process of stimulation, analysis, and detection with

active learning and evaluating environment. In the active learning phase, a classifier

categorizes an execution path, called a feature vector. If the classification is inaccurate,

the classifier picks another feature vector and this process is repeated until the maximum

accuracy of classification is achieved. In specific, the architecture consists of two parts:

data generation and data inference. In other words, data generation is for adding new

applications, and the data inference is for increasing the accuracy rate of the classifiers.

In the data generation phase, collecting applications, analyzing the applications under

the control to accumulate runtime behavior, recording the behavior, and converting the

data to a comprehensive format, such as separating the texts with a delimiter, occur in

a sequence. During the data inference phase, it tracks down the API calls to extract

numeric data (i.e. counts of different API calls), eliminates noise in the data, extracts

patterns and information, then trains a classifier, validates the results with a test dataset,

and reports the result. The two phases are repeated until it reaches the highest accuracy.

Furthermore, each phase can feed the result themselves. As a result with piggybacked

applications, KNN with k = 500 attained lowest score and Random Forest was the highest

scoring classifier, where this aspect is shown in my experiment as well. Based on the

experiment of the architecture, the author concluded the following: firstly, either static
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features themselves or dynamic features themselves are not sufficient for training and

testing. Secondly, the highest F-measure value is dependent on the classifier and the

feature type. Lastly, in spite of the feature type, some classifiers performed consistently.
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Chapter 3

Experiment

3.1 Testing Environment Setup

A Samsung Galaxy S4 (locked to AT&T) smartphone was used to proceed with

the experiment. The CPU comprises ARM-Cortex-A15 and A7, where A7 has four

performance counters. The phone was rooted with KingoRoot to be capable of reading the

performance counters via Simpleperf. The operating system of the Galaxy S4 is Android

5.0 (Lollipop) and was released in 2013 as described in Figure 3.1. The details of the

phone specification could affect the further experiment due to the Simpleperf execution

requirements and root. From Android version 5.0+, only a Simpleperf executable file

can be run, and from version 7.0+, source code given in the Git repository will work

since a device with the corresponding version includes the dependencies to build the

source code. Executable Simpleperf is under the NDK in the Android library and

different versions of NDK are available under the SDK tool in the SDK manager of

Android Studio. The 20.1.5948944 version NDK for Galaxy S4 was downloaded to

obtain the executable Simpleperf file under /ndk_version/simpleperf/bin/android/

corresponding_arm_architecture. The NDK version listed in Figure 3.1 or below was

executed without any noticeable hindrance. According to the default NDK version fixed

by the Gradle plugin version, version 21 NDK should be compatible with Galaxy S4,

however, it caused the illegal instructions error message. It means that the cross-compile

has failed. However, it was the correct architecture, and the file was given by the Android
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Figure 3.1: Device specification used for the experiment

official resource; cross-compile is not the reason. As an alternative, the one version below

was selected and was successful. To check whether a version works on a smartphone,

downloading the version of simpleperf to the phone via ADB (Android Debugging Bridge)

shell, the command-line tool allowing users communication with an Android smartphone,

is required. Subsequently, either an error message or the instructions of how to use

Simpleperf is displayed. If error messages occurred, repetition to find a correct version of

NDK is needed. The way to root the device varies based on the manufacturer, carrier, and

the model number. KingoRoot has the list of devices compatible with their rooting tool.

Lastly, the sandbox is the most important item in this experiment. Since the applications

containing malware should be running on a phone, it is possible for the device to be

infected. Fortunately, Android phones are built with Linux-SE meaning that all the

applications run on a sandbox environment and individual applications do not interact

with other applications; it protects other applications or data from being accessed by a

malicious application. Thus, the environment setup is completed.

3.2 Simpleperf

Simpleperf is a native profiling tool provided in graphical interface and command-line

form, and it supports the same commands as the Linux perf [28]. Performance Monitoring

Units (PMUs) have specific registers where the hardware event parameters are assigned

and counting is started and read by users. Linux perf supports about 600-700 hardware

events and Simpleperf supports about 500. However, only a limited number of events

can be profiled at the same time depending on the number of HPCs on a device.
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Therefore, choice of hardware events are important since running all the hardware events

is time-consuming and some events are not necessary to profile or not supported by a

device.

