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ORIGINAL RESEARCH • NEURORADIOLOGY

Traumatic brain injury (TBI) is a condition that dis-
rupts normal brain function and can lead to permanent 

neurologic, emotional, and occupational disability. Dis-
ability from TBI is estimated to affect nearly 55 million 
people worldwide and 5 million people in the United 
States alone (1,2). Patients with severe TBI (sTBI), de-
fined as a postresuscitation Glasgow Coma Scale score 

of 8 or less, have mortality rates approaching 40% (3,4). 
Prediction of long-term clinical outcomes is challenging 
in these patients because of their comatose status and con-
cerning imaging features, including cerebral edema and 
intracranial hemorrhage (3,5,6). However, despite their 
early moribund status many patients have the potential to 
make a favorable recovery (7,8).

Background:  After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet 
struggle to predict outcomes in comatose patients.

Purpose:  To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict 
long-term outcomes after sTBI.

Materials and Methods:  This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 
patients (mean age, 40 years 6 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learn-
ing and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and un-
favorable outcomes (Glasgow Outcomes Scale scores 1–3) at 6 months. This was combined with clinical input for a holistic fusion 
model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean 
age, 39 years 6 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury 
(TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis 
and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operat-
ing characteristic curve (AUC) was used as the main model performance metric.

Results:  The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 
0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P , .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% 
CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant differ-
ence in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of 
mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66–0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; 
P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable 
outcomes. The fusion model outperformed the predictions of the neurosurgeons.

Conclusion:  A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe trau-
matic brain injury.

© RSNA, 2022

Online supplemental material is available for this article.
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pating in the Transforming Research and Clinical Knowledge 
in Traumatic Brain Injury (TRACK-TBI) study. All insti-
tutions complied with Health Insurance Portability and  
Accountability Act requirements. Written consent was ob-
tained from legally appointed representatives. We adhered 
to the Standards for Reporting Diagnostic Accuracy Studies 
(20) and Transparent Reporting of a Multivariable Predic-
tion Model for Individual Prognosis or Diagnosis (21). We 
built and tested our prediction model on an internal cohort 
of patients from the University of Pittsburgh Medical Center 
(UPMC) and externally tested our model with patients from 
the TRACK-TBI consortium.

UPMC has a prospectively collected database of patients with 
sTBI admitted to a level 1 trauma center from November 2002 
to December 2018 (Fig 1). This database has previously been 
described (22,23) and includes patients aged 16–80 years with 
sTBI. TRACK-TBI is a prospective multicenter study recruit-
ing participants from 18 sites across the United States, enrolling 
nearly 3000 patients from February 2014 through April 2018 
(NCT02119182) (24). We selected consecutive patients with 
sTBI and excluded patients coenrolled at UPMC. For both 
cohorts, we excluded patients with pre-existing neurosurgi-
cal disease, those without an admission CT head scan prior to 
neurosurgical intervention, and those who had substantial mo-
tion artifacts. Neurologic outcomes were assessed at 3, 6, and 
12 months through a structured interview by trained neuropsy-
chologists using the Glasgow Outcomes Scale (1 = death, 2 = 
persistent vegetative state, 3 = severe disability, 4 = moderate dis-
ability, 5 = low disability).

Demographic, clinical, and qualitative imaging variables in 
IMPACT were collected from the prospective databases (Table 1).  
We also collected sex, race, and mechanism of injury, which 
were not included in IMPACT. Data missing from the prospec-
tive collection of the UPMC database, including head CT data, 
were retrospectively collected without blinding to outcomes. 
For both cohorts, patients with missing 6-month outcomes had  
3- or 12-month outcomes substituted, if available (Appendix 
E1 [online]). All remaining patients with incomplete data or 
who lacked sufficient follow-up data were removed from the 
study. Similar to IMPACT, we predicted mortality and unfa-
vorable (Glasgow Outcomes Scale 1–3) or favorable (Glasgow 
Outcomes Scale 4–5) outcomes at 6 months.

