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CONVERGENCE ANALYSIS OF THE FAST SUBSPACE DESCENT METHOD
FOR CONVEX OPTIMIZATION PROBLEMS

LONG CHEN, XIAOZHE HU, AND STEVEN M. WISE

ABSTRACT. The full approximation storage (FAS) scheme is a widely used multigrid
method for nonlinear problems. In this paper, a new framework to design and analyze
FAS-like schemes for convex optimization problems is developed. The new method, the
Fast Subspace Descent (FASD) scheme, which generalizes classical FAS, can be recast
as an inexact version of nonlinear multigrid methods based on space decomposition and
subspace correction. The local problem in each subspace can be simplified to be linear and
one gradient descent iteration (with an appropriate step size) is enough to ensure a global
linear (geometric) convergence of FASD.

1. INTRODUCTION

Most real-world applications are inherently nonlinear. The design of fast algorithms
for the solution or approximate solution of nonlinear equations is of fundamental interest
to mathematicians, physicists, biologists, and others. In this paper, we consider solving
nonlinear equations arising from the minimization of a convex functional in the abstract
Hilbert space setting.

The well-known Newton-Raphson method is a traditional and popular approach for
solving nonlinear equations. Basically, Newton’s method iteratively finds the approximate
solution by linearizing the problem near the current iterate. In the present case, a linear
symmetric positive definite system (the Jacobian system) needs to be solved at each New-
ton’s iteration, and fast linear multigrid (MG) methods are sometimes used as a solver.
Practically, each linear problem can be approximately inverted by applying a few multi-
grid iterations. But, if this is done, the quadratic rate of convergence may be sacrificed.

One alternative to Newton’s method for solving nonlinear PDE is the nonlinear multi-
grid method, better known as the full approximation storage (FAS) scheme. This method,
developed by Brandt [3] in the late 70’s (see also [4]) often converges linearly and with
optimal complexity in practice. Recall that the success of multigrid methods relies on two
ingredients: 1) high frequency components of the error will be damped by smoothers; and
2) low frequency components of the error can be approximated well on a coarse grid. The
smoother used in FAS is usually the nonlinear Gauss-Seidel smoother, which solves many
small-sized nonlinear problems (typically with one degree of freedom) on small patches
of the mesh. For the coarse grid problem, the FAS method uses the full approximation
rather than the standard defect, which makes it essentially different from linear MG meth-
ods. Due to its high efficiency, the FAS method has been applied to many nonlinear PDE
problems, such as in [14, 24, 28, 15, 19, 30, 16].
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2 LONG CHEN, XIAOZHE HU, AND STEVEN M. WISE

Although FAS is quite successful in practice, its theoretical analysis is limited. In [13],
Hackbusch considered nonlinear MG methods for general nonlinear problems. By im-
posing conditions on the nonlinear operators and their derivatives, together with standard
smoothing and approximation properties, he was able to show that the FAS converges in
a sufficiently small neighborhood of the solution on a fine enough mesh. Moreover, the
number of smoothing steps needs to be sufficiently large, and at least the W-cycle should
be used. Later in [22, 23], Reusken considered FAS for a class of semi-linear second order
elliptic boundary value problems with mild nonlinearity. Within this nice class of nonlin-
ear problems, he was able to show the convergence of FAS under weaker assumptions on
the nonlinear operators. We want to mention that the proofs in their work are based on the
linearization of the FAS iterations, and the rate of convergence is in some sense local. For
example, in [23], Reusken showed that the V-cycle FAS converges locally in a ball with
radius shrinking from coarse to fine levels.

In this paper we consider a special class of nonlinear equations that can be viewed as
Euler equations of certain convex objective functions. The convergence of MG methods
for convex optimization problems has been studied in [26, 27] under the framework of sub-
space correction methods [29]. In [27], Tai and Xu considered some unconstrained convex
optimization problems and developed global and uniform convergence estimates for a class
of subspace correction iterative methods. Their approach is based on an abstract space de-
composition which is assumed to satisfy the so-called stable decomposition property and
strengthened Cauchy Schwarz inequality. We point out that in each subspace, the original
objective function is used, which is, strictly speaking, naturally defined on the finest level.
Furthermore, the local problem should be solved exactly, which is more expensive than
what is required in the FAS scheme.

