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This review summarizes current knowledge about glucagon-like peptide 1 receptor agonists (GLP-1 RA) and their effects on
bone metabolism and fracture risk. Recent in vivo and in vitro experiments indicated that GLP-1 RA could improve bone me-
tabolism. GLP-1 could affect the fat-bone axis by promoting osteogenic differentiation and inhibiting adipogenic differentiation
of bone mesenchymal precursor cells (BMSCs), which express the GLP-1 receptor. GLP-1 RA may also influence the balance
between osteoclasts and osteoblasts, thus leading to more bone formation and less bone resorption. Wnt/β-catenin signalling is
involved in this process. Mature osteocytes, which also express the GLP-1 receptor, produce sclerostin which inhibits Wnt/β-
catenin signalling by binding to low density lipoprotein receptor-related protein (LRP) 5 and preventing the binding of Wnt.
GLP-1 RA also decreases the expression of sclerostin (SOST) and circulating levels of SOST. In addition, GLP-1 receptors are
expressed in thyroid C cells, where GLP-1 induces calcitonin release and thus indirectly inhibits bone resorption. Furthermore,
GLP-1 RA influences the osteoprotegerin(OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nu-
clear factor-κB (RANK) system by increasing OPG gene expression, and thus reverses the decreased bone mass in rats models.
However, a recent meta-analysis and a cohort study did not show a significant relationship between GLP-RA use and fracture
risk. Future clinical trials will be necessary to investigate thoroughly the relationship between GLP-1 RA use and fracture risk in
diabetic patients.
Introduction

The fracture risk of type 2 diabetic patients is increased
compared with non-diabetic individuals [1, 2]. Even if the
bone mineral density (BMD) in type 2 diabetic patients is
not low, or even higher, the fracture risk of ankle, hip and
upper extremity is still increasing [3–5]. The rising fracture
risk cannot be simply explained by BMD. Bone strength
reduced as a result of diabetes may not be completely
reflected in the measurement of BMD. Poor bone quality
may be another important factor that increases fracture
risk in diabetic patients.

Previous studies have shown beneficial effect of
glucagon-like peptide 2 (GLP-2) and glucose-dependent
insulinotropic polypeptide (GIP) on bone formation or
resorption [6–9], but the effects of GLP-1 on bone
metabolism remains unclear. Recent in vivo and in vitro
experiments showed that the glucagon-like peptide 1
receptor agonist (GLP-1 RA) can improve bone metabo-
lism. The primary objective of this review was to focus
on the current knowledge about GLP-1 RA and their ef-
fects on bone physiology and fracture risk and explore
the therapeutic potential of GLP-1 RA in the treatment
of osteoporosis in diabetic patients.

Overview of GLP-1 and GLP-RA
The discovery of the incretins (including GLP-1 and GIP)
opens up a novel therapy in the treatment of diabetes.
GLP-1, a 30/31-amino acid hormone, was found to be the
second incretin hormone following the discovery of GIP.
GLP-1 is a tissue-specific post-translational proteolytic
product of the proglucagon gene which is secreted by intes-
tinal L-cells in response to nutrient ingestion and stimulates
insulin secretion from pancreatic β cells [10–12].
015 The British Pharmacological Society
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Various forms of GLP-1 are produced from their full length
precursors by the action of prohormone convertase 1/3
[13] and appear to show similar insulinotropic effects in
humans. GLP-1(7–37) and GLP-1(7–36) NH2 are thought
to be biologically active and exert an insulinotropic effect
on pancreatic β cells [14]. In humans, the majority of GLP-
1 in the circulation is GLP-1(7–36) NH2 [15]. The half-life of
bioactive GLP-1 in the circulation is approximately 2 min
due to rapid inactivation by the widespread proteolytic en-
zyme dipeptidyl peptidase-4 (DPP-4) [16, 17]. DPP-4 is a ser-
ine protease that specifically cleaves dipeptides from the
amino terminus of proteins or oligopeptides that contains
an alanine or proline residue in position two, hence
inhibiting their activity [18]. GLP-1, which contains a
penultimate alanine residue, is metabolized rapidly to
GLP-1(9–37) or GLP-1 (9–36) NH2, which have lost their
insulinotropic effects [18, 19]. More remarkably, DPP-4 is
also found on the position directly adjacent to the sites of
GLP-1 secretion. Consequently, over half of GLP-1 has al-
ready been inactivated by DPP-4 in the portal circulation
[10]. Ultimately, less than 5% of intact GLP-1 reaches the
systemic circulation [20]. Glomerular filtration and tubular
uptake and catabolism are the major route of GLP-1 elimi-
nation [21].