CT Imaging
Appendix E2 (online) describes details of image acquisition. For 
the UPMC database, all CT images were obtained with a GE 
Lightspeed scanner (GE Healthcare) with 5-mm section thick-
ness. For the TRACK-TBI database, CT images were obtained 
with various scanners and with a section thickness of 2–6 mm. A 
representative subvolume of the head CT, spanning the midpoint 
of the body of the lateral ventricles to the midbrain and selected 
by an expert physician (M.P.), was used for modeling.

Machine Learning and Model Development
We built four machine learning models using various inputs  
to make 6-month predictions for mortality and unfavorable  
outcomes (Appendix E3 [online]).

Clinicians may not accurately assign a prognosis when assess-
ing sTBI in the acute postinjury phase, and neurosurgeons are 
frequently pessimistic (9–11). Despite this, neurotrauma prac-
titioners often use their subjective versions of prognostication to 
guide life or death decisions, including whether to provide life-
saving surgical procedures, such as decompressive craniectomy. 
These decisions must often be made rapidly and early during 
care, as delays in treatment are associated with worse outcomes 
(12). Multivariate models, such as the International Mission on 
Prognosis and Analysis of Clinical Trials in TBI (IMPACT), at-
tempted to assign outcomes to patients using information avail-
able in the emergency department. IMPACT, however, was 
designed to guide clinical trials, rather than assign outcomes to 
individual patients, and it is not used widely in clinical practice 
(13,14). In fact, no current national guidelines recommend prog-
nostic models in the care decision for patients with a TBI (15).

Recently, deep learning has transformed medical imaging 
diagnosis and prognostication (16–18). Deep convolutional 
neural network (CNN) models can identify abnormalities in 
radiologic images to assist computer-aided diagnosis of various 
diseases (19), but these techniques have not been widely adapted 
for prognostication of neurosurgical conditions. We hypothe-
sized that imaging-based deep learning models could be adapted 
to predict long-term outcomes after sTBI. The purpose of this 
study was to develop and evaluate a prognostic model combin-
ing deep learning of head CT and clinical information to predict 
long-term outcomes after sTBI.

Materials and Methods

Study Cohorts and Data Collection
This study received the approval of the institutional review 
board at our institution, as well as at each institution partici-

Abbreviations
AUC = area under the receiver operating characteristic curve, CNN = 
convolutional neural network, IMPACT = International Mission on 
Prognosis and Analysis of Clinical Trials in TBI, sTBI = severe TBI, TBI 
= traumatic brain injury, TRACK-TBI = Transforming Research and 
Clinical Knowledge in Traumatic Brain Injury, UPMC = University of 
Pittsburgh Medical Center

Summary
Deep learning prognostic models using both admission CT scans and 
clinical information can predict 6-month mortality and unfavorable 
outcomes after severe traumatic brain injury and outperformed the 
predictions of neurosurgeons.

Key Results
	N The deep learning models using head CT and clinical information 

had good performance for predicting mortality (area under the  
receiver operating characteristic [AUC] curve, 0.92) and unfavorable 
outcomes (AUC, 0.88) at 6 months after severe traumatic brain injury 
(sTBI) in an internal data set.

	N In an external data set, there was no significant difference in 
the performance of the deep learning model compared with the 
International Mission on Prognosis and Analysis of Clinical Trials 
in TBI (IMPACT) for predicting mortality (AUC, 0.80 vs 0.83;  
P = .50), but the deep learning model outperformed the predictions 
made by attending neurosurgeons.
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Imaging model.—We used head CT scans as inputs and built a 
customized CNN model with an AlexNet backbone pretrained 
with ImageNet data set (http://www.image-net.org/) (Fig 2). The 
CNN model was designed to analyze the subvolume of each 
CT scan, spanning from the midbrain to the lateral ventricle. 
To enhance the training of the CNN Imaging model on heter-
ogenous CT scans from different vendor platforms and imaging 
reconstruction kernels, we developed a tailored curriculum learn-
ing technique. We first started to train the CNN model using a 
selected subset of homogeneous data (ie, images with the same 
reconstruction kernel, the so-called easy task) and then gradu-
ally increased the capacity of learning by involving a subset of 
heterogeneous images with a different reconstruction kernel (the 
so-called difficult task). This novel approach improved model 
performance through accounting for different image acquisition 
techniques.

