
Automated Synthesis of Multi-Port
Memories and Control

Hunter Nichols, Michael Grimes, Jennifer Sowash, Jesse Cirimelli-Low, Matthew R. Guthaus
Computer Science and Engineering

University of California Santa Cruz

Santa Cruz, CA 95064

{hznichol,mtgrimes,jsowash,jcirimel,mrg}@ucsc.edu

Abstract—High performance systems often employ multi-
ported memories to enhance the throughput and flexibility of
the memory. Existing SRAM compilers offer limited control
over the SRAM design and port configurations while SRAMs
are commonly dual-ported. Experimental designs could benefit
from design exploration of multi-port configurations. We propose
an open-source, multi-port solution that extends the OpenRAM
memory compiler. A parameterized bitcell is presented which
can support any combination of read, write, and read-write
ports. The bitcell layout is generated for these port combinations,
and the SRAM layout can support any combination of two
ports. In addition, support for multi-port characterization and
functional testing ensures correctness and incorporation into
design methodologies.

I. INTRODUCTION

The performance of modern multi-core System-on-Chips

(SoCs) and processors is not only dictated by the speed

of the memory but also the bandwidth. Memories such as

register files and Static Random Access Memories (SRAM)

are commonly multi-ported to allow for concurrent operations

to increase the throughput of the system at the expense of

memory area overhead. In addition, memories typically occupy

substantial portions of these same designs. Therefore, fast and

dense multi-ported memories are necessary in modern systems

but have not received significant attention in SRAM compiler

implementations.
Multiported memories are distinctly different than register

files. Many-ported memories like the 12 read, 8 write register

file in the Itanium [1] often do not use sense amplifiers.

The complexity of the multi-port cells used in these register

files makes them impractical for large memories. Multi-ported

SRAMs on the other hand have additional complexities which

can affect the performance and the layout requires many

specific considerations [2].
While high performance microprocessors often have custom

designed SRAMs, ASIC designs often use pre-made memory

IP. Since manually designing an SRAM has a high engineering

cost, system designers and architects are often prevented from

doing broad design space exploration. Memory compilers

partially alleviate this problem by automating layout, netlist

generation, and characterization. Contemporary SRAM com-

pilers, however, are often limited to a small range of predefined

Fig. 1: Block diagram for a multi-ported SRAM showing a

shared bit cell array with duplicated instances of peripheral

circuitry.

configurations and are usually specific to a given process

technology.

The purpose of this work is to augment the OpenRAM [3]

memory compiler with multi-port extensions. The contribu-

tions presented in this paper are:

• The first open-source multi-port memory compiler.

• A framework for multiport functional testing and charac-

terization.

• Support for custom and synthesized multi-port bitcells.

• A sensitivity matching approach for delay line sizing.

The rest of this paper is organized as follows. We present

an overview of multi-port SRAMs in Section II. We discuss

design methods including parameterized multi-port bitcell

design and the timing model in Section III. We present some

results in Section IV and conclusions in Section V.

II. OVERVIEW

A. Multi-port Peripheral Circuitry

A multi-ported SRAM allows multiple simultaneous ac-

cesses to a shared bitcell array as shown in Figure 1. Single-

port peripheral circuitry is duplicated for each read, write, or

read/write port. Precharge arrays and sense amplifier arrays are978-1-7281-3915-9/19/$31.00 c©2019 IEEE

Fig. 2: The wordline path delay as a percentage of the

total SRAM delay represents a significant portion for various

configurations.

created for read ports while write driver arrays are created for

write ports. Column mux arrays, wordline drivers, and address

decoders are created for all ports since they are used in both

read and write operations.

The control logic for each port type is similar but can

be slightly reduced depending on the port operations. For

example, a write-only port does not need precharge circuitry

or sense amplifiers and therefore doesn’t need the associated

timing and control circuits. Similarly, a read-only port does

not need write drivers.

The control logic also determines the timing of the pe-

ripheral circuitry. The sense amplifiers (SA) are used in read

operations to amplify the difference between the bitlines in

order to reduce the delay of a single bitcell discharging the

entire bitline. However, improper timing of the SAs can lead to

read failures. This issue becomes worse when considering pro-

cess, voltage, and temperature (PVT) corners which requires

careful sizing of delay lines and the replica bitline (RBL) [4].