Figure 3.2: Simpleperf hardware event list applied to the malware detection.

Figure 3.2 includes the effective hardware event parameters extracted with a feature

reduction algorithm and the correlation of the features for classification [5]. In Figure 3.2,

the events 1 through 13 are categorized to the hardware events and 14 through 16 are

classified to the software events. The events in grey colored cells and blue colored cells are

what the [5] refined with the algorithm. The parameters outlined in orange is what was

picked based on what Hossein, Nisarg, Et al selected and [29] describing that the cache

events are leveraged for malicious attacks, which implies that cache events can be used for

detection of the attacks. The event dTLB-loads was chosen because the event is relevant

to dTLB-stores. If so, either one of load or store can be used instead of using both. The

yellow colored cell, instructions, is paramount because the nature of injecting malware,

the piggybacking technique, is adding additional instructions in the existing application.

3.3 Dataset

Downloading piggybacked applications is more complicated than downloading regular

malicious applications. For example, a framework, called HookRanker, for locating a

malicious payload in the existing code was introduced in [8], but the program is no

longer available. [4] presented the dataset called Malgenome containing more than 1200

samples of malware from August 2010 to October 2011, which is outdated. [30] lists

the links connecting to malware datasets, such as Kharon, Drebin [17], and AMD [16]

introduced in previous work. However, the Kharon dataset is significantly limited

by having only DroidKungFu available, AMD official webpage is not accessible, and
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Drebin dataset has about 5,560 applications available with 179 different malware

families, collected from August 2010 to October 2012. UC Davis is one of the

institutions that was given access, however, they were unreachable as well. Fortunately,

AndroZoo [31], having approximately 14,832,925 different APKs where a few of them

were transpired as malware, was available. To access their dataset, they require us to

request the API key. They provide the infected apk files with a SHA256 key obtained

by contacting them and the list of the available malware types and names on their

website. Obtaining apk files is performed with the following command from the browser:

https://androzoo.uni.lu/api/download?apikey=${APIKEY}&sha256=${SHA256},

where bold texts are replaced with the corresponding key values. Our target is

piggybacked applications meaning that a benign version and malicious version of the

same application is required. The list of SHA256 keys given in the list of the types and

names by AndroZoo is completely the list of malware only. Therefore, SHA256 keys

matching to the same benign application are required, and Github resource [32] managed

by the authors of [8] provides the SHA256 key of the original benign version of the

applications matching to the malicious SHA256 keys in the AndroZoo list.

3.4 Automation of Experiment Pipeline

3.4.1 Download APK files from AndroZoo

When downloading piggybacked applications, a pipeline was devised to increase the

efficiency of the experiment. The first step is to decide which name of the malware

to download from the AndroZoo list and input in a command. Next, it finds all SHA256

keys having the corresponding malware name. Then, it searches for the benign version

from the list given by the Github resource [32]. If the key exists in the list, the original

benign version and malicious version of the same application can be downloaded. Over

1,302,971 keys for malware .apk files are available according to the list of malware name

or type label given by AndroZoo and 1,498 keys, provided by [32], which are original

applications, matching the piggybacked application keys, exist. This overwhelming

process is automated in the framework and the framework expects a one line of the

18



command: python3 main.py –malware {malware name} –save dir {/path/to/save/apk}

–download. This command creates folders named with the number of applications

downloaded in an increasing order under the specified by the user, followed with a benign

and malicious folder, and an .apk file or multiple .apk files on the existence of multiple

versions in each folder.

3.4.2 Collect Data with HPCs

The process of collecting the HPCs monitoring data is quite complicated. This data is

based on Samsung Galaxy S4, details are described in section 3.1 in Chapter 3. As we can

observe in Figure 3.3, each step was accomplished manually at the beginning of the data

collection and consumed considerable time and full attentiveness so that the next step may

proceed; the importance of automation of the process became apparent. The overview of

the process is that one application runs 80 cycles for a benign application and piggybacked

application, respectively. Since the smartphone that was used for the research has four

performance counters, each row in Figure 3.2 consists of a event group in Figure 3.3. Each

event group performs 20 times, which is presented as bound in Figure 3.3, in 80 cycles.