Clinical model.—We built a linear discriminant analysis model 
using the same inputs as IMPACT with race, sex, and mech-
anism of injury added. The categorical variables (eg, race and 
mechanism of injury) were converted to dummy variables before 
feeding to the linear discriminant analysis model.

Fusion model.—We combined the imaging model with the clini-
cal model using the ensemble stacking technique.

IMPACT-fusion model.—Similar to the fusion model, we 
fused our CNN imaging model with IMPACT using the en-

semble stacking technique. This allowed us to evaluate if the 
CNN Imaging model provides additional prognostic infor-
mation to IMPACT.

Attending Neurosurgeon Predictions
We developed a shadow clinical environment to assess how  
attending neurosurgeons at UPMC predicted outcomes in  
patients with sTBI. We selected three attending neurosurgeons, 
all of whom take neurotrauma calls, with 1, 5, and 25 years of 
experience. The neurosurgeons with 5 and 25 years of experience 
had subspecialty training in neurovascular surgery, and the other 
neurosurgeon had subspecialty training in neurotrauma. We 
used neurosurgeons for the reader study for two reasons. First, 
neurosurgeons are often the gatekeepers in sTBI care through 
decisions to offer life-saving surgical procedures. Second, many 
neurosurgeons care for patients with a TBI for many months 
after their initial injury, positioning them to better observe long-
term outcomes. In our study, 50 patients were randomly selected 
from the UPMC test cohort of 107 patients. The neurosurgeons 
were given access to the same clinical information used in our 
fusion model and had access to the CT scans. For each patient, 
the neurosurgeon made binary predictions for mortality (alive 
or dead) and unfavorable (favorable or unfavorable) outcomes 
at 6 months.

Statistical Analyses
The prediction model was evaluated using both an internal test 
cohort (UPMC) and an external test cohort using patients from 

Figure 1:  Consolidated Standards of Reporting Trials diagram for (A) University of Pittsburgh Medical Center and (B) Transforming Research and Clinical Knowledge 
in Traumatic Brain Injury cohorts. For patients who were missing 6-month outcomes, the 3- or 12-month outcome was substituted in place of the 6-month outcome, if available 
for model prediction. CTH = CT of the head, GCS = Glasgow Coma Scale, GOS = Glasgow Outcome Scale, TBI = traumatic brain injury.
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TRACK-TBI. For the UPMC evaluation, we used a stratified 
random sampling procedure on Glasgow Outcomes Scale and 
different reconstruction kernels to split the internal cohort into 
70%, 10%, and 20% for training, validation, and testing, re-
spectively. For the TRACK-TBI evaluation, we used the entire 

UPMC cohort to train the prediction model, using 
the parameters learned in the internal evaluation, 
and tested this model using the TRACK-TBI co-
hort. TRACK-TBI provided the CT imaging and 
clinical inputs to the model development team, 
who were blinded to the long-term outcomes of 
patients in the TRACK-TBI study. The TRACK-
TBI consortium independently analyzed the mod-
el’s prediction results.

Model performance was evaluated using area 
under the receiver operating characteristic curve 
(AUC), accuracy, sensitivity, and specificity. Two-
sided DeLong test was used to assess the signifi-
cance of differences between two AUCs (25). For 
multiple testing correction, we used the Benjamini-
Hochberg procedure to control the false detection 
rate at 0.05 (26). We estimated the sensitivity at 
fixed specificity using the Pepe method (27). The 
95% CI for sensitivity was estimated using naive 
exact binomial and Linnet adjusted techniques 
(27). Neurosurgeon predictions were reported as 
accuracy and their overall sensitivity and specific-
ity for mortality and unfavorable outcome predic-
tions. A positive prediction for mortality or un-
favorable outcomes was a prediction probability 
of the event greater than 50%. All the statistical 
analyses were performed using R software (version 
0.0.456; R Foundation for Statistical Computing) 
and SAS software (version 0.04 for Linux (SAS 
Institute). The code for building the models and 
data analysis can be found at https://github.com/
Pitt-ICCI/TBI-study.