GLP-1 plays its biologic role primarily by binding to
specific receptors, the GLP-1 receptor (GLP-1R) [22–24],
which belongs to the G-protein coupled receptor
family. It can activate adenylate cyclase and increase
levels of intracellular cyclic adenosine monophosphate
(cAMP) in pancreatic β cells which then stimulates
glucose-dependent insulin secretion [20]. What is
more, GLP-1 supresses appetite and lowers the rate
of gastric emptying [25]. In addition to its well-known
insulinotropic effects, GLP-1 exerts its critical effect
on a variety of biological processes in diverse tissues
and organs that express GLP-1R, including the bone
tissue [20].

Different kinds of GLP-1 RA are being developed as
anti-diabetic drugs, as GLP-1 increases post-prandial
insulin secretion and suppresses post-prandial glucagon
secretion [26]. In recent years, GLP-1 RA (e.g. exenatide
and liraglutide) have been widely and successfully used
in the clinic. Exenatide, a 39 amino acid peptide that
was originally isolated from the venom of the
Heloderma suspectum lizard, exhibits approximately
53% amino acid identity sequence with native GLP-1
and is a highly potent agonist for the mammalian
GLP-1 receptor [27]. In contrast to native GLP-1,
exenatide is not a substrate for DPP-4, as it contains
a glycine at position two, and thus exhibits a longer
circulating half-life. Liraglutide is a human GLP-1 ana-
logue with 97% amino acid homology to native human
GLP-1. Two amino acid modifications enable its non-
covalent binding to albumin, thereby extending the
half-life to 13 h. Liraglutide exhibits all the actions of
native GLP-1[28].
Diabetes and osteoporosis
Although osteoporosis and T2DM are traditionally
regarded as unrelated disease entities, emerging evi-
dence indicates that they share many features includ-
ing genetic predispositions, molecular mechanisms
and pathophysiological mechanisms. ITGA1, a new
candidate locus affecting both blood glucose and
BMD, may partly explain the genetic contribution to
the epidemiological observations linking T2DM and
osteoporosis [29]. Besides, regulatory factors, including
insulin, peroxisome proliferator activated receptor
gamma (PPARγ), gut hormones such as GLP-1, and
bone derived hormone osteocalcin are involved in
the coordinated regulation of bone and energy
homeostasis [30]. Wingless-related integration site
(Wnt)/β-catenin signalling, which plays an important
role in bone metabolism, is also thought to be a
common element in the pathogenesis of osteoporosis
and diabetes. The anomalies of this signalling pathway
may lead to the occurrence of type 2 diabetes and
osteoporosis. A single missense mutation in low
density lipoprotein receptor-related protein 6 (LRP6),
the co-receptor of the Wnt signalling pathway, was
genetically associated with osteoporosis and diabetes
[31]. Mice lacking osteocalcin show glucose intolerance
[32, 33]. Contrary to predictions from mouse models,
Schwartz et al. found that bisphopshonate-treated
patients with low osteocalcin levels do not have an
increase in the incidence of diabetes [34].