We shall borrow the theoretical framework established in [27] to analyze a hybrid of
the FAS and subspace correction methods, what we will call the Fast Subspace Descent
(FASD) method. In contrast to the subspace correction method considered in [27], in which
an exact subspace solver is used, we recast FASD as a subspace correction method with an
inexact subspace solver, which reduces the computational cost significantly. In particular,
we show that one step of preconditioned gradient descent iteration in each subspace is good
enough to guarantee the global convergence.

Several other FAS-like algorithms for solving optimization problems have been consid-
ered in the literature [11, 17, 19, 12], including those that are line search-based recursive
or trust region-based recursive algorithms. Only basic convergence is established in these
works. Here we shall prove a global linear convergence for a class of strongly convex
optimization problems.

We establish the convergence of the algorithm in the framework of subspace correc-
tions [27]. We first show that, with a one dimensional line search approach, the FASD
method converges globally and uniformly under the standard assumptions on the space de-
composition. In addition, we borrow some techniques from the optimization literature [21]
in order to properly handle the inexactness of the local solver used in FASD. We introduce
a fixed step size to guarantee that the objective function is decreasing globally. For the anal-
ysis of original FAS method, which is obtained from the new FASD method via a simple
modification, we impose an additional approximation property of the subspace problems
and show that FASD converges globally and uniformly. We emphasize that our work rep-
resents not only a theoretical advance for the convergence analysis of FAS-type schemes,
but also is algorithmically simpler, and even more flexible, than the original FAS. We show
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that, both theoretically and numerically, each local nonlinear problem can be approximated
by a linear problem, and, consequently, the computational cost is reduced significantly.

The paper is organized as follows. In Section 2, we present the optimization problem,
with its associated Euler equation, in a general Hilbert space framework. We conclude
the section with the assumptions on the space decomposition. The successive subspace
optimization (SSO) method are recalled in Section 3. The convergence analysis of SSO,
based on slightly weaker assumptions compared with [27], is presented in the same section.
The main global and uniform convergence analyses for FASD with the exact line search
and approximate (quadratic) line search are derived in Sections 4 and 5, respectively. The
original FAS method is analyzed in Section 6. In Section 7, an application problem is
considered.

2. PROBLEM AND ASSUMPTIONS

Given an energy, or objective function, E(v) defined on a Hilbert space V , which is
equipped with inner product (·, ·)V and norm ‖·‖V , we consider the following minimization
problem:

(1) u = argmin
v∈V

E(v).

We now make some assumptions that guarantee that the minimizer exists and is unique.

2.1. Assumptions on the Energy. We assume that the energy functional E( · ) : V → R
is Fréchet differentiable for all points v ∈ V . For each fixed v ∈ V , E′(v) : V → R is the
continuous linear functional equal to the first Fréchet derivative at v. We further impose
the following assumptions on the energy:

(E1) (Strong convexity): There is a constant µ > 0 such that

(2) µ ‖w − v‖2V ≤ 〈E
′(w)− E′(v), w − v〉,

for all v, w ∈ V , where 〈 · , · 〉 is the duality pairing between V ′ and V .
(E2) (Lipschitz continuity of the first order derivative): For fixed u0 ∈ V , there exists a

constant L such that, for all v, w ∈ B := {v ∈ V | E(v) ≤ E(u0)},

(3) ‖E′(w)− E′(v)‖V′ ≤ L‖w − v‖V ,

where

‖f‖V′ := sup
v∈V
‖v‖V=1

〈f, v〉 = sup
v∈V\{0}

〈f, v〉
‖v‖V

.

Other authors, for example Ciarlet [8], use the term elliptic for the property in assump-
tion (E1). We should also point out that assumption (E1) is equivalent to the property that
the derivative is strongly monotone [1].

The following results are classical, and the proof, which is skipped for the sake of
brevity, can be found in [9, p. 35], [8, Thm. 8.2-2], or [1, Thm. 3.3.13].

Theorem 2.1. If E satisfies assumption (E1), then, for all w, v ∈ V

(4) E(w)− E(v) ≥ 〈E′(v), w − v〉+
µ

2
‖w − v‖2V .

Consequently, E is strongly convex and coercive. Furthermore, there is a unique element
u ∈ V with the property that

E(u) ≤ E(v), ∀ v ∈ V, and E(u) < E(v), ∀ v 6= u,
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and this global minimizer satisfies Euler equation

(5) 〈E′(u), w〉 = 0, ∀ w ∈ V.
The strong convexity and the Lipschitz continuity imply the following estimates:

Lemma 2.2. Suppose E satisfies assumptions (E1) and (E2). For all v, w ∈ B,

µ ‖w − v‖2V ≤ 〈E
′(w)− E′(v), w − v〉 ≤ L ‖w − v‖2V .