Results

Patient Overview for UPMC Cohort
For the UPMC cohort, 599 patients with sTBI 
were initially enrolled, and 537 remained after ex-
clusion (Fig 1). Admission data are found in Table 1 
(mean age, 40 years 6 17 [SD]; 422 men).

Model Testing on the Internal Test Cohort
In the UPMC test cohort, IMPACT had an AUC 
of 0.80 (95% CI: 0.71, 0.88) for mortality and 
0.82 (95% CI: 0.75, 0.90) for unfavorable out-
comes (Table 2; Figs 3, 4). The imaging model 
using only CT scans showed no evidence of a 
significant difference from IMPACT for predict-
ing mortality (AUC, 0.86; 95% CI: 0.79, 0.94;  
P = .21) or unfavorable outcomes (AUC, 
0.83; 95% CI: 0.75, 0.92; P = .88). The clini-
cal model had a better performance for pre-

dicting mortality, with an AUC of 0.85 (95% CI: 0.78, 0.93;  
P = .01), whereas no evidence of a significant difference was found 
for predicting unfavorable outcomes, with an AUC of 0.82 (95% 
CI: 0.74, 0.90; P = .91) as compared with IMPACT. The best-
performing model was the fusion model, which combined head 

Table 1: Patient Characteristics at Admission

Variable UPMC TRACK-TBI P Value
Patient Characteristics

No. of patients 537 220 …
Age (y)*†   40 6 17   39 6 17 .82
Race ,.001
     Black 7 (37/537) 16% (34/213) …
     White 91 (491/537) 76% (163/213) …
     Other 2 (9/537) 8% (16/213) …
Male sex 79 (422/537) 75% (166/220) .35

Clinical Characteristics
GCS†   5.5 6 1.7   4.9 6 2.1 .02
GCS motor*   3.1 6 1.7   2.4 6 1.7 .001
Glucose (mg/dL) *†  162 6 62  160 6 60 .84
Hemoglobin (g/dL)*† 13.5 6 1.9 13.0 6 2.2 .003
Pupil reactivity*
     Both 65 (351/537) 61 (129/213) .01
     One 9 (51/537) 5 (11/213) …
     None 25 (135/537) 34 (73/213) …
Hypoxia* 17 (89/537) 24 (53/220) .01
Hypotension* 26 (138/537) 18 (39/220) .02
Marshall CT*
     1 4 (21/537) 8 (18/220) .004
     2 50 (270/537) 49 (108/220) …
     3 12 (62/537) 9 (20/220) …
     4 7 (40/537) 3 (7/220) …
     5 22 (119/537) 29 (63/220) …
     6 5 (25/537) 2 (4/220) …
tSAH* 82 (439/537) 80 (176/220) .04
Epidural mass* 11 (58/537) 15 (33/220) .11
GOS
     1 39 (209/537) 24 (51/210) ,.001
     2 2 (11/537) 1 (2/210) …
     3 31 (167/537) 22 (46/210) …
     4 18 (94/537) 30 (64/210) …
     5 10 (56/537) 22 (47/210) …

Note.—Unless otherwise indicated, data are percentages, and data in parentheses 
are raw data. All 537 patients from the University of Pittsburgh Medical Center 
(UPMC) cohort had complete clinical and imaging information available. 
Of the 220 patients from the Transforming Research and Clinical Knowledge 
in Traumatic Brain Injury (TRACK-TBI) cohort who had either complete 
imaging or clinical data available, 210 had complete imaging data, 201 had 
complete clinical data, and 177 had both complete imaging and clinical data. 
The TRACK-TBI data set includes patients from 18 institutions, including 26 
patients from UPMC who were not included in the UPMC data set. P values 
were calculated using the two-sample t test and x2 test, as appropriate. GCS 
= Glasgow Coma Scale, GOS = Glasgow Outcomes Scale, tSAH = traumatic 
subarachnoid hemorrhage. 
* Part of the Core+CT+Laboratory International Mission on Prognosis and 
Analysis of Clinical Trials in Traumatic Brain Injury model.
† Data are mean 6 SD.  



