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{cedzhang, zyzzyva, grandg, jbt}@mit.edu

Abstract

Human language richly invokes our intuitive physical knowl-
edge. We talk about physical objects, scenes, properties, and
events; and we can ask questions and answer them with predic-
tions and inferences about physical worlds described entirely
in language. How does language construct meanings that con-
nect to our general physical reasoning? In this paper, we pro-
pose PiLoT, a computational model that maps language into a
probabilistic language of thought—meanings are constructed
as probabilistic programs, which provide a formal basis for
probabilistic and physical reasoning. Our model uses a large
language model (LLM) to map from language to meanings
and a probabilistic physics engine to support inferences over
scenes described in language. We conduct a linguistic reason-
ing experiment based on prior psychophysics studies that re-
quires reasoning about physical outcomes based on linguistic
descriptions. We show that PiLoT well predicts human judg-
ments across this experiment and outperforms baseline models
which use the LLM to directly perform the same task.
Keywords: natural language understanding; probabilistic pro-
gramming; world model; semantic parsing; intuitive physics

Introduction
Physical intuitions pervade our everyday language. We can
describe and imagine a tall stack of plates, a heavy box, and
objects that fall, bounce, and collide. We flexibly answer
questions that require physical prediction (what will happen if
a kid crashes into that table stacked with plates?) or inference
(how heavy is that box that no one can lift?). Our intuitions
hold even when language is vague (how tall is tall?) or we
are uncertain about aspects of the world itself.

How does the meaning we make from language drive this
kind of physical reasoning? That is, how does language con-
struct the mental representations that allow us to imagine
these possible worlds or answer questions about them based
on our physical knowledge? The formal semantics tradition
emphasizes the importance of compositionality and consid-
ers truth conditions central to meaning, but it does not directly
engages with how meaning connects to cognitive mechanisms
(Heim & Kratzer, 1998). One influential cognitive account of
semantics suggests that meanings are simulators, such that
language constructs composable representations for mental
simulation (Barsalou et al., 2008). Other work has considered
specifically how structured representations of meaning con-
vey physical information, with a focus on how verb meanings
may be realized into cognitively-grounded physical concepts
of motion and forces (Talmy, 1988; Levin, 1993; Schuler,
2005). Finally, distributional semantics accounts suggest that

certain aspects of linguistic meaning are correlated with the
statistical distribution of words used in context (Harris, 1954;
Chater et al., 2006), which may include latent information
about the physical world.

These accounts leave open important questions for a com-
plete computational account bridging language and physical
reasoning. What formal representations of meaning can sup-
port and drive mental simulation, allowing us to tractably
imagine and run simulations over arbitrary scenes described
in language? How can language abstractly convey many pos-
sible worlds—such as the many worlds in which there are
some plates in a tall stack on a table—so that we can still
ground these worlds in simulation or physical knowledge?

Further, how do the representations of linguistic mean-
ing relate to those that allow us to reason about physics in-
dependent of language? Extensive developmental evidence
suggests that, even prior to acquiring language, we have a
core understanding of the physical principles that govern our
world (Spelke, 1990; Spelke et al., 1995; Baillargeon, 2004;
Hespos & Baillargeon, 2008; Rips & Hespos, 2015). A pro-
ductive line of computational cognitive models, in turn, has
modeled human physical understanding as probabilistic infer-
ence over a mental physics engine, using representations like
those for simulations in video games (T. D. Ullman et al.,
2010; T. Ullman et al., 2012; Battaglia et al., 2013; T. D. Ull-
man et al., 2017). But how are these capabilities integrated
with language, allowing us to imagine and draw inferences
over possible physical worlds that we describe in words?

In this paper, we propose PiLoT (Physics in a Language of
Thought), a computational model that maps language into a
probabilistic language of thought which supports physical
simulation and inference (Fig. 1). We propose this as a mod-
ular, cognitive framework that relates meaning in language to
general physical reasoning abilities from broader cognition.
We aim to unify and formalize distinct aspects of meaning
in this domain that we have discussed—meanings as com-
positional and symbolic representations, meanings as repre-
sentations for mental and physical simulation, and meanings
as correlated with the distributional statistics of language—
within an overarching computational model.