BMD is used as a strong predictor of fracture risk in
clinical practice, but it does not encompass every
aspect of bone strength. The fracture risk of T1DM
increases as a consequence of decreased BMD that
result from absolute deficiency of insulin, insulin-like
growth factor-1 (IGF-1) and lower values of peak bone
mass [35]. However in T2DM, increased load on bone
because of obesity and hyperinsulinaemia as a result
of insulin resistance may lead to increased bone for-
mation. Several studies on osteoporosis and T2DM
have demonstrated conflicting results, with BMD vari-
ously reported to be decreased [36, 37], increased
[38–40] or unchanged [41, 42]. Despite the general
increased BMD of individuals with T2DM [2], type 2
diabetic patients have a higher risk of fracture than
non-diabetic patients with the same BMD measure-
ment [43]. T2DM influences bone quality rather than
BMD, which explains only 70 ~ 75% of the variance
in bone strength, while other important factors,
including the impaired bone micro-architecture, the
accumulation of micro-fractures, the bone remodelling
imbalance [44], or increased tendency to fall, may
be ignored.

Besides, the increased bone fracture risk in diabetic
patients could, in part, be due to the influence of
anti-diabetic drugs. Previous research has shown that
long term treatment with thiazolidinediones (TZDs) is
Br J Clin Pharmacol / 81:1 / 79
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associated with an increased risk of fracture in women
with T2DM compared with other glucose-lowering
agents [45]. The effect of TZD on bone fractures could
be due to a specific inhibition of osteoblast differen-
tiation and activity [46]. In pharmacology, TZDs act as
PPARγ activators [47]. In fact, PPARγ is expressed in
bone and adipose tissue, and is able to switch the
pluripotent mesenchymal stem cells (MSC) toward
adipocyte at the expense of osteoblast formation [48].
As a result, adipogenesis exceeds osteogenesis.
Table 1
Published molecular and pre-clinical studies on the association between GLP-1

Author et al. Study subject Study method

Yamada [49] GLP-1R knockout

mice, bone marrow

cells and osteoblasts

Exendin-4 and calc

treatment

Mabilleau [50] Male GLP-1R

knockout mice

Analyze the presen

of GLP-1R knockout

Ma [51] Old ovariectomy rats Exendin-4 administ

lasted for 16 week

Nuche-Berenguer [52] Streptozotocin-induced

type 2 diabetic rats,

fructose-induced

insulin-resistant rats

Continuous infusio

GLP-1 for 3 days

Nuche-Berenguer [53] Hyperlipidic rats Continuous infusio

GLP-1 and exendin

for 3 days

Sanz [57] hMSCs Intervention with G

in cell proliferation

cell differentiation

Nuche-Berenguer [66] Osteoblastic MC3T3-E1

cells

Analysis of GLP-1 b

and cross-linking st

Kim [78] Type 2 diabetic OLETF

rats, osteocyte-like

MLO-Y4 cells and

osteocytes of rat femurs

Investigated the pr

GLP-1 receptors an

of exendin-4 treatm

RT-PCR, Western blo

confocal microscopy

Gier [88] Thyroid tissue samples

with medullary thyroid

carcinoma, C cell

hyperplasia, papillary

thyroid carcinoma, and

normal human thyroid

Immunofluorescen

expression of calcit

and GLP-1 recepto

Hegedus [89] T2DM or non-diabetic

obese patients receiving

liraglutide treatment

CT concentrations

measured at 3-mont

for no more than 2

Bjerre [90] The thyroid of mice,

rats, cynomolgus

monkeys and humans

The activation of th

GLP-1 receptor wit

BMD, bone mineral density; cAMP, cyclic adenosine monophosphate; C/EBPα, CCAAT/enhan
human mesenchymal stem cells; LPL, lipoprotein lipase; OC, osteocalcin; OP, osteoporosis
parathyroid hormone; RANKL, receptor activator of nuclear factor-kappaB ligand; Runx2, run
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GLP-1 and osteoporosis