Pease and Arefan et al

Radiology: Volume 304: Number 2—August 2022  n  radiology.rsna.org	 389

CT scans and clinical information. It had a better performance 
than IMPACT for predicting both mortality (AUC, 0.92; 95% 
CI: 0.86, 0.97; P , .001) and unfavorable outcomes (AUC, 0.88; 
95% CI: 0.82, 0.95; P = .04).

Patient Overview for TRACK-TBI
In the TRACK-TBI cohort, 323 patients with sTBI were iden-
tified. Of the 281 patients remaining after exclusion, 71 were 
missing CT head scans, and 80 had missing clinical information. 
In total, out of 220 patients who had either complete imaging 
data or complete clinical information, 210 had complete imag-
ing data, 201 had complete clinical information, and 177 had 

both. When compared with the UPMC cohort, patients in the 
TRACK-TBI cohort had several markers of more severe injury, 
including higher rates of nonreactive pupils (P = .01), lower 
Glasgow Coma Scale scores (P = .02), lower levels of hemoglo-
bin (P = .003), and lower rates of hypoxia P = .01). Despite 
this, patients in the TRACK-TBI cohort had improved 6-month  
outcomes, with lower mortality and higher rates of favorable 
outcomes (P , .001), as compared with the UPMC cohort.

Model Testing on the TRACK-TBI Cohort
In the TRACK-TBI testing cohort, IMPACT had an AUC of 
0.83 (95% CI: 0.77, 0.90) for predicting mortality and an AUC 

Figure 2:  Outline of deep learning modeling to predict long-term outcomes in patients with severe traumatic brain injury based 
on radiographic and clinical information available in the emergency department. (A) An analysis of multimodal data, including a 
customized convolutional neural network (CNN) structure for modeling CT imaging data (imaging model) and a clinical model, was 
performed to generate a holistic prediction of the long-term outcomes (fusion model). (B) The customized CNN imaging model was 
structured using AlexNet backbone. The size of kernels in the input layer was changed from 11 3 11 3 3 in AlexNet to 11 3 11 
3 7 in the customized model. Transfer learning was applied for all learnable layers, except for the last fully connected layer (FC8). 
For the input layer with seven channels, each of the available 96 kernels in the input layer of a pretrained AlexNet were averaged 
over the third dimension (three red-green-blue channels), and then the weights to each of the seven channels of the kernels in the 
input layer of the CNN model were transferred. Conv = convolutional layer, FC  = fully connected layer..
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of 0.83 (95% CI: 0.77, 0.89) for unfavorable outcomes. There 
was no evidence of a significant difference in the performance of 
any models compared with IMPACT for predicting mortality. 
The imaging model had an AUC of 0.83 (95% CI: 0.76, 0.89; 
P = .90) and the IMPACT-fusion model had an AUC of 0.85 
(95% CI: 0.79, 0.91; P = .64) for predicting mortality. Both the 
imaging model (AUC, 0.73; 95% CI: 0.66, 0.81; P = .02) and 
the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .002) 
had a lower performance than IMPACT for predicting unfavor-
able outcomes.

Table 3 reports the sensitivity for mortality and unfavorable 
outcomes for various specificity levels. For the UPMC test set, 
the sensitivity for mortality was 56% (95% CI: 31, 68) when 
the specificity was set to 100% (ie, never recommending with-
drawal of care in a patient who would otherwise survive). Low-
ering the specificity to 90% resulted in a sensitivity of 76% 
(95% CI: 54, 90). For predicting mortality, when the CNN 
Imaging model was set to 100%, the sensitivity was 10% (95% 
CI: 6, 16), and when it was set to 90%, the sensitivity was 52% 
(95% CI: 44, 60).