The automated bash script loads the proper version of Simpleperf to a target

smartphone via Android Debug Bridge (ADB). Therefore, the first step for a user is

to acknowledge the accurate Simpleperf version for the bash script. A way to find

the corresponding version is mentioned in section 3.1 of Chapter 3. Then, the benign

application is installed before the malicious one because a factory reset needs to be

executed for the security purpose and isolation of the testing applications, which carries

extra time consumed in factory reset and basic essential setup by hand to return to the

home screen. The benign .apk file is installed through ADB, and the package name

should be given as an input as it is necessary for the next procedure. Depending on

where the dataset is obtained, the .apk file name might hold a package name, a SHA

key, or other formats. In my case, .apk filenames are composed of a SHA key, therefore,

use of another tool was inevitable to extract the package name. The tool chosen is

called Androguard because of the modulability, stability and portability for integration in

the framework, though other similar programs are readily available for download online.
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Figure 3.3: Automated process of collecting the HPCs Monitoring Data
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A few functionalities from Androguard are integrated in the framework; obtaining the

package name within the framework is available. With the package name as input to the

monkeyrunner phase, the target application will be run automatically. Monkeyrunner

is a tool that maneuvers an Android device at a functional or framework level. The

tool provides special features: multiple device control, functional testing, regression

testing, and extensible automation. The functional activities of monkeyrunner include

sending keystrokes or touch events, exploring the menus, and taking screenshots. Once

monkeyrunner is initiated, the Android device creates the process id of the running

application. This explains why Simpleperf must operate after monkeyrunner. The

command of Simpleperf is in the following format: ./simpleperf stat -p {process id} -e

{event group} --duration α --interval 10 -o output.csv. The script reads the process

id pulled with the package name. Duration α is set to 15s because monkeyrunner runs

approximately 5s at the shortest and 13s at the longest. 15s should be long enough to

not lose the testing results. Sampling rate is at 10ms, which is the lowest interval the tool

allows due to the unavoidable overhead of the profiling platform. Event group is covered

beforehand, thus the inputs for Simpleperf are ready. While monkeyrunner and Simpleperf

are repeated for 80 cycles, every 20 cycles, the script replaces the event group to profile.

When the iteration reaches 80, output files saved in a designated directory in the phone are

pulled out to the {DESKTOP PATH}/benign output folder. After the results are moved

completely from the smartphone to the location mentioned above, the script uninstalls

the downloaded .apk file, and installs a malicious .apk file. The pipeline explained above

is repeated for the malicious version, and once malicious version is completed, the script

triggers the factory reset.

3.4.3 Transformation of the raw data in understandable format

After collecting the data with HPCs, unrefined raw outputs are segregated into multiple

files. Figure 3.4 shows a part of a file having four hardware event parameters out of

16 parameters: branch-load-misses, branch-loads, dTLB-loads, and dTLB-stores. These

data need to be transformed into a comprehensible format for the application of machine

learning. The necessary process is to gather the separated hardware events, as well as

21



Figure 3.4: Raw output of Hardware Performance Counters

Figure 3.5: Refined and optimized output of Hardware Performance Counters

all the performance counters values from the benign version and malicious version of

the same application into one file. Therefore, the framework offers a script for the data

refinement and optimization. It extracts the hardware event parameters and numbers,

and congregates them. Specifically, in Figure 3.5, the top row lists 16 hardware event

features, whether the data of each row belongs to the benign or malicious .apk file, .apk

file names, and the name of the pair of the .apk file. Also, this process removes the

zeros because the zero values occur while HPCs start counting when the applications are

inactive based on the raw data.

3.5 Machine Learning

In this section, the comprehensive data from the previous step is fed to the classifiers

for training and testing. The WEKA tool was utilized for classification and evaluation.

