
UC Irvine
UC Irvine Previously Published Works

Title
Stochastic models of nucleosome dynamics reveal regulatory rules of stimulus-induced 
epigenome remodeling

Permalink
https://escholarship.org/uc/item/7016v9xp

Journal
Cell Reports, 40(2)

ISSN
2639-1856

Authors
Kim, Jinsu
Sheu, Katherine M
Cheng, Quen J
et al.

Publication Date
2022-07-01

DOI
10.1016/j.celrep.2022.111076
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7016v9xp
https://escholarship.org/uc/item/7016v9xp#author
https://escholarship.org
http://www.cdlib.org/


Stochastic models of nucleosome dynamics reveal regulatory 
rules of stimulus-induced epigenome remodeling

Jinsu Kim1,*, Katherine M. Sheu2,3,*, Quen J. Cheng2,4, Alexander Hoffmann2,3,#, German 
Enciso5,6,#,+

1.Department of Mathematics, Pohang University of Science and Technology, Pohang, South 
Korea.

2.Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los 
Angeles

3.Institute for Quantitative and Computational Biosciences, University of California, Los Angeles

4.Department of Medicine, Division of Infectious Diseases, University of California, Los Angeles

5.Department of Mathematics, University of California, Irvine

6.Department of Developmental and Cell Biology, University of California, Irvine

SUMMARY

The genomic positions of nucleosomes are a defining feature of the cell’s epigenomic state, 

but signal-dependent transcription factors (SDTFs), upon activation, bind to specific genomic 

locations and modify nucleosome positioning. Here we leverage SDTFs as perturbation probes 

to learn about nucleosome dynamics in living cells. We develop Markov models of nucleosome 

dynamics and fit them to time-course sequencing data of DNA accessibility. We find that 1) the 

dynamics of DNA unwrapping are significantly slower within cells than reported from cell-free 

experiments, 2) only models with cooperativity in wrapping and unwrapping fit the available data, 

3) SDTF activity produces highest eviction probability when its binding site is adjacent to but not 

on the nucleosome dyad, and 4) oscillatory SDTF activity results in high location variability. Our 

work uncovers the regulatory rules governing SDTF-induced nucleosome dynamics in live cells, 

which can predict chromatin accessibility alterations during inflammation at single nucleosome 

resolution.
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INTRODUCTION

Nucleosomes are critical to packaging the eukaryotic genome into the nucleus: 2m of 

human DNA must be packed into a 1μm nucleus (Alberts et al., 2002). As a consequence 

of packing, access to the DNA is limited, yet selective access is important for gene 

expression (Allfrey et al., 1963). Hence, nucleosomes have evolved to be highly dynamic. 

Dynamic nucleosome repositioning, including histone assembly, disassembly, and eviction, 

are important for generating dynamic chromatin states that are ultimately permissive or 

non-permissive to gene expression (Lee et al., 2004; Shivaswamy et al., 2008).

Early biophysical in vitro studies of histone octamer-DNA interactions focused on high 

resolution studies of static interactions (culminating in x-ray or cryo-EM structures), as well 

as dynamic interactions of nucleosomal DNA sequences bound to reconstituted histones in 

cell-free experimental systems (Zhou et al., 2019). High-resolution structures elucidated the 

interaction points between the histone octamer (H2A–H2B pairs and H3–H4 pairs) and the 

DNA wrapped around it (Luger et al., 1997). In vitro studies of nucleosome unwrapping and 

rewrapping determined with a variety of methods, including FRET, revealed quantities such 

as the average time taken for spontaneous DNA unwrapping (Li et al., 2005), the differences 

in timescales of dissociation and reassociation of the different DNA-histone contact regions 

on the nucleosome (Tims et al. 2011), and a fundamental asymmetry in the process such that 

the unwrapping of one side helped to stabilize the other side (Ngo et al., 2015).

Mathematical models have explored the dynamic behavior of nucleosomes and their 

role in chromatin biology, including the effect of chromatin remodeling proteins on 

nucleosome sliding (Chou, 2007) and the deposition of histone marks along nucleosome 

arrays for epigenetic memory (Dodd et al., 2007). Nucleosomes have also been modeled 

with biophysical accuracy by incorporating the nucleosomal structure of 14 DNA-histone 

contact points and describing how DNA unwrapping/rewrapping depends on particular rate 

parameters (Cheng et al., 2021; Dobrovolskaia and Arya, 2012; Möbius et al., 2006). These 

theoretical approaches show that a mathematical model, especially those involving Markov 

chains and Brownian motion, can be used to reproduce in vitro experimental measurements 

and to provide insights such as an analytic form of the mean DNA detachment time, DNA 

bending angles, and bistability in histone modifications.

However, little is known about nucleosome dynamics as they occur on native chromatin 

in living cells. These “in vivo” dynamics are likely markedly different from dynamics 

measured in cell-free systems “in vitro” because the interactions between DNA polymer and 

histone octamer are constrained, and because additional protein factors that are not present 

in biochemical studies may further stabilize or destabilize the nucleosome. For example, 

linker histones present in vivo also bind to nucleosomal core particles close to the DNA 

entry and exit sites, and enzymatic machines such as SWI/SNF (Dechassa et al., 2010) or 

FACT complexes facilitate nucleosome repositioning (Chen et al., 2018; Liu et al., 2020). 

However, we know little about these dynamics quantitatively because there has not been a 

straightforward way to measure nucleosome positioning in vivo and no controlled way to 

perturb steady-state positions.
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Two recent advances have allowed us to probe nucleosome dynamics. First, next generation 

sequencing (NGS) has provided ways to measure nucleosome accessibility and positioning 

with DNAse1, and more recently with ATAC-seq. These genome-wide measurements 

revealed that nucleosome positions in vivo are to a large degree determined by DNA 

sequence (Segal and Widom, 2009; Segal et al., 2006). Second, the identification of 

DNA-binding proteins termed pioneer factors, that may displace nucleosomes by competing 

with histones for DNA contacts, provides a means to perturb nucleosomes. The discovery 

that stimulus-induced signal-dependent transcription factors (SDTFs) may also initiate 

nucleosome re-positioning now allows them to be used as a probe to study in vivo dynamics, 

as they provide a trigger to perturb DNA-histone interactions within the cell at controllable 

start times (Ostuni et al., 2013; Sen et al., 2020; Weinmann et al., 1999). In particular, 

the dynamics of inflammation-activated SDTF activity has been shown to determine the 

propensity for nucleosome repositioning in both macrophages and fibroblasts (Cheng et 

al., 2021; Sen et al., 2020). This suggests that SDTF activation with stimulus-specific 

dynamics may be used as a probe to study the histone-DNA interaction dynamics within the 

nucleosome, via NGS measurements at stimulus start and end points.

We here present stochastic models for epigenetic remodeling, which in this paper refers 

to changes in chromatin accessibility. These math models are based on structural features 

of the nucleosome to investigate the regulatory rules behind nucleosome eviction. Using 

probability theory, we calculated the probability of histone eviction and the resulting 

mean chromatin accessibility under various dynamical SDTF signaling patterns. We 

report that oscillatory SDTF signals potentially induce greater variability of cell fate in 

heterogeneous cell environments than constant SDTF signals. Then, by experimentally 

tracking nucleosomes at different genomic locations and counting the number of 

nucleosome evictions between two time points, we found that optimal eviction takes place 

when the SDTF binds adjacent to the dyad, defined as the center position of nucleosomal 

DNA, rather than directly on top of it, indicative of the cooperativity of histone-DNA 

contacts. Thus our modeling approach allows us to derive quantitative insights from NGS 

chromatin accessibility data, provides a framework for understanding location-specific, 

SDTF-induced chromatin accessibility changes in different cellular contexts, and constitutes 

a tool to predict eviction probability for single nucleosomes in live cells responding to 

inflammation.