Attending Neurosurgeon Predictions
As shown in Table 4, neurosurgeons with 1, 5, and 25 years of 
experience had varying performance for mortality (accuracies 
of 76%, 74%, and 64%, respectively) and unfavorable out-
comes (accuracies of 66%, 66%, and 86%, respectively). The 
most experienced neurosurgeon performed worse (64%) than 
the others for mortality prediction. The neurosurgeons with 5 

and 25 years of experience incorrectly predicted that nine and 
10 patients, respectively, would have died, even though these 
patients ultimately survived. The neurosurgeon with 1 year of 
experience made no mortality predictions in patients who ulti-
mately survived. For comparison, the machine learning model 
(fusion model) had an accuracy of 86% for mortality and 82% 
for unfavorable outcome, which is comparable or significantly 
higher than the accuracy of the predictions made by the three 
neurosurgeons (Table 4).

Discussion
Neurotrauma practitioners frequently make time-sensitive de-
cisions to provide life-saving surgery upon admission of patients 
with a severe traumatic brain injury (sTBI). To assist with these 
decisions, we built a deep learning model integrating head CT 
images with clinical data to predict long-term outcomes for pa-
tients with sTBI. Internal testing of our model outperformed 
the International Mission on Prognosis and Analysis of Clinical 
Trials in TBI (IMPACT) for both mortality (area under the 
receiver operating characteristic curve [AUC], 0.92 vs 0.80;  
P = ,.001) and unfavorable outcome (AUC, 0.88 vs 0.82;  
P = .04) predictions at 6 months. In the Transforming Research 
and Clinical Knowledge in Traumatic Brain Injury test cohort, 
our models maintained discriminatory ability for mortality 
and unfavorable long-term outcomes. Our imaging model, 
built using only head CT, had noninferior performance to IM-
PACT for mortality (AUC, 0.83 vs 0.83; P = .90). This model 

Table 2: Model Performance for Mortality and Unfavorable Outcome Prediction

Model
Mortality Unfavorable

AUC P Value* AUC P Value*
A. UPMC test cohort (n = 107)
     IMPACT 0.80 (0.71, 0.88) … 0.82 (0.75, 0.90) …
     Imaging model 0.86 (0.79, 0.94) .21 0.83 (0.75, 0.92) .88
     Clinical model 0.85 (0.78, 0.93) .01† 0.82 (0.74, 0.90) .91
     Fusion model 0.92 (0.86, 0.97) ,.001† 0.88 (0.82, 0.94) .04
     IMPACT-fusion model 0.89 (0.82, 0.96) .02 0.89 (0.82, 0.95) .03
B. TRACK-TBI Cohort
     IMPACT (n = 201) 0.83 (0.77, 0.90) … 0.83 (0.77, 0.89) …
     Imaging model (n = 210) 0.83 (0.76, 0.89) .90 0.73 (0.66, 0.81) .02
     Clinical model (n = 201) 0.81 (0.74, 0.88) .41 0.79 (0.73, 0.85) .45
     Fusion model (n = 177) 0.80 (0.72, 0.88) .50 0.68 (0.60, 0.76) .002†

     IMPACT-fusion model (n = 177) 0.85 (0.79, 0.91) .64 0.81 (0.75, 0.88) .58

Note.—Data in parentheses are 95% CIs. The area under the receiver operating characteristic curve (AUC) and accuracy are reported for 
the International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) imaging model, clinical model, 
fusion model, and IMPACT-fusion models depending on the testing cohort. As patients with missing variables were excluded from the 
study, each model had slightly different cohorts in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-
TBI) testing, as some patients had missing clinical variables, missing imaging studies, or both. There were 210 patients with complete 
imaging studies (imaging model), 201 patients with complete clinical data (clinical model), and 177 with complete imaging and clinical 
data (fusion and IMPACT-fusion models). We computed the AUC values of IMPACT implemented on all three cohorts (ie, n = 210, 
n = 201, and n = 177), where the differences of AUC values under the three cohort sizes were small (within 0.005 of variance); thus, we 
reported only the AUC of IMPACT on the cohort with 201 patients for the sake of brevity.
* P value shown for the comparison of the IMPACT AUC to the deep learning models calculated using two-sided DeLong test.
† P value remained significant (P , .05) after controlling for multiple comparisons using a 5% false discovery rate (Benjamini-Hochberg 
procedure).
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could potentially function in a near-automated and time-effi-
cient manner, obviating burdensome data collection required 
by IMPACT. This study shows that deep learning analysis of 
head CT can yield prognostic information to guide the care of 
patients with sTBI.