As discussed from section 2.4 in Chapter 2, OneR, KNN, J48, Random Forest, Random
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Figure 3.6: The plan of machine learning training and testing set in accordance with
Trojan and Adware malware types

Tree, and Ensemble with KNN and Random Forest are the classifier candidates. The

prepared dataset encompasses two different Adware categories and two different Trojan

categories. Kuguo and Adwo are the former and DroidKungFu and Plankton are the

latter. Firstly, Adwo and Kuguo (Adware) are examined to explore if HPCs are utilizable

to distinguish piggybacked malicious applications that do not have update attack. If

successful, one step further is proceeded, which is the objective of the research; whether

HPCs are feasible to use in detection of the piggybacked applications with update attack,

which are DroidKungFu and Plankton, is investigated. To do so, 70-75% of the data from

one of each malware type, Adwo and DroidKungFu, and the benign versions of them are

used for the classifier training while the remainder of the data is used for testing to explore

how accurately the classifier is at detection as shown in Figure 3.6. The entire Kuguo and

Plankton dataset along with the benign versions of them is solely used for testing and

was not used to train any classifiers. This testing is for expanding the capability of HPCs

detection scope within the same malware type instead of limiting to one in each category.

It is important to note that WEKA tends to accumulate the training and testing results,

therefore, the buffer has to be deleted after one set of training and testing per classifier.
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Chapter 4

Discussion

4.1 Piggybacked applications

In this experiment, over 300 applications were downloaded across the four different

malware names: Adwo, Kuguo, DroidKungFu, and Plankton. Adwo and Kuguo are

Adware and the other two are Trojan. However, the applications that were runnable and

data-collectable were very limited. The reason for this is that some applications are not

executable due to existing bugs, unmatching Android OS version, or limitations confronted

by monkeyrunner. Due to the characteristics of monkeyrunner, game applications

requiring sophisticated control are not suitable for monkeyrunner to explore. Therefore,

the data collected with user’s manipulation were excluded for a fair comparison. As

a result, 40 applications were collected. These applications are partitioned into four

groups, which is again divided into two groups; benign version and malware Adwo, Kuguo,

DroidKungFu, and Plankton versions, accordingly. Fourteen applications are included in

the first group, where a half of them is benign version and the other half is malware Adwo.

Each malicious version is originated from the corresponding benign application. In the

same manner, 8 applications belong to second group, where a half is benign and the rest is

Kuguo, 16 applications are in third group, and 2 applications are in the last group. They

are entitled as the following: the first group as Adwo group, the second group as Kuguo

group, the third as DroidKungFu group and lastly as Plankton group. In this section,

we determine if a piggybacked application can be detected using HPCs. If successfully
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detected, the end goal is to is to further apply HPCs to determine if an application has

been infected with update malware. Firstly, the benign version and piggybacked version

of Adwo and Kuguo applications are discussed to investigate how efficient HPCs are

within the piggybacking technique. Then, the benign version and piggybacked version

with update attack, which are DroidKungFu and Plankton, are observed with the data

collected by HPCs.

4.1.1 Piggybacked Malware: Adwo and Kuguo (Adware type)

As mentioned above, this section covers the 14 Adwo group and 8 Kuguo group to discern

if a piggybacked application can be distinguished using HPCs. Ten of the applications in

the Adwo group were selected, half benign and half Adwo, to be used for training while

the remaining four were used for testing to observe how correctly the classifiers categorize

the same malware. Then, the training set was used to test 100% of the applications

relevant to Kuguo to discover whether it is classified properly within the same malware

type family. Of the samples collected for analysis, the piggybacked malware data instances

Figure 4.1: Obscure call graph with distinct HPC data pattern on Kuguo applications
(Note: In the call graphs, the left shows benign version and the right displays malicious
version. In the scatter plots, red represents malicious version and blue represents benign
version.)
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are somewhat different from the piggybacked update attack malware type; this will be

discussed in further detail in the following section. The discrepancy between all of the

benign applications and malicious applications named Adwo is obvious based on the call

graph and the scatter graph per hardware event. Some of the Kuguo applications and the

associated benign version have obscure patterns in the call graph, however, the scatter

graphs display distinctive patterns as shown in Figure 4.1. After analyzing the static and

dynamic data, it is evident HPCs should be capable of distinguishing the benign version

and piggybacked version of a same application.

