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State averaged CASSCF in AMOEBA polarizable water model for simulating

nonadiabatic molecular dynamics with nonequilibrium solvation effects

Chenchen Song1, a)

Department of Chemistry, University of California Davis, Davis, CA 95616,

USA.

This paper presents state-averaged complete active space self-consistent field (SA-

CASSCF) in the atomic multipole optimized energetics for biomolecular applica-

tions (AMOEBA) polarizable water model, which enables rigorous simulation of non-

adiabatic molecular dynamics with nonequilibrium solvation effects. The molecular

orbital and configuration interaction coefficients of the solute wavefunction, and the

induced dipoles on solvent atoms, are solved by minimizing the state averaged energy

variationally. In particular, by formulating AMOEBA water models and polarizable

continuum model (PCM) in a unified way, the algorithms developed for computing

SA-CASSCF/PCM energies, analytical gradients, and non-adiabatic couplings in our

previous work can be generalized to SA-CASSCF/AMOEBA by properly substitut-

ing a specific list of variables. Implementation of the method will be discussed with

emphasis on how the calculations of different terms are partitioned between the quan-

tum chemistry and molecular mechanics codes. We will present and discuss results

that demonstrate the accuracy and performance of the implementation. Next, we

will discuss results that compare three solvent models that work with SA-CASSCF,

i.e. PCM, fixed-charge force fields, and the newly implemented AMOEBA. Finally,

the new SA-CASSCF/AMOEBA method has been interfaced with the ab initio mul-

tiple spawning method to carry out non-adiabatic molecular dynamics simulations.

The method is demonstrated by simulating the photodynamics of the model retinal

protonated Schiff base molecule (PSB3) in water.

a)Electronic mail: ccsong@ucdavis.edu
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I. INTRODUCTION

Many important photoreactions in life, such as vision1 in animals and photoprotection2 in

plants, take place in solvents or in macromolecular systems and are affected by their interac-

tions with the environments. Theoretical methods for simulating photoreactions in complex

environments have the potential to improve our understanding about the evolutionary ad-

vantages of these photoreactions, and may also lead to the possibility of rationally controlling

photodynamics through careful design of the environments. Because solvent environments

are simpler than heterogenous macromolecular environments, developing theoretical meth-

ods for simulating photoreactions in solvent becomes the natural first step. Despite steady

improvements in quantum chemistry software and methods over the past few decades, full

quantum mechanical treatment of the solvated system is still impractical at the moment.

Fortunately, because the excited wavefunction is generally localized on the chromophore,

this suggests a natural multi-scale3–5 description of the solvated system in which the elec-

tronically excited chromophore is treated quantum mechanically and the solvents are treated

classically.

To help decide suitable classical solvent models for photoreactions, we need to first con-

sider what solvent effects are known to have notable impacts on photoreactions from experi-

mental studies. The electrostatic interaction is one of the fundamental types of solute-solvent

interactions. For chromophores with strong intramolecular charge transfer characteristics,

such as peridinin6 and merocyanine7, their excited state lifetimes have been observed to be

sensitive to the polarity of the solvents. In particular, photoreactions in a polar solvent (e.g.

water) are subject to nonequilibrium solvent polarization effects.8 These nonequilibrium ef-

fects arise from the fact that the solvent electronic response to the electronic excitation of

the chromophore is much faster than the corresponding rearrangements of solvent nuclei.

This temporal evolution of the solvent polarization has been a major challenge in simulating

photoreactions in solvents. In addition to electrostatic solvent effects, for photoreactions that

involve large conformational changes, such as the photoisomerization reactions of diphenyl

butadiene9, stilbene10,11 and sorivudine12, the photoreaction rates are observed to be sensi-

tive to the viscosity of the solvents. Other solute-solvent interactions that have been studied

either experimentally or theoretically include the solvent steric or caging effects13, the Pauli
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repulsion interactions,14 and the dispersion interactions.15

The commonly used classical solvent models can be divided into two categories: implicit

models that approximate the solvent as a continuum16, and explicit models that keep atom-

istic details of the solvent molecules.17 In terms of their abilities of describing electrostatic

interactions, the classical models can be further classified into polarizable and non-polarizable

models. Most implicit models, such as the Onsager reaction field18 and the polarizable contin-

uum model (PCM)19–21, are polarizable and can capture the difference in solvent polarization

during vertical excitations. However, capturing the temporal evolution of solvent polariza-

tion into implicit models is much more difficult. Although there have been efforts along

these lines using real-time formulation,22,23 the corresponding analytical nuclear gradients

are difficult to formulate, thus limiting their applicability for studying photoreactions. An

important class of explicit solvent models are represented by molecular mechanics (MM) force

field models. Traditional non-polarizable force fields, such as the TIP3P and TIP4P water

models,24–26 describe the electrostatic interactions using a set of fixed atomic partial charges,

which are normally fitted to reproduce the ground state thermodynamic properties of the

liquid solvent. Since the atomic partial charges are fixed and determined independently from

the solute, such models are inherently incapable of describing any polarization changes in

solvents in response to the solute excitations. In contrast, polarizable force fields27,28 describe

electronic polarization explicitly by introducing induced variables on each atom. Common

choices for modeling the induced variables are the fluctuating charge model,29,30 the Drude

oscillator model31,32 or the induced dipole model.33,34 A major advantage of the polarizable

explicit solvent models is that when combined with molecular dynamics simulations, they

provide a natural way to simulate the temporal separation of the solvent response, where

the induced variables model the fast response of the solvent electrons, and the dynamical

changes of nuclear configurations model the slow response of the solvent nuclei.35 In addition

to electrostatic effects, another advantage of explicit models over implicit models for study-

ing photoreactions is their ability to describe viscosity and steric effects when combined with

molecular dynamics (MD).10,36 In terms of other types of solute-solvent interactions such

as the Pauli-exclusion effects and dispersion, these effects have been included as additional

terms both in implicit models (e.g. the SMx models37) or explicit models (e.g. Lennard-Jones

interaction38).
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From the discussions in the previous paragraph, the explicit polarizable solvent models

clearly stand out in their potential capability of capturing a wide range of important solvent

effects important for photoreactions. Among the available explicit polarizable solvent mod-

els, the atomic multipole optimized energetics for biomolecular applications (AMOEBA)39

force field is one of the most sophisticated models. It was originally developed for water40,41

and has been shown to accurately reproduce the phase diagrams of water with systematically

improved parameters.42 Later, AMOEBA force field for organic compounds43 and biological

macromolecules44 have also been developed and become widely used. The mutual polar-

ization in the AMOEBA force field is described by an atomic induced dipole model,34 in

which the induced dipoles react to the permanent electrostatic moments as well as one an-

other. This model is known to be good at reproducing the anisotropic molecular polarization

response,45 which is important for describing the solute-solvent interactions. When studying

the electric fields exerted on a vibrational chromophore created by the solvents, Fried et al.46

found that compared to fixed-charge and continuum models, AMOEBA is the only model

that can provide consistent descriptions of nonpolar, polar, and hydrogen bonding solvent

environments. These studies suggest that AMOEBA is suitable for modeling environment

effects in photoreactions.

Ground state quantum mechanics/molecular mechanics (QM/MM) embedding approaches

that combine density functional theory (DFT)47,48 with AMOEBA force field have been de-

veloped first for solvent environments,49,50 and later generalized to macromolecular environ-

ments that require proper treatments of the covalent QM/MM boundary.51,52 Developments

of excited state methods embedded in AMOEBA are more recent, and there have been

continuous efforts towards combining the linear response time-dependent density functional

theory (LR-TDDFT)53,54 with AMOEBA.55 The developments of the corresponding analyt-

ical nuclear gradients have enabled the simulation of adiabatic molecular dynamics on the

excited states.56 Recently, such approach has also been applied to simulating non-adiabatic

molecular dynamics using trajectory surface hopping.57 One advantage of LR-TDDFT is

that its ground and excited state calculations are decoupled, making it simple to account

for the different solvent polarization in response to each solute electronic state. However,

the same decoupling leads to an incorrect topology of the potential energy surfaces around

conical intersections,58 which are critical for photoreactions as the main nonradiative tran-
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sition channels. Therefore, multi-reference methods are generally more desirable for the

purpose of searching conical intersections and simulating nonadiabatic photodynamics, and

one of the most widely used multi-reference methods is the state-averaged complete active

space self-consistent field theory (SA-CASSCF).59–61 Although SA-CASSCF embedded in

AMOEBA force fields hasn’t been reported to our knowledge, there has been progress on

polarizable embedding of SA-CASSCF using induced point dipoles,62 the Drude oscillator

model,63 or the direct reaction field model.64.

In this work, we will take the initial step of developing SA-CASSCF embedded in

AMOEBA polarizable force field for nonadiabatic MD simulations, where we start with

AMOEBA force field for small solvent molecules (e.g. water, chloroform). Recently, we de-

veloped SA-CASSCF in PCM65 based on a self-consistent formulation, where the molecular

orbital (MO) coefficients, configuration interaction (CI) coefficients and the induced surface

charges are determined by minimizing the state-averaged energy variationally. The dynamic

weight scheme proposed by Hagras et al.63 is used, which smoothly interpolates between

state-specific descriptions near the Franck-Condon region to account for different polariza-

tion corresponding to each state, and a state-averaged scheme near the conical intersection

to ensure the correct topology. Because in the state-averaged formalism, the energy of each

state is no longer variational with respect to the wavefunction coefficients and the induced

charges, the corresponding analytical gradients and non-adiabatic couplings were developed

based on the Lagrangian formulation.66,67 One advantage of the self-consistent formulation is

that the induced surface charges are treated in the same footing as MO and CI coefficients,

making the corresponding algorithm a natural extension to the well-established gas phase

algorithm. As pointed out in Nottoli et al.,68 PCM and AMOEBA force fields can be unified

in a general polarizable framework. As a result, this work will show how the ideas from

the previous SA-CASSCF/PCM work can be generalized to SA-CASSCF/AMOEBA. By

further interfacing with ab initio multiple spawning,69,70 it will enable simulating photore-

actions with nonequilibrium solvent effects in polar solvents, which cannot be described

properly using PCM with a fixed dielectric constant.