Although the trajectory of recovery from coma after TBI 
is unknown, recent work suggests great potential for recovery 
among TBI survivors (7). Despite this, most deaths (range, 
55%–72%) after TBI are from the withdrawal of life-sustaining 
treatment, usually within 72 hours of injury, and are based on 
physician perception of a poor prognosis (28,29). Withdrawal of 
life-sustaining treatment is associated more strongly with the fa-
cility providing care than with underlying patient characteristics, 
suggesting that local practice patterns for withdrawing care may 
matter more than the injury itself (28). Recognizing the high cost 
of errors for models designed to guide life-or-death decisions, we 
assessed the performance when tuned for a zero false-positive rate 
(ie, never inappropriately withdrawing life-sustaining therapies 

in a patient who would survive). Under these stringent condi-
tions, our sensitivity is 56% for mortality in the internal cohort 
and 10% in the TRACK-TBI cohort. This increased to 42% in 
the TRACK-TBI cohort when we reduced the parameters to a 
5% false-positive rate. These numbers show that quantitative 
analysis of head CT imaging data early in the course of TBI may 
allow for more effective care of patients with sTBI by avoiding 
inappropriate withdrawal of life-sustaining treatment.

Previous modeling efforts predominantly used standard sta-
tistical techniques with moderate effect sizes (30). IMPACT 
is a multivariate model that has been externally validated on a 
large data set, but it has not gained widespread adoption (14), 
partly because clinicians mistrusted models designed to guide 
clinical trials rather than prognose individual patient outcomes. 
In clinical practice, physicians relied on their own prognostica-
tion, which historically lacked sufficient accuracy to guide with-
drawal of life-sustaining therapy decisions (10,31). Our model 
is positioned to potentially serve as a rapid point-of-care test in 

Figure 3:  Comparison of performance of imaging, fusion, and International Mission on Prognosis and Analysis of Clinal Trials in Traumatic Brain 
Injury (IMPACT)-fusion models with IMPACT for survival and unfavorable outcomes. Receiver operating characteristic curves compare (A) mortal-
ity and (B) unfavorable outcomes for the University of Pittsburgh Medical Center data set and (C) mortality and (D) unfavorable outcomes for the 
Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) validation. Sensitivity and specificity for attending neurosur-
geon predictions are reported in A and B, both as an average and for the individual attending neurosurgeon with 1 (A1), 5 (A5), and 25 (A25) 
years of experience.
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the emergency room to guide personalized care decisions early, 
before surgical intervention. Our study did not include other 
diagnostic tests, such as electroencephalography or MRI, as 

performing these tests is not feasible before emergent neurosur-
gery, where treatment decisions must be made rapidly (12).

Overall, our results support the belief that deep CNN im-
age analysis is able to identify abnormalities in brain imag-
ing to predict long-term outcomes. In both the UPMC and 
TRACK-TBI testing cohorts, our imaging model performed 
well for predicting long-term outcomes compared with the 
predictions of attending neurosurgeons and IMPACT. The 
performance of the fusion model decreased when our models 
were tested on the independent TRACK-TBI cohort. A po-
tential reason could be due to the characteristic differences 
of the TRACK-TBI cohort compared with the UPMC co-
hort (Table 1), where the TRACK-TBI cohort had markers 
of more severe injuries, such as higher rates of nonreactive 
pupils, lower Glasgow Coma Scale scores, lower levels of he-
moglobin, and lower rates of hypoxia, yet superior outcomes 
compared with those of UPMC. If we combine the UPMC 
data and the TRACK-TBI data to train an updated predic-
tion model, it is expected that the updated model would ex-
hibit more robust performance than is currently seen, and we 
plan to explore this in the next steps of our work.

