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STUDY QUESTION: Is sperm epigenetic aging (SEA) associated with probability of pregnancy among couples in the general population?

SUMMARY ANSWER: We observed a 17% lower cumulative probability at 12 months for couples with male partners in the older
compared to the younger SEA categories.

WHAT IS KNOWN ALREADY: The strong relation between chronological age and DNA methylation profiles has enabled the
estimation of biological age as epigenetic ‘clock’ metrics in most somatic tissue. Such clocks in male germ cells are less developed and lack
clinical relevance in terms of their utility to predict reproductive outcomes.

STUDY DESIGN, SIZE, DURATION: This was a population-based prospective cohort study of couples discontinuing contraception to
become pregnant recruited from 16 US counties from 2005 to 2009 and followed for up to 12 months.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm DNA methylation from 379 semen samples was assessed via a
beadchip array. A state-of-the-art ensemble machine learning algorithm was employed to predict age from the sperm DNA methylation
data. SEA was estimated from clocks derived from individual CpGs (SEACpG) and differentially methylated regions (SEADMR). Probability of
pregnancy within 1 year was compared by SEA, and discrete-time proportional hazards models were used to evaluate the relations with
time-to-pregnancy (TTP) with adjustment for covariates.

MAIN RESULTS AND THE ROLE OF CHANCE: Our SEACpG clock had the highest predictive performance with correlation between
chronological and predicted age (r¼ 0.91). In adjusted discrete Cox models, SEACpG was negatively associated with TTP (fecundability
odds ratios (FORs)¼0.83; 95% CI: 0.76, 0.90; P¼ 1.2�10�5), indicating a longer TTP with advanced SEACpG. For subsequent birth
outcomes, advanced SEACpG was associated with shorter gestational age (n¼ 192; �2.13 days; 95% CI: �3.67, �0.59; P¼ 0.007).
Current smokers also displayed advanced SEACpG (P< 0.05). Finally, SEACpG showed a strong performance in an independent IVF cohort
(n¼ 173; r¼ 0.83). SEADMR performance was comparable to SEACpG but with attenuated effect sizes.

LIMITATIONS, REASONS FOR CAUTION: This prospective cohort study consisted primarily of Caucasian men and women, and thus
analysis of large diverse cohorts is necessary to confirm the associations between SEA and couple pregnancy success in other races/ethnicities.

WIDER IMPLICATIONS OF THE FINDINGS: These data suggest that our sperm epigenetic clocks may have utility as a novel bio-
marker to predict TTP among couples in the general population and underscore the importance of the male partner for reproductive
success.

VC The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology. All rights reserved.
For permissions, please email: journals.permissions@oup.com
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Introduction
Infertility, a disease of the reproductive system defined by the failure
to achieve a clinical pregnancy after 12 months or more of regular un-
protected sexual intercourse (Cooper et al., 2010), is estimated to af-
fect as many as 17% of couples seeking to have children in the USA
and other developed countries worldwide (Boivin et al., 2007; Smith
et al., 2011; Thoma et al., 2013). While infertility has been primarily
treated as a female predicament, around one-half of infertility cases
can be tracked to male factors (Whitman-Elia and Baxley, 2001).
Clinically, male infertility is typically determined using measures of se-
men quality recommended by World Health Organization (WHO) cut
points (Cooper et al., 2010). A major limitation, however, is that stan-
dard semen analyses are relatively poor predictors of reproductive ca-
pacity and success (Jungwirth et al., 2012; Buck Louis et al., 2014).
Despite major advances in understanding the molecular and cellular
functions in sperm over the last several decades, semen analyses re-
main the primary method to assess male fecundity and fertility.

Chronological age is a significant determinant of human fecundity
and fertility. The disease burden of infertility is likely to continue to
rise as parental age at the time of conception has been steadily in-
creasing (Waldenström, 2016). While the emphasis has been on the
effects of advanced maternal age on adverse reproductive and off-
spring health (Hemminki and Kyyrönen, 1999; Jacobsson et al., 2004;
Kemkes-Grottenthaler, 2004), new evidence suggests that, irrespective
of maternal age, higher male age contributes to longer time-to-
conception (Hassan and Killick, 2003), poor pregnancy outcomes
(Hassan and Killick, 2003; Horta et al., 2019; Oluwayiose et al., 2021)
and adverse health of the offspring in later life (Montgomery et al.,
2004; Saha et al., 2009; Puleo et al., 2012). However, chronological
age does not capture the internal (e.g. genetics) and external factors
(e.g. environmental conditions) that may affect cellular aging processes.
Therefore, chronological age is a proxy measure of the actual biologi-
cal age of cells.

The effect of chronological age on the genomic landscape of DNA
methylation is profound (Jenkins et al., 2018; Oluwayiose et al., 2021)
and likely occurs through the accumulation of maintenance errors of
DNA methylation over the lifespan, which have been originally de-
scribed as epigenetic drift (Fraga et al., 2005). In recent years, the
strong relation between age and DNA methylation profiles has en-
abled the development of statistical models to estimate biological age
in most somatic tissue via different epigenetic ‘clock’ metrics, such as
DNA methylation age and epigenetic age acceleration, which describe
the degree to which predicted biological age deviates from chronologi-
cal age (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018). In
turn, these epigenetic clock metrics have emerged as novel biomarkers

of a host of phenotypes such as allergy and asthma in children (Peng
et al., 2019), early menopause (Levine et al., 2016), increased inci-
dence of cancer types and cardiovascular-related diseases (Fransquet
et al., 2019), frailty (Breitling et al., 2016) and cognitive decline in adults
(Degerman et al., 2017). They also display good predictive ability for
cancer, cardiovascular and all-cause mortality (Perna et al., 2016).