Our model builds directly on a theoretical background that
suggests we construct linguistic meaning from cognitive rep-
resentations in a compositional language of thought (Fodor,
1975; Jackendoff, 1985; Lakoff, 1988) and more recent pro-
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Human intuitive physics language task

Scenario: Imagine there is a table with some 
blocks on it; blocks can be red or yellow.

There is one tall stack of yellow blocks on the left 
edge of the table, and there are no red blocks on 
the right edge.

Physics in a Language of Thought (PiLoT)

There is one tall stack of yellow blocks on the left 
edge of the table.

Translate: Semantics into probabilistic 
program conditions using a large language 
model (LLM) trained on code

Simulate: Sample possible worlds from conditioned probabilistic program with physics 
simulation engine

Question: If the table is bumped hard 
enough to knock at least one of the 
blocks onto the floor, are there going to 
be more red blocks or yellow blocks
on the floor? 

Distribution over model answers reflects 
probabilistic physical reasoning over 
possible scenes

...

Collect human 
answers

Distribution over human answers

World 1

Answer: 6 – Very likely 
more yellow blocks

...

Are there going to be more
red blocks or yellow blocks 
on the floor? 

Answer: 7 – Definitely 
more yellow blocks

World 2

World 3

Answer: 6 – Very likely 
more yellow blocks

condition(
filter(isOnEdge, 
filter(isOnRight, 
filter(isRed, world.stacks)

)).length == 0)

There are no red blocks on the right edge.

condition(
filter(isOnEdge, 
filter(isOnLeft, 
filter(isTall, 
filter(isYellow, world.stacks)

))).length == 1)

Answer: 6 – Very likely 
more yellow blocks

Answer: 7 – Definitely 
more yellow blocks more red more yellow

Figure 1: Human language understanding draws on our flexible, intuitive physical knowledge. (Top) We measure human
judgements on a domain of linguistic scene reasoning tasks (inspired by Battaglia et al. (2013)), asking subjects about physical
outcomes based on descriptions of a tabletop scene with varying configurations of red and yellow blocks. (Bottom) Our model,
PiLoT, reasons about these descriptions by first translating language into formal program semantics using a large statistical
language-code translation model. Our semantics are probabilistic program expressions that condition a generative model
over possible scenes. To answer questions about physical outcomes, our model then samples and simulates scenes from the
conditioned model using a physics engine, producing probabilistic inferences that correlate well with human judgments.

posals that address uncertainty in meaning using probabilistic
semantic representations (van Eijck & Lappin, 2012; Cooper
et al., 2015; Goodman & Lassiter, 2015). By modeling se-
mantics as probabilistic programs grounded in a physics en-
gine, we show how language can map into symbolic mean-
ing representations that in turn support probabilistic, physical
simulation and physical inferences over language.

One open question for many symbolic linguistic theories,
however, has long been how we might actually implement a
broad-coverage and context-sensitive meaning function. In
this work, we propose that the meaning functions can be in-
stantiated as general joint distributions between natural lan-
guage and symbolic representations. We model this using
large language models (LLMs) trained on code to translate
between sentences in language and symbolic semantic ex-
pressions and show that this approach can generalize across
a broad range of sentences in context. LLMs are clearly not
trained in cognitively plausible ways, but we use them here
as an in-principle instantiation of the distributional semantics
hypothesis, suggesting how it can be used to relate language
and symbolic representations learned from prior joint distri-
butions over both.

This model draws on and extends important ideas from
the most closely related computational work, towards a more
complete account of robust, human-like physical reasoning
over language. As with Liu et al. (2022), we show that LLMs
can robustly parse language into programs, and interface with

a physics engine to ground language in physical simulation.
To extend this approach towards the probabilistic judgments
we make about everyday physical language, we build on prior
computational cognitive approaches in linguisitics and psy-
chophysics. Inspired by Goodman & Lassiter (2015), we
parse language into a probabilistic programming language,
formalizing how meanings can condition and support infer-
ences over possible worlds. By integrating these semantics
with the probabilistic physics engine used in Battaglia et al.
(2013), we show how language can support flexible, proba-
bilistic inferences about the physical world.