GLP-1 and Wnt/β-catenin signalling pathway
GLP-1 exerts its influence by binding to its receptor. Its
effect on bone metabolism can be speculated in some
GLP-1R deletion animal experiments. Yamada et al. found
that GLP-1R-deficient mice showed cortical osteopenia,
bone fragility, increased osteoclastic numbers and bone
resorption activity [49] (Table 1). In another similar study,
Mabilleau et al. also demonstrated that GLP-1R knockout
and bone metabolism

Main result

itonin GLP-1R knockout mice have cortical osteopenia and

bone fragility as well as increased osteoclastic numbers and

bone resorption activity and reduced levels of calcitonin

mRNA transcripts in the thyroid. Exendin-4 increased

calcitonin gene expression in the thyroid of mice

tation

mice

GLP-1R knockout mice presented with a significant reduction

in ultimate load, yield load, stiffness, cortical thickness, bone

outer diameter and the maturity of the collagen matrix. But

the mineral quantity and quality did not change significantly

ration

s

Exendin-4 not only inhibited bone resorption by increasing

the OPG : RANKL ratio, but also promoted bone formation

by increasing the expression of OC and Runx2 in old

ovariectomy rats

n of GLP-1 increased OC and OPG in type 2 diabetic, insulin-

resistant rats and RANKL in type 2 diabetic rats. GLP-1

induced an insulin- and PTH- independent bone anabolic

action in insulin-resistant and type 2 diabetic rats

n of

-4

GLP-1 and exendin-4 similarly reversed the decreased

femoral and vertebral bone mass by increasing OC gene

expression and the OPG : RANKL ratio in hyperlipidic rats

LP-1

and

GLP-1 significantly reduced the expression of PPARγ,
C/EBPα, and LPL and prevented cell differentiation

into adipocytes in hMSCs

inding

udies

GLP-1 can directly and functionally interact with

osteoblastic cells independent of the cAMP-linked GLP-1

receptor, possibly through a GPI/IPG-coupled receptor

esence of

d the effect

ent through

t and

GLP-1 receptor was present on MLO-Y4 cells and

osteocytes of rat femurs. Exendin-4 reduced the levels of

SOST/sclerost in MLO-Y4 cells. Besides, exendin-4 reduced

serum levels of SOST, increased serum levels of

osteocalcin and femoral BMD in type 2 diabetic OLETF rats

ce for

onin

rs

The neoplastic and hyperplastic lesions of thyroid C cells

express the GLP-1 receptor and GLP-1 receptor expression is

also detected in 18% of papillary thyroid carcinomas and in C

cells in 33% of control thyroid lobes in humans

were

h intervals

years

No significant change.

e thyroid

h GLP-1 RA

GLP-1 RA stimulated calcitonin release, up-regulation of

calcitonin gene expression and subsequently C-cell hyperplasia

in rats. In contrast, humans and/or cynomolgus monkeys had

low GLP-1 receptor expression in thyroid C-cells and GLP-1 RA

did not activate adenylate cyclase or generate calcitonin

release in primates

cer-binding protein α; GLP-1RA, glucagon-like peptide-1 receptor agonists; hMSCs,
; OPG, osteoprotegerin; PPARγ, peroxisome proliferator-activated receptorγ; PTH,
t-related transcription factor 2; SOST, sclerostin.



Figure 1
Model for the influence of GLP-1 on osteogenesis. Bone homeostasis is
regulated by the balance between osteoblastic bone formation and
osteoclastic bone resorption. An imbalance between these two factors
will lead to osteoporosis. GLP-1 not only inhibits adipocyte differentia-
tion from BMSCs, but also inhibits osteoblast differentiation, and thus
improves bone metabolism. GLP-1 glucagon-like peptide-1; BMSCs
bone mesenchymal precursor cells

GLP-1 RA: potential to reduce fracture risk in diabetic patients?
mice presented with a significant reduction in ultimate
load, yield load, stiffness, total absorbed, post-yield
energies, cortical thickness and bone outer diameter,
but the mineral quantity and quality were not signifi-
cantly influenced [50]. What is more, the improvement
of bone metabolism and anti-osteoporosis effects of
GLP-1 are demonstrated in rodent experiments, mainly
in the osteoblast lineage. Its significant role in the
improvement of bone metabolism has been reported in
aged ovariectomized rats models [51], streptozotocin-
induced type 2 diabetic and fructose-induced insulin-
resistant (IR) rat models [52] and hyperlipidic rat models
[53]. This intrigues clinical doctors for its potential appli-
cation in osteoporosis.