While epigenetic clock metrics are powerful tools to better under-
stand the aging process in somatic tissue as well as their associations
with adverse disease outcomes and mortality, the DNA methylation
loci used for these metrics have shown no predictive value in male
germ cells (Horvath, 2013). To date, only a few studies have con-
structed epigenetic clocks specific to male germ cells (Jenkins et al.,
2018; Cao et al., 2020; Laurentino et al., 2020) and only one study by
Jenkins et al. (2018) reported that smokers trended toward an in-
creased epigenetic age compared to non-smokers. These results indi-
cate that sperm epigenetic clocks hold promise as a novel biomarker
for reproductive health and/or environmental exposures. However,
the relation between sperm epigenetic clocks and reproductive out-
comes has not been examined. Consequently, this study utilized sperm
EPIC array data to construct a novel epigenetic clock via an ensemble
machine learning method to predict chronological age from 379 male
partners of couples recruited from the general population who were
discontinuing contraception for purposes of becoming pregnant. We
then determined the associations of sperm epigenetic age (SEA) with
couples’ reproductive outcomes, including time-to-pregnancy (TTP)
and birth outcomes, and, as a secondary aim, with male smoking.

Materials and methods

Study populations
Banked whole semen samples were obtained from male participants
of the Longitudinal Investigation of Fertility and the Environment (LIFE)
Study, a prospective pregnancy cohort for which details have been
previously published (Buck Louis et al., 2011; Buck Louis et al., 2014).
Briefly, 501 couples were recruited from 16 counties in Michigan and
Texas, USA, using a population-based sampling frame (Buck Louis
et al., 2011). Eligibility criteria were: in a committed relationship and
planning to discontinue contraception to become pregnant; females
aged 18–40 years and males aged 18 years or older; no injectable con-
traceptive use in the past year or off contraception for >2 months;
females’ self-reported menstrual cycles between 21–42 days; and an
ability to communicate in English or Spanish (Buck Louis et al., 2014).
Couples with physician-diagnosed infertility were ineligible for enroll-
ment. The current study includes 379 (76%) couples who had a

1582 Pilsner et al.
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remaining aliquot of semen available for DNA methylation analyses.
Study participants gave written informed consent before any data col-
lection, and full institutional review board approval for human subjects
was received from all collaborating institutions.

To assess the generalizability of our clocks through their application
to predict chronological age from sperm methylation, we utilized exist-
ing data (n¼ 173) from the Sperm Environmental Epigenetics and
Development Study (SEEDS), a prospective observational cohort study
aimed at investigating the associations of male preconception endo-
crine disrupting chemical exposure with sperm epigenetics and subse-
quent early-life development (Wu et al., 2017; Oluwayiose et al.,
2021). Participants were recruited from couples undergoing fertility
treatment at Baystate Medical Center located in Springfield, MA, USA.
The inclusion criteria were male partners 18–55 years old without va-
sectomy and fresh ejaculate sperm used for IVF treatment.

Data collection
Semen, blood and urine biospecimens were collected in the homes of
each participant, as previously described (Buck Louis et al., 2014). For
men, whole semen samples were collected at entry into the study and
a second sample 1 month later. The first semen samples were utilized
for this current analysis. Both samples were collected, after a minimal
2-day period of abstinence, via masturbation without the use of any lu-
bricant. Details regarding the sample collection procedures, shipping
materials provided to participants, and semen parameter quantification
methods using Computer Assisted Semen Analysis have been de-
scribed in detail in prior analyses of the LIFE Study (Buck Louis et al.,
2014; Bloom et al., 2015).

Women were instructed to use the Clearblue EasyTM Fertility
Monitor to time intercourse relative to ovulation in order to maximize
timed intercourse. Women were followed daily up to 12 months of
trying. TTP was considered as the number of menstrual cycles until
the hCG result confirmed pregnancy (Buck Louis et al., 2011).
Women not becoming pregnant were censored at 12 months.
Pregnant women were followed until delivery when they completed
and returned birth announcements that captured infant’s date of birth,
sex, birthweight (in grams), birth length (in centimeters) and head cir-
cumference (in centimeters). We defined gestational age (GA) as the
interval from the date of estimated conception, which we assumed
was the day of ovulation as indicated by the peak LH reading on the
fertility monitor to date of delivery. As such, we have post-conception
GA, which is approximately 2 weeks shorter than GA based on last
menstrual period (LMP). Thus, our preterm delivery outcome is de-
fined as GA <245 days (35 weeks) from the date of ovulation (con-
ventionally defined as 37 weeks from LMP date in the absence of
ovulation data (1977)), which is an accurate proxy for timing of con-
ception related to the limited period of viability of the oocyte (Wilcox
et al., 1995). We calculate the infant’s ponderal index, an indicator of
anthropometric proportionality (Landmann et al., 2006), using the for-
mula: birth length/birthweight3�100.