RESULTS

A stochastic model accounts for nucleosome dynamics upon SDTF binding in vivo

When SDTFs bind to DNA, their stimulus-specific temporal dynamics disrupt the resting 

state distribution of nucleosomes, affecting chromatin accessibility (Figure 1A). Epigenetic 

dynamics can be modeled as a continuous system - for example, deterministic ordinary 

differential equation models describing chromatin accessibility in bulk have been used to 

describe chromatin opening steps that result in enhancer formation (Cheng et al., 2021). 

However, DNA unwrapping/rewrapping of individual nucleosomes is subject to molecular 

stochasticity. Moreover, the binding of SDTFs to DNA can be regarded as a time-dependent 

on/off switch dramatically influencing chromatin dynamics – this binding is discrete and 
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stochastic. To incorporate such noisy behavior and discreteness, we used a continuous time, 

discrete-state Markov chain to model chromatin accessibility with time-dependent SDTF 

binding. This model is time-inhomogeneous as the transitions given by SDTF binding/

unbinding are time-dependent (STAR METHODS Section S1).

To reflect the biophysical structure of the nucleosome, we assumed that each nucleosome 

consists of 14 step-wise unwrapping and rewrapping transitions, consistent with structural 

data on the number of contact points between the histone and DNA (Luger et al., 1997), as 

well as previous nucleosome unwrapping models (Figure 1B) (Cheng et al., 2021; Mobius et 

al., 2013). Approximately 147bp of DNA wrap one and three-quarter times around the core 

histone octamer (Luger et al., 2012), resulting in 14 main non-covalent DNA-histone contact 

points (Luger et al., 1997). To fully displace the nucleosome from any particular genomic 

location, multiple steps may be required. Hence, based on structural and biophysical 

measurements performed on single nucleosomes in vitro, we used a coupled stochastic 

process (X(t), N(t)), where X(t) represents the number of disassembled DNA-histone contact 

regions, and N(t) takes either 0 or 1 to represent the on/off state of the SDTF binding (Figure 

1C). We considered the spontaneous, step-wise unwrapping behavior of DNA from a single 

histone, which originates at the locations furthest from the nucleosome dyad (state 7).

Regarding the symmetry of the model, we assumed a one-sided unwrapping model where 

DNA unpacks from state 0. Prior experimental cryo-EM or atomic force microscopy 

studies investigated whether the nucleosome unwraps from one-side at a time or two-sides 

simultaneously. The results suggested that one-sided unwrapping is more likely, as opening 

of one nucleosomal end stabilizes the other end (de Bruin et al., 2016; Konrad et al., 2021; 

Mauney et al., 2018). In addition, structural studies on the H1 linker histone showed that the 

H1 globular domain bound directly on the dyad and associated with both sides of the linker 

DNA, while the H1 C-terminal domain attached to just one of the two linker DNA segments 

(Bednar et al., 2017). We surmised that the asymmetry of linker histones may also further 

promote one-sided asymmetrical unwrapping in vivo. Although unwrapping and wrapping 

of the nucleosome is primarily unidirectional (Bilokapic et al., 2018; Li et al., 2005; Ngo et 

al., 2015), we also considered and analyzed the possibility that it takes place simultaneously 

at both ends of the DNA (STAR METHODS Section S2 and Figure S1), and we found that 

the qualitative behavior of both 1-sided and 2-sided stochastic models were similar. Hence, 

we settled on using the 1-sided model in the main results of this paper.

The amount of energy released by re-establishing hydrogen bonds between histone and 

DNA is greater than the energy released by the straightening of the DNA polymer during 

unwrapping, so the rates of rewrapping exceed that of unwrapping, which in our model 

corresponds to setting ai < bi (Tims et al., 2011). We set the unwrapping/rewrapping 

parameters as an = a1hn−1[min−1] and bn = b1h−n+1[min−1] with a cooperativity constant h so 

that DNA unwraps more easily the more unwrapped it already is. Biophysical and structural 

measurements on single nucleosomes support the cooperative and multistep transitions in 

DNA unwrapping from the histone (Li et al., 2005; Polach and Widom, 1995; Tims et al., 

2011), but the extent of such cooperativity remains a free parameter that can be later fit 

to data. We note that evidence for cooperativity in the literature is measured in isolated 
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nucleosomes in vitro, whereas our measurements below were carried out within the full 

cellular chromatin environment.

We then considered the effect of a dynamic signaling protein that competes for DNA binding 

with the histone core octamer. Short periods of DNA accessibility may be stabilized by the 

binding of transcription factors if their cognate binding sequence is present in that stretch 

of DNA and they are present at sufficiently high concentrations (Klemm et al., 2019). 

Spontaneous nucleosome dynamics, also known as nucleosome breathing, allow transient 

exposure of nucleosomal DNA, and the binding of SDTFs provide steric hindrance that 

occludes the rewrapping of DNA-histone contacts within the nucleosome. The on-state of 

the SDTF makes the nucleosome rewrapping parameter dn much less than bn around the 

SDTF binding site (Figure 1C), while cn is set to be identical to an. Once a histone is 

fully evicted it detaches entirely from the DNA and might not dock to the same genomic 

location again. Thus, we assumed that b14 = d14 = 0 so that state 14 is an absorbing state 

of X(t). That is, if X(s) = 14 for some s, then X(t) = 14 for all t > s. We also analyzed 

the alternative assumption that state 14 is non-absorbing, which represents reattachment of 

an evicted histone, and found the models produced similar behavior (STAR METHODS 

Section S5.1).

It is known that transcription factor binding operates at a faster timescale than DNA 

wrapping or unwrapping (Callegari et al., 2019). Hence for a given SDTF concentration 

f(t), we used the SDTF binding rate κon(t) = cf(t) with a large constant c, and the unbinding 

rate κoff is proportional to κon(0). Indeed, the stochastic system behaves almost identically 

with any choice of large c, and this was proved in STAR METHODS Section S1.2 using 

a timescale decomposition argument. For large values of c, the ratio BF = κoff/(κon + κoff) 

approximately determines the fraction of time that the SDTF is unbound. Note that the ratio 

BF could depend on time if the SDTF signal is oscillatory, and it can also depend on the 

strength of the SDTF input.

In further difference from previous models, we considered the SDTF binding position in 

relation to the original nucleosome dyad. As the nucleosome encompasses ~147 base pairs 

of DNA, and SDTF binding motifs typically stretch 8–10 base pairs (Stewart et al., 2012), 

the stochastic binding and unbinding of the SDTF from DNA at the site of its motif is 

modeled with genome location-specific resolution by incorporating the relative location of 

binding motifs from the nucleosome dyad. When the SDTF binds to its cognate motif, it 

tends to disrupt DNA-histone contacts in its vicinity. The effect of SDTF binding on the 

rewrapping parameter is highest near the SDTF binding site and decreases with distance. 