This paper is structured as follows. In Section IIA, we will start by reviewing the

similarities between PCM and AMOEBA. Based on these similarities, in Section II B and

IIC, we will discuss what operations from SA-CASSCF/PCM can be carried over to SA-
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CASSCF/AMOEBA, and what operations need to be implemented differently. We will then

discuss the implementation of the method in Section IID, with the emphasis on how different

terms are partitioned between QM codes and MM codes. Next, we will discuss results to help

analyze the new method. Section IIIA discusses the accuracy and performance of the im-

plementation. In Section III B, we will compare SA-CASSCF/AMOEBA with other solvent

models and discuss how they differ in the electrostatic potential thus affect the excitation

energies of the solvated chromophore. In Section III C, we will demonstrate nonadiabatic

MD simulation using SA-CASSCF/AMOEBA, and we will discuss how the simulations in

AMOEBA water models compare to that in the gas phase, and what improvements are

required for future works.

Below we summarize the list of symbols and notations used throughout this paper:

• Molecular orbital indices: p, q, r, s

• QM atom indices: N,M

• PCM induced surface charge indices: n,m

• MM atom indices: A,B

• Cartesian indices from the set of {x, y, z}: i, j, k, l

• Arbitrary electronic states: R, S. Electronic states included in the state averaging:

I, J . Target electronic state for gradients and non-adiabatic coupling calculations:

Θ,Π

• For matrices and tensors, they are represented either by writing the indices explicitly

(e.g. Ppq) or in bold without indices (e.g. P).

• Parenthesis in superscripts or subscripts are used to denote quantities that are con-

ceptually related but have different values, e.g. E(PCM) versus E(AMOEBA).
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II. METHOD

A. Comparison of PCM and AMOEBA

Both PCM and AMOEBA are polarizable models, and their connections have been studied

in previous research.68 Here we briefly summarize some of the main points to facilitate later

discussions. Because this section focuses on the solvent polarization, the solute polarization

and non-polarizable interactions (e.g. van der Waals and valence interactions) will be omitted

from the discussion without loss of generality.

We start by considering a solute in the PCM environment. The polarization of PCM is

described by the induced surface charges qn. The corresponding total energy can be written

as

E(PCM) = E(solute) +
∑
n

U (solute)
n qn +

1

2

∑
nm

qnAnmqm (1)

E(solute) represents the electrostatic energy of the solute, and U (solute) is the electric potential

generated by the solute. Their specific forms depend on the level of theory used for describing

the solute. The last term represents the self-interaction among the surface charges. The

induced surface charges qn are determined variationally such that

∂E(PCM)

∂qn
= U (solute)

n +
∑
m

Anmqm = 0 (2)

which is equivalent to the following linear equations

∑
m

Anmqm = −U (solute)
n (3)

and can be solved iteratively.

When the solvent polarization is described by the AMOEBA model, the polarization is

represented by the induced dipoles dAi. In addition to induced dipoles, the solvent atoms

also come with permanent multipoles (including partial charges, dipoles and quadrupoles).

To clearly separate the induced dipoles from other electrostatic quantities, we will use the

term “source” to refer to the solute plus the permanent multipoles of the solvent. In most

situations, AMOEBA is not presented as a variational minimization. The induced dipoles
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are determined by polarizability αA and the local electric field

dAi = αA

(
E (source-D)
Ai +

∑
A ̸=B,j

T
(Thole)
Ai,Bj dBj

)
(4)

E⃗ (source-D) represents the electric field generated by the source, and T(Thole) is the Thole-

damped electrostatic tensor for dipole−dipole interactions.34 Once the induced dipoles dAi

are solved from Eq.4 , the total energy can then be computed as follows,

E(AMOEBA) = E(source) − 1

2

∑
Ai

dAiE (source-P)
Ai (5)

The specific forms of E(source) and E⃗ (source) in the above equations depend on the level of theory

used for describing the solute. Note that there are two types of electric field generated

by the source: E⃗ (source-D) in Eq.4 that is used to solve the induced dipoles, and E⃗ (source-P)

in Eq.5 that is used to compute the energy. These two electric fields are not identical

when intramolecular polarization needs to be included, because AMOEBA was designed

to use different intramolecular scaling rules when determining the induced dipoles versus

computing the energy.43 On the other hand, AMOEBA implementations in both Tinker71

and OpenMM72 software provide the option of neglecting the intramolecular polarization

for two atoms in the same molecule separated by up to 4 covalent bonds, leading to the

two electric fields being identical for sufficiently small solvent molecules such as water and

chloroform.

When intramolecular polarization is neglected, we have E (source-D)
Ai = E (source-P)

Ai = E (source)
Ai .

It is then possible to formulate AMOEBA as a variational problem, as pointed out in previous

works.49 When this condition is satisfied, Eq.4 can be rearranged as the following linear

system

∑
Bj

OAi,BjdBj = E (source)
Ai (6)

OAi,Bj =
1

αA

δABδij − T
(Thole)
Ai,Bj (7)
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Using Eq.6, we can then rewrite the total energy in Eq.5 as

E(AMOEBA) = E(source) −
∑
Ai

E (source)
Ai dAi +

1

2

∑
Ai,Bj

dAiOAi,BjdBj (8)

One can then show that the induced dipoles solved from Eq.6 satisfies the variational con-

dition
∂E(AMOEBA)

∂dAi

= −E (source)
Ai +

∑
Bj

OAi,BjdBj = 0 (9)

The methods in this work are restricted to the special case of neglecting intramolecular

polarization as a first step, and inclusion of these effects will be developed in future works

as discussed in the conclusion section.

The similarities between PCM and AMOEBA with the condition of E (source-D)
Ai = E (source-P)

Ai

are readily apparent when comparing Eq.1 with Eq.8, and comparing Eq.3 with Eq.6. For

simplicity, we will only say “AMOEBA” in all the following discussions, but readers should

keep in mind that the condition of E (source-D)
Ai = E (source-P)

Ai is assumed throughout the paper.

B. Energy

These similarities discussed in Section IIA suggest the possibility of generalizing most

of the ideas developed previously for SA-CASSCF in PCM65 to AMOEBA solvent models

for small molecules, most importantly in water. In particular, our previous work used an

atomic orbital formulation, which only relies on a few basic operations that are accelerated on

graphical processing units (GPUs). Therefore, as we discuss the generalization to AMOEBA,

we will identify what basic operations are needed correspondingly.

We start with a brief review of SA-CASSCF/PCM developed in our previous work. The

solute is described by the nuclear charges Z and the electronic densities (including the one-

electron density matrix P, and the two-electron density matrix Π). Based on Eq.1, the

state-averaged energy in PCM is defined as

E(SA-PCM) = E(SA-solute) +
∑
n

U (SA-solute)
n qn +

1

2

∑
nm

qnAnmqm (10)
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In Eq.10, E(SA-solute) is the state-averaged energy from the solute and can be written as

E(SA-solute) =
∑
pq

P (SA)
pq Kpq +

∑
pqrs

Π(SA)
pqrs (pq|rs) +

∑
pq

P (SA)
pq V (0)

pq [Z] + ϵes[Z] (11)

In the first term of Eq.11, K is the kinetic integral, and P(SA) is the state-averaged one-

electron density matrix

P SA =
∑
I

wIPI (12)

The dynamic weight scheme63 can be used such that the weights are adjusted based on the

energy gaps from the chosen state of interests (i.e. the “reference” state):

wI = ω̃I(E) =
f(EI − ERef)∑
K f(EK − ERef)

(13)

The function f can be either a cubic spline function or a secant hyperbolic function. The

weight of a state is close to zero if its energy difference from the reference state exceeds a

pre-selected bandwidth, and has equal weight as the reference state if the energy difference

decreases to zero. The state averaged two-electron density matrix Π(SA) in the second term

of Eq.11 is defined in a similar way. The third term in Eq.11 represents the electron-nuclear

attraction, where the superscript “(0)” denotes interaction with point charges

V (0)
pq [Z] =

∑
N

v
(0)
pq,NZN = −

∑
N

∫
ϕp(r)ϕq(r)

1

|r−RN |
drZN (14)

The last term ϵes[Z] in Eq.11 represents the electrostatic interaction among nuclear charges

Z. The state-averaged electric potential U (SA-solute) in Eq.10 contains contributions from the

electronic density P(SA) and nuclear charge Z respectively as

U (SA-solute)
n =

∑
pq

P (SA)
pq βpq,n +

∑
N

ZNBN,n (15)

The definitions of βpq,n and BN,n depend on which PCM model is being used. In our pre-

vious and this work, we use the conductor-like polarizable continuum model with switching

Gaussian smooth discretization,73,74 which defines βpq,n and BN,n based on damped Coulomb

interactions.