We evaluate this model in comparison to human behavior
using a new domain of linguistic physical reasoning tasks.
These tasks are inspired by an existing battery of visual psy-
chophysics tasks (Téglás et al., 2011; Battaglia et al., 2013),
but designed to evaluate how these prior results on physical
reasoning relate to information conveyed linguistically. Our
base task combines descriptions of physical scenes of vary-
ing object configurations (Imagine a table with some red and
yellow blocks on it) with a simple but general scene under-
standing challenge (if the table is bumped, will there be more
red or yellow blocks knocked to the floor?). We construct a
dataset of stimuli spanning a range of linguistic constructions,
and evaluate human judgments on our dataset.

We show that PiLoT robustly predicts human reasoning
about these linguistic physical scenes. Our model also bet-
ter correlates with human judgements than an ablated version
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Easy There are four stacks of red blocks, and there is one stack of yellow blocks. [Numbers] # 1
(1 concept) There are short stacks of red blocks, and there are short stacks of yellow blocks. [Graded adjectives] # 16

Moderate
(2 concepts)

There are many yellow blocks on the left side of the table, there are no blocks on the middle, and there are no
blocks on the right side. [Spatial relations, quantifiers]

# 29

There are stacks of yellow blocks, and there are stacks of red blocks. All of the yellow stacks are tall, and all of
the red stacks are short. [Quantifiers, graded adjectives]

# 38

Challenging
(3-4 concepts)

There is one stack of yellow blocks on the center of the table, and there is one tall stack of red blocks near the
yellow stack. [Numbers, spatial relations, graded adjectives]

# 49

There are at least five stacks of blocks on the table. No more than half of the stacks are tall. Most of the stacks are
red, and most of the stacks are on the right side. [Numbers, spatial relations, quantifiers, graded adjectives]

# 64

Table 1: Example stimuli from our linguistic physical reasoning experiment, describing configurations of blocks on a table.
Scene descriptions are parameterized based on distinct conceptual categories, and vary in complexity based on how many
distinct conceptual kinds are invoked in a given description.

of our own model, in which we directly query a large statis-
tical language model to predict physical inferences on these
same tasks. We also find that our model robustly predicts
the underlying distribution of human judgments, captur-
ing the uncertainty inherent to how we reason about abstract,
linguistic descriptions about these scenes.

Linguistic physical reasoning experiment
We begin by describing the human experiment and domain
that we use, to provide intuition for the model used in the re-
mainder of this paper. Our linguistic and physical reasoning
task was inspired by psychophysics stimuli from Téglás et al.
(2011) and Battaglia et al. (2013), in which subjects were pre-
sented with visual scenes involving different configurations
of red and yellow blocks stacked on a table and asked to pre-
dict physical outcomes. Our linguistic stimuli adapts this do-
main to scenes described in language. Unlike visual images,
this task requires reasoning over the additional uncertainty in-
herent to language – a sentence like There are three stacks of
red blocks on the table leaves open where these stacks might
be located, or how tall they might be.

Each stimuli in our experiment begins with a linguistic de-
scription of the general domain of scenes (Imagine a table
with some red or yellow blocks on it), then provides varying
additional information about the block configuration (There
are at least two tall stacks of yellow blocks on the right edge
of the table). Based on each scene description, we pose a
simple linguistic query that requires reasoning about possi-
ble physical outcomes: If the table is bumped hard enough to
knock at least one of the blocks onto the floor, are there going
to be more red blocks or yellow blocks on the floor? Future
work can easily adapt these stimuli to other queries, such as
specifying the direction or magnitude of the bump.

Using this base template, we design 64 scene reasoning
stimuli that vary systematically over a space of linguistic con-
cepts, and in the complexity of each scene description. Scene
descriptions were parameterized based on the following con-
ceptual categories, each widely studied in both cognitive sci-
ence and natural language semantics:

• Number: how many blocks or stacks are on a table, such
as three stacks of red blocks or two yellow blocks (Bartsch,
1973; Gelman & Gallistel, 1986; Carey, 2009).