See STAR METHODS Section S1.1 and Table S1 for a mathematical derivation of statistical 

quantities, the definition of the parameters, and the choice of parameter values of the 

stochastic process (X(t), N(t))

Periodicity of SDTF oscillations affects DNA accessibility

In inflammation signaling, the importance of signaling dynamics is well appreciated (Behar 

and Hoffmann, 2010; Purvis and Lahav, 2013; Werner et al., 2005). A prominent SDTF 

that is activated during immune responses is NFκB. For NFκB signaling, the amplitude 

(Lee et al., 2014) and duration (Hoffmann et al., 2002; Sen et al., 2020) of the signal 
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controls which genes are activated. However, only recently has the importance of oscillatory 

versus non-oscillatory signaling been revealed in remodeling the epigenome (Cheng et al., 

2021), rather than in primary response gene expression (Barken, 2005). Previously published 

experimental systems involving mutations of NFκB feedback regulators allowed comparison 

of oscillatory (WT) and non-oscillatory (Mut) NFκB activity after TNF stimulation of 

macrophages (Figure 2A) (Adelaja et al., 2021; Cheng et al., 2021), but there is currently 

no experimental system that allows altering the period of NFκB oscillations (Longo et al., 

2013). Thus, we used the stochastic model to examine how the period of SDTF oscillations 

alters the chromatin accessibility; we analyzed the results of numerical computations with 

the probability distribution of the full histone eviction time.

The period of the oscillation quantitatively affects the time-course dynamics of chromatin 

accessibility. We set the cooperativity constant h = 1.3, and we set the unwrapping/

rewrapping parameters as an = 0.2hn−1, bn = 3 h−n+1 for each state n in the stochastic 

nucleosome model. For simplicity, we used zero rewrapping rates under the SDTF binding, 

meaning that dn = 0 at each state n. We considered two oscillatory SDTF inputs of 10 

min and 60 min half-periods, respectively, that have the same aggregate signal within the 

time interval [0,500] min (Figure 2B). We sampled 50 timecourses of our stochastic model 

under each of these two oscillatory inputs, using the Extrande method (Voliotis et al, 2016), 

which is a stochastic simulation algorithm for Markov chains with time-dependent transition 

rates. The rapid oscillatory SDTF signal with a half-period of 10 min unwrapped the 

nucleosome completely in 19 out of 50 samples within 500 min, while 40 out of 50 samples 

are fully unwrapped by 500 min when the half-period is 60 min (Figure 2C). This result 

reflected experimental results where SDTF dynamics of longer continuous duration resulted 

in increased nucleosome eviction (Cheng et al., 2021).

To further analyze this system modeled under the two different dynamic SDTF signals, we 

described the DNA wrapping process as a ‘success-or-failure game’ (Figure S2A–C), which 

can be analyzed with a geometric distribution. In the case of a cooperative system with h = 

1.3, when X(t) reaches state 6 or above, the unwrapping parameters an+1 are greater than the 

rewrapping parameters bn so that X(t) can easily reach state 14 (state of full eviction) even 

without the support of SDTF binding. Hence success of X(t) is reaching state 6, and we used 

the probability of the success to analyze the distinct behaviors of DNA under two oscillatory 

inputs.

If nucleosomes are exposed to an SDTF signal at amplitude 10 for 10 min, then only 

about 2.5% of nucleosomes reach state 6 (Figure S2C). Hence during the on-phase (i.e. 

SDTF signal at amplitude 10), nearly 2.5% of DNA segments can successfully unwrap from 

the entire histone octamer under this rapid oscillation. After the first 10 min oscillation, 

when the SDTF signal is turned off, most remaining nucleosomal DNA which failed to 

reach state 10 during the previous on-phases, rapidly rewraps around the histone because 

the rewrapping parameter bn is much greater than the unwrapping parameter an for n < 

6, likely returning back to state 0. Therefore, in the next on-phase, about 2.5% of the 

remaining free DNA can be fully unwrapped, and DNA undergoes this process 25 times by 

500 min. This success-or-failure game under the oscillatory SDTF signal can be described 

using the geometric distribution Geo(0.025) with the success probability 0.025 (Figure 
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S2A–B). Similarly, the full eviction probability by 500 min under the SDTF signal of 60 

min half-period can be estimated with Geo(0.24) since the success probability is about 

24% during 60 min on-phase. The full eviction probabilities computed with the geometric 

distributions Geo(0.025) and Geo(0.24) are about 0.47 and 0.7 respectively, which closely 

estimate the actual eviction probabilities shown in Figure 2D. The detailed computations of 

the full eviction probabilities using these two geometric distributions are shown in STAR 

METHODS S3.1.

In our simulations, very fast oscillations of the SDTF signal did not necessarily render 

the DNA less accessible. Indeed, when the half-period was 0.3 sec, the SDTF signal is 

interpreted as a constant signal with half the amplitude. Therefore, despite the extremely 

short on-phase of the oscillation, about 50% of DNA temporal trajectories were fully 

unwrapped by 500 min (Figure 2C bottom), which is higher than when the half-period 

was 10 min. Intuitively, this phenomenon occurs because the optimal scenario for the least 

unwrapping is based on the SDTF oscillation frequency matching the relative unwrapping/

rewrapping frequency of the nucleosome. The time evolutions of histone eviction probability 

under these three different SDTF signals are displayed in Figure 2D. See STAR METHODS 

Section S3.1 and Figure S2 for more detailed mathematical analysis about the full eviction 

probability under different frequencies of the SDTF signal.

Oscillatory SDTF inputs can lead to heterogeneous chromatin accessibility responses

While our computational investigation of different SDTF oscillatory frequencies cannot be 

tested in experimental systems (as the period is hardwired by the IκBα-NFκB negative 

feedback loop (Longo et al., 2013)), we now considered that the same oscillatory SDTF 

dynamics may affect different nucleosomes within a cell differently because of differences 

in kinetic parameters determined by location-specific molecular mechanisms.

To explore the capacity for differential responses of various chromatin regions to the 

same dynamic signal, we scanned the nucleosome unwrapping/rewrapping parameters 

and computed the probability of histone eviction using the stochastic model under non-

oscillatory or oscillatory inputs with a fixed period (Figure 2E). We found that the system 

was more sensitive to the unwrapping/rewrapping parameters under oscillatory than non-

oscillatory SDTF dynamics (Figure 2F). We used the same parameters as used in previous 

simulations and they are shown in Table S1.

Under oscillatory and constant SDTF dynamics, we calculated the probability of histone 

eviction at T=360 minutes after multiplying each of the unwrapping/rewrapping parameters 

an and bn by a fold-change parameter m (Figure 2F). Under oscillatory SDTF dynamics, 

the full DNA eviction probability rapidly grows for m ∈ [2,4]. In fact, this graph has a 

sigmoidal shape, indicative of a higher sensitivity with respect to fold change increases, so 

that the same oscillatory input can lead to widely different responses for different parameter 

values. In STAR METHODS Section S3.2, using simple matrix exponentials, we explored 

sensitivity analysis with our stochastic model under both constant transition rates and time-

dependent oscillatory transition rates.
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We may speculate that the greater variability of chromatin accessibility under an oscillatory 

SDTF input allows more cell-to-cell variability of cell fate decisions. For instance, if the cell 

type is determined by a threshold mean accessibility at particular chromatin regions, then 

an oscillatory SDTF may produce both type A and type B, whereas a non-oscillatory SDTF 

may more consistently convert cells to type B (Figure 2G).