10



We now consider SA-CASSCF/AMOEBA. In addition to the solute nuclei and electrons,

the source also contains the solvent permanent multipoles including charges C, dipoles M,

and quadrupoles Q. The QM nuclear charges (Z) and the MM permanent multipoles (C,

M and Q) will be combined and referred to as “fixed multipoles”. Based on Eq.8, the

state-averaged energy in AMOEBA is

E(SA-AMOEBA) = E(SA-source) −
∑
Ai

E (SA-source)
Ai dAi +

1

2

∑
Ai,Bj

dAiOAi,BjdBj (16)

E(SA-source) is the state averaged source energy, and is defined as

E(SA-source) =
∑

pq P
(SA)
pq Kpq +

∑
pqrs Π

(SA)
pqrs (pq|rs)

+
∑

pq P
SA
pq Vpq[Z,C,M,Q] + ϵes[Z,C,M,Q] + ϵvdW + ϵvalence

(17)

The first two terms in Eq.17 are identical with Eq.11 from PCM. The third term in Eq.17

represents the electrostatic interactions between the electrons and the fixed point multipoles,

and we assume they interact through the full Coulomb interaction

Vpq[Z,C,M,Q] = V (0)
pq [Z] + V (0)

pq [C] + V (1)
pq [M] + V (2)

pq [Q] (18)

V
(0)
pq is defined in Eq.14. V

(1)
pq denotes the interaction with the point dipoles:

V (1)
pq [M] =

∑
Ai

v
(1)
pq,Ai ·MAi = −

∑
Ai

∫
ϕp(r)ϕq(r)∇RAi

1

|r−RA|
dr ·MAi (19)

and V
(2)
pq denotes the interaction with the point quadrupoles:

V (2)
pq [Q] =

∑
Aij

v
(2)
pq,Aij ·QAij = −

∑
Aij

∫
ϕp(r)ϕq(r)∇RAi

∇RAj

1

|r−RA|
dr ·QAij (20)

The fourth term ϵes in Eq.17 represents the electrostatic interaction among all the fixed point

multipoles. The valence interaction energy ϵvalence and van der Waals interaction energy ϵvdW

from the force field have also been included. The state averaged electric field E⃗ (SA-source) in
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Eq.16 contains the electric field generated by the electrons and the fixed multipoles as:

E (SA-source)
Ai = E (elec)Ai [P(SA)] + E (fix)

Ai [Z,C,D,Q] (21)

In this work, because the QM region and the MM region are not covalently bonded, we

assume the electrons interact with the induced dipoles through the full Coulomb interaction

as used in Mao et.al.49 Therefore, using the integral v(1)
pq,Ai defined in Eq.19, the electric field

from the electrons can be computed as

−E (elec)Ai [P(SA)] =
∑
pq

P (SA)
pq v

(1)
pq,Ai (22)

By comparing Eq.17 and Eq.15 from SA-CASSCF/PCM with Eq.17 and Eq.21 from

SA-CASSCF/AMOEBA, it is apparent that there is a one-to-one correspondence between

every term in SA-CASSCF/PCM with SA-CASSCF/AMOEBA, as summarized in Table

I. By introducing pµ as the abstract induced variables, where pµ=n = qn for PCM, and

pµ=3A+i = dAi for AMOEBA, we can unify Eq.10 from PCM and Eq.16 from AMOEBA into

the following equation, representing the state-averaged energy in a polarizable environment:

E(SA-Polarize) =
∑

pq P
(SA)
pq

(
Kpq + V

(fix)
pq

)
+
∑

pqrs Π
(SA)
pqrs (pq|rs)

+
∑

µ

(
W

(elec)
µ +W

(fix)
µ

)
pµ +

1
2

∑
µν pµΞµνpν + ϵnon-polarize

(23)

The definition for each symbol in Eq.23 is summarized in Table I. Given Eq.23, the molec-

ular orbital (MO) coefficients, configuration interaction (CI) coefficients and the induced

variables can then be solved self-consistently such that the state-averaged energy is varia-

tionally minimized:

∂E(SA-Polarize)

∂κrs

= 0,
∂E(SA-Polarize)

∂θRS

= 0,
∂E(SA-Polarize)

∂pµ
= 0 (24)

where κrs and θRS represent the rotations within the MO and CI space respectively. In

the previous work on SA-CASSCF/PCM, we developed a first-order convergence algorithm,

which goes back and forth between diagonalizing the Hamiltonian to update the CI coeffi-

cients, and using Newton-Raphson to update the MO coefficients and the induced variables
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simultaneously. This algorithm requires two quantities: one quantity is the gradient with

respect to the orbital rotations

g(O;SA-Polarize)
rs =

∂E(SA-Polarize)

∂κrs

=
∂

∂κrs

(∑
pq

P (SA)
pq ηpq +

∑
pqrs

Π(SA)
pqrs (pq|rs)

)
(25)

where the one electron integral ηpq in Eq.25 is the sum of three components:

ηpq = Kpq + V (fix)
pq + V (induce)

pq (26)

The other quantity is the gradient with respect to the induced variables

g(Q;SA-Polarize)
µ =

∂E(SA-Polarize)

∂pµ
= W (elec)

µ +W (fix)
µ +

∑
ν

Ξµνpν (27)

By substituting the variables in Eq.26 and Eq.27 based on Table I, the same convergence

algorithm can be used for both SA-CASSCF/PCM as well as SA-CASSCF/AMOEBA. This

algorithm may also be applied to SA-CASSCF in other polarizable models as long as the

state-averaged energy can be written in the form of Eq.23, and the symbols in Table I repre-

sent the basic operations that need to be defined and implemented for each new polarizable

model.

Once the converged wavefunctions and induced variables are obtained, the state spe-

cific energy can then be computed similar to Eq.23 by replacing the state averaged density

matrices (P(SA) and Π(SA)) with state-specific density matrices (PΘ and ΠΘ).

C. Analytical gradients and non-adiabatic couplings

In Section II B, we have shown how the energies of SA-CASSCF in PCM and AMOEBA

can be computed using similar algorithms. It is natural to expect their analytical gradients

and non-adiabatic couplings are also closely related.

Because the MO coefficients, CI coefficients and induced variables are determined by

variationally minimizing the state-averaged energy, the state-specific energies are no longer

variational with respect to these variables. Therefore, the Lagrangian formulation66,67 is

required for evaluating the corresponding analytical gradients. Based on the state-averaged
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energy in Eq.23, the variational conditions in Eq.24 and the definition of dynamic weights

in Eq.13, the Lagrangian corresponding to the target state Θ is

L
(SA-Polarize)
Θ = E

(Polarize)
Θ +

∑
rs κ̄

Θ
rs

∂E(SA-Polarize)

∂κrs
+
∑

RS θ̄
Θ
RS

∂E(SA-Polarize)

∂θRS

+
∑

µ p̄
Θ
µ

∂E(SA-Polarize)

∂pµ
+
∑

I w̄
Θ
I τI

(28)

Eq.28 introduces four sets of Lagrange multipliers. The first two sets of Lagrange multipliers

κ̄Θ and θ̄
Θ impose constraints on the orbital rotations and CI rotations respectively. The

third set of Lagrange multipliers p̄Θ imposes constraints on the induced variables, corre-

sponding to p̄Θµ=n = q̄n for PCM and p̄Θµ=3A+i = d̄ΘAi for AMOEBA. The last set of Lagrange

multipliers w̄Θ constrains the values of dynamic weights, where τI = wI− ω̃I(E) from Eq.13.

The Lagrange multipliers are solved by imposing the following invariant conditions on the

Lagrangian,

∂L
(SA-Polarize)
Θ

∂κrs

= 0,
∂L

(SA-Polarize)
Θ

∂θRS

= 0,
∂L

(SA-Polarize)
Θ

∂pµ
= 0,

∂L
(SA-Polarize)
Θ

∂wI

= 0 (29)

This leads to the coupled-perturbed equation that can be divided into four by four blocks,

where each block corresponds to one set of the Lagrange multipliers


H(OO) H(OC) W(OW) H(OQ)

H(CO) H(CC) 0 H(CQ)

H(WO) 0 I H(WQ)

H(QO) H(QC) W(QW) H(QQ)




κ̄Θ

θ̄
Θ

p̄Θ

w̄Θ

 =


−g(O;Polarize),Θ

0

0

−g(Q;Polarize),Θ

 (30)

In our previous works on SA-CASSCF/PCM,65 we have derived the expressions for each of

the terms in Eq.30. Moreover, we showed that the coupled-perturbed equation can be solved

iteratively using operations that are readily available from the energy calculations. Therefore,

by making the substitutions of variables following Table I, the Lagrange multipliers for SA-

CASSCF/AMOEBA can be solved using the same algorithm as SA-CASSCF/AMOEBA

.

Once the Lagrange multipliers are solved, they are used to construct the effective density

matrices γΘ, ΓΘ and X̃Θ as derived in the previous work on SA-CASSCF/PCM. The an-

alytical nuclear gradients for state energy then require evaluating the nuclear gradients for
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each type of interactions existing in the system

dE
(Polarize)
Θ

dξ
=
∑

pq γ
Θ
pq

∂Kpq

∂ξ
+
∑

pqrs Γ
Θ
pqrs

∂(pq|rs)
∂ξ
−
∑

pq X̃
Θ
pq

∂Spq

∂ξ
+ V (fix),ξ[γΘ]

+W (elec),ξ[γΘ,p] +W (elec),ξ
[
P(SA), p̄Θ

]
+W (fix),ξ[p+ p̄Θ] + Ξξ

[
p, 1

2
p+ p̄Θ

]
+

dϵnon-polarize
dξ

(31)

The first three terms in Eq.31 correspond to nuclear gradients from kinetic integrals, two-

electron repulsion integrals (ERI) and overlap integrals respectively. The remaining terms

in Eq.31 are defined in Table I based on whether PCM or AMOEBA is used. Below, we will

discuss the definitions of these terms in AMOEBA.

In the case of AMOEBA, d
dξ
ϵnon-polarize is the nuclear gradient contributions from all non-

polarizable interactions, including the valence interactions, the van der Waals interactions,

and the electrostatic interactions among the fixed multipoles. Ξξ[d(1),d(2)] represents the

nuclear gradients from the mutual interactions between two sets of induced dipoles with

values d(1) and d(2), i.e.