Bone formation is a series of events that include the
differentiation of mesenchymal precursor cells into
osteoblast precursors, the maturation of osteoblasts
and the formation and the mineralization of matrix [54].
The fat-bone axis is involved in this important course.
Osteoblasts and adipocytes differentiate from a common
mesenchymal precursor cell, BMSCs [55], which can
differentiate into osteoblasts, adipocytes as well as other
cell types under the influence of local growth factors,
hormonal regulators and transcriptional factors [56].
GLP-1 in humans can promote proliferation of BMSCs
and inhibit adipocyte differentiation [57]. Consistent
with these findings, Ma et al. also found that exenatide
can promote the osteogenic differentiation and inhibit
the adipogenic direction of differentiation of BMSCs
[51]. Previous research has confirmed that the GLP-1
receptor is expressed in BMSCs and immature osteo-
blasts but not in mature osteoblasts [57–59]. Evidence
from in vitro experiments suggests no direct effect of
GLP-1 in either osteoblasts or osteoclasts [49]. This
evidence suggests that BMSCs could be the key targets
of GLP-1 [51] (Figure 1). The balance between
osteoblast/adipocyte differentiation of BMSCs plays an
important role in bone homeostasis. If too many BMSCs
differentiate towards adipocytes, the number of osteo-
blasts will be reduced and bone absorption exceeds
bone formation, resulting in the reduction of BMD and
osteoporosis. Vermas et al. found that the number of
adipocyte of bone marrow in patients with osteoporosis
significantly increased [60]. This indicated that reduction
of osteoblasts is often accompanied by an increase in
adipocyte ratio. Similarly, in the ageing mouse model,
when fat cells in bone marrow increased, bone formation
decreased significantly [61]. Therefore, the direction of
differentiation of BMSCs plays a crucial role in the patho-
genesis of osteoporosis [62–64]. Examples of drugs that
increase adiposity (especially visceral fat) at the expense
of osteoblast differentiation are glucocorticoids [65].
Although it is widely believed that GLP-1 does not di-
rectly affect osteoblasts or osteoclasts, Nuche-Berenguer
et al. found that GLP-1 can directly and functionally
interact with osteoblastic cells, possibly through a
glycosylphosphatidylinositols(GPI)/inositolphosphoglycans
(IPG)-coupled receptor that is different from the cloned
GLP-1 receptor in pancreas [66].

The canonical Wnt signalling pathway regulates the
differentiation and maturation of the osteoblast. The
signal pathway includes low density lipoprotein receptor
related protein (LRP) 5/6, β-catenin, GSK-3β and other re-
lated regulative factors, such as Dkk1 and sclerostin [67].
LRP5 gene mutations can lead to different abnormal
bone phenotypic abnormalities, including osteoporosis
pseudoglioma syndrome (OPPG) and increased bone
mass [68]. In animal experiments, LRP5 knockout mice
are characterized by decreased bone mass, resulting
from inactivating canonical Wnt signalling pathways
[69]. Wnts are secreted glycoproteins, consisting of
350 ~ 400 amino acids and 23 ~ 24 residues of conserved
cysteine [70], many of which are likely to participate in
intramolecular disulfide bonds. In BMSCs, canonical Wnt
signalling regulates a reciprocal relationship between
adipogenesis and osteogenesis. In previous research,
Wnt signalling is regarded as a key pathway for β cell
growth and differentiation. Recent findings link GLP-1
as a direct activator of this pathway. GLP-1 could also
stabilize β-catenin by binding to its receptor and increas-
ing the level of intracellular cAMP [71]. In the inactive
state of the Wnt/β-catenin pathway, Dkk1 forms a ternary
complex with transmembrane proteins kremen and
LRP5/6 and then induces rapid endocytosis and removal
of the Wnt receptor LRP5/6 from the plasma membrane.
Activation of the Wnt signalling pathway promotes bone
Br J Clin Pharmacol / 81:1 / 81
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formation while inactivation of the pathway leads to
reduced bone mass [72–74]. The activation of the GLP-1
receptor and the Wnt signalling pathway showed similar
effect on adipocyte differentiation and bone metabo-
lism. Specific gene expression of adipocyte differentia-
tion including PPARγ, C/EBPα and LPL decreased [57]
but bone formation-related gene including Runx2/cbfa1
[69, 74], OPG [51–53], and OC [51–53] increased
(Figure 2).