Eviction Probability Profiles characterize the in vivo nucleosome unwrapping process

We next sought to use the nucleosome model to investigate how the location of the SDTF 

binding site relative to each nucleosome might affect nucleosome eviction. We utilized 

ATAC-seq data from an IκBα knockout mutant macrophage experimental system (Cheng 

et al., 2021) at a 0 hour baseline and at 4 hours after NFκB has been activated by TNF 

stimulation. Using paired-end ATAC-sequencing to separate nucleosomal read fragments 

from nucleosome-free read fragments, we calculated nucleosome dyad positions across 

the genome (Schep et al., 2015), (Figure S3). We assessed nucleosome dyad locations 

relative to κB sites before and after stimulation and observed a reduction in the number of 

κB-site-associated nucleosomes following NFκB activation, but this reduction depended on 

the distance between the κB site and the nucleosome dyad (Figure 3A).

To understand why the location of the binding motif relative to nucleosome dyad position 

affects nucleosome eviction, we added mechanistic detail to the nucleosome model. We 

allowed the rewrapping parameters to depend on the SDTF binding site location along the 

147 base pair stretch of DNA that encompasses the nucleosome. Hence DNA locations lying 

within a certain range around the SDTF binding site have a rewrapping parameter dn that is 

smaller than bn. For simplicity we used a Gaussian formula, which allowed us to center the 

effect at the SDTF binding site and control the range of its influence. We used the formula 

dn = bn (1 – exp(−(s − n)2/2σ2)), where s is the SDTF binding location and the standard 

deviation σ represents the SDTF effect range (Figure 3B). In this way, dn ≈ bn for a state n 
far from the binding site s, and dn ≈ 0 when n is close to s (Figure 3C).

In the nucleosome model the unwrapping and rewrapping parameters may describe 

cooperativity within the unwrapping mechanism, meaning that every unwrapping step 

facilitates further unwrapping (i.e. an increases and bn decreases in n). If the system is non-

cooperative, then each state n has constant parameters an and bn. Prior evidence suggests that 

the unwrapping process may be highly cooperative, either due to an inherent cooperativity of 

contact points within the nucleosome, or due to the collaborative mechanism between DNA 

binding proteins that promote nucleosome eviction (Miller and Widom, 2003). To achieve 

such behavior, the unwrapping and rewrapping parameters were modeled as an = a1hn−1 and 

bn = b1h−n+1 for each n with cooperativity constant h. The special case of h = 1 indicates 

non-cooperative behavior.

Notice that while the unwrapping parameters are increasing, the average timescales for site 

exposure from state n to state n + 1, or from state 0 to state n, still become progressively 

longer as experimentally observed (Tims et al., 2011). This is because the opening process 

from state n to state n + 1 could involve multiple steps of unwrapping and rewrapping. For 

example, one possible trajectory of DNA from state 5 to state 6 consists of the path 5 → 4 

→ 3 → 4 → 5 → 6 (STAR METHODS Section S6).
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We then tested which binding location is optimal for nucleosome eviction under constant 

SDTF activity. SDTF binding motifs were distributed across the DNA strand in the range 

[−100 bps, 100 bps] centered at the histone dyad (state 7 in Figure 3B). We assumed 

that the SDTF binds at one of the states s in {−3,−2,…,16,17}, which is an extended 

range from the original state space {0,1,…,14} (Figure 1C), so that we can consider SDTF 

binding motifs lying slightly outside the nucleosome. Then for each distance relative to 

the nucleosome dyad, computed as |7 − s| × 10 (bps), we calculated the full eviction 

probability. The resulting behaviors under various levels of cooperativity of the parameters 

an and bn are distinct, as the optimal binding site is either in the center of the nucleosome 

or toward the extremes. Under non-cooperative rates (h = 1), the optimal binding site is at 

the nucleosome dyad so that the full eviction probability is symmetric about the relative 

distance between SDTF binding site and dyad (Figure 3D). In contrast, when the parameters 

model cooperative behavior (h > 1), the optimal site is closer to the unwrapping edge, and 

hence the full eviction graph has a peak close to this edge (Figure 3E left). This is because 

once the first few contacts between DNA and histone are unwrapped, the cooperativity 

of the system facilitates the unwrapping of the remainder. After averaging multiple cells, 

due to the symmetry of nucleosomes unwrapping from either end, the probability-binding 

site plot has a center dip (Figure 3E right). Given such different patterns of eviction 

probability vs. the distance of the SDTF binding site from the dyad, we termed the graph 

the “Eviction Probability Profile” and concluded that it may be used to characterize the in 
vivo nucleosome unwrapping process. In STAR METHODS Section S4.1 and Figure S4, we 

provide a mathematical analysis of the effect of the SDTF binding site on the probability of 

nucleosome eviction.

Model predicts cooperativity based on Eviction Probability Profiles

The shape of the Eviction Probability Profile is altered not only by wrapping cooperativity 

(parameter h) but also by the range of the SDTF binding effect (parameter σ), which is 

likely to be SDTF-specific. If the range is wider, all the rewrapping parameters dn are 

equally affected so that the probability plot becomes more flattened. We first examined 

computationally how different values of the cooperativity parameter h and the SDTF range 

parameter σ could alter the chromatin accessibility (Figure 4A). We tested multiple potential 

values of this range parameter, as well as cooperativity parameters h = 1 (non-cooperative), 

1.1 and 1.2 (high cooperativity). We also used σ2 = 2.5, 10 and 50 for the range of the SDTF 

binding effect. It is notable that for higher cooperativity and narrower SDTF binding effect 

range, the plot of full DNA eviction probability displays a clearer center valley.

Using this relation between the model parameters and the Eviction Probability Profile, we 

next compared these computational results to experimental measurements. We fit model 

parameters to data on nucleosome eviction probabilities given the SDTF binding motif 

location relative to the dyad. The parameter σ corresponds to the standard deviation of the 

Gaussian curve describing the influence of the SDTF binding, in units of number of binding 

sites. Since these binding sites are approximately 10 base pairs away from each other, a 

value of σ = 2 would correspond to a standard deviation of around 20 base pairs, or a range 

of 40 base pairs around the SDTF binding site.
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We returned to the time-course experimental data from macrophages responding to TNF 

stimulation (Figure 3A). As ATAC-seq data can provide an estimate of the nucleosome 

positions, we assigned nucleosomes to their nearest TSS at the baseline time point 0 

hours and tracked whether the nucleosomes matching to the same TSS changed in position 

or disappeared at the later time point of 4 hours – quantified by having fewer or no 

nucleosomes mapping to that TSS (Methods). Using the difference of the nucleosome counts 

between two time points, we computed experimental full nucleosome eviction probability 

for each relative motif distance by 240 min after TNF stimulation as

Prob X 240 = 14 = 1 − Prob X 240 < 14 ≈ 1 − # of nucleosomeat4ℎr
# of nucleosomeat0ℎr .

We used this data to fit values of the different parameters in our model by approximating 

an initial set of parameters, followed by gradient descent (CourantRichard, 1994) to find 

the optimal parameter set. Fitted parameters included the cooperativity parameter, SDTF 

range parameter, unwrapping/rewrapping parameters, and SDTF binding/unbinding rates. 