Furthermore the lower bound holds for all v, w ∈ V .

Proof. The lower bound is just assumption (E1). To get the upper bound, observe that (E2)
implies that, for all w, v ∈ B, and for any z ∈ V ,

|〈E′(w)− E′(v), z〉| ≤ ‖E′(w)− E′(v)‖V′ ‖z‖V ≤ L ‖w − v‖V ‖z‖V .
Setting z = w − v gives the desired inequality. �

Proposition 2.3. If E satisfies (E1), the sublevel set B is convex.

Proof. Suppose that v, w ∈ B. Then E(w) ≤ E(u0) and E(v) ≤ E(u0). Since E is
strictly convex, for any t ∈ [0, 1],

E(u0) ≥ (1− t)E(w) + tE(v) ≥ E((1− t)w + tv).

Thus, (1− t)w + tv ∈ B, for any t ∈ [0, 1]. �

Now, we consider the relation between the energy and the norm centered at the mini-
mizer. The following estimates can be easily proved using Taylor’s theorem with integral
remainder; see, e.g. [21].

Lemma 2.4 (Quadratic Energy Trap). SupposeE satisfies assumptions (E1) and (E2). For
all v, w ∈ B,

(6)
µ

2
‖w − v‖2V + 〈E′(v), w − v〉 ≤ E(w)− E(v) ≤ 〈E′(v), w − v〉+

L

2
‖w − v‖2V .

Furthermore the lower bound holds for all v, w ∈ V . In addition, suppose u ∈ B is the
minimizer of E, then for all w ∈ B,

(7)
µ

2
‖w − u‖2V ≤ E(w)− E(u) ≤ L

2
‖w − u‖2V .

Again the lower bound holds for all w ∈ V .

Based on assumption (E1), the upper bound can be replaced by a norm of the gradient.
Since the proof is less standard, we include it here.

Lemma 2.5. Suppose that E satisfies assumption (E1) and u ∈ V is the minimizer of E;
then for all v ∈ V ,

(8) 0 ≤ E(v)− E(u) ≤ 1

2µ
‖E′(v)‖2V′ .

Proof. Fix the point v ∈ V . Now, for any w ∈ V , using the lower bound of (6), we have

E(w) ≥ E(v) + 〈E′(v), w − v〉+
µ

2
‖w − v‖2V =: g(w).

For fixed v ∈ V , the minimizer of g(w) is w∗ := v− 1
µRE

′(v), where RE′(v) is the Riesz
representation in V of E′(v). Therefore,

E(w) ≥ g(w) ≥ g(w∗) = E(v)− 1

2µ
‖RE′(v)‖2V = E(v)− 1

2µ
‖E′(v)‖2V′ .

Then (8) is obtained by letting w = u in the above inequality. �
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We shall often use the following simple variant of Lemma 2.4.

Lemma 2.6 (Convexity of Energy Sections). Suppose that E satisfies (E1) – (E2), ξ ∈ B
is arbitrary, andW ⊆ V is a closed subspace. Define the energy section

J(w) := E(ξ + w), ∀ w ∈ W.

Then J : W → R is differentiable, strongly convex, and there exists a unique element
η ∈ W such that ξ + η ∈ B, η is the unique global minimizer of J , and

〈E′(ξ + η), w〉 = 〈J ′(η), w〉 = 0, ∀ w ∈ W.

Furthermore, for all w ∈ W with w + ξ ∈ B,
µ

2
‖w − η‖2V ≤ J(w)− J(η) = E(ξ + w)− E(ξ + η) ≤ L

2
‖w − η‖2V .

The lower bound holds for any w ∈ W , without restriction.

The ratio L/µ is called the condition number of the derivative E′; see [21, page 63].
The rate of convergence of iterative methods for solving (1) usually depends on the con-
dition number. Here we assume L/µ is uniformly bounded, as long as we remain in B.
Then the Riesz map R : V ′ → V can be used as a preconditioner and the corresponding
preconditioned gradient descent method will converge [10].

Implementing preconditioned gradient descent methods in V requires the computation
of the Riesz map R which is equivalent to inverting a symmetric positive definite (SPD)
operator (an SPD matrix of size dimV × dimV when dimV < +∞). Of course we can
also use multilevel methods to compute R and use steepest descent, nonlinear conjugate
gradient, or Newton method as the outer iteration. In the following, we shall provide
optimization methods that only require computing inverses with much smaller sizes.