Ξξ[d(1),d(2)] =
∑
AiBj

d
(1)
Ai

∂OAi,Bj

∂ξ
d
(2)
Bj (32)

W (fix),ξ[d] represents the nuclear gradients from the interaction between fixed multipoles and

a set of induced dipoles d

W (fix),ξ[d] = −
∑
Ai

∂E (fix)
Ai [Z,C,M,Q]

∂ξ
dAi (33)

The above three terms W (fix),ξ, Ξξ and d
dξ
ϵnon-polarize all arise from purely classical interactions,

and the corresponding gradients will be computed by the molecular dynamics codes with

details described in the Appendix.

The other two terms V (fix),ξ and W (elec),ξ both involve interactions with the electrons.

Given a one-electron density matrix P and a set of induced dipoles d, W (elec),ξ[P,d] computes

the nuclear gradients from their electrostatic interactions

W (elec),ξ[P,d] =
∑
pq,Ai

Ppq

∂v
(1)
pq,Ai

∂ξ
dAi (34)

where the integral v(1)pq,Ai is defined in Eq.19. Similarly, V (fix),ξ[P] represents the gradients
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from the electrostatic interaction between the electrons and the fixed multipoles. Based on

Eq.18, it can be further decomposed into four contributions corresponding to four groups of

fixed multipoles

V (fix),ξ[P] = V (0),ξ[P,Z] + V (0),ξ[P,C] + V (1),ξ[P,M] + V (2),ξ[P,Q] (35)

V (0),ξ computes the gradients from interactions between electrons and point charges, and are

readily available in most electronic structure software

V (0),ξ[P,Z] + V (0),ξ[P,C] =
∑
pqN

Ppq

∂v
(0)
pq,N

∂ξ
ZN +

∑
pqA

Ppq

∂v
(0)
pq,A

∂ξ
CA (36)

The gradients from interactions between electrons with permanent point dipoles V (1),ξ or

permanent point quadrupoles V (2),ξ are more complicated. Because the permanent dipoles

and quadrupoles are attached to local frames of MM molecules, there are additional con-

tributions to the gradients due to the rotations of the local frames. There are two ways of

treating this. One way is to follow the original implementation of AMOEBA, which first

computes the torque exerted on the point dipoles and quadrupoles, and then converts the

torques to gradients on the atoms which the local frames are attached to.40 The second

way is to explicitly take derivatives of the local frame rotations.75 In this work, we follow

the first method and use the torques as intermediates. As a result, the gradients from the

electron-point dipole interactions can be decomposed as

V (1),ξ[P,M] = V
(1),ξ
no-rotate[P,M] + TorqueToGrad

(
τ (1)[P,M]

)
(37)

V
(1),ξ
no-rotate[P,M] =

∑
pq,Ai

Ppq

∂v
(1)
pq,Ai

∂ξ
MAi (38)

The torque exerted on a point dipole M⃗ depends on the local electric field E⃗ as τ⃗ = M⃗ × E⃗ .

By using Levi-Civita symbol, it can also be written as τi =
∑

jk ϵijkMjEk. Thus the torque

in Eq.37 is computed as

τ
(1)
Ai = −

∑
jk

ϵijkMj

(∑
pq

Ppqv
(1)
pq,Ak

)
(39)
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Similarly, the gradients from the electron-point quadrupole interactions can also be decom-

posed into two parts:

V (2),ξ[P,Q] = V
(2),ξ
no-rotate[P,Q] + TorqueToGrad

(
τ (2),ξ[P,Q]

)
(40)

V
(2),ξ
no-rotate[P,Q] =

∑
pq,Aij

Ppq

∂v
(2)
pq,Aij

∂ξ
QAij (41)

The torque exerted on a point quadrupole
←→
Q depends on the local electric field gradient

←→
G , and using the Levi-Civita symbol it can be written as τ⃗ =

∑
jk ϵijk (

∑
l QjlGlk). Thus,

the torque in Eq.40 can be computed as

τ
(2)
Ai [P,Q] = −

∑
jk

ϵijk

(∑
l

QAjl

(∑
pq

Ppqv
(2)
pq,Alk

))
(42)

The torques are then converted to nuclear gradients on the MM atoms by the molecular

dynamics codes, as discussed in Section IID.

The evaluations of the non-adiabatic couplings are very similar to the analytical nuclear

gradients. When solving the non-adiabatic couplings between state Θ and Π, the Lagrangian

is defined by replacing E
(Polarize)
Θ in Eq.28 with Ω

(Polarize)
ΘΠ

Ω
(Polarize)
ΘΠ =

∑
pq

TΘΠ
pq ηpq +

∑
pqrs

ΠΘΠ
pqrs(pq|rs) (43)

where TΘΠ and ΠΘΠ are transition density matrices between the two states, and ηpq is defined

in Eq.26. The corresponding Lagrange multipliers κ̄ΘΠ, θ̄ΘΠ, p̄ΘΠ, w̄ΘΠ can be solved from

the coupled perturbed equation in Eq.30. By using the Lagrange multipliers to construct

the effective density matrices γΘΠ, ΓΘΠ and X̃ΘΠ, the non-adiabatic couplings χΘΠ
ξ can then

be computed as

χΘΠ
ξ = δΘΠ

ξ − 1
∆ΘΠ

{∑
pq γ

ΘΠ
pq

∂Kpq

∂ξ
+
∑

pqrs Γ
ΘΠ
pqrs

∂(pq|rs)
∂ξ
−
∑

pq X̃
ΘΠ
pq

∂Spq

∂ξ

+V (fix),ξ
[
γΘΠ

]
+W (elec),ξ

[
γΘΠ,p

]
+W (elec),ξ

[
P(SA), p̄ΘΠ

]
+W (fix),ξ

[
p̄ΘΠ

]
+ Ξξ

[
p, p̄ΘΠ

]}
(44)

In Eq.44, ∆ΘΠ = E
(Polarize)
Θ − E

(Polarize)
Π is the energy gap, and δΘΠ

ξ is computed from the
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derivative of overlap integrals

δΘΠ
ξ =

1

2

∑
rs

(
TΘΠ
rs − TΘΠ

sr

)
·
(〈

ϕr|
d

dξ
ϕs

〉
−
〈

d

dξ
ϕr|ϕs

〉)
(45)

The other operations appearing in Eq.44 are identical to the ones in analytical gradients.

Similar to the discussions on energy in Section II B, the above discussions on gradients

and non-adiabatic couplings may also be applied to SA-CASSCF in other polarizable models

that can be written in the form of Eq.23. The symbols in Table I summarize the quantities

and operations that need to be implemented and substituted for each polarizable model

respectively.

D. Implementation

Section II B and section II C show that by making the substitutions of variables follow-

ing Table I, the algorithms developed for SA-CASSCF/PCM can be generalized to SA-

CASSCF/AMOEBA. However, compared to PCM that can be implemented completely

within the quantum chemistry codes, SA-CASSCF/AMOEBA requires interfacing the QM

codes with the MM codes, thus introducing more complications.

The general design principle in this work is to let the MM codes store and compute terms

that are purely classical. For example, we let the MM codes handle the solute nuclear charges

Z even though they reside within the QM region. The purpose of such design is to avoid

duplicate implementations of classical interactions that are already well-optimized in the

MM codes, such as the electrostatic interactions between point nuclear charges and point

dipoles or quadrupoles. Another purpose is to keep any force field specific information (such

as local frames) within the MM codes, such that the amount of information to be passed

between the QM and MM codes is minimized.

Because Table I has summarized all the differences between SA-CASSCF/PCM and SA-

CASSCF/AMOEBA, it provides guidance about what new operations need to be imple-

mented when AMOEBA is used. There are 7 operations in Table I involving electrons, and

these are implemented in the quantum chemistry codes. All of these operations involve eval-

uating or differentiating integrals following the McMurchie-Davidson algorithm,76 and are
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computed on the graphical processing units (GPUs) using codes generated by the automated

code engine.77 These include:

• Computing the electric field generated by the electrons (Eq. 22);

• Computing the Fock matrix from a set of point dipoles (Eq.19) or point quadrupoles

(Eq.20);

• Computing the gradients and torques from electrons interacting with point dipoles

(Eq.38 and Eq.39) or point quadrupoles (Eq.41 and Eq.42).

The remaining terms in Table I other than the 7 operations listed above are all handled

by the MM codes. In this work, we use the AMOEBA plugin39 in the OpenMM software.

Some of the information to be exchanged between QM codes and MM codes (e.g. getting

the coordinates of the system, resetting the permanent multipole values of the QM atoms)

can already be performed using the existing OpenMM interfaces (APIs). For information

that are not directly available using the current interfaces, we added a few new APIs to the

OpenMM-AMOEBA plugins and the codes are publicly available on GitHub (see descriptions

in SI-Section 4). These new APIs include:

• Get all the permanent multipoles (C,M,Q) in the lab frame. This information is

needed by multiple terms, such as Eq.18 and 34.

• Get the electric field E⃗ (fix) generated by the fixed multipoles. (used in Eq.21 and Eq.27).

• Get the mutual interaction matrix OAi,Bj in Eq.7.

• Given an array representing torques exerted on the MM atoms, convert the torques to

gradients. (used in Eq.37 and Eq.40).

• Given two sets of arrays µ(D) and µ(P) both of the same dimension as induced dipoles,

set the induced dipoles in OpenMM according to µ(D) and µ(P) , and compute the

corresponding energy Ẽ(ES)[µ(D),µ(P)] or gradients G̃(ES),ξ[µ(D),µ(P].