For IκBα knockout macrophages treated with TNF for 4 hours (Cheng et al, 2021), fitting 

these parameters resulted in the best-fit Eviction Probability Profile (Figure 4B). (See STAR 

METHODS Section S4.2 for additional details, and Table S1 for the resulting parameter 

values.) Based on the shape of the fitted Eviction Probability Profile, we found that the 

nucleosome unwrapping/rewrapping parameters are likely cooperative. The range of SDTF 

effect was fitted at σ = 2.1, which corresponds to a radius of around 20 base pairs from 

the SDTF binding site, or 40 base pairs around the binding site. The initial unwrapping 

parameter a1 = 0.16 indicates that the first DNA unwrapping from the fully wrapped 

configuration takes approximately 1/0.16 = 6.25 minutes on average. See Figure S5 for 

an analysis of the error between the Eviction Probability Profiles of the data and the model. 

Furthermore, recent studies have shown that nucleosome eviction is likely to take place 

under a long NFκB signal pulse of approximately 120 minutes, but that it rarely occurs 

under a shorter NFκB signal pulse of less than 45 minutes (Cheng et al., 2021), and similar 

observations were made in fibroblasts after 60 minutes and 150 minutes, respectively (Sen et 

al., 2020). These observations can be reproduced with our stochastic model under the fitted 

parameters (Figure 4C).

To further compare the model with experimental data, we examined several properties 

of the chromatin locations. We hypothesized that the ATAC-seq distributions across 

genomic locations in both WT and Mut macrophages could be reproduced by simulating 

the stochastic model using the fitted parameters. Indeed, under fitted parameter values 

(Table S1), simulations of the stochastic model reproduced two experimental findings 

(Figure 4D–E). First, comparing the two systems, WT and Mut, allowed us to assess the 

distribution of stimulus-induced fold changes for each genomic location that are attributable 

to differences in signaling dynamics (Figure 4D). Second, the two experimental systems 

displayed differences in the amount of post-stimulation chromatin accessibility among 

genomic locations, which was recapitulated by the model (Figure 4E). We also computed 

the total variation distance, one of the most common measurements for similarity of given 

distributions (Levin & Peres, 2017), between the two experimentally measured distributions 

(see STAR METHODS) and found it to be 0.25. The distance between the two modeled 
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distributions was 0.22, showing that modeled difference between the DNA accessibility 

under WT and Mut signals was similar to that from experiments. This comparison with 

experimental data helped validate the dynamic rates of DNA wrapping and unwrapping in 

the model.

Eviction Probability Profiles under more general parameter settings

We next found that the Eviction Probability Profiles showed consistent shapes even under 

more biophysically nuanced SDTF binding parameters κon. We first allowed κon(s) to vary 

as a function of the binding location s. We set κon(s) to be smallest at the most inaccessible 

site, the nucleosome dyad (Figure 5A). Under such spatially inhomogeneous SDTF binding 

rates, the full Eviction Probability Profile has the same characteristic shape as before: In 

the cooperative case one can see two peaks, and in the non-cooperative case there is only a 

single peak (Figure 5B). Second, we assumed that the SDTF binding rate κon(n) depends on 

the state n of the nucleosome for a fixed SDTF binding location s. It is reasonable to assume 

that when the SDTF binding location is exposed by DNA unwrapping, the SDTF has higher 

binding rate than when the binding site is buried by wrapped DNA (Figure 5C). Under this 

general setting, the Eviction Probability Profile robustly showed the characteristic shapes for 

both the cooperative and non-cooperative cases (Figure 5D). The consistency of the model 

predictions to different parameter assumptions supports the robustness of the behaviors 

generated by our stochastic epigenome model as shown in Figure S6 and is mathematically 

verified in STAR METHODS Section S5.

Fitting the model to a different dataset results in consistent behavior

We hypothesized that the model parameters associated with nucleosome dynamics should be 

consistent in a second experiment with the same SDTF activated, but by a different ligand. 

We thus stimulated wild-type macrophages with LPS for 4hrs to generate non-oscillatory 

NFκB dynamics (Figure 6A), analogous to the non-oscillatory NFκB dynamics generated 

by TNF stimulation in IκBα knockout mutant macrophages. We again performed paired-

end ATAC-sequencing and identified the location of NFκB binding sites relative to the 

nucleosome dyad (Figure 6B). Comparing nucleosome positions at 0hrs and 4hrs resulted in 

the experimental Eviction Probability Profile, and the mathematical model was again fit to 

this data.

Experiments were all performed in macrophages, but LPS stimulation may activate greater 

amounts of NFκB than TNF. Hence, we first fit the model to the LPS-stimulated dataset 

with all the same parameters obtained from the previous fit to TNF-simulated data, 

but slightly adjusted SDTF unbinding fraction (BF) reflecting greater amount of NFκB. 

Remarkably, the model closely reproduced the Eviction Probability Profile given by the 

LPS-stimulated dataset (Figure 6C). We next fit the Eviction Probability Profile to the 

LPS-stimulated data using gradient descent, and the resulting parameters closely matched 

the parameters obtained from fitting to the TNF-stimulated dataset (Figure 6C, Table S1). 

We found a remarkable similarity in the estimated nucleosome unwrapping and rewrapping 

parameters, as well as in the range of NFκB effect. For example, the cooperativity constant 

is estimated at h = 1.4 with this new data, while it was measured at h = 1.35 with 

the previous TNF-stimulated data. This value is exponentiated to specify the unwrapping 
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parameters at each step, and even at step 13, this difference between gives a fold change in 

parameters of only (1.413 × 0.15)/(1.3513 × 0.16) = 1.48.

The unwrapping/rewrapping parameters and the cooperativity may be specific to a set of 

nucleosomes, but the range of the SDTF effect may be SDTF-specific. We therefore next 

asked to what extent the Eviction Probability Profiles remained consistent under another 

SDTF. Interferon-regulatory factors (IRFs) are also activated by LPS (Figure 6A), affecting 

chromatin accessibility and enhancer formation at genomic positions containing IRF binding 

motifs (Cheng et al, 2021). We mapped the locations of IRF motifs in relation to the 

nucleosome dyads estimated from ATAC-seq data (Figure 6B), and we plotted the Eviction 

Probability Profile by comparing nucleosomes before stimulation and 4hrs after. We again 

noted a double-peaked profile suggestive of cooperativity in nucleosome unwrapping/ 

rewrapping parameters. To quantify this, we fit the stochastic model to the profile and 

obtained new parameter estimations for these IRF-affected epigenomic regions (Figure 6D, 

Table S1). A key difference between the parameters previously fit to NFκB data was the 

unwrapping parameter an = 0.07, compared with an = 0.15 for the previous model. As NFκB 

and IRF bind to their motifs with distinct biophysical characteristics, stereochemistries, and 

to different locations of the genome, our results suggest that such differences also determine 

their nucleosome eviction characteristics.

The Eviction Probability Profile is a fingerprint for kinetic features of nucleosome 
dynamics

We asked how different model parameters might affect the features of the Eviction 

Probability Profile, and we found that changes in model parameters could be directly 

mapped to changes in particular geometrical characteristics of the Eviction Probability 

Profile (Figure 7). The unwrapping and rewrapping rates vertically translate the Eviction 

Probability Profile, since larger unwrapping parameters lead to larger eviction probabilities. 