2.2. Assumptions on the Space Decomposition. Suppose that

V = V1 + V2 + · · ·+ VN , Vi ⊆ V, i = 1, . . . , N,

is a space decomposition of V using closed subspaces Vi for i = 1, 2, . . . , N . We shall use
the following assumptions on the space decomposition.

(SS1) (Stable decomposition:) There is a constant CA > 0, such that, for every v ∈ V ,
there exists vi ∈ Vi, i = 1, · · · , N , with the property that

v =

N∑
i=1

vi, and
N∑
i=1

‖vi‖2V ≤ C2
A‖v‖2V .

(SS2) (Strengthened Cauchy Schwarz inequality:) There is a constantCS > 0, such that,
for any wi,j ∈ B, ui ∈ Vi, vi ∈ Vi, with wi,j + ui ∈ B,

N∑
i=1

N∑
j=i+1

〈E′(wi,j + uj)− E′(wi,j), vi〉 ≤ CS

(
N∑
i=1

‖ui‖2V

)1/2( N∑
i=1

‖vi‖2V

)1/2

.

When E′′ exists and is continuous, by the mean value theorem and standard Cauchy
Schwarz inequality

〈E′(wi,j + uj)− E′(wi,j), vi〉 = 〈E′′(ξi)uj , vi〉 ≤ ‖E′′(ξi)‖‖uj‖V‖vi‖V .
Thus a naive verification of (SS2) could use the constant CS = LN , which would be
large if N is large. When the inner product induced by the Hessian E′′(ξi) is spectrally
equivalent to an V-inner product, a better constant CS , which is independent of N , can be
obtained. This is reason we call it Strengthened Cauchy Schwarz inequality.
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We note that the constant CS > 0 can be related to the Lipschitz constant in assump-
tion (E2). Unless E was quadratic, we could not assume in general that the Strengthened
Cauchy Schwarz inequality would hold without restriction to the bounded sublevel set B,
as indicated in assumption (SS2).

3. SUCCESSIVE SUBSPACE OPTIMIZATION METHODS

For k ≥ 0 and a given approximate solution uk ∈ V , one step of the Successive Sub-
space Optimization (SSO) method [25] is given in Algorithm 1.

Algorithm: uk+1 = SSO(uk)

v0 = uk ;
for i = 1 : N do

Define an energy section along Vi:
Ji(w) := E(vi−1 + w), ∀w ∈ Vi;

Compute the subspace correction:

(9) ei = argmin
w∈Vi

Ji(w);

Apply the subspace correction:
vi = vi−1 + ei;

end
uk+1 = vN ;

Algorithm 1: Successive Subspace Optimization Method.

Remark 3.1. Note that ei computed in (9) of Algorithm 1 is uniquely defined, owing to
the strong convexity inherited by the energy section Ji. In fact, the correction satisfies

〈E′(vi), w〉 = 〈E′(vi−1 + ei), w〉 = 〈J ′(ei), w〉 = 0, ∀ w ∈ Vi.

The orthogonality relation satisfied by the corrected approximation, vi, specifically,

〈E′(vi), w〉 = 0, ∀ w ∈ Vi,

is sometimes referred to as the fundamental orthogonality (FO) of the solver.

Remark 3.2. We point out that, when Vi is one-dimensional, then the computation of
the subspace correction is identical to a nonlinear Gauss-Seidel method. In fact, the SSO
method can be considered as a generalization of the nonlinear Gauss-Seidel methodology.

We aim to prove a linear reduction of the energy difference for one iteration of the SSO
algorithm:

(10) E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

where u is the minimizer of E and uk+1 = SSO(uk), with a contraction factor ρ ∈ (0, 1).
Ideally ρ is independent of the size of the problem. The algorithm and convergence theory
has been developed in [25, 27] for a convex energy in Banach spaces. For completeness,
we include a simplified version for Hilbert space here.

We will utilize the following simple result:
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Theorem 3.3. Suppose that {dk}∞k=0, {δk}∞k=0, {ηk}∞k=0 are sequences of non-negative
real numbers, the first two having the relationship

δk = dk − dk+1, k = 0, 1, 2, · · · .
Assume that there are constants CL, CU > 0, independent of k, such that

CLηk ≤ δk and dk+1 ≤ CUηk.
Then

(11) dk+1 ≤
CU

CL + CU
dk, k = 0, 1, 2, · · · .