In the Appendix, we describe how through different combinations of µ(D) and µ(P) ,

Ẽ(ES)[µ(D),µ(P)] and G̃(ES),ξ[µ(D),µ(P)] can be used to evaluate the pure classical contri-

butions, including ϵnon-polarize,
dϵnon-polarize

dξ
, Ξξ[d(1),d(2)] (Eq.32), and W (fix),ξ[d] (Eq.33). All
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of the new APIs are simply wrappers to let the QM codes access intermediate variables or

internal functions in OpenMM that were previously not publicly accessible. With minimal

modifications to the OpenMM codes, this strategy helps to ensure that the AMOEBA force

field is handled accurately.

The overall algorithms for computing energy, nuclear gradients and nonadiabatic cou-

plings for SA-CASSCF/AMOEBA are summarized in Table II. The Table highlights which

operations are carried out inside the QM codes, and which operations are performed in the

MM codes by calling the OpenMM APIs.

III. RESULTS AND DISCUSSION

The method described in this work is implemented in the Terachem78,79 quantum chem-

istry package (currently supporting atom-centered spd Gaussian basis sets) and is interfaced

to a modified version of the OpenMM72 software version 7.4 (using the “Reference” plat-

form) for computing classical terms related to the AMOEBA force field. Geometry opti-

mizations and minimal energy conical intersection (MECI) searches are calculated with the

geomeTRIC80 software. Nonadiabatic molecular dynamics using ab initio multiple spawning

(AIMS) is performed with the FMS software.70 All calculations are performed on computing

nodes with NVIDIA GeForce GTX 1080Ti GPUs and Intel Xeon E5-2637 CPUs. Figures

and tables in the supporting information (SI) will be referred to as SI-Figures and SI-Tables.

Unlike calculations in PCM where the solvation cavity is automatically generated based

on the solute geometry, setting up explicit-solvent QM/MM calculations requires more care-

ful treatments. In SI-Section 2, we provide a detailed description of the procedure we used

to generate the configurations of the solvated system throughout this work. Given a so-

lute structure and a choice of solvent with existing AMOEBA parameters, the procedure

described in SI-Section 2 can generally be divided into three parts: (1) Parametrize the

AMOEBA force field for the solute following established workflows using Tinker.81 The force

field parameters for the solute are mainly used in classical molecular dynamics simulations

to sample solvent configurations in presence of the solute. (2) Create a periodic solvent box

with the solute at the center. Apply restraint to the positions of the solute atoms, and

equilibrate the solvent configurations by first running minimization, then running molecular
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dynamics for 200 ps in the NPT ensemble at 298K temperature and 1 atm pressure. These

simulations are carried out using Tinker71. (3) Take samples from the equilibrated trajectory,

and convert the AMOEBA force field parameters and coordinates to OpenMM format (with

periodic boundary conditions removed). Save the OpenMM State and System objects to

XML files, which serve as the input files to SA-CASSCF/AMOEBA calculations. To make

sure we have set up the simulations in OpenMM correctly, each energy component computed

by OpenMM is compared with Tinker to ensure that they are in good agreement, i.e. energy

from the electrostatic component computed by OpenMM or by Tinker should differ at most

on the order of 1.0e-4 kcal/mol, and all other energy components should differ on the order

of 1.0e-9 kcal/mol.

A. Accuracy and performance

We start with testing the accuracy of the new method by comparing the analytical nuclear

gradients with numerical ones, and the results are presented in SI-Section 1. The calculations

are performed with SA(2)-CASSCF(4,4)/AMOEBA/6-31G* on the model retinal protonated

Schiff base molecule (PSB3, C4H9N
+) solvated in more than 400 water molecules. Energy

calculations are deemed converged when two conditions are met: (1) changes in state aver-

aged energy from the previous iteration is smaller than 1.0e-8 Hartree, and (2) the derivative

elements with respect to each orbital rotation (i.e. Eq.25) and each induced variable (i.e.

Eq.27) are all below 1.0e-8 Hartree. In analytical gradient calculations, the convergence

threshold for solving the coupled-perturbed equation is set to 1.0e-7 Hartree. The numerical

gradients are evaluated for all the atoms in the PSB3 molecule (described quantum mechan-

ically) as well as atoms in the two water molecules (described with AMOEBA) closest to

PSB3. The numerical gradients are computed with 3-point central difference using a displace-

ment of 0.0005 Angstrom. In SI-Table S1 and S2, we compute nuclear gradients for ground

and excited state respectively with polarization from the induced dipoles turned on, and the

root mean square in the differences between analytical and numerical results are both within

4e-7 Hartree/Bohr. For reference, in SI-Table S3 and S4, we have also carried out similar

calculations at the same geometry but without polarization, i.e. electrostatic interactions

with the MM region only coming from fixed multipoles, and the root mean square in the
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differences between analytical and numerical results are both within 4.5e-7 Hartree/Bohr.

These results suggest that the analytical gradients are implemented correctly. Polarizations

are enabled in all the calculations below.

In contrast to PCM where the number of induced surface charges is proportional to the

size of the solute, the number of induced dipoles in AMOEBA is proportional to the number

of solvent molecules, and this will affect both the excitation energies and the computational

cost. To test the effects from the size of the MM region, the test molecule we use is a

recently reported dipolar merocyanine dye (merocyanine 4-(dicyanomethylene)-2-tert-butyl-

6-[3-(3-butyl-benzothiazol-2-ylidene)1-propenyl]-4H-pyran,7 abbreviated as “DCBT”, see the

chemical structure in Figure 2. The molecule has been shown to exhibit large positive

solvatochromism both experimentally as well as in our previous SA-CASSCF/PCM studies.

In Figure 1, we solvate DCBT in increasing numbers of water molecules, and show how the

first excitation energies and the computational costs change accordingly.

Figure 1 has indicated the sizes of the MM region both in terms of the number of water

molecules, as well as the radius of the solvent sphere surrounding the solute. The changes

in the first excitation energies are shown in Figure 1(a), and each data point is computed

from 10 different solvent configurations sampled from molecular dynamics simulations in

equilibrium. Figure 1(a) shows that the averaged excitation energies fluctuate between 3.5eV

to 3.7eV when the solvent sphere radius is less than 10 Angstrom. When the solvent sphere

radius exceeds 10 Angstrom, the averaged excitation energies are more consistent and fall

within 3.5 eV to 3.53 eV. Based on this observation, in all calculations presented later in this

work, the radius of the solvent sphere is at least 20 Angstrom. One reason why a large radius

of MM region is needed for the excitation energies to converge is due to the edge effects.

Because SA-CASSCF/AMOEBA calculations are performed on an isolated cluster without

periodic boundary condition, the edge of the solvent sphere is in direct contact with vacuum.

As a result, a large solvent sphere is required to make the environment experienced by the

solute resemble a condensed phase environment. This artificial edge effect is also discussed in

Section III C, where we further show how it may affect the nonadiabatic molecular dynamics

and discuss possible ways to address it.

Figure 1(b) shows the corresponding computational time with increasing sizes of the MM

region. The computational time for gas phase (stars) and PCM (circles) calculations have also
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been included for comparison. The computational cost of SA-CASSCF/PCM only increases

by a small amount from the gas phase calculations, which are consistent with results from our

previous work.65 When AMOEBA is used, the computational cost has strong dependency on

the number of solvent molecules as expected. For this particular chromophore, it is observed

that the computational cost of SA-CASSCF/AMOEBA stays close to the cost of PCM when

the MM region contains fewer than 2000 atoms, but quickly increases as the MM region

includes more atoms. This behavior is likely due to that the quantum mechanical operations

dominate the computational cost when the MM region size is relatively small, but AMOEBA

related operations start to gradually take over as the MM region size increases.

Close examination on the timing data shows that this increasing of computational cost

is mainly correlated with the increasing cost of solving the induced dipoles, i.e. the linear

system in the form of Eq.6. In particular, the solver to this linear system needs to be called

repeatedly during the calculations, i.e. at each iteration during the energy calculations, as

well as at each iteration when solving the coupled-perturbed equation in gradient or NAC

calculations. As a result, the performance of the codes can be improved significantly if the

solver can be made more efficient. In the current implementation, the matrix OAi,Bj in Eq.6

is explicitly computed by the Reference platform of OpenMM and then stored in the memory

of the QM codes, and the preconditioned conjugate gradient solver (originally implemented

for PCM) is used to solve the linear system. One promising way to improve the solver is

to use the GPU-accelerated platform (i.e. “CUDA”) from OpenMM that solves the induced

dipoles using a direct inversion in the iterative subspace (DIIS) algorithm. Numerical tests

have shown that the solver from the CUDA platform is notably faster than our current

solver. However, we were unable to use the CUDA platform in this work because it led

to the competition for GPU resources between Terachem and OpenMM. We will explore

possible ways to partition the GPU between Terachem and OpenMM in future works.

B. Electrostatic potential and excitation energies

In this section, we will investigate how the first excitation energies are affected by the

types of solvent models. We will compare three different solvent models, including PCM,

AMOEBA, and fixed-charge force field. We will continue to use the DCBT molecule as the
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test system, since its first excitation energy is sensitive to the solvent environment.

Because the electrostatic interaction plays a fundamental role in both PCM and AMOEBA,

we start by comparing the electrostatic potential (ESP) generated by the solvents when the

molecule is surrounded by water. In the SA-CASSCF/PCM calculations, the dielectric

constant is set to ϵ = 80.1, which assumes the solvent to be in equilibrium with the so-

lute. The AMOEBA1482 force field parameters are used in the SA-CASSCF/AMOEBA

calculations, TIP3P-FB24 force field parameters are used in the SA-CASSCF/fixed charge

force field calculations, and both models have parameters systematically improved using

ForceBalance83. The same solvent configuration is used in the AMOEBA and fixed-charge

force field calculations, and the radius of the water sphere is 24 Angstrom. As introduced

by the experimental paper that synthesized DCBT, this molecule consists of a donor and an

acceptor group that are covalently connected by a polymethine chain. From the chemical

structure of DCBT in Figure 2, the acceptor group lies on the left hand side and the donor

group lies on the right hand side. When the molecule is in its ground electronic state, in

order to stabilize the solute-solvent electrostatic interaction, we expect the ESP from the

solvent to be more positive on the acceptor side (left) and more negative on the acceptor side

(right). As shown in the first column of Figure 2, the ESP generated by the three solvent

models are all consistent with this qualitative analysis when the solute is in its ground

state. However, it is also observed that notable differences occur in a few local regions when

comparing PCM and the explicit solvent models (AMOEBA or fixed-charge force fields) .