Sample preparation and DNA isolation
To separate sperm from seminal plasma and somatic cells, semen
samples underwent a one-step 40% gradient centrifugation. Sperm
DNA was isolated with our previously published method (Wu et al.,
2015), which homogenizes sperm in the presence of 0.2 mm steel

beads, RLT buffer (Qiagen, Hilden, Germany), and 50 mM of tris(2-
carboxyethyl)phosphine (TCEP; Pierce, Rockford, IL, USA) prior to
the isolation of sperm DNA via silica-column purification.

Identification of age-associated sperm
methylation
Sperm DNA methylation was assessed using EPIC Infinium
Methylation Beadchip (Illumina, San Diego, CA, USA), which allows
for genome-wide coverage of over 850 000 methylation sites. Batch
effects were minimized by randomizing samples within and across the
beadchip. The beadchip was run at the Yale Center for Genome
Analyses at Yale University. Within-array normalization and dye-bias
equalization of Type I and Type II probes (Niu et al., 2016) was per-
formed using the normal-exponential convolution method (Noob)
(Triche et al., 2013) via minfi package in R (Aryee et al., 2014). Batch
effects were corrected with the ComBat function in the sva package
(Leek et al., 2012) while cross-hybridizing probes were removed using
the DMRcate package (Peters et al., 2015). Of the total 865 859 indi-
vidual CpG sites interrogated for each participant, 62 796 sites were
excluded after preprocessing, leaving a total of 803 063 CpG sites
available for downstream analyses.

To verify our methylation data were not influenced by somatic con-
tamination, we analyzed methylation at a maternally imprinted gene,
DLK1, previously shown (Jenkins et al., 2018) to be differentially meth-
ylated between sperm and somatic tissues as well as the paternally
imprinted locus, H19 (Supplementary Fig. S1). At the DLK1 and H19
loci, average methylation for all participants was below 5%, and above
90%, respectively, suggesting negligible somatic cell contamination.

The first step in constructing our sperm epigenetic clock was to
identify individual CpGs and differentially methylated regions (DMRs)
that were significantly associated with male age. To facilitate the bio-
logical interpretation of our results, we reported associational esti-
mates using b-values, which provide CpG methylation values between
0% and 100%. However, to identify age-associated sperm DNA meth-
ylation, we converted b-values to M-values, which is the logit transfor-
mation of the b-values: log (b/(1�b)), owing to its better adherence
to homoscedasticity in linear models (Du et al., 2010).

For individual CpGs, associations between male age and sperm
methylation were determined using CpGassoc (Barfield et al., 2012).
Next, regional methylation analyses were employed via both the unsu-
pervised adjacent clustering (A-clust) (Sofer et al., 2013; Oluwayiose et
al. 2022) and the supervised DMRcate algorithms (Peters et al., 2015)
to identify co-regulated CpGs (�2 correlated CpG sites) within
1000 bp. For A-clust, a 0.25 Spearman correlation threshold of contig-
uous CpG sites within a given cluster was specified; a total of 21 872
co-regulated regions were identified and formed the unit of our re-
gional methylation analyses. A general estimated equations model was
employed to identify age-associated CpG regions by using a linear link
and an exchangeable correlation to account for the correlated structure
of the CpGs sites within a region (Liang and Zeger, 1986). For
DMRcate, however, the regional clustering of individually significant
probes (false discovery rate <0.05) was achieved using Gaussian kernel
smoother with a scaling factor input of 2. These analyses were not ad-
justed for covariates; however, P-values were adjusted for multiple test-
ing either by Benjamini–Hochberg (q< 0.05) or Bonferroni correction.

Sperm epigenetic clock and pregnancy outcomes 1583
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.Sperm epigenetic aging clock
For the sperm epigenetic age clock via DMRs (SEADMR), sperm DMRs
that were significantly associated with age and common between the
two clustering approaches were used to predict chronological age via
Super Learner (van der Laan et al., 2007), an ensemble machine learn-
ing method. Super Learner uses sample-splitting to combine predic-
tions from multiple algorithms and thereby improve predictive
performance. In this application, we considered penalized regressions
(LASSO, ridge, elastic net) and multivariate adaptive regression splines
(Friedman, 1991; Fan and Li, 2001; Hastie et al., 2009) with and with-
out screening based on sure independence screening, LASSO, and
elastic net penalties. These algorithms were selected to accommodate
high dimensional data, while exploring both linear and non-linear rela-
tions between chronological age and sperm DMRs. The best weighted
combination of algorithm-specific predictions was determined by mini-
mizing the cross-validated (10-folds), mean-squared error. As perfor-
mance metrics, mean absolute error (MAE) and correlations between
true and predicted age were examined. To evaluate the out-of-sample
performance, another layer of 10-fold cross-validation was added so
that data used for training were distinct from data used for validation
(Supplementary Fig. S2).

Utilizing an analogous approach, a sperm epigenetic age clock via in-
dividual CpGs (SEACpG) was constructed by applying age-associated in-
dividual CpGs as predictors into Super Learner. For both clocks, SEA
was then calculated as the residuals from a linear regression of the
Super Learner’s predicted age on chronological age (Hannum et al.,
2013). Positive values of SEA were considered an older epigenetic ag-
ing phenotype, while negative values represented a younger epigenetic
aging phenotype. In sensitivity analyses, both clocks were constructed
using b-value scales as predictors.