The RBL makes the read timing more robust against variation

and has had ubiquitous adoption into SRAMs with differential

bitlines.

The SRAM read timing is made up of logic and bitline

delays which is mirrored by a delay line and RBL to generate

the SA enable (SAE) signal. The RBL is sized to match the

bitline to output path delay and is determined by the bitline

discharge, bitcell array height, and other peripheral circuitry

such as the column mux and SA. The wordline path delay is

comprised of the control logic delays and the wordline delay

which is replicated using a delay line. The wordline path delay

can represent a significant percentage of the delay depending

on the SRAM configuration and size as shown in Figure 2.

The delay is typically replicated with a chain of inverters while

matching the rise and fall delays in the wordline path.

Fig. 3: A multi-ported SRAM cell has a single inverter pair

(N1, P1, N2, P2) for storing a bit with a read/write port (N3,

N4), write-only port (N5, N6), and read port (N7, N8, N9,

N10) to share access to the differential storage nodes.

B. Multi-port Bitcells

A multi-port bitcell is shown in Figure 3 with one

read/write, one read-only, and one write-only port. The SRAM

cell has a single inverter pair (N1, P1, N2, P2) for imple-

menting the storage node inverter pair. The read/write and

write ports are implemented with the N3,N4 and N5,N6 access

transistors, respectively. A decoupled read-only port is imple-

mented with an access transistor along with one additional

transistor per bitline N7, N8, N9, N10. All ports share access

to the differential storage nodes Q and Q as shown. Each port

also has its own wordline: rwwl, rwl, or wwl and pair of

differential bitlines: rwbl (rwbl), wbl (wbl), or rbl (rbl).
Read/Write ports are capable of performing both read and

write operations. Read/write ports are synonymous with the

access transistors in a 6T bitcell (N3 and N4 in Figure 3), i.e.

an SRAM with a single read/write port simply uses the 6T

bitcell. Adding read/write ports requires additional connections

to the cross coupled inverter storage. This storage node can be

accessed simultaneously from multiple read ports. The bitlines

of these ports are connected to write drivers, precharges,

column mux, and sense amplifiers.

Only one port will be writing a bitcell on any given cycle.

The write Static Noise Margin (SNM) ensures that the access

transistor is able to over-write the bitcell contents sufficiently

to store a new value [5], [6]. This is often formulated as the

PR ratio where

PR =
WP1/LP1

WN3/LN3

=
WP2/LP2

WN4/LN4

(1)

according to Figure 3. Since a single access transistor can

perform a write, this means that the size relationship between

the access transistor and the inverter PMOS remains the same

with additional read/write ports.

Multiple read operations, on the other hand, can done

simultaneously on a single bitcell. The read SNM is affected

by the ratio of the NMOS pull-down transistor to the PMOS

access transistor [5], [6] which is often formalized as the CR

ratio (often called β) where

CR =
WN1/LN1

WN3/LN3

=
WN2/LN2

WN4/LN4

(2)

according to Figure 3. For a stable read with multiple

read/write ports, the NMOS pull-down must sink more charge

than the combined currents of multiple simultaneous access

transistors.

Transistor sizes for the multi-port design can then be derived

from the baseline transistor sizes of a single-port 6T-cell

assuming it already has satisfactory read and write SNMs. The

required size of the NMOS is therefore directly proportional

to the number of read/write ports. Since the access transistor

and the pull-up transistor do not change with the number of

ports, their sizes are set to the same values as the 6T-cell.

Write ports are only capable of performing write operations

and are nearly identical to the read/write ports as shown in

Figure 3. Two access transistors (N5 and N6) are controlled

by a wordline (wwl), with bitlines (wbl and wbl) and an

output from the pair of cross couple inverters connected to

each source and drain respectively. Write ports and read/write

ports also differ in their associated peripheral circuitry. Since

these ports are only performing write operations, the bitlines

only need connections to the column mux and a set of write

drivers.

The write access transistors are sized the same as the

read/write access transistors in order to satisfy the write SNM,

but they do not need to perform reads and therefore need not

satisfy the read SNM. Since the size of the NMOS of the

inverters is contingent only on read operations, they are not

affected by the number of write ports.