4.1.2 Piggybacked Update Malware: DroidKungFu and

Plankton (Trojan type)

In this section, the piggybacked applications deploying the update attack are examined.

As mentioned above, the 16 DroidKungFu group and 2 Plankton group are covered to

discern if a piggybacked application can be distinguished using HPCs. Twelve of the

applications in the DroidKungFu group were selected, half benign and half DroidKungFu,

to be used for training while the remaining four were used for testing to observe how

correctly the classifiers categorize the same malware. Then, the training set was used

to test 100% of the applications relevant to Plankton to discover whether it is classified

properly within the same malware type family.

Figure 4.2 a shows the bar graph per each hardware event on the four of the

benign version and piggybacked DroidKungFu applications: Fileman (top left), ClockSync

(top right), com.danxinben.xs (bottom left), and com.notebook (bottom right). The

application in each cell in Figure 4.2 corresponds to the cell in Figure 4.3, which is the

call graphs. As introduced about the call graph in Chapter 2, all the edges and vertices

represent the execution paths, functions, and callers, which is a static based pattern. The

image displays a benign and malicious version of the same application on the left and right

in each cell. On the left column in Figure 4.3, it is distinct that a significant amount of

malicious payloads were injected from the benign version, whereas it is obscure to define

which one is malicious or benign on the right column. The same characteristic is observed

in Figure 4.2, where blue bar represents the benign version and red bar is the malicious
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Figure 4.2: Bar graph of four training dataset of benign version and piggybacked
DroidKungFu per hardware event by WEKA (Note: The bar plots in red represent
malicious version, whereas the one in blue represents benign version.)

version. The Fileman application on the top left in Figure 4.2 clearly shows that a higher

number of counts on every hardware event are perceived only in malicious versions, and

the com.danxinben.xs application on the bottom left shows a higher number of counts on

some events in the malicious version and other events in the benign version. In contrast,

the counts for both benign and malicious versions of each application on the right column

in Figure 4.2, in which each malicious version is obfuscated, are spread across the overall

range.

Figure 4.4 represents the visualized HPC data on the hardware events with the Fileman

and ClockSync applications that were on the top left and the top right of Figure 4.2 and

Figure 4.3. Regardless of applications, some of the hardware events were able to be

grouped with similar patterns, which means reducing the number of hardware parameters

is possible: (branch-loads, dTLB-loads, dTLB-stores), (iTLB-loads, iTLB-stores), and
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Figure 4.3: call graph of four training dataset of benign version and piggybacked
DroidKungFu (Note: The left side of each call graph displays benign version and the
right side displays malicious version.)

(branch-misses, branch-instructions). Since the number of HPCs is limited, minimizing

the parameters is significant. All the other events in Figure 3.2 sometimes resulted in a

similar pattern of those grouped instances and can be combined, but it varies depending

on applications. In this case, the pattern for the hardware events grouped into four for

both of the applications: (branch-load-misses, branch-loads, dTLB-loads, dTLB-stores),

(branch-misses, branch-instructions), (iTLB-loads, iTLB-stores, L1-dcache-load-misses),

(L1-dcache-stores, L1-icache-load-misses). As we can see in Figure 4.4, Fileman draws

a distinctive pattern; it should be easier for classifiers to classify the applications that

have such a pattern. On the other hand, the pattern of ClockSync is vague with human

eyes, yet the characteristic of the pattern must exist according to the evaluation result.

For instance, the scatter graph pattern in the malicious version (red) of the ClockSync

application is more congested whereas the benign version (blue) of the application is more

dispersed in the first pattern graph.
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Figure 4.4: Scatter pattern graph of groups of hardware events on Fileman and ClockSync
applications (Note: Red represents malicious version and blue represents benign version.)
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Figure 4.5: Visualized data for Plankton application used for testing (Note: In the call
graphs, the left shows benign version and the right displays malicious version. In the
scatter and bar plots, red represents malicious version and blue represents benign version.)