Ontology analyses
Prior to ontology analyses, each methylation region was assigned the
closest gene within 1500 bp of the transcriptional start site (TSS) using
GRCh37 assembly data from ENSEMBL via the annotatePeakInBatch
function from the ChIPpeakAnno R package (version 3.6.5). We then
used metascape (http://metascape.org) (Tripathi et al., 2015) to de-
termine the functional enrichment of age-associated sperm DMRs in
known biological processes and pathways.

Associational analyses
SEA was categorized into three groups for each clock: ‘younger’ for
SEA < �1 year; ‘equivalent’ for SEA within 1 year, and ‘older’ for SEA
>1 year. The Cochran–Armitage test was used to examine trends in
non-mutually exclusive pregnancy categories at 3, 6 and 12 months
across SEA groups. Additionally, unadjusted Kaplan–Meier survival
analysis curves of TTP curves were generated to show differences in
the SEA grouping on the probability of pregnancy across menstrual
cycles. Then a discrete-time Cox proportional hazards model was
used to assess the association between SEA as a continuous variable
and TTP. Associations between SEA and continuous birth outcomes
(GA, offspring birthweight, length, head circumference and ponderal
index) and live birth were performed using multivariable linear and lo-
gistic regressions, respectively. All associational models were adjusted
for male BMI (kg/m2) and active smoking status and female

chronological age, BMI and active smoking status. BMI was measured
by research staff at the baseline interview and active smoking status
was determined by a serum cotinine concentration of 10 ng/ml or
greater (Bernert et al., 1997). SEA values were also summarized by
quartiles of GA and ANOVA was used to test for trend and for equiv-
alence of means. Finally, means and distributions of SEA by smoking
status were compared using a Student’s t-test and Kolmogorov–
Smirnov test statistics, respectively. Analyses were run in R version
4.1.0 (R-Project, 2021).

Results
Our first step in constructing a biological clock for SEA was to identify
DNA methylation at individual CpGs and regionally (i.e. clustered
CpGs) that was significantly associated with chronological age among
the 379 men recruited from the general population as part of the LIFE
Study. Men were, on an average §SD, 31.8§ 4.8 years of age with a
range of 19–50 years (Fig. 1A). Participants’ demographics along with
semen and reproductive outcomes are presented in Table I. Male par-
ticipants were predominantly white (81.4%) men, non-smokers
(78.7%) with a mean BMI of 29.9§ 5.7. Among the 308 couples fol-
lowed for 12 cycles, 150 (48.7%) became pregnant within the first
three cycles of trying and 273 (88.6%) within 12 cycles; 35 (11.4%)
couples did not have an observed pregnancy (data not shown). For
the 192 couples with at least 21 weeks of GA and whose pregnancy
resulted in live birth, 27 (14%) couples had preterm births (<35 weeks
from date of ovulation). There were 46 participants without live birth.

Male age was associated with 85 434 CpGs (q< 0.05;
Supplementary Table SI) and 22 397 CpGs after Bonferroni correction.
Since regional methylation likely has more pronounced effects on gene
expression than methylation at individual CpGs, we next identified
age-associated sperm DMRs. To increase the rigor of our analyses, we
employed two separate CpG clustering algorithms for regional methyl-
ation analyses, Aclust and DMRcate, and only included overlapping
sperm DMRs in downstream analyses. In unadjusted linear models,
12 247 and 12 935 sperm DMRs were identified in Aclust and
DMRcate analyses, respectively (q< 0.05), of which 2364
(Supplementary Table SII) sperm DMRs overlapped between the two
analyses (Fig. 1B). Of these 2364 sperm DMRs, 1047 (44.3%) and
1317 (55.7%) were positively and negatively associated with age, re-
spectively (Fig. 1C). Ontology analyses revealed that the overlapping
sperm DMRs were enriched in numerous biological processes includ-
ing multiple terms related to signaling, morphogenesis, brain develop-
ment and learning or memory (Fig. 1D).

Next, we developed two independent biological clocks by applying
Super Learner (van der Laan et al., 2007) to predict chronological age
from the previously identified 22 397 Bonferroni age-associated individ-
ual CpGs and the 2364 age-associated sperm DMRs (q< 0.05) and
then calculating SEA, as described in methods above.

Individual CpG-based SEA
Super Learner combines prediction algorithms with further screening
algorithms. The resulting SEACpG utilized 120 sites (Supplementary
Table SIII) with almost equivalent hypermethylated (49.2%) and hypo-
methylated (50.8%) sites. These CpGs were specifically located around
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..83 unique genes, which were enriched in top ontology terms including
flavonoid glucuronidation, transmission across chemical synapses and
histone ubiquitination (Fig. 2A). The annotation of SEACpG showed
that the CpGs were enriched in CpG island shores and intergenic
regions and depleted in CpG islands, exons and regions of known nu-
cleosome retention in mature sperm (Supplementary Fig. S3). Our
SEACpG model resulted in high predictive performance of chronological
age within sample (r¼ 0.91, MAE¼ 1.6) (Fig. 2B) and out of sample
(r¼ 0.81, MAE¼ 2.2) (Fig. 2C) and generated SEACpG that ranged
from �4.4 to 5.8 years (Fig. 2D).