Read ports are only capable of performing read operations

with a different circuit from read/write and write ports. Instead

of a single pass transistor connecting the bitline and the

storage component of the cell, read ports use a second access

transistor to isolate the port from the storage node. The iso-

lation transistors (N7,N9 in Figure 3) have their gate terminal

driven by the output from the cross coupled inverter while the

other transistors (N8,N10) are the access transistors [7]. Since

these ports are only performing read operations, the bitlines

only need connections to precharges, column mux, and sense

amplifiers, and can forgo connections to write drivers.

The process of performing a read operation is generally the

same as that of a read/write port except that the read transistors

(N7,N9) do not have a significant effect on the read SNM and

therefore does not affect the transistor sizing of N1,N2. Since

the read is isolated, the read transistors (N7,N9) and read-

access transistors (N8,10) have a size that is independent of

the number of ports while the inverters’ NMOS is also sized

sufficiently to drive the read transistor gates [8].

III. MULTI-PORT IMPLEMENTATION

The implementation of multi-port SRAMs in OpenRAM

required several challenges in the layout, netlist, and timing. To

make an SRAM with configurable ports, we created a bitcell

with configurable ports considering the sizing in Section II-B.

The layout allows any number of ports on a single bitcell

using user-design rules. We designed the cell with the intent

that it can easily be replaced with a handmade or foundry cell.

The peripheral circuitry from Section II-A is also generated to

support the bitcell port configurations. The top-level layout is

presently limited to any two port combination since additional

ports would require more than four metal layers. Addition-

ally, we created automated functional tests and updated the

characterization to support multi-port implementation.

A. Parameterized Bit Cell Layout

Bitcell layouts are typically manually designed with area

and manufacturability as the primary concerns. The lack of

modularity in the layout, however, hampers port scalability

by requiring a unique optimized cell for each configuration.

Foundry bitcells achieve even greater density by waving some

DRC rules but makes layout particular to that technology node.

These layout techniques cannot be extended for multi-port

configurations across multiple process technologies. Instead,

we have taken a parameterized cell approach that performs

regular transistor placement utilizing each technology’s design

rule set to enable fast exploration and prototyping.

In our approach, we have created a very simple regular

structure using restrictive design rules. Possibly the most

important rule, in this regard, is the orientation of poly-silicon

(poly). It is permissible in older CMOS technologies to route

poly either horizontally or vertically, but double-patterning

lithography used by newer technologies has restricted the ori-

entation of poly to the vertical direction [9]. To accommodate

newer nodes, all transistors in our approach are oriented in a

single direction. While this may increase area, it allows the

design to be easily applied to many technology nodes.

To accommodate shifting design rules, our parameterized

bitcell dynamically places components based on relative con-

straints similar to layout compaction. Two adjacent write ports,

as in Figure 4, for example, have three design rule constraints:

active to active spacing between the two access transistors,

metal1 to metal1 spacing between two contacts, and metal2

to metal2 spacing between the wordline routing and a bitline.

The required spacing is the minimum distance that satisfies

each of the present constraints, and is dynamically assigned

based on process design rules.

To achieve the modularity for any combination of ports,

two metrics are relevant for the regular placement of the

ports: the width and spacing of access transistors. The bitlines

for each port are placed at the outermost edge of the access

transistors. All ports require routing to the storage component

of the cell while read ports require additional routing to gnd.

This resolves the tiling into three types: read ports, write ports

(read/write and write ports have identical layouts on the bitcell

level), and any port with port to inverter spacing. Figure 5

displays a multi-port cell which follows these rules.

B. Multi-Port Peripheral Circuitry

OpenRAM limits itself to three layers of metal for all signal

routing and four levels for power distribution. Four metal

layers restricts how the peripheral circuitry can be placed and

routed which creates a two port limitation for physical layout.

However, netlists without layout can be generated with any

number of ports and can be used for simulation.

Fig. 4: (1) active-active spacing, (2) metal1-metal1 spacing,

(3) metal2-metal2 spacing.