Regulation of the Wnt/β-catenin signalling pathway is
carried out mainly by proteins that either act as com-
petitive binders of Wnts. Sclerostin (SOST), which might
contribute to the pathogenesis of bone loss in T2DM, is
the major one. SOST is released by mature osteocytes
and inhibits Wnt/β-catenin signalling by binding to
LRP5 and preventing the binding of Wnt protein to
LRP5/6 [75]. Serum SOST levels of the diabetic patients
were significantly higher than non-diabetic patients
and were increased with age [76]. The high SOST level
A

Figure 2
GLP-1 andWnt signalling in the regulation of bone formation (A) In the inactive s
sFRP, where as its co-receptor LRP5/6 binds to inhibitory protein sclerostin or Dk
which then inhibits osteoblast differentiation. Specific gene expression of adipo
tion negative regulatory genes SOST increased but bone formation positive re
Wnt/β-catenin pathway is activated by the binding of the Wnt to a co-receptor
inhibitory complex stabilizes the β-catenin, which is then translocated into the
by binding to its receptor and increasing the level of intracellular cAMP. The ch
sFRP secreted frizzled related protein; Dsh dishevelled; LRP5/6 lipoprotein re
polyposis coli; GSK-3β glycogen synthesis kinase-3β; Frat1 frequently rea
monophosphate; TCF/LEF T-cell factor/lymphoid enhancing factor; PPARγ p
binding protein α; LPL lipoprotein lipase; SOST sclerostin; Runx2/cbfa1 r
osteoprotegerin; OC osteocalcin
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might indicate increased osteocyte activity in post-
menopausal patients with T2DM [77]. Osteocytes could
be another target of GLP-1 RA and GLP-1 receptor is
expressed in osteocytes as showed in osteocyte-like
MLO-Y4 cells and osteocytes of rat long bone [78]. In
in vitro experiments, GLP-1 RA decreases the expression
of SOST in MLO-Y4 cells whereas it decreases the circulat-
ing levels of SOST in T2DM rat models in in vivo experi-
ments. These findings demonstrate that GLP-RA might
increase the femoral BMD through decreasing the ex-
pression of SOST/sclerostin in osteocytes in T2DM rat
models [78].

GLP-1, body weight and osteoporosis
DPP-4 inhibitors (DPP4-I) are used to prolong the action
of GLP-1, so their effect on bone may be similar to GLP-1.
To explore this possibility, a meta-analysis was per-
formed to compare DPP4-I with placebo or other anti-
diabetic drugs in all randomized clinical trials with a
B