Consequently {dk} converges monotonically, and (at least) linearly to 0.

Proof. Observe that

dk+1 ≤ CUηk =
CU
CL

CLηk ≤
CU
CL

δk =
CU
CL

(dk − dk+1),

which implies (11). Proving that {dk} is strictly decreasing to zero is straightforward, and
the proof is omitted. �

We will apply the last result with the following definitions:

(12) dk := E(uk)− E(u) and δk := E(uk)− E(uk+1).

The quantity dk is the difference between the current energy and the minimum energy, also
known as optimality gap, and δk is the energy decrease associated to the k + 1-th iteration.
They are connected, as desired, by the trivial identity

δk = dk − dk+1.

See Fig. 1 for an illustration. We define ηk in terms of the subspace corrections via

ηk :=

N∑
i=1

‖ei‖2V ,

and we assume the following upper and lower bounds:

v

E(v)

u uk+1 uk

E(u)

E(uk+1)

E(uk)

dk+1

dk

δk

FIGURE 1. The sequences {dk} and {δk}.
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Lower Bound on Energy Decay. There exists a positive constant CL such that for any
k = 0, 1, 2, · · ·

(13) E(uk)− E(uk+1) = δk ≥ CLηk = CL

N∑
i=1

‖ei‖2V .

Upper Bound on Optimality Gap. There exists a positive constant CU such that for any
k = 0, 1, 2, · · ·

(14) E(uk+1)− E(u) = dk+1 ≤ CUηk = CU

N∑
i=1

‖ei‖2V .

If these bounds hold, then, as a corollary to Theorem 3.3, we have

Corollary 3.4. Assume that the lower bound (13) and upper bound (14) hold with positive
constants CL and CU , respectively. We then have

E(uk+1)− E(u) ≤ ρ
(
E(uk)− E(u)

)
, ρ :=

CU
CL + CU

,

and E(uk) converges monotonically, and (at least) linearly to E(u), at the linear rate ρ.
Furthermore, uk converges at least linearly to u.

Proof. The linear convergence of E(uk) to E(u) at the rate ρ is guaranteed by Theo-
rem 3.3. Using (7), with w = uk, we have

µ

2

∥∥uk − u∥∥2

V ≤ E(uk)− E(u),

which guarantees the linear convergence of uk to u. �

Verifying the lower bound is relatively easy since E is convex. Solving the convex op-
timization problem in each subspace will definitely decrease the energy, and this decrease
can be quantified in terms of the norms of the corrections. We make essential use of the
fundamental orthogonality property.

Theorem 3.5. Let uk be the k-th iteration and uk+1 = SSO(uk). If E is strongly convex
in the sense of satisfying (E1), then

δk = E(uk)− E(uk+1) ≥ CL
N∑
i=1

‖ei‖2V , CL :=
µ

2
.

Proof. Recalling Lemma 2.6, we observe that Ji (defined in Algorithm 1) is strictly convex
over Vi and is Fréchet differentiable, as it inherits the structure of E. It follows that

〈J ′i(ei), w〉 = 0, ∀w ∈ Vi.

But the object on the left-hand-side is simply a directional derivative of the full energy, and
it is easy to see that

〈J ′i(ei), w〉 = 〈E′(vi−1 + ei), w〉 = 〈E′(vi), w〉 ∀w ∈ Vi.

Therefore, the fundamental orthogonality,E′(vi) = 0 in V ′i , holds. As ei = vi−vi−1 ∈ Vi,
in view of Lemma 2.6, we have

(15) E(vi−1)− E(vi) = Ji(0)− Ji(ei) ≥
µ

2
‖ei‖2V .
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The sum of the left-hand-side telescopes, and we have

E(uk)− E(uk+1) =

N∑
i=1

(E(vi−1)− E(vi)) ≥
µ

2

N∑
i=1

‖ei‖2V .

�

Remark 3.6. In view of (15), the convexity of E can be relaxed to the local convexity of
the energy sections Ji in each subspace Vi. Namely we may have a non-convex energy E
which, restricted to each subspace, is convex and the lower bound still holds. For example,
the energy used in the Optimal Delaunay Triangulation (ODT) [7] is non-convex globally.
But restricted to one vertex, it is convex, and the corresponding 1-D optimization problem
has a closed form solution, which is known as ODT mesh smoothing [5]. Theorem 3.5
guarantees the energy decreasing property of ODT mesh smoothing.