The Plankton applications and the associated benign versions, used for testing, were

indistinct with static data shown in the call graph, whereas a small number of somewhat

distinctive features in dynamic analysis, especially on the bottom right of Figure 4.5,

exists. The hardware events that display discrete patterns are L1-icache-load-misses,

L1-dcache-load-misses, and branch-load-misses. However, there is a concern that should

be addressed. Although the patterns in the DroidKungFu group do not seem to have

similarity with the Plankton group, which might cause the low detection accuracy at the

first glance, there is some data demonstrating the analogous patterns leading to the high

accuracy in classification of Plankton instances as like Figure 4.6; L1-dcache-load-misses

data pattern from Plankton in Figure 4.5 shows some similarity in the pattern of the same
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Figure 4.6: One of DroidKungFu Training data pattern on L1-dcache-load-misses close to
Plankton testing data (Note: Red represents malicious version and blue represents benign
version.)

hardware event in Figure 4.6.

4.1.3 Discovery

Based on the discussion, a few things were discovered. First, from the figures in this

chapter, it is acknowledged that three types of different static and dynamic configurations

exist, proving that utilizing only one or the other is inadequate to detect update malware.

One type is a big-difference-existing call graph with clearly different performance counter

data patterns. This type is seen in both of the malware types, Adware and Trojan.

Another type is a barely-difference-existing call graph with indistinguishable patterns of

the counter data. This type was observed by update malware (Trojan type) injected

with the piggybacking technique. The last type is a barely-difference-existing call graph

with clear patterns of the HPC data, which was perceived by some of piggybacked

non-update attack malware (Adware type). Second, most of the call graphs, static

information, correspond to the graph, where branch-instructions or branch-misses on

x-axis and instructions on y-axis. The reason why it is most of the call graphs is

that one out of the total collection had a large amount of malicious payloads added,

however, the scatter dots appeared hugely in the benign version on branch-instructions

and branch-misses hardware events instead of the malicious version. In this case, it
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is assumed that malevolent developers added code without using condition variables,

which is an explicit way of adding the malicious payload, and the malicious behavior

was triggered immediately during the dynamic analysis. Lastly, a few hardware events

patterns, overlapped in both of the malware types, are observed so that the seven events

mentioned beforehand can be reduced to three.

4.2 Evaluation

In this section, the benign version and malicious version applications in non-update version

piggybacked malware and update version piggybacked malware are evaluated. The former

is the Adware type malware, and the latter is the Trojan type malware. To be more

specific, Adwo and Kuguo are chosen for Adware, and DroidKungFu and Plankton are

chosen for Trojan. The classifiers trained with 70% of the HPC data from the benign

version and malicious version applications in Adwo, and tested with the remainder of the

Adwo data and associated benign data, in addition to all of the data collected with the

Kuguo group, which is in the same Adware malware type, were evaluated. To be specific,

the data collected from 10 applications in the Adwo group, half benign and half malicious

of the same applications, are used for training the classifiers, and the rest is used for

testing. Then, whether the data, associated with the Kuguo group in the same malware

family (Adware), is detectable with the classifiers that were used above, was explored.

This allows me to evaluate the usability of HPCs against piggybacked applications and

observe how correspondingly the classifiers categorize them within the same malware

category into malicious and benign. It resulted in that use of HPCs in piggybacked

applications is possible. Thus, the piggybacked applications containing update attack are

used to evaluate whether the HPCs are utilizable in update malware detection. Therefore,

similarly, the classifiers were trained with 70% of the HPC data from the benign version

and malicious version of DroidKungFu applications, and tested with the remainder of

DroidKungFu data and associated benign data and entire dataset affiliated with the

Plankton group. In detail, the data collected from 12 applications in the DroidKungFu

group, half benign and half malicious of the same applications, are employed for training
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purposes, and testing was performed with the rest of the DroidKungFu group instances.