Adjusting the SDTF unbinding fraction BF stretches the peaks up and down because the 

strength of the SDTF binding effect is determined by the SDTF binding fraction parameter 

(See STAR METHODS Section S1.2 and Figure S7 for a mathematical proof for this fact). 

More DNA-histone contact regions are influenced if the range of the SDTF binding effect 

is wide. Hence the range parameter σ changes the depth of the center dip in the Eviction 

Probability Profile. The other parameter, BF, controls the depth of the center dip as well, but 

a small σ particularly can create plateaus at both ends since the DNA around ±100 relative 

base pairs is never affected by the SDTF binding when the effect range is narrow. The 

optimal SDTF binding location tends to shift towards the edges under strong cooperativity, 

so that the distance between two peaks in the Eviction Probability Profile increases as 

the cooperativity parameter h increases. Based on this one-to-one correspondence, we can 

systematically find a good initial prediction for the parameter fitting to given data, and this 

prediction can be used as an initial condition of the gradient descent searching algorithm for 

finer parameter fitting.
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DISCUSSION

Our study pairs stochastic modeling and epigenomic chromatin accessibility measurements 

from primary cells to investigate the biophysical regulatory rules of histone octamer-DNA 

interactions that determine nucleosome positioning. Using probability theory, we described 

nucleosome eviction as a success-or-failure game scheme, as DNA has a chance of full 

eviction only under the on-phase of the SDTF signal. This scheme revealed the role of 

oscillatory inputs in nucleosome eviction, and heterogeneity in DNA accessibility under 

oscillatory SDTF dynamics. Nucleosome positioning data provided the nucleosome Eviction 

Probability Profile as a function of SDTF motif location, and fitting model parameters to the 

Eviction Probability Profile revealed quantitative features of nucleosome dynamics: 1) 30–

40 base pairs of DNA-histone contacts around the SDTF binding site are disrupted, 2) the 

expected initial DNA unwrapping time from the fully wrapped state is about 7 minutes, and 

3) evidence of cooperativity in the DNA unwrapping steps. Supportive of this model, these 

quantitative features of our model are consistent with previous experimental observations 

(Cheng et al., 2021).

Naturally, as with all mathematical models, the in vivo cellular system is more complex 

than the model describes, and our model is necessarily an abstraction describing one aspect 

of the dynamic epigenome that results when mammalian cells encounter an inflammatory 

threat. Nucleosome dynamics at each location along the genome are influenced by multiple 

factors, including but not limited to the stiffness of the local DNA, the histone marks or 

histone variants that are present, the density of nucleosomes at that region, and the binding 

motif location in relation to the position of the nucleosome (Brahma and Henikoff, 2020). 

However, our model is able to assess several characteristics of nucleosome dynamics that 

may govern the rules and parameter rates at which nucleosomes are evicted across the 

epigenome. These predictions help formulate hypotheses that are compared to time-course 

epigenomic sequencing data, which allows the selection of one of the hypotheses or the 

establishment of parameter ranges.

Notably, the model can be used to evaluate numerous different stimulus-response systems, 

including those with different SDTFs activated (Calderon et al., 2019), or different cell 

types and genomic locations that may have different kinetic rates governing the unwrapping 

and rewrapping of the nucleosome. Here we focused on immune responses and the 

resulting epigenome of innate immune macrophages, but the modeling approach can 

be applied to other contexts as well where cells encounter an inflammatory signal that 

produces stimulus-induced epigenomic changes (for example, cancer cell plasticity during 

immunotherapy). For innate immune responses particularly, the variation in the baseline 

epigenome that results from a prior exposure, rather than variation in genetically-encoded 

receptors like for T- and B-cells, may be a critical component of innate immune memory and 

response to future inflammatory threats (Netea et al., 2016). Thus, a predictive mechanistic 

understanding of how SDTF activity can evict nucleosomes can guide further investigation 

into epigenomic reprogramming events induced by inflammation.

The development and parameterization of this mechanistic model has several implications. 

First, the model may allow predictions of nucleosome eviction probabilities in response 
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to any SDTF and any activation dynamics. Second, because the relationship of the motif 

location and nucleosome dyad correlates with eviction probability, the model can make 

a prediction on the probability for nucleosome eviction in a location-specific manner. 

Third, the model arrives at biological insights related to the nucleosome parameters 

themselves: by comparing pre- and post-stimulation nucleosome distributions, we can 

calculate experimental nucleosome eviction probabilities and fit the model to estimate the 

degree of cooperativity within the nucleosome and the range of effect of SDTF binding on 

disrupting nucleosomal contact-points.

This stochastic model describes the nucleosome, which is the fundamental unit of chromatin 

containing multi-step dynamic processes, and serves as a starting point for describing other 

epigenomic features (Bilokapic et al., 2018; Eslami-Mossallam et al., 2016; Hall et al., 2009; 

Henikoff, 2016). Future work incorporating other key elements of nucleosome dynamics, 

such as the structure of nucleosome arrays and the effect of histone modifications, or 

behaviors such as nucleosome sliding or rolling, which we have not yet considered here, 

may reveal further insights. In addition, although here we use an optimization approach 

to analyze this model topology and initial conditions with respect to the data, model 

parameters can also be further trained with machine learning approaches that incorporate 

additional layers of epigenomic data as training data in order for the parameters to 

incorporate more elements of the epigenomic complexity that exists in vivo. Our modeling 

framework and these further possibilities support the feasibility of combining biophysically-

detailed mechanistic models of epigenetic processes, with next generation sequencing 

epigenome-wide measurements, to characterize kinetic rules controlling cellular responses 

to inflammation.

Limitations of the Study

Our stochastic model describes one process of how epigenomic states may be altered – 

through the activation of SDTFs and the effect of their DNA binding in disrupting the 

positions of nucleosomes. Within cells however, other proteins and enzymes also play 

key roles in how readily nucleosomes are evicted, for example the deposition of histone 

modifications, the presence of histone chaperones, or histone variants substituting for 

the canonical histone subunits. The activity of these other processes likely varies across 

different cell types and different cell states, for example in cancer cells vs. immune cells 

vs. epithelial cells. The models we present here, while biophysically detailed, still represent 

an abstraction of more complex interplay among many chromatin remodeling proteins. In 

another system, an increase in the estimated cooperativity, or range of SDTF effect, may 

suggest not simply a direct biophysical change in the modeled components, but rather could 

also indicate the activity of unmodeled proteins. Yet, using mathematical models such as 

those described here to estimate such parameters across different experimental systems will 

suggest further hypotheses that motivate the continual inclusion of additional mechanisms 

into future models.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and materials should be 

directed to and will be fulfilled by the Lead Contact, German Enciso (enciso@uci.edu).

Materials Availability—No materials were generated in this paper.

Data and Code Availability

• ATAC-seq data have been deposited at GEO and are publicly available as of the 

date of publication. Accession numbers are listed in the key resources table.

• This paper analyzes existing, publicly available data. These accession numbers 

for the datasets are listed in the key resources table.