DMR-based SEA
To capture genomic regions with potentially more age-related biological
relevance, we also applied Super Learner to genomic regions showing
strong correlation with aging. Super Learner’s prediction utilized 117
age-associated sperm DMRs (Supplementary Table SIV), more than half
(62.39%) of which showed age-related hypomethylated sites that com-
prised 318 CpGs. Of these, 86 DMRs were located within 1500 bp of
TSS of unique genes that were associated with top ontology terms in-
cluding microtubule nucleation, maintenance of protein location in cell
and regulation of small GTPase mediated signal transduction (Fig. 2E).
The annotation of SEADMR showed that the DMRs were enriched in
CpG island shores and shelves, and depleted in CpG islands, exons and
open sea regions (Supplementary Fig. S3). The predictive performance
of the SEADMR was high, yielding a strong association between chrono-
logical age with predicted age (correlation¼ 0.89) and a MAE of

1.7 years (Fig. 2F). Out-of-sample performance was similar: the cross-
validated correlation was 0.79, and cross-validated MAE was 2.3 years
(Fig. 2G). SEADMR values ranged from �4.4 to 6.3 years (Fig. 2H).

Sperm epigenetic age and reproductive
outcomes
We were next interested in determining the utility of SEA as a novel
biomarker of fecundity (TTP) and fertility (birth). We first examined
relations by categorizing SEA in three groups: younger SEA
(< �1 year); equivalent SEA (within §1 year); older SEA (>1 year). In
unadjusted models, we observed inverse associations with increasing
SEA and a lower probability of achieving pregnancy within 3, 6 and
12 months of trying (Fig. 3A and C; categories not mutually exclusive).
Based on SEACpG, the pregnancy probabilities within 12 months (the
cutoff for diagnosis of clinical infertility), were 0.94 (95% CI: 0.86,
0.98) for younger SEA, 0.89 (95% CI: 0.83, 0.93) for equivalent SEA
and 0.77 (95% CI: 0.65, 0.85) for older SEA, representing a 17% lower
cumulative probability for couples with male partners in the older
compared to the younger SEACpG categories (Fig. 2A). Similarly, for
SEADMR the pregnancy probabilities at 12 months were 0.93 (95% CI:
0.84, 0.97); 0.93 (95% CI: 0.88, 0.96) and 0.70 (95% CI: 0.59, 0.80)
for the younger, equivalent and older SEADMR groups, respectively
(Fig. 2C), indicating a 23% lower probability of pregnancy in the older
versus younger SEADMR category. Tests for trend strongly suggest a
dose–response, with decreasing pregnancy probability for each time
point with increasing SEA categories (P< 0.05; for all analyses).
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..Unadjusted Kaplan–Meier curves further illustrated the dose-
dependent relation between cycle-specific probabilities of pregnancy
and categories of SEA for both clocks (Fig. 3B and D). Similarly, in ad-
justed Cox models, SEA was negatively associated with TTP (fecund-
ability odds ratios (FORs): 0.83; 95% CI: 0.76–0.90; P¼ 1.2�10�5) for
SEACpG and 0.85 (95% CI: 0.79–0.92; P¼ 7.4�10�5) for SEADMR.
This indicates up to 17% lower fecundability, which corresponds to
17% longer TTP for every 1-year increase in SEACpG.

We also examined associations between SEA and birth outcomes.
While no significant associations were found for most of the birth out-
comes, including probability of a live birth, the SEA for both clocks
was inversely associated with GA (Table II). Specifically, after control-
ling for male BMI and smoking status as well as female chronological
age, BMI and smoking status, GA was �2 days shorter for every
increase in SEA: �2.13 days (95% CI: �3.67, �0.59) in our SEACpG

clock and �1.89 (95% CI: �3.38, �0.41) in our SEADMR clock.

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

............................................................................................................................................................................................................................

Table I Demographic and reproductive characteristics of participants in the LIFE Study (n¼ 379).

Demographics by sex Male Female

Age (years): mean (sd) 31.7 (4.8) 29.9 (4.1)

BMI (kg/m2)1,2: mean (sd) 29.9 (5.7) 27.4 (7.5)

Current smoking3,4: count (%)

Yes 80 (21.3) 40 (10.6)

No 295 (78.7) 331 (87.4)

Race5: count (%)

Non-Hispanic White 307 (81.4) –

Non-Hispanic Black 15 (4.0) –

Hispanic 32 (8.5) –

Other 23 (6.1) –

Baseline semen parameters Median (range) n (%)

< WHO cutoff

Sperm concentration (x106/mL) 60.9 (2.0–332.8) 29 (7.7)

Normal morphology (%)6 30 (2.0–60.5) 4 (1.1)

Sperm count (106/ejaculate) 181.1 (3.5–1,141.2) 28 (7.4)

Semen volume (mL) 3.2 (0.4–9.4) 33 (8.7)

Reproductive outcomes Count (%)

TTP (cycles) (n ¼372)7

� 3 150 (48.7%)

� 6 237 (76.9%)