The data gathered by the benign and malicious version of Plankton applications are

tested with the classifiers that were used above to discover whether the data, affiliated

with Plankton, in the same Trojan type, is discernible. If the detection rate of Adwo to

Kuguo and DroidKungFu to Plankton is not satisfactory, adding a portion of Kuguo and

Plankton to its training set was considered, but not necessary. The choice of classifiers

are J48, RandomForest, RandomTree, OneR, KNN (k=3), Ensemble trained with KNN

and RandomForest. The matrices adopted for the evaluation are the following:

• Detect accuracy: defined as the percentage of how accurately all the instances of

the dataset was predicted and classified. This measurement is the most intuitive.

Figure 4.7: Machine learning confusion matrix

• True Positive Rate (TP rate), False Positive Rate (FP rate): TP rate

formula is TP/(TP+FN) and FP rate formula is FP/(FP+TN). Figure 4.7 describes

all the abbreviations.

• Precision: defined as the percentage of correctly classified instances over total

instances classified correctly. In other words, in the instances predicted to be

malicious or benign, how many instances are actually malicious or benign. The

formula follows TP/(TP+FP).

• Recall: defined as the percentage of correctly classified predictions over the truly

classified and the ones classified wrong. In other words, in the instances correctly

labeled to benign or malicious, how many instances belong to what it is labeled.

The formula for recall is TP/(TP+FN).

• F-Measure (F1-Score): the weighted average of Precision and Recall. This is less

intuitive compared to Detect accuracy, however, this F1 score is proper data to look
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at when FP and FN are considerably different. The higher the score is, the better

a classifier is. The equation for F-Measure is (2recallprecision)/(recall+precision)

• ROC Area: the value of ROC is based on the ROC curve graph. The more curvy

the graph is, the higher the value that can be obtained. Being close to 1 means

the classification works outstanding. In contrast, if the value is 0.5, this means no

discrimination, such as fliping a coin.

• Latency: time taken to test the testing dataset with the trained classifiers.

Figure 4.8: Machine learning results on the classifiers based on the evaluation matrices
(Adwo and Kuguo group)
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Figure 4.9: Machine learning results on the classifiers based on the evaluation matrices
(DroidKungFu and Plankton group)

Figure 4.8 describes the results from the Adwo and Kuguo group, where the malicious

versions are the Adware type, and Figure 4.9 describes the results from the DroidKungFu

and Plankton group, where the malicious versions are the Trojan type. Out of the

listed matrices, the detection accuracy and latency were primarily discussed as seen in

Figure 4.10, because latency helps to filter out the computation-heavy classifiers and the

result of detection accuracy represents the Precision, Recall, and F1 score in the figures.

Also, my goal is to find whether HPCs are adoptable in update malware detection. The

figure attached above is additional information when necessary. In Figure 4.8, the results

of Random Forest Tree and Ensemble were divided into four groups since the classifiers

were not capable of displaying the result due to the size.

Considering the complexity of the instances and the previous work, it is expected that

OneR and KNN (K=3) classifiers would not perform well. The KNN classifier trained with

the dataset from the DroidKungFu group and tested with the dataset from the Plankton

group did not provide the reportable result, which explains why the orange bar on KNN

is empty in Figure 4.10. As covered in Chapter 2, OneR accomplishes classifications

better with a small amount of data, as well as KNN. Additionally, some of benign and

malicious versions of the testing dataset are not easily comparable due to the stealthiness;

the combination of tough obfuscation and the simplicity of classifiers would have resulted

in a higher false positive rate in those two classifiers. [18] studied the classifiers used for

malware detection and came to the conclusion that Tree type classifiers, especially the
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Figure 4.10: Detection accuracy and latency based on each test case (Note: The latency
of the classifiers trained with the DroidKungFu dataset and tested with the remainder of
the dataset, blue line, is marked with numbers in the figure.)

Random Forest Tree classifier, fits the best for malware detection. As proof, over 96%

detection accuracy is achieved from Decision Tree type classifiers (i.e. J48, Random Tree,

and Random Forest) in all of the test cases. From the classifiers trained and tested with

the datasets in the Adwo group, all the Decision Tree classifiers obtained 99% accuracy.