Fig. 5: Regular spacing allows any combination of ports to be

placed in layout - (White) inverter to port spacing, (Yellow)

write port spacing, (Orange) read port spacing, (Red) bitcell

to bitcell spacing

The SRAM netlist duplicates peripheral circuitry based on

the multi-port configuration. The current design supports sin-

gle 1RW configuration along with all two port configurations:

1RW/1R, 1RW/1W, and 1W/1R. In a single-port SRAM, the

row address decoder is placed to the left of the bitcell array

while the rest of the peripheral circuitry is placed underneath

it. The dual-port arrays place the second decoder to the right

of the bitcell array with its peripheral circuitry on the top

of the bitcell array. Because of the peripheral placement,

1R/1RW, 1W/1RW, and 1R/1W are symmetric but different

configurations.

C. Control Logic and Sense Enable Timing

OpenRAM uses standard external control signals including

chip select (csb), write enable (web) and a clock (clk) for each

port. In addition, data, address, and control values are stored on

the positive clock edge. The external control signals are used

to generate internal control signals for the decoding, writing,

precharging, and sensing, depending on the operation. The

control logic dynamically sizes drivers for all control signals

based on the SRAM size.

The most critical signal among these internal signals is the

sense amplifier enable (SAE) signal which must be late enough

to allow the bitcell to discharge the bitlines for reading but

waiting too long will sacrifice performance. The control logic

generates the SAE signal by delaying the clock through a delay

line and a replica bitline. The delay line represents the decode

and wordline delay while the replica bitline is sized based on

the desired bitline swing needed for correct sensing. For our

design, we utilize an analytical model to adjust the delay line

based on the critical read path of the SRAM.

The critical read path of the SRAM is the wordline path

delay and the bitline delay. The wordline path delay is com-

prised of the control logic delay to the wordline drivers and

the wordline delay on the selected row. The bitline delay is

the delay it takes to discharge the bitlines through the selected

bitcell. The delay line in the control logic is sized to match

the wordline delay and the RBL is sized to match to match the

desired bitline swing. Matching the falling and rising delay is

also important to better match the variations of the two paths.

The delays of the decoder paths are estimated analyti-

cally [10] and compared. The delay line is resized to match

the relative delay of the wordline. To further improve the delay

estimation, rise and fall delays are separately calculated and

used in the delay line sizing to better match process variations.

The delay line can have different delays based on the fanout

generated per stage.

The bitline delay is entirely timed by the RBL structure.

The RBL is made of the the same bitcells used to make the

array and a replica bitcell (RBC). The bitcells mimic the bitline

load in the array while the RBC is forced to store a logic ‘0’

and discharges the bitline [4]. The output is connected to an

inverter which enables the SAs when the bitline was drained

past its switching point. The height of the RBL determines

the desired bitline swing in the bitcell array which is set

large enough to overcome the input offset of the SAs. The

bitline delay is not only due to the combined capacitances

of the access transistor discharges but also from the column

mux which is incorporated into the model by increasing the

matching bitline capacitance.

D. Delay Line Design

One method of creating a delay line is to cascade minimum-

sized inverters until a desired delay is reached. This is often

done iteratively to find the best match as the delays of the

wordline can be difficult to predict. The delay line is sized for

the worst case delay of the wordline over different variations

to prevent read failures which increases power and access

time. Cascading inverters is a simple method to add delay but

poorly tracks the wordline delay over process, voltage, and

temperature.

The delay of the wordline path contains two stages with

a large fanout: the wordline enable (WLEN) which enables

the row decoder output and the wordline which activates a

bitcell row. The wordline must output a logic ‘1’ and has the

same polarity as the WLEN. Therefore, both are dependent

on the pull-up network and variations that effect the PMOS

transistors can have a large effect on these stages.

Fig. 6: Stage delays matched using similar size-fanout ratios

with (a) using minimum sized inverters and dummy loads to

match (b) the example wordline enable NAND fanout.

The wordline and WLEN drivers are automatically sized

(transistor widths and stages) based on the loads being driven.

Such an implementation can easily be replicated by an inverter

based delay line, but replicating the high fanout cannot be done

by simply adding more stages to the delay line. The delay

line must be increased by two stages at a time to maintain a

constant output polarity; adding two stages will add a rising

delay from a pull-up network in one inverter and a falling

delay from a pull-down network in another inverter. Delays

added in the delay line will be dependent on both NMOS and

PMOS process variations while the high fanout stages are only

dependent on PMOS.