� 12 273 (88.6%)

Loss to follow-up 64 (17.2%)

Live birth (n¼238)8

Yes 192 (70.3)

No 46 (16.8)

Gestational age (days) (n ¼192)9

Preterm10 27 (14.1)

Term 165 (85.9)

– Not reported; *Total motility was measured after semen samples were shipped overnight;
1Missing for males (n ¼ 2);
2Missing for females (n ¼ 1);
3Missing for males (n ¼ 4);
4Missing for females;
5Missing n ¼ 2;
6Missing n ¼ 24;
7Categories of time-to-pregnancy (TTP) are not mutually exclusive;
8Missing data for n ¼ 33;
9Considered only participants (n ¼192) with at least 133 days (21 weeks) of gestational age (GA); and
10Preterm delivery outcome is defined as GA < 245 days (35 weeks) from the date of ovulation (conventionally defined as 37 weeks from last menstrual period date in the absence of
ovulation data. LIFE: the Longitudinal Investigation of Fertility and the Environment Study, time-to-pregnancy (TTP); World Health Organization (WHO).
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This inverse relationship was also supported by analysis of quartiles of
GA across the two clocks (P-trend¼ 0.03 for both; Supplementary
Fig. S4). Analyses of SEA with preterm (n¼ 27) versus normal term
pregnancies (n¼ 165) were not significant, which may be attributable
to the sample size of the preterm group.

Furthermore, we evaluated the influence of cigarette smoking on
SEA. As expected, in both clocks, the average SEA§SD was higher
among current smokers than non-smokers: SEACpG clock (0.42§ 1.64
versus �0.12§ 1.52, P¼ 0.008) and SEADMR clock (0.34§ 1.78 ver-
sus �0.10§ 1.53, P¼ 0.04; Fig. 4A and B).

While we were unable to obtain a second semen sample from LIFE
participants to evaluate the internal reproducibility of our results, we
evaluated the external generalizability of our approach by using Super
Learner, trained on the LIFE cohort (n¼ 379), to predict chronological
age among participants in SEEDS, a new independent clinical cohort of
men (n¼ 173) enrolled for infertility treatment. We found a strong
correlation between predicted and chronological age (CpG-based
model: r¼ 0.83 and DMR-based model: r¼ 0.79; Supplementary Fig.
S5A and B), suggesting the potential utility of our models across popu-
lation groups.

Discussion
Chronological age is a significant determinant of reproductive capacity
and success among couples (Dunson et al., 2002; Mutsaerts et al.,
2012; Sharma et al., 2015; Oluwayiose et al., 2021). However, chrono-
logical age does not encapsulate the cumulative internal (e.g. genetics)
and external (e.g. environmental conditions) factors that ensue over the
life-course, and thus it serves as a proxy measure of the ‘true’ biological
age of cells. While semen quality outcomes utilizing WHO guidelines
(Cooper et al., 2010) have been used for the assessment of male infer-
tility for decades, they remain poor predictors of reproductive out-
comes (Buck Louis et al., 2011; Jungwirth et al., 2012). Thus, the ability

to capture the biological age of sperm may provide a novel platform to
better assess the male contribution to reproductive success, especially
among idiopathic infertile couples. Here, we report, for the first time to
our knowledge, that our novel approach to estimate SEA is efficacious
in strongly predicting couple fecundity, as measured by TTP, among
couples from the general population. Our results indicate that higher
SEA (both continuous and categorical) is associated with a longer TTP
as well as shorter gestation among couples becoming pregnant. SEA
was also higher among males who were current cigarette smoking.
These results among pregnancy planners in the general population
who are not seeking clinical fertility treatment are novel and hold
promise to overcome the limitations of using conventional semen
quality in predicting couples’ reproductive outcomes.

............................................................................................................................................................................................................................

Table II Associations between sperm epigenetic aging and reproductive and birth outcomes.

Outcomes CpG SEA DMR SEA

Estimate (CI) P-value Estimate (CI) P-value

TTP (FOR)1 0.83 (0.76, 0.90) 1.2�10�5 0.85 (0.79, 0.92) 7.4�10�5

Gestational age (days)2 �2.13 (�3.67, �0.59) 0.005 �1.89 (�3.38, �0.41) 0.01

Birthweight (lb)2 �0.02 (�0.12, 0.09) 0.74 �0.05 (�0.16, 0.05) 0.30

Birth length (in)2 �0.001 (�0.11, 0.11) 0.98 �0.05 (�0.16, 0.05) 0.34

Head circumference (in)2 �0.04 (�0.13, 0.06) 0.43 �0.05 (�0.14, 0.04) 0.21

Ponderal index (100xBL/BW3)2 �0.01 (�0.04, 0.02) 0.66 �0.00 (�0.03, 0.03) 0.99

Live birth (OR)3 0.88 (0.69, 1.12) 0.31 0.92 (0.73, 1.17) 0.50

All models were adjusted for male BMI and smoking status and female chronological age, BMI and smoking status.
1n¼ 372;
2n¼ 192;
3n¼ 238.
SEA, sperm epigenetic aging; DMR, differentially methylated regions; TTP, time-to-pregnancy; FOR, fecundability odds ratio; lb, pounds; in, inches; BL, birth length; BW, birthweight;
OR, odds ratio.
TTP analyses were conducted via discrete-time Cox proportional hazards models, while birth outcomes and live birth were performed using multivariable linear and logistic regres-
sions, respectively.
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In regard to epigenetic aging of sperm, we must consider the devel-