For example, the ESP generated by the two explicit solvent models are both locally positive

around the sulfur atom, which is not observed in the PCM. By examining the corresponding

structure, this positive contribution to the ESP is associated with a hydrogen bond donated

by a nearby water molecule. This difference highlights the inefficiency of PCM for describing

solvation effects arising from local interactions such as hydrogen bonding.

We now consider how the ESP from the solvent changes when the molecule is electronically

excited. To help understand how the electronic density changes upon excitation, Figure 2(a)

shows the attachment-detachment density of the first excited state of the molecule. It is

observed that the detachment density is mostly on the side of the donor group, whereas

the attachment density is mostly on the side of the acceptor group. This suggests that

the electronic density will move from the donor to the acceptor group upon excitation. To
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compensate for this changes in electronic distributions, we expect the ESP generated by the

solvent changes to be even more negative on the the donor side and even more positive on

the acceptor side. The changes in the solvent ESP are shown in the second column Figure

2(b), and the three solvent models are observed to behave differently. The fixed-charge

model completely misses the polarization, thus is not able to describe any changes in the

solvent ESP in response to the solute excitation. The two polarizable models (i.e. PCM

and AMOEBA) both predict changes that are consistent with the qualitative analysis, i.e.

negative changes on the donor side and positive changes on the acceptor side. However, the

two polarizable models differ notably in the magnitudes of changes. Because the fast-slow

separation of dielectric constant in PCM is currently not supported in SA-CASSCF due to

the state-averaged formulation, the PCM calculation is carried out with ϵ = 80.1, which

assumes both the electrons and nuclei of the solvent to be in immediate equilibrium with the

excited molecule. This is expected to overestimate the polarization effect from the solvent,

since it neglects the time delay in the slow response of nuclear relaxation as discussed in

the introduction. This fast-slow separation is captured in the AMOEBA calculations, as the

changes in the induced dipoles reflect the fast response from the electrons, while the nuclear

polarization effects remain unchanged at the same nuclear configuration. As a result, the

changes in the solvent ESP from AMOEBA that only come from electrons is much weaker

than PCM that has both electronic and nuclear contributions.

The differences in the solvent electrostatic potentials discussed in the previous paragraph

will have a direct impact on the excitation energies, and the results are shown in Figure 3.

In addition to water, we have also calculated the excitation energies in three other organic

solvents, i.e. chloroform (ϵ = 4.81), tetrahydrofuran (ϵ = 7.58) and acetonitrile ( ϵ = 37.5 ).

All the solvent molecules are small enough such that the intramolecular polarization can be

turned off. The AMOEBA force field parameters for chloroform are taken from Mu et al.84

and the AMOEBA parameters for tetrahydrofuran or acetonitrile are taken from Fried et

al.46 The fixed charge force field parameters are obtained from the general Amber force field

(GAFF).85 From the experimental measurements, the absorption spectrum of the DCBT

molecule exhibits a red shift with increasing dielectric constant of the solvent. In Figure 3,

all the three solvent models are able to predict this trend qualitatively. However, there are no-

table differences when comparing the excitation energies between the models. Qualitatively,
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the solvent’s polarization response to the solute excitation is expected to further stabilize

the excited state thus reduce the excitation energy. Because PCM overestimates solvent

polarization in response to the solute excitation, we expect it to over-stabilize the excited

state, leading to the excitation energy being the smallest among the three solvent models.

In contrast, because the fixed-charge model predicts no changes in the solvent polarization,

it provides no additional stabilization of the excited state, leading to the excitation energy

being the largest among the three solvent models. The AMOEBA model captures changes

in the solvent polarization only from the electrons, and the excitation energy is expected to

lie between PCM and fixed-charge model. From Figure 3, it is observed that the excitation

energies in chloroform, tetrahydrofuran and acetonitrile are all consistent with the above

qualitative analysis. However, when fixed-charge models are used, the excitation energy in

the least polar solvent (i.e. chloroform) is unexpectedly higher than gas phase. Another un-

expected behavior occurs in water, where although the excitation energy in PCM is still the

lowest, the differences between AMOEBA and fixed-charge model is only within 0.01eV with

AMOEBA being slightly higher on average. We found that similar unexpected observations

were reported in Fried et al.46 who study the solvent effects on the bond vibration frequency

of acetophenone. First, the authors found that only polarizable models can account for the

condensed-phase shift in the bond vibrational frequency when changing from gas phase to

non-polar solvents, which is consistent with what we observed in chloroform. In addition,

when comparing the electric field exerted on the carbonyl group from different solvents, the

authors also observe that the differences between AMOEBA and fixed-charge model in wa-

ter is much smaller compared to the other solvents studied, ranging from nonpolar organic

solvents like hexane to polar organic solvents like dimethyl sulfoxide (DMSO). The authors

attribute this abnormal behavior of water to hydrogen bonding, i.e. the “extra” electric field

exerted by water compared to a polar organic solvent (e.g. DMSO) is mostly due to the

existence of a few water molecules in close contact and form hydrogen-bonding with the

solute. Since the both AMOEBA and fixed-charge model can describe hydrogen bonding,

the two models exhibit a much smaller difference when describing solute-solvent electrostatic

interactions in water compared to other solvents without hydrogen bonds. Based on these

discussions, we think the hydrogen-bonding may also explain the result in Figure 3 (d),

where the first excitation energies exhibit much smaller differences between AMOEBA and
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fixed-charge model in water compared to other solvents.

C. Nonadiabatic molecular dynamics

The main advantage of using a multi-reference electronic structure method is that it

is capable of simulating nonadiabatic molecular dynamics with correct topology around

conical intersections. When combined with AMOEBA polarizable force field for describing

the solvents, it leads to the possibility of simulating the nonequilibrium solvation effects

on photoreactions. To carry out nonadiabatic ab initio molecular dynamics simulations,

we interface the SA-CASSCF/AMOEBA method developed in this work with the ab initio

multiple spawning methods69,70 in the FMS software. This is achieved by using the existing

Terachem-FMS interfaces that already support SA-CASSCF calculations in gas phase, with

small modifications in Terachem to make sure the positions and velocities of the AMOEBA

solvents are sent and received properly. In this section, we perform some preliminary test

calculations and discuss the issues suggested by the test results that need to be addressed

in future works.

The test molecule used in this section is PSB3, which is a simplified model molecule

for the retinal protonated Schiff base in vision. Ruckenbauer et al.86 studied the effects

of the solvent polarity over the photodynamics of PSB3 using multireference configuration-

interaction with fixed charge solvent model, and observed that the excited state lifetimes of

PSB3 in water is very close to that in the gas phase. In Figure 4, we present the results

corresponding to a single FMS trajectory for PSB3 in the gas phase (using SA-CASSCF), and

a single FMS trajectory for PSB3 solvated in water sphere with radius around 20 Angstrom

(using SA-CASSCF/AMOEBA). The initial positions for the solvated system is randomly

sampled from the equilibrated molecular dynamics simulations, and the initial velocities are

randomly sampled from the Maxwell-Boltzmann distribution at 300K. As a result, the initial

conditions used in this work are generated from purely classical statistics, which needs to

be improved in the future as discussed at the end of this section. The initial positions and

velocities of the solvated PSB3 molecule are then used as the initial conditions for launching

the dynamics in the gas phase.

Figure 4 (a) and (b) show how the population changes along the trajectory as a function of
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time in the gas phase and water respectively, and the molecule is fully relaxed to the ground

state at around 300 fs in both simulations. In addition, we observed that in both trajectories,

the main photoreaction coordinate corresponds to rotation around the central double bond.

As shown in Figure 4 (e) and (f), the transfer of population to the ground state is strongly

correlated with the changes of the dihedral angle formed by the four atoms highlighted in the

inset structure in Figure 4. The inset structure illustrates the geometry when the molecule

starts to transfer population to the ground state for the first time, and most transfers occur

when the dihedral angle highlighted changes from flat to near perpendicular. For the two

trajectories shown, the first occurrence of population transfer in the gas phase is at around

100 fs, whereas in AMOEBA it first occurs at around 150 fs. This time difference might be

due to that in order for PSB3 to rotate around the central bond in solvent, the surround-

ing water molecules need to rearrange accordingly, although more substantial samplings of

trajectories are required to determine whether the presence of explicit water will lead to

notable differences in the excited state lifetime. In SI-Figure S1, we have also optimized the

minimal energy conical intersection (MECI) in water using SA-CASSCF/AMOEBA, and

the corresponding dihedral angle is -95 degrees. All of these observations are qualitatively

consistent with previous theoretical studies, which suggests that the non-adiabatic dynamics

simulations using SA-CASSCF/AMOEBA is set up correctly.