There are several ways to change the delay of an inverter de-

lay line without increasing the number of stages such as adding

fanout to stages using dummy gates and changing the size of

individual stages. Fanout can increase the delay of a single

stage by adding more capacitance to be charged/discharged to

selectively match the fanout of the wordline path. Increasing

fanout can better discretize the delay over adding stages but

the delay can be non-linear with the fanout. Increasing the size

of a single stage will decrease the delay of a single stage but

increase the output load of the previous stage.

The best approach to applying these variable techniques is

to make the delay as similar as possible to the wordline path

by matching the stages, fanouts, and sizes. This method will

provide the closest matching delay but will increase area and

power of the SRAM. Rather than total replication, the delays

per stage can be replicated with similar a fanout-size ratio to

preserve sensitivity to process, voltage, and temperature and

therefore improve overall robustness.

For example as shown in Figure 6, the WLEN may have a

fanout of thirty 2-input NAND gates driven by a 10x larger

than a minimally sized inverter. The ratio between size and

fanout can be matched rather than replicating the exact fanout

and size. The delay line could use 1x inverter and add a fanout

of four inverters to match the relative fanout and size. Logical

effort would estimate both have the same delay assuming the

difference in parasitics is negligible.

This is an application of a simple linear model to match

the delays in the wordline without needing to match the

exact fanout and sizes in the wordline path. This method will

Fig. 7: In SCMOS, the area of the 1RW (6T) and 1RW/1R

(10T) is significantly smaller than a DFF [13].

maintain better rise/fall matching that inverter chains while

maintaining comparable delays to a replica structure. Non-

linear delays will cause the model to have some inaccuracy

when estimating the delay line parameters, so equivalently,

the delay matching can be done with characterized data and

use similar delays between different sized cells which will be

more accurate.

IV. RESULTS

A. Experimental Setup

OpenRAM currently supports two process technologies:

the FreePDK generic 45nm process [11] and the MOSIS

Scalable CMOS (SCMOS) [12] 350nm process. All SRAMs

are automatically designed using user-specified values for the

data width, number of data words, and the number of ports

and port types. The SRAMs are DRC clean and pass LVS.

All delay measurements were performed with HSPICE on

a single SRAM with a bitcell array of 128 rows and 256

columns. SRAMs were generated by OpenRAM using a single

port 6T bitcell. The simulations were done using FreePDK45

models.

B. Bitcell Area

The custom bitcells for OpenRAM are 1RW (63µm2),

1RW/1R (151µm2) in the MOSIS SCMOS process. Compared

to the OSU Standard Cell DFF (436µm2), these are substan-

tially smaller as can be seen in Figure 7.

The automated layout and modularity of the parametrized

bitcells results in a trade-off of higher area overhead than

handmade bitcells but allows fast prototyping of many-port

options. We generated bitcells of up to 5 ports and measured

the area per port. In addition, we compare 1RW and 1RW/1R

custom bitcells with the generated bitcells in Table I. The

generated bitcell has an average area approximately 2 times

greater than that of the handmade 6T cell, but it is still

substantially smaller than a DFF.

C. Sense Amplifier Enable Timing

This section shows the delay tracking of the stage-delay

matched inverter chain against the wordline path delay. The

stage-delay matching chain is an inverter delay line which

uses the same number of stages as the wordline path and

FreePDK45 SCMOS
Area A/Port A/Port Area A/Port A/Port
µm

2
µm

2
µm

2
µm

2

Cust. 6T 0.95 0.95 1.00X 63 63 1.00X
Cust. 1RW/1R 1.97 0.99 1.04X 122 61 0.95X

Cust. DFF 7.08 7.08 7.45X 436 436 6.92X
Auto. 1RW 2.05 2.05 2.16X 134 134 2.12X

Auto. 1RW/1R 3.92 1.96 2.06X 272 136 2.16X

TABLE I: The area of custom bitcells and DFF compared to

automatically generated bitcells.

Fig. 8: Wordline path and delay line timing are nearly matched

with a small offset over different PVT corners.

partially replicates the high fanout stages. The delay-per-

fanout is determined then a number of dummy fanouts are

added per stage to match the delay. Initial required fanouts

were estimated with an analytical delay model and then tuned

to more closely match the stage delays. The wordline path

WLEN stage has a fanout of of 128 2-inputs NANDs driven

by a 10x inverter. This is matched in the delay line with 20

dummy fanouts driven by a 1x inverter.