opmental stage whereby age has its greatest influence on DNA meth-
ylation patterns overtime. Male germ cells require dynamic epigenetic
reprogramming for the progression from diploid spermatogonia to
haploid spermatozoa (Godmann et al., 2009; Marcho et al., 2020).
Although it is recognized that the final DNA methylation patterns are
established during meiotic divisions (Oakes et al., 2007), the accumula-
tion of aging-related methylation errors likely occur in the highly prolif-
erative and self-renewing spermatogonia and are carried forward when
cells are committed to differentiation during spermatogenesis. As such,
SEA likely reflects that of spermatogonia, from which mature sperma-
tozoa are generated during the 74-day process of spermatogenesis. In
humans, it is estimated that spermatogonia divide every 16 days, which
equates to 23 divisions a year (Goriely, 2016). Thus, the spermatogo-
nia of the oldest participant in our study of 50 years would have un-
dergone (taking into account approximate age of puberty) >800
divisions during his reproductive life-course. A consensus for the geno-
mic context (intergenic versus gene regions) of these accumulated
methylation errors remains to be resolved. Detailed nucleosome maps
as well as 3D/4D architecture and dynamics of spermatogonia, not
mature spermatozoa, in space and time hold promise to uncover why
certain regions are more susceptible to age-related epigenetic
dysregulation.

Emerging data over the last few years demonstrate the profound ef-
fect of aging on the sperm methylome and their potential for con-
structing epigenetic clocks (Jenkins et al., 2018; Cao et al., 2020;
Laurentino et al., 2020; Oluwayiose et al., 2021); however, the clinical
relevance of these clocks has remained largely unexplored. Among
329 samples from infertile patients, sperm donors and individuals from
the general population, Jenkins et al. (2018) observed that sperm
methylation at 51 genomic regions (via Illumina’s 450K) reproducibly
predicted an individual’s chronological age regardless of fertility status
(r¼ 0.89; MAE¼ 2.04). Similar to our results, smokers had higher SEA
compared to never smokers. Comparing young (n¼ 6; 18–24 years)
and old men (n¼ 6; 61–71 years) men, Laurentino et al. identified 236
age-related sperm DMRs via shotgun sequencing (Laurentino et al.,
2020). Six DMRs with the lowest P-value were selected to build an
epigenetic clock in 42 additional samples and subsequently in an inde-
pendent set of 33 samples; however, the clock yielded high errors
(MAEs¼ 7.8 and 9.8 years, respectively), which is likely attributable to
the smaller sample sizes and small number of DMRs used in their anal-
yses. Most recently, a customized methyl-capture sequencing approach
identified 798 age-associated sperm DMRs by categorizing men as ei-
ther young (n¼ 48; 18–38 years) or old (n¼ 46; 46–71 years) (Cao
et al., 2020). Elastic net analyses utilizing the top 5000 age-associated
CpGs generated a sperm clock with an average error of 2.7 years. The
authors note that their age prediction improved by increasing the num-
ber to thousands of CpGs; however, this puts into question the bal-
ance between assay efficiency (e.g. measuring thousands compared to
120 CpGs in our SEACpG clock) and incremental improvement in pre-
dictive value of SEA. A distinct advantage of our approach was to build
a clock specifically to understand the impact of biological age on repro-
ductive outcomes in the general population among couples who were
discontinuing contraception for purposes of trying to become preg-
nant. Jenkins et al. (2018) combined samples from sperm donors and
infertility patients; however, this approach may obscure differences in
the biological aging patterns across these groups. Furthermore, the

application of our clocks to predict biological age in an independent
cohort of men seeking infertility treatment provided strong evidence
of its relevancy for the general population.

Our epigenetic clocks are the first to employ Super Learner, which
uses state-of-the-art machine learning methods to improve predictive
performance. Previous clocks have relied on penalized linear regression
(Jenkins et al., 2018; Cao et al., 2020; Laurentino et al., 2020). This ap-
proach requires the strong assumption that chronological age is related
to the DNA methylation in a simple linear fashion; in other words,
there are no interaction terms or other non-linear effects. Additionally,
the penalty terms in LASSO, elastic net or ridge regression aim to bal-
ance the total number of features with predictive performance; in so
doing, some relevant features might be excluded to avoid overfitting.
In contrast, our approach uses cross-validation to create an optimal
weighted combination of multiple prediction algorithms, including both
linear and non-linear approaches. Super Learner has improved perfor-
mance in a variety of settings, including predicting mortality in intensive
care units, violence in prisons and HIV risk in resource-limited settings
(Pirracchio et al., 2015; Ba�cak and Kennedy, 2019; Balzer et al., 2020).
Indeed, Super Learner is theoretically guaranteed to perform at least
as well as the best algorithm in its ensemble (van der Laan and
Dudoit, 2003). In this application, we considered both penalized
regressions as well as multivariate adaptive regression splines, which is
a highly non-linear and flexible approach. Our Super Learner SEACpG

resulted in a low MAE of 1.6 and, as expected, outperformed predic-
tion when relying solely on elastic net, which yielded a MAE of 2.2
(data not shown). Importantly, the weights assigned to each algorithm
differed for the SEACpG and SEADMR clocks, underscoring the flexibility
of the Super Learner algorithm.