The comparisons of our models to the predictions of the at-
tending neurosurgeons reveal important insights. The most ex-
perienced neurosurgeon had the lowest accuracy for mortality 
prediction but the highest accuracy for unfavorable outcome 
prediction, which reflects the difficulty and qualitative nature 
of the predictions made by human experts. To guide decisions 
about life-saving surgery, neurosurgeons must make critical clin-
ical decisions as to whether a patient can survive an injury. Our 
models showed improved accuracy compared with the predic-
tions of the neurosurgeons, suggesting that our model may im-
prove TBI prognostication over the qualitative assessments made 

Table 3: Model Sensitivities at Difference Specificity 
Thresholds

Specificity (%)

Sensitivity

Mortality (%)
Unfavorable  
Outcome (%)

Fusion model (UPMC)
     100 56 (31, 68) 60 (43, 71)
     95 66 (46, 80) 71 (55, 84)
     90 76 (54, 90) 73 (54, 82)
Imaging model  

(TRACK-TBI)
     100 10 (6, 16) 8 (4, 15)
     95 42 (34, 50) 16 (10, 24)
     90 52 (44, 60) 30 (21, 39)
IMPACT-fusion model 

(TRACK-TBI)
     100 5 (2, 10) 7 (3, 15)
     95 52 (43, 60) 17 (10, 26)
     90 58 (49, 66) 43 (32, 53)

Note.—Sensitivities and specificities are shown for different 
model and cohort datasets. Values are shown with 95% CIs. 
At a specificity of 100%, the model was tuned to never predict 
mortality in a patient who would otherwise survive. IMPACT 
= International Mission on Prognosis and Analysis of Clinical 
Trials in Traumatic Brain Injury, TRACK-TBI = Transforming 
Research and Clinical Knowledge in Traumatic Brain Injury, 
UPMC = University of Pittsburgh Medical Center.

Figure 4:  Example predictions by fusion model on University of Pittsburgh Medical Center patients. (A) Correct prediction in a 44-year-old man 
who was involved in an unrestrained motor vehicle collision. He underwent emergent decompressive hemicraniectomy (DHC), had bilateral lung 
injuries, and ultimately developed a pulmonary embolism with difficulty oxygenating on posttrauma day 6. His care was withdrawn, and he died. The 
model correctly predicted mortality. (B) Incorrect prediction in a 57-year-old woman who was in a motor vehicle collision and underwent DHC. The 
model predicted she would die, but she had a Glasgow Outcomes Scale of 3 at 2 years after trauma. She lived in a nursing home and was depen-
dent on others for most daily living activities. (C) Incorrect prediction in a 28-year-old man who was in a motorcycle collision and had a minor head 
injury with intraventricular hemorrhage. Several weeks after trauma, he developed Klebsiella ventriculitis and pneumonia that led to an episode of 
severe hypotension. He subsequently developed malignant cerebral edema and died by brain death criteria. While the model predicted this patient 
would survive, this scenario highlights the difficulty of predicting outcomes based on information available in the emergency department, as events 
later in the patient’s course affect outcomes.
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by neurosurgeons. After thorough validation, our model could 
provide quantitative prognostic information to better enable 
neurosurgeons to make rapid, reproducible, and more accurate 
decisions to guide the care of patients with sTBI. 

Our study had several limitations. First, our model used a 
subvolume of CT head scans from the midbrain to the body 
of the lateral ventricles (Appendix E2 [online]). Without us-
ing the entire CT volume, rare findings, such as a cerebellar or 
pontine contusion, may be missed. Further comparisons with 
models using the entire CT volume may be conducted in future 
work. Second, our retrospective attending neurosurgeon predic-
tion study may not capture the full ability of human experts to 
predict long-term outcomes. Although neurosurgeons had ac-
cess to imaging and clinical patient descriptors, evaluating the 
patient and performing a physical examination is a key portion 
of a physician’s assessment.

In conclusion, we developed and evaluated a deep learning 
model combining head CT and clinical information for prog-
nosing 6-month outcomes early after severe traumatic brain in-
jury (sTBI). We demonstrated that quantitative analysis of head 
CT images improves the prediction of outcomes. Because of its 
ease of implementation, our model could be deployed as a fast 
and automated point-of-care tool to help physicians prognose 
long-term outcomes in patients with sTBI.
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