Figure 8 shows the delays of the wordline path and delay

line over multiple PVT corners. The supply voltage was varied

by 1V ± 10%, temperature was either 25◦C or 125◦C, and

slow, typical, and fast process corners were used. The delay

line has an average 5.2% greater delay than the wordline delay,

but the delay line clearly tracks the delay of the wordline over

different corners. The percentage difference is due to errors in

delay granularity that can be added to the delay line. Scaling

by their minimum and maximum removes constant differences

from the delay line and results in only a 0.9% difference.

The stage-delay matched inverter chain represents a robust

and automated method to match the wordline delay within

OpenRAM.

V. CONCLUSION

This paper described the extension of a single-port memory

compiler into multi-port by using an automated layout and

netlist generation. By remaining conservative restrictive design

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 10000 20000 30000 40000 50000 60000 70000

A
re
a

 (
u
m
2
)

Bits

Custom Bitcell
Parameterized Bitcell

LATCH Array
DFF Array

Fig. 9: FreePDK 45nm area comparison of 32-bit word memo-

ries of varying sizes shows both the custom and parameterized

bitcell are more efficient than latch or DFF arrays.

rules, we maintained the principles set by OpenRAM to

maintain technology independence. The layout is automated

in FreePDK45 and SCMOS, with the ability to adapt to any

process technology. Regular placement of ports and resizing

transistors to satisfy read and write stability allow for any

configuration of read/write, write, and read ports. We achieved

layout for this design on the bitcell and bitcell array level,

and achieved netlist generation at the top level. This design

achieves a high level of modularity, but at the cost of area. A

test designed to simulate random memory usage verified the

functionality of numerous SRAM configurations. This work

also implemented variable automatic read timing based general

SRAM configurations.

REFERENCES

[1] E. S. Fetzer et al., “A fully bypassed six-issue integer datapath and
register file on the Itanium-2 microprocessor,” JSSC, vol. 37, no. 11,
pp. 1433–1440, Nov 2002.

[2] S. Ataei, M. Gaalswyk, and J. E. Stine, “A high performance multi-port
SRAM for low voltage shared memory systems in 32 nm CMOS,” in
MWSCAS, Aug 2017, pp. 1236–1239.

[3] M. R. Guthaus et al., “OpenRAM: An open-source memory compiler,”
in ICCAD. New York, NY, USA: ACM, 2016, pp. 93:1–93:6.

[4] B. S. Amrutur and M. A. Horowitz, “A replica technique for wordline
and sense control in low-power SRAM’s,” JSSC, vol. 33, no. 8, pp.
1208–1219, Aug 1998.

[5] S. Kim and M. Guthaus, “SNM-aware power reduction and reliability
improvement in 45nm SRAMs,” in VLSISOC, 2011.

[6] J. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital integrated circuits:
A Design Perspective. Second Edition,” Prentice Hall, Jan 2003.

[7] H. Noguchi et al., “Which is the best dual-port SRAM in 45-nm process
technology? – 8T, 10T single end, and 10T differential –,” in ICICDT,
June 2008, pp. 55–58.

[8] T. Song et al., “Fully-gated ground 10T-SRAM bitcell in 45 nm SOI
technology,” Electronics Letters, vol. 46, pp. 515–516(1), April 2010.

[9] R. S. Ghaida, G. Torres, and P. Gupta, “Single-mask double-patterning
lithography for reduced cost and improved overlay control,” IEEE

Transactions on Semiconductor Manufacturing, vol. 24, no. 1, pp. 93–
103, Feb 2011.

[10] I. E. Sutherland, R. F. Sproull, and D. F. Harris, Logical Effort:

Designing Fast CMOS Circuits. Morgan Kaufmann, 1999.
[11] J. E. Stine et al., “FreePDK: An open-source variation-aware design

kit,” in MSE, June 2007, pp. 173–174.
[12] MOSIS, “MOSIS Scalable CMOS (SCMOS),” https://www.mosis.org.
[13] J. Stine, “OSU Standard Cell Library,” https://vlsiarch.ecen.okstate.edu/

flows/, 2017.