Previous epigenetic clocks in somatic tissue (Hannum et al., 2013;
Horvath, 2013; Levine et al., 2018) and sperm (Jenkins et al., 2018;
Cao et al., 2020; Laurentino et al., 2020) have relied on either individ-
ual CpGs or regional (DMR-based) approaches; however, the compar-
ison of these two approaches is limited within the same study. In our
approach, Super Learner utilized 22 397 Bonferroni age-associated
CpGs and over 12 000 DMRs (q< 0.05) and selected 120 CpGs and
117 DMRs (comprising 318 CpGs) for our SEACpG and SEADMR

clocks, respectively. In terms of out-of-sample performance, both
SEACpG and SEADMR clocks performed well, yielding high accuracy of
prediction and low error (r¼ 0.81; MAE¼ 2.2 years and r¼ 0.79;
MAE¼ 2.3 years, respectively; all metrics cross-validated). Surprisingly,
we found minimal overlap of methylation sites between our SEACpG

and SEADMR clocks, such that only 10 CpG (<1%) of individual CpGs
were present in the 318 CpGs of the 117 DMRs. This suggests that
the two clocks harbor methylation sites in distinct genomic regions
and may have independent utility for downstream reproductive out-
come analyses. However, while both clocks were significantly associ-
ated with TTP, GA and male smoking, our SEACpG clock generated
larger effect sizes in both linear and categorical analyses. Moreover, in
regard to a practical application, our SEACpG clock requires � 3x less
CpGs compared to our SEADMR clock, and thus is more efficient and
would minimize the cost of constructing a custom methylation array
without any discernable differences in performance. Although it is rec-
ognized that regional methylation status may have more profound
effects on downstream gene expression, our data suggest that our
SEACpG clock is the preferred approach to estimate SEA to predict re-
productive outcomes over our SEADMR approach.
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The strong and consistent relation between chronological age and

DNA methylation at specific loci across individuals indicates that
these age-associated changes in DNA methylation are likely not sto-
chastic, but rather they occur at targeted regions that are more
prone to epigenetic errors. The annotation of our CpG clock shows
that the CpGs are enriched in CpG shores and intergenic regions,
while depleted in CpG islands, exons and regions of known nucleo-
some retention in mature sperm. Taken together, our clock’s CpGs
are distal from genes and regions of nucleosome retention, which
have been linked with genes important for embryo development
(Arpanahi et al., 2009; Hammoud et al., 2009). Our previous re-
search has shown that sperm DNA methylation mediated the effect
of male chronological age on poor reproductive outcomes such as
fertilization rates, embryo development and live birth (Oluwayiose
et al., 2021). Interestingly, consistent with our results here, we
found that age-associated CpGs were depleted in retained nucleo-
some regions, suggesting that the effect of age via sperm DNA
methylation on reproductive outcomes, such as TTP, may be inde-
pendent of genic regions known to retain nucleosomes (Oluwayiose
et al., 2021). Other groups have reported that age-related hypome-
thylated DMRs were enriched in gene regions, while hypermethy-
lated DMRs were enriched in distal regions (Cao et al., 2020);
however, we observed no such distinction upon stratification of our
clock CpGs by change in methylation direction.

While our study utilized gradient centrifugation to remove
somatic cell contamination, future studies could employ flow cy-
tometry to further isolate haploid sperm from leukocyte and non-
haploid sperm contamination. Owing to the strong association
between SEA and couples’ pregnancy probability, the slowing or re-
versal of SEA through lifestyle choices and/or pharmacological
interventions warrants further investigation. Therefore, the charac-
terization of the potential pathways driving the losses/gains of
methylation with age offers innovative avenues of translational re-
search to mitigate sperm aging. Moreover, as older fathers have an
increased risk of offspring with a host of adverse neurological out-
comes (Montgomery et al., 2004; Saha et al., 2009; Puleo et al.,
2012), it is of clinical importance to understand the potential rela-
tion of SEA on offspring health and development, such as our signif-
icant findings with GA, and if it is a more precise predictor of risk
of adverse offspring health.

Conclusion
There is a critical need for new measures of male fecundity for
assessing overall reproductive success among couples in the general
population. These data show that our sperm epigenetic clocks may
fulfill this need as a novel biomarker that predicts pregnancy success
among couples not seeking fertility treatment. While chronological
age of both partners remains a significant predictor of reproductive
success, our clocks, generated with as few as 120 CpG sites, likely
recapitulates both external and internal factors that drive the biolog-
ical aging of sperm. Such a summary measure of sperm biological
age is of clinical importance as it allows couples in the general popu-
lation to realize their probability of achieving pregnancy during natu-
ral intercourse, thereby informing and expediting potential infertility
treatment decisions. With the ability to customize high throughput

DNA methylation arrays and capture sequencing approaches, the
integration of our epigenetic clocks as part of standard clinical care
can enhance our understanding of idiopathic infertility and the pater-
nal contribution to reproductive success and offspring health.
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