• Spatial relations: prepositions describing where blocks
are located, such as the center, left and right sides, and
left and right edges of the table, or near another block on
the table (Landau & Jackendoff, 1993).

• Quantifiers: quantifiers such as many, few, several, most,
or half of the blocks being of a certain color, position, etc.,
and negations such as none of the blocks being a certain
color, etc. (Barwise & Cooper, 1981; van Tiel et al., 2021).

• Graded adjectives: adjectives describing the stacks as tall,
very tall, short, etc. (Klein, 1980; Williamson, 2002).

Using these base concepts, we vary stimuli complexity based
on how many distinct classes of concepts are invoked in a
given scene description. Our experiment comprises 16 easy
stimuli, which contain concepts from a single conceptual cat-
egory; 24 moderate complexity stimuli, containing concepts
from two categories; and 24 challenging stimuli, which con-
tain concepts from 3-4 categories (examples in Table 1).

For the experiment, we collect and evaluate human judg-
ments on these linguistic scene reasoning tasks. Subjects pro-
duced judgments about each stimulus on a 1–7 Likert scale of
confidence spanning 1 (definitely more red blocks) to 7 (def-
initely more yellow blocks), measuring subject uncertainty
about an inherently probabilistic task.

In total, we recruit 160 from Prolific; each viewed a ran-
dom batch of 16 stimuli. We collect approximately 40 hu-
man responses per stimulus. Participants were native English
speakers from the USA/UK and received payments at $15/hr.

Our model: PiLoT
Our model relates mental physical simulation with a broad-
coverage mapping function from language into a symbolic
language of thought. This model, PiLoT, consists of three
modules: a probabilistic generative model over possible
scenes, a language-to-code translation model, and a physics
simulator. Together, the generative model and physics sim-
ulator implement a version of the model used in Battaglia et
al. (2013). The translation model extends this framework to
show how it can generally integrate natural language, in the
spirit of Goodman & Lassiter (2015).1

1The code excerpts presented in this section have been simplified
for legibility. The full code of the model is available at https://
tinyurl.com/phys-lang.
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Probabilistic generative model We begin by defining a
generative model over possible worlds in our blockworld
domain. We write this model in WebPPL (Goodman &
Stuhlmüller, 2014), a probabilistic programming language
based on JavaScript. For instance, to construct a new block
stack, the model makes a series of random choices to deter-
mine the stack’s color, height, and position on the table:

var blockColor = function () {
return flip() ? 'red' : 'yellow'

}
var stackHeight = function () {

return geometric(0.7, 1, 8)
}
var xPositionOnTable = function (table) {
return uniformDraw(

_.range((worldWidth / 2) - table.width,
(worldWidth / 2) + table.width))}

var newStack = {
color: blockColor(),
height: stackHeight(),
x: xPositionOnTable(table), }

The stochasticity that arises from these random choices
is what makes our model probabilistic. Each call to
makeBlockWorld() (below) returns a different blockworld
with a variable number of stacks (between 1 and 8) in dif-
ferent configurations. Thus, makeBlockWorld() defines a
probability distribution over possible worlds and running it
produces a sample from an uninformed prior.

var makeBlockWorld = function () {
var stacks = buildStacks(numStacks)
var world = {

stacks: stacks,
blocks: getBlockList(stacks),
table: { shape: 'rect', dims: [tableSize,

tableSize], x: worldWidth / 2, ... },↪→
force: generateForce(velocity, direction),

}
return world }

Additionally, our model includes a set of functions that
collectively define a domain semantics. By composing state-
ments in the semantics, we can model the meanings of various
linguistic utterances. As a simple example:

var isRed = function (obj) {
return obj.color == 'red'

}
var isTall = function (stack) {

return stack.height >= th_Tall
}
var isOnLeft = function (obj) {

return obj.x <= th_Left
}
var isNear = function (obj1) {
return function (obj2) {

return abs(obj1.x - obj2.x) <= th_Near}}

// There is a tall stack of red blocks on the left
side of the table.↪→

condition(filter(isTall, filter(isRed,
filter(isOnLeft, world.blocks)).length == 1))↪→

In WebPPL, calling condition() constrains samples from
the generative model to be consistent with the conditioning

statement. In the above example, the conditioned model re-
turns only blockworlds that have a tall stack of red blocks on
the left side of the table. Condition statements deliberately
admit imprecision (e.g., “There are at least two red blocks...”)
and can be added sequentially as new information is available.
In this way, conditioning provides a natural way to model a
reasoner with some prior over scenes who incrementally up-
dates their beliefs to form a posterior over possible worlds.