tate of the Wnt/β-catenin pathway, Wnt is inhibited by a decoy receptor
k. Activated GSK-3β can result in proteosomal degradation of β-catenin,
cyte differentiation including PPARγ, C/EBPα, and LPL and bone forma-
gulatory genes including Runx2/cbfa1, OPG, and OC decreased. (B) The
complex LRP5/6 and frizzled family member. Disruption of the GSK-3β
nucleus and activates transcription. GLP-1 could also stabilize β-catenin
anges in the expression of related genes are the opposite of Figure 2A.
ceptor related proteins 5 and 6; Dkk1 dickkopf1; APC adenomatous
rranged in advanced T-cell lymphomas-1; cAMP cyclic adenosine
eroxisome proliferator-activated receptorγ; C/EBPα CCAAT/enhancer-
unt-related transcription factor 2/core binding factor alpha1; OPG
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duration of at least 24 weeks. This meta-analysis showed
a 40% reduction of fracture risk for DPP4-I users
compared with other patients [79] (Table 2). However, a
retrospective population based cohort study demon-
strated no different risk of fracture comparing DPP4-I
users with controls [80]. In another meta-analysis,
Mabilleau et al. found that GLP-1 RA did not reduce bone
fracture risk in T2DM compared with the use of other
anti-diabetic medications [81]. Consistent with this study,
Driessen et al. also found that GLP1-RA use (the median
duration of actual GLP1-RA use was 1.2 years) was not
associated with a decreased risk of bone fracture as
compared with users of other anti-hyperglycaemic drugs
in a population-based cohort study [82]. These clinical
results seem to demonstrate that GLP-RA use is not
related to bone fracture risk. However we should realize
that the average duration of GLP1-RA and DPP-I use is
relatively short which may make it fail to exert an effect
on bone fracture risk. Besides, GLP-1 users often have a
high BMI which may influence the final result. Careful
assessment of the incidence of fractures in clinical trials
will be important.

A primary difference between GLP-1 RA and DPP-4I
lies in weight loss, which often accompanies treatment
with GLP-1 RA. The weight loss effect of GLP-1 RA is
beneficial to many overweight or obese type 2 diabetic
patients who are advised to lose weight. The positive
association between body weight and BMD has previ-
ously been established in some studies [83, 84]. Bone
mobilization and loss could result from weight loss.
According to Canadian osteoporosis guidelines, obvious
weight loss is a risk factor for osteoporosis [85, 86].
A positive effect of GLP-1 RA on bone homeostasis
could be weakened by weight loss-induced mechanical
loading and bone mass decrease, thus causing neutrality
of GLP-1 RA treatment on bone fracture risk in clinical
trials. However from the perspective of the fat-bone axis,
this positive effect could be independent of weight loss.
Table 2
Clinical studies of the relationship between GLP-1 RA and DPP-4 inhibitors use

Author et al. Study subject Study method

Monami [79] Type 2 diabetic patients treated

with DPP-4 inhibitors with a

duration of at least 24 weeks

Meta-analysis of

fracture risk

Driessen [80] Type 2 diabetic patients treated

with DPP-4 inhibitors from the

CPRD database

retrospective pop

cohort study of bo

Mabilleau [81] Type 2 diabetic patients treated

with GLP-1 RA in randomized

clinical trials

Meta-analysis of b

risk

Driessen [82] Type 2 diabetes patients treated with

GLP-1RA from the CPRD database.

Population-based

of bone fracture r

CPRD, Clinical Practice Research Datalink; GLP-1RA, glucagon-like peptide-1 receptor agonis
Apart from the direct effect of soft tissue mass on
bone through skeletal loading, GLP-1 can also act as
a mediator of the fat and bone cells [87], but the exact
mechanism remains unclear.

GLP-1 and calcitonin
Calcitonin may contribute to the improvement of bone
metabolism with GLP-1 treatment. GLP-1 receptors are
expressed in thyroid C cells, where GLP-1 induces post-
prandial calcitonin release and thus bone resorption is
indirectly inhibited [49]. However, these previous find-
ings reported in rodents may not apply to humans.
Recent studies have found that only 33% of the normal
thyroid C cells express GLP-1 receptors [88]. Clinical
experimental data do not support an effect of GLP-1
receptor activation on serum calcitonin levels in humans
in a clinical trial with over 5000 subjects receiving 2 years
liraglutide treatment [89]. As a result, considering the
differences between rodents and humans, it is plausible
that the observed bone protective effects of GLP-1 in
rodent models may be the result of direct effects on
bone cells and indirect effects mediated via calcitonin.
In contrast, non-human primate and human thyroid
glands and the human TT cell line, which is derived from
human medullary thyroid carcinoma, express very low
levels of GLP-1 receptors. The human TT cell line, unlike
rat thyroid C-cell lines, does not respond to GLP-1 RA
with an acute release of calcitonin [90]. Collectively, it
seems that the influence of GLP-1 RA on the human
thyroid is limited.