• Model and analysis code includes MATLAB code for running the stochastic 

model, and bioinformatic analysis of sequencing data. All original code has been 

deposited to Github and is publicly available as of the date of publication. DOIs 

are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macrophage cell culture—All mouse experiments were approved by the UCLA animal 

research committee under protocols ARC2014–110 and ARC-2014–126. Macrophages were 

obtained via two methods: (1) differentiating bone-marrow-derived monocytes from male 

C57BL/6 mice in DMEM/10% FBS + 30% L929 supernatant for a total of 7 days, or 

(2) differentiating immortalized myeloid progenitors (iMPs) originally derived from male 

C57BL/6 mice, in DMEM/10% FBS + 30% L929 supernatant for a total of 10 days. 

BMDM data was obtained from paired-end resequencing of the same libraries that had been 

sequenced single-ended in Cheng et al., 2021, so no additional mice were used for this 

paper. As described in Cheng et al., 2021, sex-matched bone marrow-derived macrophages 

(BMDMs) were prepared by culturing bone marrow monocytes from femurs of 8–12-week-

old mice in DMEM/10% FBS + 30% L929 supernatant medium using standard methods 

(Cheng et al., 2021, Adelaja et al., 2021). BMDMs were re-plated in experimental dishes 

on day 4, and stimulated on day 7 with 10ng/mL murine TNF (Roche 11271156001) for 4 

hours. For iMP-derived macrophages (iMPDMs), cells were replated into 6cm plates with 

new media on day 7, at a density of ~20k cells/cm2. On day 10, cells were stimulated 

100ng/mL lipopolysaccharide (LPS, Sigma Aldrich) for 4 hours.

METHOD DETAILS

ATAC sequencing—Control and stimulated immortalized myeloid progenitor derived 

macrophages (iMPDMs) were dissociated with Accutase (Thermo Fisher Scientific), and 

50,000 cells were used per sample. Cell membranes were lysed using cold lysis buffer 

(10mM Tris-HCl pH7.5, 32 3mM MgCl2, 10mM NaCl and 0.1% IGEPAL CA-630). Nuclei 

Kim et al. Page 15

Cell Rep. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were pelleted by centrifugation for 10 minutes at 500 × g and suspended in transposase 

reaction mixture (25 μl of 2X TD Buffer (Illumina), 2.5 μl of TD Enzyme 1 (Illumina), and 

22.5 μl of nuclease-free water), and the transposase reaction was performed for 30 minutes 

at 37C in a thermomixer shaker. DNA was purified using MinElute PCR purification kit 

(QIAGEN, Hilden, Germany). Libraries were prepared for sequencing using Nextera DNA 

Library Preparation Kit (Illumina, FC-121). The libraries were purified using MinElute PCR 

purification kit (QIAGEN) and quantified using KAPA Library Quantification Kit (KAPA 

Biosystems). Libraries were sequenced paired end 2×100 on Illumina Novaseq.

QUANTIFICATION AND STATISTICAL ANALYSIS

Model simulations—Model implementation and simulations were performed in 

MATLAB 2016b. Further detailed description of the model can be found in the METHOD 

DETAILS.

Coefficients Variation—The coefficient variation for a probability distribution or a 

random variable is calculated with the standard deviation divided with the mean. Since 

this quantity gives a normalized degree of variation of a given probability distribution, we 

can use them to compare the variabilities of two probability distributions as described in 

Figure 2G.

Total variation distance—We used the total variation distance to measure similarities 

between the distributions of chromatin accessibilities under an oscillatory signal 

and a constant signal shown in Figure 4E. For probability distribution P1 and P2 

defined on the same finite state space, the total variation distance is defined as 

P1 − P2 tv = maxA P1 A − P2 A = 1
2 ∑x |P1 x − P2 x . The usage of this distance can be 

found in “Model predicts cooperativity based on Eviction Probability Profiles” in Results.

ATAC-seq data processing—Macrophage ATAC-seq samples were generated as 

previously described (Buenrostro et al., 2015), and single-end data was obtained from 

(Cheng et al., 2021). Macrophage ATAC-seq libraries of the IκBα knockout mouse 

from Cheng et al., 2021 were re-sequenced paired-end 2×150 on HiSeq4000. Only paired-

end sequencing allows the separation of nucleosomal fragments from non-nucleosomal 

fragments, as read fragments with lengths shorter than the nucleosome footprint of ~150 

basepairs can be classified as nucleosome-free accessible regions, while read fragments 

of ~150bp, or a multiple of 150bp, can be classified as accessible nucleosomal genomic 

regions, with cut sites flanking nucleosome boundaries. ATAC-seq fastqs were processed 

through the ENCODE-DCC ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-

seq-pipeline). The reads were trimmed using cutadapt, and aligned to mm10 or hg38 

using bowtie2. Picard was used to de-duplicate reads, which were then filtered for high 

quality, paired reads using samtools. Peak calling was performed using macs2. The optimal 

Irreproducible Discovery Rate (IDR) thresholded peak output was used for all downstream 

analyses, with a threshold p-value of 0.05. Other ENCODE3 parameters were enforced 

with the flag --encode3. Reads that mapped to mitochondrial genes or blacklisted regions, 

as defined by the ENCODE pipeline, were removed. The peak files were merged using 

bedtools merge to create a consensus set of peaks across all samples.
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ATAC-seq nucleosome analysis—Nucleosome positions were called using the merged 

regions, from paired-end ATAC-sequencing data, using the published software NucleoATAC 

(Schep et al., 2015). An example genomic location Cxcl2, illustrates the information 

obtained is orthogonal to simply chromatin accessibility (Figure S6). The output of 

this software provides putative nucleosomal and nucleosome-free regions of accessible 

chromatin, by analyzing the patterns of ATAC-seq read fragment sizes. As described in 

full detail in Schep et al, 2015, nucleosome occupancy is called by maximum likelihood 

estimation, and nucleosome dyad positions are called by considering the local maxima of 

candidate nucleosome positions. Genomic locations of nucleosome positions called were 

annotated, and NFκB motifs were found using the tool HOMER (Heinz et al., 2010). 

Motif searching was done using the three NFκB motif position weight matrices within 

the HOMER database, for length 9, 10, 11. Motifs were listed if they occurred within 

+/−200 basepairs of the nucleosome dyad. Nucleosomes across timepoints were matched by 

assigning them to their closest transcription start site for each sample. Nucleosomes assigned 

to a TSS for the baseline time point, and subsequently not found at that TSS at the later time 

point, were considered evicted. For analyses where the model calculated a probability of 

nucleosome eviction, nucleosomes that appeared, and matched to a new gene at the second 

time point but not in the first, were ignored. Probabilities of eviction p with respect to 

location of the binding motif and distance from nucleosome dyad were calculated by taking 

bins of distance from dyad, and using the following formula for each bin: p = nt = 0 – nt = 4
nt = 0

, 

where nt=h is the number of nucleosomes at h hours.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A stochastic model accounts for nucleosome eviction by dynamic SDTF activity.
A. Immune responses activate SDTFs with different temporal dynamics, ultimately affecting 

chromatin accessibility. B. Schematic for the unwrapping/rewrapping model for nucleosome 

dynamics under SDTF signaling dynamics. C. State configuration of the stochastic 

nucleosome model, where ai, bi, ci, di represent rate parameters. (See also Figure S1 and 