Language-to-code translation model Given a model of
the world expressed in a PPL, we can frame the problem
of language understanding as language-to-code translation.
In this work, we focus on the subproblem of translating lin-
guistic utterances about the state of a blockworld into condi-
tioning statements that capture the semantics of the language.
However, since the generative domain theory and the query
are themselves WebPPL code, the same methods we use here
could be adapted to translate these as well.

For our translation model, we leveraged the few-shot
prompting capabilities of OpenAI’s Codex model (Chen et al.,
2021), a GPT language model fine-tuned on publicly avail-
able code from GitHub. For each task, we automatically con-
structed a prompt by concatenating the generative model code
and 10 randomly-sampled examples from our domain, eachs
manually annotated with code translations. Since JavaScript
is prevalent in this corpus, we found Codex to be a highly
adept translator for our domain, requiring little prompt engi-
neering to produce robust translations of non-trivial phrases.
For instance, in our experiments, Codex correctly translated
the following from the “Challenging” category:

// There are two tall stacks of yellow blocks near
the red stack.↪→

condition(filter(isNear(filter(isOnEdge,
filter(isRed, world.stacks))[0]), filter(isTall,
filter(isYellow, world.stacks))).length == 2)

↪→
↪→

// Less than half of the blocks on the edges are
yellow.↪→

condition(filter(isYellow, filter(isOnEdge,
world.blocks)).length < filter(isOnEdge,
world.blocks).length / 2)

↪→
↪→

Queries to Codex were issued via the OpenAI API with tem-
perature = 0 to ensure that translations adhered to domain se-
mantics, and facilitate reproducibility.

Physics simulator To model tasks in our experiment, we
interface our model with a physics simulator provided by the
Box2D game engine (Catto, 2023). To simulate the table be-
ing bumped, we initialize each world with a high-velocity,
bullet-like object that collides with the table. By randomly
sampling and simulating multiple such worlds, we can obtain
a distribution over outcomes. In this case, we are interested in
the relative number of red and yellow blocks on the ground,
which we normalize to a 7-point Likert scale, as below.

var simulateWorld = function () {
var results = Infer(

{method: 'rejection', samples: 10},
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Figure 2: Comparison of PiLoT and baseline models to human ratings at increasing levels of granularity. Left: PiLoT broadly
correlates with human Likert ratings across the 64 tasks in our experiment. (Vertical and horizontal bars reflect standard error
for humans and PiLoT, respectively.) Middle: At each task complexity, PiLoT achieves closer fidelity to human ratings than the
two baselines, as measured by Wasserstein distance. Right: Across individual tasks, humans (green) modulate their predictions
to reflect differences in the scenarios. PiLoT generally mirrors human ratings distributions (top three rows), while the zero-shot
baseline tends to be bimodal. (See Table 1 for the descriptions associated with each task.)

Overall Easy Moderate Challenging
R2 WD R2 WD R2 WD R2 WD

Baseline (zero-shot) 0.40∗∗∗ 1.69 (0.05) 0.73∗∗∗ 1.82 (0.08) 0.37∗∗ 1.75 (0.10) 0.16 (N.S.) 1.55 (0.09)
Baseline (few-shot) 0.34∗∗∗ 1.20 (0.06) 0.54∗∗ 1.17 (0.15) 0.43∗∗∗ 1.22 (0.10) 0.06 (N.S.) 1.19 (0.10)
PiLoT (ours) 0.76∗∗∗ 0.62 (0.07) 0.91∗∗∗ 0.45 (0.10) 0.78∗∗∗ 0.69 (0.09) 0.69∗∗∗ 0.67 (0.13)