GLP-1 and OPG/RANKL/RANK
The discovery of the osteoprotegerin (OPG)/receptor
activator of nuclear factor-κB ligand (RANKL)/receptor
activator of nuclear factor-κB (RANK) system in the past
decade provides us with a better understanding of bone
metabolism, especially bone resorption. OPG, RANK and
its ligand RANKL, which all belong to the family of
and bone fracture

Main result

bone DPP-4 inhibitors were associated with a reduced risk

of fractures even after the exclusion of comparisons

with thiazolidinediones or sulfonylureas

ulation based

ne fracture risk

DPP4-I use was not associated with fracture risk

compared with controls and with other non-insulin

anti-diabetic drug users

one fracture The use of GLP-1RA does not reduce the risk of bone

fracture in T2DM compared with the use of other

antidiabetic medications

cohort analysis

isk

There was no decreased risk of fracture with current use of

GLP-1RA compared to never-GLP-1RA use. Osteoporotic

fracture risk was also not decreased by current GLP-1RA use

ts.
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tumour necrosis factor receptors (TNFR), mediate
osteoclastogenesis [91]. In the skeleton, RANKL stimu-
lates the differentiation, activation and survival of
osteoclasts and thus enhances bone resorption [5, 8].
OPG acts as a decoy receptor by binding to RANKL
therefore preventing the interaction with its receptor
RANK that is necessary for the activation of RANKL
[92]. Consequently, OPG acts as a negative regulator
of osteoclast differentiation, activation and survival
and therefore inhibits bone resorption [93]. High
RANKL and low OPG levels are associated with high
bone turnover and bone loss, whereas low serum
RANKL may relate to accumulation of microdamage
and reduced bone quality [94]. An imbalance of
OPG/RANKL/RANK expression associated with diabetes
may contribute to the delay of fracture repair during
the course of diabetes [95]. Elevated OPG in patients
with T1DM may be the body’s response to increased
bone resorption [96]. New drugs targeting the
OPG/RANKL/RANK system proved to be efficient in
reducing bone resorption and preventing bone loss
in post-menopausal osteoporosis [97]. Recently, Nuche-
Berenguer et al. observed that exenatide administra-
tion exerts osteogenic effects in streptozocin-induced
type 2 diabetes and fructose-induced insulin-resistant
rats. They found that GLP-1 RA administration increased
OPG gene expression and the OPG/RANKL ratio and
reversed the decreased femoral and vertebral bone
mass in these rats [52]. Their subsequent studies
demonstrated that GLP-1 and exendin-4 are similarly
efficient in reversing the bone alterations in the
hyperlipidic-related rat model [53].
Conclusion

Reduced bone strength in type 2 diabetic patients
involves many complex factors. Some oral anti-diabetic
drugs even aggravate the impaired bone turnover and
increase bone fracture risk. The recently reported
bone-related effects of GLP-1, together with their
known glucose-lowering action, make them candidates
for reducing fracture risk in diabetic conditions. Results
from in vivo and in vitro experiments are quite
encouraging. However, the clinical data about the
relationship between GLP-1RA and fracture risk are
disappointing. A meta-analysis and cohort study did
not find any relationship between GLP-RA use and
fracture risk. Also, the influence of GLP-1 RA on human
thyroid is limited. However, we should not jump to a
conclusion prematurely. Weight loss may weaken the
protective effect of GLP-1 RA on bone. The short
duration of GLP1-RA use and high BMI of GLP-RA users
are two main shortcomings of the clinical trials. Careful
assessment of the fracture risk in future clinical trials
with GLP-1RA will be necessary.
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