Despite the similarities discussed above, one notable difference between simulations in the

gas phase and in AMOEBA is found when comparing Figure 4 (c) and (d), which show the

time-dependent changes of the potential energies along the two trajectories. When following

PSB3 on the first excited state, the potential energy in the gas phase changes less by 2eV

during the whole trajectory. In contrast, for the trajectory in AMOEBA, the potential

energy decreases sharply by more than 10eV during the first 50 fs. To help understand the

source of this rapid decrease of potential energy, we analyze the time-dependent changes

in the kinetic energy. We divide the solvated system into three components: the solute

(PSB3), the inner shell of solvents (i.e. water molecules within 16 Angstrom from the

solute), and the outer shell of solvents (i.e. water molecules beyond 16 Angstrom up to 20

Angstrom). The time-dependent changes of the kinetic energy corresponding to the three

components are shown in SI-Figure S2. As shown in Figure SI-Figure S2(b), the kinetic

energy of the solute and the inner solvent shell don’t have notable changes in the first
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50 fs. In contrast, the kinetic energy of the outer solvent shell increases rapidly in the

first 50 fs, which strongly correlates with the rapid decrease of the potential energy. This

observation suggests that the initial decrease of potential energy in AMOEBA is likely due

to an artificial edge effect. When we generate samples of equilibrated solvent configurations

using molecular dynamics simulations, periodic boundary conditions are enabled, thus all

the water molecules are experiencing true condensed phase environment. However, the SA-

CASSCF/AMOEBA method currently only supports non-periodic systems. As a result, at

the start of the nonadiabatic MD simulations, the water molecules at the edge are suddenly

exposed to vacuum, resulting in a large force compared to when they were in the condensed

phase. Based on these considerations, the initial rapid decrease of potential energy is non-

physical, and should be remedied in future works as discussed below.

The above simulation results demonstrate the potential of using SA-CASSCF/AMOEBA

for performing non-adiabatic molecular dynamics simulations, but also point out a few lim-

itations that need to addressed before more rigorous simulations can be carried out. One

issue is the artificial edge effect pointed out in the last paragraph. There are two possible

approaches to address this issue that we would like to try in future works. One possible ap-

proach is to restrain the outer solvent layer in the nonadiabatic MD simulations, preventing

its kinetic energy from increasing too quickly. Although restraints are well established in

classical MD simulations, it is less clear how restraints should be applied when the nuclei are

treated quantum-mechanically as wavepackets as in the AIMS method. Another possible ap-

proach is to mimic the condensed phase environment by surrounding the AMOEBA explicit

water molecules with a PCM cavity. Such multi-layer polarizable embedding approach has

recently been reported in the context of TDDFT,87 and would require describing the mutual

polarization between the electrons, the induced dipoles from the AMOEBA atoms, and the

induced surface charges in PCM.

A second limitation found in the above test calculations is related to the sampling of initial

conditions. The current way of generating the initial positions and velocities for the solvated

system is purely classical. However, because AIMS is a type of quantum-dynamics method,

the proper way of sampling initial conditions should include quantum statistical mechanical

effects. For small molecules in the gas phase, the initial conditions are often generated from

the Wigner distribution,88 which requires the Hessian of the system and can be computed by

29



finite difference of analytical nuclear gradients. For a system with Natom atoms, computing

the Hessian this way requires 3Natom of nuclear gradient calculations, which is impractical

for the solvated system with tens of thousands of atoms. Previous studies have proposed

a combination of Wigner sampling for the QM region and classical sampling for the MM

region,89 which may potentially be a good solution to work around this issue.

A third limitation present in the test calculations is that the dynamic-weight scheme for

SA-CASSCF/AMOEBA is not supported in the current Terachem-FMS interface, despite

that the corresponding analytical gradients and non-adiabatic couplings are all available for

single-point calculations. The advantage of using a dynamic weighting scheme for dynamics

simulations has been discussed in the introduction section. However, the dynamic weight

formula in Eq.13 requires specifying a reference state, which needs to be automatically

adjusted based on which electronic state the molecule is currently propagating on. This

requires adding new interface to the FMS codes to send the corresponding state information

to the SA-CASSCF/AMOEBA codes, which we plan to develop in future works.

IV. CONCLUSIONS

In this work, we have developed SA-CASSCF in AMOEBA polarizable force fields for

water as well as small solvent molecules, which enables the possibility of simulating nona-

diabatic molecular dynamics with non-equilibrium solvent effects. In particular, we imple-

mented a unified method for SA-CASSCF in polarizable model that supports both PCM

and AMOEBA water model. The main advantage for the unified framework is that it may

also be applied to polarizable models in addition to the two models discussed in this work.

As long as the energy can be written in the general form of Eq.23, the corresponding ener-

gies, analytical gradients and non-adiabatic couplings can be computed using the existing

algorithms by properly substituting the variables listed in Table I .

The preliminary test results presented in this work have suggested several things to im-

prove in future works. In Section IIIA, we have observed that the computational cost is

dominated by AMOEBA-related operations when the number of solvent molecules is large,

and we have discussed the possibility of using the CUDA platform in OpenMM to help ac-

celerate these operations. At the end of Section III C, we have pointed out three limitations
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in the current nonadiabatic MD simulations using SA-CASSCF/AMOEBA. These include

the edge effects leading to unphysical rapid decrease of potential energies at the beginning

of the dynamics, missing of quantum effects when sampling initial conditions of the solvated

system, and lack of supports for dynamic-weighted scheme in the nonadiabatic MD simula-

tions. In Section III C, we have also discussed possible ways to address these limitations, so

that rigorous nonadiabatic MD simulations using SA-CASSCF/AMOEBA can be routinely

applied to the studies of photoreactions in solvents in the future.

By combining SA-CASSCF with AMOEBA models, it opens the door to simulating pho-

toreactions in bio-macromolecular environments such as proteins. The study of solvent envi-

ronment in this work serves as the initial step towards this goal, and we anticipate that there

are two questions to be addressed for incorporating protein environment. One is the inclu-

sion of intramolecular polarization. As discussed in Eq.IIA, accounting for intramolecular

polarization leads to two different electric fields used for separate purposes,43 which makes

the current self-consistent formulation insufficient. Fortunately, such difference can be nat-

urally incorporated with the Lagrangian formulation, as previously shown in the context of

TDDFT/AMOEBA.56 Since the Lagrangian formulation has already been used in this work,

including intramolecular polarization into SA-CASSCF/AMOEBA should primarily involve

identifying the additional terms to be included into the coupled-perturbed equation. The

other question for simulating protein environment is the treatment of the covalent QM/MM

boundary. Compared to fixed charge force field models, the additional challenge from using

polarizable models is how to avoid the polarization catastrophe. Methods specialized for

describing QM/MM boundary with polarizable models have been developed before,51 and

we can potentially include these ideas in our future implementations.

SUPPLEMENTARY MATERIAL

See supplementary material for additional test results, descriptions of the detailed proce-

dure used for setting up the QM/MM systems, descriptions of new OpenMM APIs added

for this work, as well as sample input and output files from this work.
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Appendix A

Here we describe how the the purely classical contributions to the energy (i.e. ϵnon-polarize)

and gradients (i.e. the last three terms in Eq.31, and the last two terms in Eq.44) are

evaluated using the newly added OpenMM APIs. Because the valence and van der Waals

contributions can be evaluated with the standard OpenMM APIs, here we will focus on the

electrostatic contributions.

In Section IIA, we have mentioned that in the more general situations for AMOEBA,

there are two types of electric field generated from the fixed multipoles, i.e. E⃗ (fix-D) and

E⃗ (fix-P). Correspondingly, we can define two sets of induced dipoles:

µ
(D)
Ai = αAE (fix-D)

Ai , µ
(P)
Ai = αAE (fix-P)

Ai (A1)

Furthermore, there are two different “polarization types” in AMOEBA, both supported by

OpenMM. The one presented in section II A corresponds to the “mutual” polarization type.

Its energy is evaluated as Eq.5, and the gradients are derived in the appendix of Ren et al.43
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as

G
(es),ξ
Mutual =

dϵes-fix

dξ
− 1

2

∑
Ai

(
∂E (fix-D)

Ai

∂ξ
µ

(P)
Ai + µ

(D)
Ai

∂E (fix-P)
Ai

∂ξ

)
+

1

2

∑
AiBj

µ
(P)
Ai

∂T
(Thole)
Ai,Bj

∂ξ
µ

(D)
Bj (A2)

ϵes-fix represents the electrostatic interactions among the fixed multipoles, i.e. ϵes[Z,C,M,Q]

in Eq.17. The second polarization type is called “direct”, which can be considered as an

approximation to Eq.5 by neglecting the mutual interaction and approximating the energy

as

E
(es)
Direct = ϵes-fix −

1

2

∑
Ai

µ
(D)
Ai E

(fix-P)
Ai (A3)

The corresponding analytical gradients thus become

G
(es),ξ
Direct =

dϵes-fix

dξ
− 1

2

∑
Ai

(
∂E (fix-D)

Ai

∂ξ
µ

(P)
Ai + µ

(D)
Ai

∂E (fix-P)
Ai

∂ξ

)
(A4)

The various types of classical electrostatic contributions to energies or gradients can then be

evaluated by properly choosing different combinations of “mutual” or “direct” polarization

types, and choosing the values of µ(P) and µ(D).

From Eq.A3, it is obvious that ϵes-fix in ϵnon-polarize can be obtained if µ(D) is equal to zero

ϵes-fix = Ẽ
(es)
Direct[µ

(D) = 0] (A5)

Similarly, from Eq.A4, the gradients of ϵes-fix can be evaluated by passing zero to both µ(P)

and µ(D)

dϵes-fix

dξ
= G̃

(es),ξ
Direct

[
µ(D) = 0,µ(P) = 0

]
(A6)

We now consider W (fix),ξ[d] defined in Eq.33. Recall that this work assumes E (fix-D)
Ai =

E (fix-P)
Ai . By comparing Eq.33 and Eq.A4, it’s easy to see that

W (fix),ξ[d] = G̃
(es),ξ
Direct

[
µ(D) = d,µ(P) = d

]
− dϵes-fix

dξ
(A7)

where dϵes-fix
dξ

is computed using Eq.A6. Finally, for Ξξ[d(1),d(2)] defined in Eq.32, by com-
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paring the equation with Eq.A2, it can be evaluated if all the fixed multipoles in Eq.A2 are

set to zero,

Ξξ[d(1),d(2)] = G̃
(es),ξ
Mutual

[
µ(D) = d(1),µ(P) = d(2), {Z,C,M,Q} =0

]
(A8)

where the values of the fixed multipoles can be modified using the standard OpenMM APIs.
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TABLE I. Comparison of SA-CASSCF/PCM with SA-CASSCF/AMOEBA. The "Symbol" column
summarizes the symbols used in the unified formulation, i.e. eq.(23), eq.(31) and eq.(44). The
"PCM" and "AMOEBA" columns summarize the corresponding definitions in each model. No-
tations in the "PCM" column are consistent with Ref.65. For the "AMOEBA" column, related
equation numbers have been provided for each term.