Number Spatial Quant. / Neg. Graded Adj.
Baseline (zero-shot) 0.27∗∗ 1.63 (0.06) 0.23∗∗ 1.67 (0.08) 0.47∗∗∗ 1.70 (0.08) 0.23∗ 1.63 (0.08)
Baseline (few-shot) 0.15∗ 1.19 (0.07) 0.17∗ 1.21 (0.08) 0.36∗∗∗ 1.28 (0.08) 0.30∗∗ 1.14 (0.09)
PiLoT (ours) 0.76∗∗∗ 0.57 (0.08) 0.67∗∗∗ 0.74 (0.10) 0.76∗∗∗ 0.67 (0.10) 0.80∗∗∗ 0.54 (0.07)

Table 2: Performance of PiLoT and baseline models in comparison to humans, showing Pearson’s R2 and Wasserstein distance
(WD) from human ratings. Top half: Results segmented by task complexity. Bottom half: Results segmented by conceptual
category. P-value thresholds: ∗= P < 0.05, ∗∗= P < 0.01, ∗∗∗= P < 0.001, N.S. = not significant.

function () { return run(makeBlockWorld()) }
)
var pRed = exp(results.score('moreRed'))
var pYellow = exp(results.score('moreYellow'))
return round((pYellow / (pRed + pYellow)) * 6) + 1}

Intuitively, setting samples to 10 mirrors prior findings
that humans perform 5-13 mental simulations when answer-
ing questions about similar block worlds (Battaglia et al.,
2013). In our experiments, we run simulateWorld() 40
times for each task, effectively simulating 40 participants who
each produce a Likert rating based on 10 mental simulations.2

Model experiments
To compare human and model performance, we conduct an
analogous experiment using our linguistic reasoning tasks

2We note that, while the physics simulation has various hyperpa-
rameters, it offers robust out-of-box performance; indeed, manually
tuning the hyperparameters to directly optimize for performance on
our tasks yielded marginal improvements of R2 < 0.04 relative to
the naive settings that were used in our experiments.

with our model and two baseline language models.
Our model To directly compare our model with human per-
formance, our experiment simulates model answers to each
stimulus on the same discretized 1-7 scale. For each stim-
ulus, we translate the linguistic scene description into con-
dition statements, sample and simulate n = 10 scenes from
the conditioned generative program, and construct a sample-
based estimate over the distribution of scenes in which more
blocks of a given color fall to the floor. For each stimulus, we
then simulate n = 40 independent sample-based inferences.
LLM-only baselines We also conduct two baseline experi-
ments using the same distributional language model (Codex)
to directly provide probabilistic judgments about each scene
description, with no program semantics or physics engine.

• Zero-shot LLM: This baseline directly prompts an LLM
with only the exact linguistic setup provided to human sub-
jects in the human experiment (In this experiment, you will
read descriptions of scenes...), followed by each individual
stimulus (eg. There are two red blocks on the table) and the
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question. We measure model responses over the same 1-7
scale of confidence by calculating normalized token log-
probabilities for each scale item shown to humans.

• Few-shot LLM: This baseline augments the LLM query
with a set of in-context examples of correct task/answer
pairs (Brown et al., 2020). Prior to querying the model with
a given stimulus, we additionally prompt the model with
n = 10 (stimulus, human response) examples randomly
sampled from heldout stimuli and the human responses.

Results and discussion
We first evaluate our model and baselines in comparison to
human performance across tasks in the linguistic reasoning
experiment (Table 2, Overall). We find that:

Our model best predicts human judgments across the
physical language experiment. We calculate correlations
between human judgments and our model based on mean per-
stimulus judgments across human subjects, and across simu-
lated Likert-scale judgments, and find that our model is sig-
nificantly correlated with human judgements in the experi-
ment overall (Fig. 2, R2 = 0.759, p < 0.001). We calculate
correlations between mean human judgments and a weighted
mean per-stimulus judgment from the probability mass that
the LLMs assign to each 1-7 scale value. Table 2 (Overall,
R2) shows that our model greatly outperforms both baselines
in predicting human judgments.