S7).
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Figure 2: Periodicity of SDTF oscillations affects DNA accessibility.
A. Experimental knowledge of SDTF signaling dynamics in single cells (top: two individual 

single cells, bottom: hundreds of single cells). WT and Mut cells activate NFκB with 

different temporal dynamics (Adelaja et al., 2021). B-D. Chromatin response to oscillatory 

SDTF dynamics with different frequency. B. SDTF dynamics with rapid (top) or slow 

oscillation (bottom). C. 50 sample traces of DNA dynamics under the oscillatory SDTF 

inputs of half-period=10min (top) and 60min (bottom). Red traces reach the fully evicted 

state, and black traces do not. D. Time evolution of histone eviction probability. E-G. 
Parameter sensitivity under oscillatory vs. constant SDTF signals. E. Oscillatory and 

constant SDTF signal inputs. F. Full eviction probability vs unwrap parameter cooperativity 

(h = 1.3). m represents the fold-change increase in unwrapping/rewrapping parameters. G. 
Mean chromatin accessibility distribution at t = 500 min with the oscillatory or constant 

SDTF dynamics. To model heterogeneous cell environment, we randomly perturb the 

system parameters. Coefficient variation (standard deviation/mean) of the distributions under 

oscillatory SDTF and constant SDTF are 0.35 and 0.12, respectively. (See also Figure S2).
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Figure 3: Modeling SDTF binding sites, range of SDTF effect, and cooperativity in unwrapping 
steps reveals potential Eviction Probability Profiles.
A. Summary of NFκB motifs adjacent to nucleosome dyads. Shown are NFκB motifs in 

relation to each nucleosome dyad called by NucleoATAC (Schep et al., 2015) at 0 hours and 

4 hours after TNF stimulation, in male mouse BMDMs (no replicates used, n=1 for each 

timepoint, validation experiment performed in Figure 6). Locations shown have an NFκB 

motif +/− 100bp of the nucleosome dyad. B. SDTFs locally affects the DNA-histone contact 

regions near the SDTF binding site. C. The range parameter σ determines how widely the 

SDTF affects the rewrapping parameters. D. Computation of the full eviction probability via 

the stochastic model shows that motifs at the dyad promote greater nucleosome unwrapping 

probability under a non-oscillatory SDTF signal and non-cooperative open/close parameters. 

E. The full eviction probability is maximal at the SDTF binding location between the 

edge and dyad under cooperative unwrap/rewrap parameters. Assuming 50% of right edge-

unwrapping and 50% of left edge-unwrapping, the average full eviction probability displays 

a center valley. (See also Figure S3, S4, and S6).
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Figure 4: Fitting the model Eviction Probability Profiles to SDTF binding location data provides 
evidence of cooperativity and estimates model parameters.
A. Probabilities of full eviction with respect to relative motif position from the nucleosome 

dyad, and SDTF binding effect range for the macrophage system under non-oscillatory 

NFκB signal. Three different ranges (σ2 = 1.5, 10, and 50) and cooperativity parameters (h = 

1, 1.1 and 1.2) are chosen. B. Left: Nucleosome counts from male mouse BMDM ATAC-seq 

samples under non-oscillatory TNF-induced NFκB activity at NFκB motifs at 0 hours and 4 

hours (no replicates used, n=1 for each timepoint, validation experiment performed in Figure 

6). Right: Full eviction probability vs. SDTF binding locations. Experiment-based Eviction 

Probability Profile (red curves). Model-based Eviction Probability Profile before and after 

parameter fitting by gradient descent (blue curves). C. Full DNA eviction probability under 

a steady NFκB input signal of different durations. Red: Experimental measurements shown 

in Cheng et al., 2021. Blue: Simulated values using the stochastic model with the fitted 

parameters in Table S1. D. Left: Fold change (WT/Mut) of resulting chromatin accessibility 

after activation of SDTFs with different dynamics. Two biological replicates were used 

for each genotype (n=2). Right: Reproduction of the experimental measurements using the 

stochastic nucleosome model under the fitted parameters listed in Table S1. Counts are 

converted to proportion due to simulation of a different number of nucleosome locations. 

E. Left: Variance in chromatin accessibility across genomic locations at 4 hours in WT and 

Mut cells, as measured by bulk ATACseq. Two biological replicates were used for each 

genotype (n=2). Right: Reproduction of the experimental measurements using the stochastic 

nucleosome model. (See also Figure S5).
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Figure 5: Consistency of the Eviction Probability Profiles under more general parameter 
settings.
A. Generalization of the model where SDTF binding rate κon(s) is a function of the binding 

location s. B. Resulting Eviction Probability Profiles based on the binding rates illustrated 

in A. C. Generalization of the model where SDTF binding rate κon(n) is a function of the 

DNA opening state n. D. Resulting Eviction Probability Profiles based on the binding rates 

illustrated in C. (See also Figure S6).
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Figure 6: Stimulation of macrophages with LPS leads to consistent modeling results.
A. Schematic of SDTF activation in response to TNF or LPS. TNF stimulation results 

in NFκB activity, while LPS stimulation results in both NFκB and IRF activity. B. Top: 

Experimental and simulated nucleosome counts after LPS stimulation, for NFκB-associated 

nucleosome locations after 0hrs and 4hrs (n=1 for each timepoint). Bottom: Analogous 

counts for IRF-associated nucleosome locations (n=1 for each timepoint). C. Eviction 

Probability Profiles associated with LPS-induced NFκB activity, using the same model 

parameters as the TNF-induced data (green) and direct fit (blue). D. Eviction Probability 

Profiles associated with LPS-induced IRF3 activity. *: All the parameters are the same as the 

fitted parameters with the TNF data (Figure 4) except for the SDTF unbinding fraction, BF. 

(See also Figure S5).
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Figure 7: The Eviction Probability Profile is a fingerprint for kinetic features of nucleosome 
dynamics.
The geometric characteristics of the Eviction Probability Profile has one-to-one 

correspondence to the parameters of the stochastic epigenome model. For a given location-

specific nucleosome eviction profile, this correspondence can be used to identify epigenetic 

features such as the DNA unwrapping parameter, the SDTF binding fraction, and the 

cooperativity. (See also Figure S5).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

LPS Sigma, B5:055 L2880

murine TNF Roche 11271156001

Experimental Models: Cell lines

Immortalized Myeloid Progenitor-derived 
macrophages

(Singh et al., 2022) N/A

Experimental Models: Organisms

C57Bl/6 mouse Nfkbia−/−Rel−/−Tnf−/−Nfkbie−/− 

BMDMs
(Cheng et al., 2021) N/A

Deposited Data

Macrophage PE ATACseq This paper GSE156385

Macrophage SE ATACseq (Cheng et al., 2021) GSE146068

Software and Algorithms

MATLAB 2016b https://matlab.mathworks.com/

R (version 4.0.3) https://www.r-project.org/

ENCODE-DCC ATACseq Pipeline https://github.com/ENCODE-DCC/atac-seq-pipeline

bedtools (Quinlan and Hall, 2010) https://bedtools.readthedocs.io/en/latest/

NucleoATAC (Schep et al., 2015) https://github.com/GreenleafLab/NucleoATAC

HOMER (Heinz et al., 2010) http://homer.ucsd.edu/homer/ngs/peakMotifs.html

Nucleosome Model Code This paper DOI: 10.5281/zenodo.6503369 (https://github.com/
signalingsystemslab/nucleosome_stochasticModel)
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