The majority of those Decision Tree classifiers, trained with the Adwo group dataset and

tested with the Kuguo group, achieved the same accuracy as well, and the Ensemble

classifier has a group of the instances decreased by only 1% in detection accuracy.

The detection accuracy on Random Tree and Random Forest Tree, trained with

the DroidKungFu group dataset and classified the DroidKungFu group testing set, is

outstanding, and detection accuracy of the Plankton group with the classifiers, trained

with the DroidKungFu training set, dropped 2%, but is still remarkable. All the classifiers

categorized the instances remarkably well because the benign and malicious versions of

Plankton datasets are statically vague, but slightly distinct dynamically, where the role

and the effectiveness of machine learning is present. The reason why the Adwo and

Kuguo group achieved a better result than DroidKungFu and Plankton group should be
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that obfuscated Kuguo applications have far more distinguishable patterns and a larger

amount of data as we saw in Figure 4.5 and Figure 4.6. In the case of Ensemble learning,

even if KNN achieved lowest detection accuracy, Random Forest seems to leverage the

weakness of the KNN classifier, resulting in over 97% for all the test cases.

Despite the high accuracy of Random Forest Tree, latency countered the advantages

of the classifier. If the classifiers need to use time sensitive activities, J48 with a little loss

of accuracy and less latency, or Random Tree with a higher accuracy and longer latency

than J48 can be alternatives to Random Forest Tree. If the accuracy can be flexible to

some extent, even the OneR classifier could replace other classifiers, but it could be risky

because of the simplicity of the classifier.
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Chapter 5

Conclusion

To the best of my knowledge, this is the first approach to testing the application of

HPCs in detection of applications with update attack. In this thesis, the target is to

research whether the use of HPCs is feasible to detect the update malware, specifically

that which is piggybacked. During the study, what the update malware is, how the

malware invades into users’ realm, what kind of differences exist between regular and

piggybacked update malware, and what specific update malware is targeted were explored

in depth. The piggybacked applications infected with Adwo, Kuguo, DroidKungFu, and

Plankton were chosen as the target due to their capability of easy transformation from

benign applications to malicious. This is achieved by embedding the malicious payload

based on the characteristic of the piggybacking technique and stealthiness of piggybacked

applications. Also, previous work conducted various techniques to detect the wide range of

regular malware in applications including Plankton and DroidKungFu (non-piggybacked).

A framework was developed for gathering the pool of applications and collecting the HPC

data, leaving the prospect for future work. Then, the data collected with HPCs on the

applications cannot finalize in detection of malware by itself, leading to the adoption of

machine learning. Machine learning was leveraged to determine the classifiers which are

the best fit for malware detection. The classifiers that were discovered as the most efficient

are Decision Tree and Ensemble learning. The simple machine learning algorithm, such

as OneR and KNN, resulted in low detection rate. Specifically, OneR achieved 85%-95%
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whereas KNN performed the worst besides the classifiers. J48, Random Tree, and Random

Forest Tree accomplished around 94%-99%, and Ensemble learning reached almost 100%

detection accuracy, but the latency for Random Forest Tree and the Ensemble learning

are significant depending on the size of the testing dataset. To avoid the substantial

computation cost, two other Decision Tree classifiers can be alternatively used for malware

detection. From the overall results given by the classifiers, hardware performance counters

(HPCs) are recommended for discovering stealthy update attacks as a dynamic analysis

technique. Also, a future work that can be considered exists: the collection of HPC data

takes 15 seconds per cycle, which runs 80 cycles total, resulting in 20 minutes on one

application. This time can be reduced by extracting and minimizing the number of the

events. Moreover, the choice of lighter computation classifiers can be accumulated on

the HPC data and creation of a new security scanning system is possible. This work not

only expands the possibility of the usage of HPCs for update malware detection, but also

provides the framework for researchers to obtain and test the data with minimized effort

for related progressive work.
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