Our model best captures the distribution of human
judgments on each stimulus. We also calculate Wasserstein
Distances between the human distribution of judgments pre-
dicted for each stimulus, and the distribution of judgments
from our model and both baselines. Table 2 (WD) shows
that our model also is much closer to the distribution of hu-
man judgments than either baseline. Qualitative inspection
(Fig. 2) shows more revealing trends. The zeroshot model of-
ten produces contradictory, extreme judgments (1 or 7); and
the fewshot model is often relatively uniform.

Next, we consider how stimuli complexity and specific
conceptual categories impact model performance. We find:

Our model is much more robust as stimuli increase in
complexity. Table 2 (Easy, Moderate, Challenging) shows
that all models (ours, and both baselines) grow worse at
predicting human behavior as stimuli complexity increases.
However, our model is far more robust to stimuli complex-
ity; the baselines grow rapidly less correlated with human
judgments as complexity increases, and on the most challeng-
ing stimuli, our model still well-predicts human judgments
(R2 = 0.69, p < 0.001), whereas neither baseline is signifi-
cantly correlated with human behavior.

LLM baselines struggle with number and spatial re-
lations Table 2 (bottom half) also suggests that LLM base-
lines perform unevenly across the varying kinds of concepts
in these stimuli. Both baselines appear strongest within stim-
uli involving Quantifiers and negation (e.g., There are many
red blocks and few red blocks), and far worse in the other
categories, suggesting they may only apply relatively simple

linguistic heuristics to reason about the physical query.
To better understand the limitations of our model, we man-

ually inspect stimuli in which our model deviates most from
human judgments (n = 10 with greatest Wass. Distance). We
find two suggestive grounds for future work:

People draw exact logical inferences; our model uses
sample-based approximation. Our model consistently de-
viates from human judgments on stimuli that people can rea-
son about exactly, such as those involving equality (eg. Half
of the blocks are yellow, and half are red.). Humans pro-
duce a sharp, exact judgment, which our model approximates
with sample-based inference. These cases are one exception
in which the fewshot LLM baseline outperforms our model,
generalizing the exact human judgements to new stimuli.

People may pragmatically interpret scene descriptions;
our model uses literal semantics. Our model may also de-
viate from human judgments when people apply an intuitive,
pragmatic interpretation to the scene descriptions. Our model
translations are based on a ground truth, literal semantics.
Humans, however, often appear to pragmatically strengthen
descriptions based on assumed relevance of all conditions –
in many cases, for instances, people overweight the contribu-
tion of blocks described to be on the table edges (eg. There
are more red blocks than yellow blocks on the table, and there
are more yellow blocks than red blocks on the edges of the ta-
ble) relative to our model, suggesting that people assume the
edge is mentioned because it impacts the downstream result.

Perhaps surprisingly, we find that the model rarely
makes obvious semantic translation errors. In the 10
stimuli that we inspect, we find only one, phrase-level
translation error: There are several stacks of red blocks
on the table is translated to condition(filter(isRed,
world.stacks).length > 1), when several intuitively
suggests an upper and lower threshold. While the model
produces literal interpretations, as discussed above, we find
no other obviously incorrect translations.

Conclusions and future directions. We conclude with
several avenues for future work. One clear next step might
translate language that specifies background knowledge or
poses arbitrary new queries, broadening the integration of
language and physical reasoning. Our results also suggest
that integrating this approach with pragmatic inference, such
as in Frank & Goodman (2012), is crucial for capturing a
human-like understanding of language. As a cognitive model,
we must consider consider how the joint distribution we in-
stantiate in an LLM can be learned from plausible amounts of
data; future work should also evaluate against other LLMs,
testing what latent physics can be acquired in itself with
more or more targeted supervision. Finally, integrating this
approach with perception, using inverse graphics (Yi et al.,
2018) approaches to construct structured scene representa-
tions from perceptual inputs, could broaden this approach to
bridge between language, our rich internal physical reason-
ing, and grounding in the external, perceivable world.
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