Quantity Symbol PCM AMOEBA eq.
Variable Electron density matrix Ppq Same Same

Fixed multipoles - Solute nuclear charges Z

Solute nuclear charges Z

Solvent permanent charges C
dipoles M, quadrupoles Q

Induced variables pµ Induced charges pµ=n = qn Induced dipoles pµ=3A+i = dAi

Energy Fock from fixed V
(fix)
pq V

(0)
pq [Z]

V
(0)
pq [Z] + V

(0)
pq [C]

+V
(1)
pq [M] + V

(2)
pq [Q]

(18)-(20)

Fock from induced V
(induce)
pq

∑
n βpq,nqn

∑
Ai v

(1)
pq,AidAi (19)

Induction from electrons W
(elec)
µ

∑
pq Ppqβpq,n

∑
pq Ppqv

(1)
pq,Ai (22)

Induction from fixed W
(fix)
µ

∑
N ZNBN,n −E (fix)

Ai [Z,C,D,Q] (21)
Mutual induction Ξµν Anm OAi,Bj (7)
Non-polarizable ϵnon-polarize ϵes[Z] ϵes[Z,C,M,Q] + ϵvalence + ϵvdW (A5)

Gradient Electrons - fixed V (fix),ξ[P] V (0),ξ[P,Z]
V (0),ξ[P,Z] + V (0),ξ[P,C]

+V (1),ξ[P,M] + V (2),ξ[P,Q]
(35)-(42)

Electrons - induced W (elec),ξ[P,p]
∑

pq,n Ppq
∂βpq,n

∂ξ
qn

∑
pq,Ai Ppq

∂v
(1)
pq,Ai

∂ξ
dAi (34)

Fixed - induced W (fix),ξ[p]
∑

Nn ZN
∂BN,n

∂ξ
qn −

∑
Ai

∂E(fix)
Ai [Z,C,D,Q]

∂ξ
dAi (33),(A7)

Induced - induced Ξξ[p,p′]
∑

nm qn
∂Anm

∂ξ
q′m

∑
AiBj dAi

∂OAi,Bj

∂ξ
d′Bj (32),(A8)

Non-polarizable dϵnon-polarize
dξ

dϵes[Z]
dξ

dϵes[Z,C,M,Q]
dξ

+ dϵvalence
dξ

+ dϵvdW
dξ

(A6)
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TABLE II. Algorithms of computing SA-CASSCF/AMOEBA energies, analytical nuclear gradients
and non-adiabatic couplings. Definitions for symbols appearing in the table can be found in Table
I. "CAS/PCM" refers to Ref.65. The arrow← represents the corresponding calculations are carried
out in the MM codes, and the results are passed to and stored in the QM codes.

QM codes Call MM API
Initialization

1 Construct pure MM system from XML files
2 Read list of QM atoms

3 Delete valence forces that involve QM atoms
4 Exclude vdW interactions between QM atoms
5 Set permanent charges of QM atoms to nuclear charges Z

6 Set permanent dipoles and quadrupoles of QM atoms to zero
7 Save fixed point multipoles: [Z,C,M,Q] ← Get permanent multipoles in lab frame
8 Compute one-electron kinetic integral: hpq = Kpq

9 Add Fock matrix from fixed: hpq+ = V
(fix)
pq [Z,C,M,Q]

10 Save electric fields exerted on MM atoms: E (fix)
Ai ← Get electric fields from fixed multipoles at all atom positions

11 Save mutual induction matrix between MM atoms: OAi,Bj ← Get mutual induction matrix between all atoms
Energy: minimize eq.(23)

12 Solve MO, CI, dynamic weights, and MM induced dipoles d

Follow Steps 4-17 of Algorithm Table I in CAS/PCM
Substitute variables according to Table I in this work
Analytical nuclear gradients of state Θ: eq.(31)

13 Solve Lagrange multipliers κ̄Θ, θ̄Θ,d̄Θ

Follow Steps 5-21 of Algorithm Table II in CAS/PCM
Substitute variables according to Table I in this work

14 Build effective density matrices γΘ,ΓΘ, X̃Θ

Follow Steps 22-24 of Table II in CAS/PCM
15 Add gradients from kinetic, overlap, and ERI
16 Add gradients from electron-induced: W (elec),ξ[γΘ,d],
17 Add gradients from electron-induced: W (elec),ξ

[
PSA, d̄Θ

]
18 Add partial gradients from electron-fixed: V

(fix),ξ
no-rotate[γ

Θ]

19 Compute torques from electron-fixed: τ (fix)[γΘ]

20 Convert torques from Step 19 and add to gradients
21 Add gradients from fixed-induced: W (fix),ξ[d+ d̄Θ]

22 Add gradients from induced-induced: Ξξ
[
d, 1

2
d+ d̄Θ

]
23 Add gradients from non-polarizable: dϵnon-polarize

dξ

Nonadiabatic couplings between states Θ and Π: eq.(44)
24 Solve Lagrange multipliers κ̄ΘΠ, θ̄ΘΠ, d̄ΘΠ

25 Build effective density matrices γΘΠ,ΓΘΠ, X̃ΘΠ

Follow Steps 5-7 of Table III in CAS/PCM
26 Save gradients from kinetic, overlap, and ERI to Gξ

27 Add gradients from electron-induced: W (elec),ξ
[
γΘΠ,d

]
to Gξ

28 Add gradients from electron-induced: W (elec),ξ
[
PSA, d̄ΘΠ

]
to Gξ

29 Add partial gradients electron-fixed: V
(fix),ξ
no-rotate[γ

ΘΠ] to Gξ

30 Compute torques from electron-fixed: τ (fix)[γΘΠ]

31 Convert torques from Step 30 and add to gradients Gξ

32 Add gradients from fixed-induced W (fix),ξ[d̄ΘΠ] to Gξ

33 Add gradients from induced-induced Ξξ
[
d, d̄ΘΠ

]
to Gξ

34 Compute NAC: χΘΠ
ξ = δΘΠ

ξ − 1
∆ΘΠG

ξ
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FIG. 1. Excitation energies and computational time of SA-CASSCF/AMOEBA with respect to

increasing sizes of the MM solvent environment. The inset structure illustrates the chromophore

DCBT solvated in water molecules. (a) shows changes in the first excitation energies. Each data

point is computed from 10 different geometries sampled from the equilibrated AMOEBA molecular

dynamics simulations, and the error bar indicates one standard deviation. (b) shows changes in

computational time for both energy (blue) and gradient (red) calculations. The timing of gas phase

calculations (star) and PCM (ϵ = 80.1) calculations (circle) have also been included for comparison.

(a) and (b) share identical x-axis, which labels the sizes of the MM region both in terms of the

number of MM atoms, as well as the radius of the solvent sphere.
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FIG. 2. (a) Attachment density (blue) and detachment density (red) for the first excitation of

DCBT chromophore in the gas phase using SA-CASSCF. (b) Comparison of electrostatic potential

(ESP) generated by the solvent in DW-SA-CASSCF calculations using three different water models,

including PCM (ϵ = 80.1), AMOEBA, and fixed-charge force field. The ESP is plotted on the total

electronic density isosurface of the chromophore with isovalue 0.05. The first column "ESP-S0"

represents the total ESP generated by the solvent when the chromophore is in its ground state. The

second column "∆ ESP(S1-S0)" represents changes in the solvent ESP when the chromophore is

excited from S0 to S1. The bandwidth used in the dynamic weight formula is 3 eV. The QM/MM

geometry is randomly sampled from the equilibrated AMOEBA molecular dynamics simulations.

The radius of the solvent sphere in QM/MM is around 24 angstrom.
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FIG. 3. First excitation energies of DCBT computed with DW-SA-CASSCF in the gas phase and

in 4 different solvents. The figure compares three solvent models, including PCM (blue), AMOEBA

(orange) and fixed charge force field (green). Gas phase and PCM are computed using the optimized

geometry in gas phase. Excitation energies in QM/MM calculations (AMOEBA or fixed charge force

field) are computed from 10 structures sampled from equilibriated MD simulations. The error bar

represents one standard deviation. The radius of the solvent spheres in QM/MM calculations is

around 24 angstrom. Intramolecular polarizations in solvent molecules have been neglected in all

SA-CASSCF/AMOEBA calculations.
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FIG. 4. Nonadiabatic molecular dynamics of PSB3 using SA-CASSCF in gas phase (left column)

and in AMOEBA water model (right column, solvent contains around 5000 atoms). One AIMS

trajectory is simulated in each environment. (a) and (b) show changes in the population on each

electronic state as a function of time along the trajectory. (c) and (d) show changes in the potential

energies as a function of time, where "parent" refers to the initial wavepacket, and "spawns" are

created when internal conversions take place. (e) and (f) show changes in the highlighted dihedral

angle as a function of time. The inset structure illustrates the geometry where the first spawned

wavepacket is created, and only the first solvation shell is shown.
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