The upper bound is more delicate and relies on the assumptions about the decomposition
of spaces. The result is given in the following theorem.

Theorem 3.7. Let uk+1 be the k + 1st iteration in the SSO algorithm. Suppose that
the space decomposition satisfies assumptions (SS1) and (SS2) and the energy E satisfies
assumption (E1), then we have

dk+1 = E(uk+1)− E(u) ≤ CU
N∑
i=1

‖ei‖2V , CU :=
C2
SC

2
A

2µ
.

Proof. Using Lemma 2.5, with the choice v = uk+1 in (8), we have

dk+1 = E(uk+1)− E(u) ≤ 1

2µ
‖E′(uk+1)‖2V′ .

For any w ∈ V , we choose a stable decomposition w =
∑N
i=1 wi, then

〈E′(uk+1), w〉 =

N∑
i=1

〈E′(uk+1), wi〉

=

N∑
i=1

〈E′(uk+1)− E′(vi), wi〉

=

N∑
i=1

N∑
j=i+1

〈E′(vj)− E′(vj−1), wi〉

≤ CS

(
N∑
i=1

‖ei‖2V

)1/2( N∑
i=1

‖wj‖2V

)1/2

≤ CSCA

(
N∑
i=1

‖ei‖2V

)1/2

‖w‖V .
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Here we use the fact that we solve the minimization problem on each subspace exactly and
the energy decreases, therefore, vj ∈ B for all j and E′(vi) = 0 in V ′i . Then we have

E(uk+1)− E(u) ≤ 1

2µ
‖E′(uk+1)‖2V′

=
1

2µ

(
sup

w∈V\{0}

〈E′(uk+1), w〉
‖w‖V

)2

≤ 1

2µ
C2
SC

2
A

N∑
i=1

‖ei‖2V ,

which finishes the proof. �

Based on the lower bound given in Theorem 3.5 and the upper bound given in Theo-
rem 3.7, we can conclude the convergence of SSO. Comparing with the results in [27], we
use slightly weaker assumptions, and the constant CU seems to be slightly better.

Corollary 3.8. Let uk be the k-th iteration and uk+1 = SSO(uk). Suppose that the space
decomposition satisfies assumptions (SS1) and (SS2) and the energyE satisfies assumption
(E1), then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)), with ρ =
C2
SC

2
A

C2
SC

2
A + µ2

.

As we have pointed out previously, the Lipschitz continuity and constant L are implic-
itly contained in assumption (SS2) (the Strengthened Cauchy Schwarz inequality) and the
constant CS . We will show how this can be so with an application at the end of the paper.

4. FAST SUBSPACE DESCENT METHOD WITH EXACT LINE SEARCH

In this section, we present the theory for the convergence of the Fast Subspace Descent
(FASD) method listed in Algorithm 2. To recap, in the SSO method, Algorithm 1, we need
to solve the optimization problem

min
w∈Vi

E(vi−1 + w)

in each subspace exactly, which requires evaluation of the global energy E and its deriva-
tive E′ in the space V . Although the size of the optimization problem is reduced to dimVi,
such evaluations are still in the original space of size dimV , which may be expensive.

4.1. Algorithm Definition. Denote by Ii : Vi ↪→ V the natural inclusion and Ri = I>i :
V ′ → V ′i the natural restriction of functionals. Thus, for all w ∈ Vi,

〈RiE′(vi−1), w〉 = 〈E′(vi−1), R>i w〉 = 〈E′(vi−1), Iiw〉.
Often times we just drop Ri and Ii, as their actions can be assumed implicitly. We need to
evaluate the gradient RiE′(vi−1 + Iiw), as well as the Hessian RiE′′(vi−1 + Iiw)Ii and
its inverse, if Newton’s method is used, several times. This is practical only if the natural
inclusion Ii is efficient to realize, e.g., a one-dimensional subspace generated by one basis
function of V and the resulting method is the so-called non-linear Gauss-Seidel iteration.

Instead of solving the minimization problem using the original energy E, in our FASD
Algorithm (Algorithm 2) we utilize a locally-defined energy Ei in each subspace Vi and
solve a perturbed optimization problem. For the moment, let us assume that Ei : Vi → R
is Fréchet differentiable in Vi. We will give further assumptions shortly. In addition to
prolongation and restriction operators, we also need a projection operator Qi : V → Vi.



CONVERGENCE ANALYSIS OF FASD 11

Ideally,Qiv yields a good approximation of v in the subspace Vi. Recall that as a projection
operator Qivi = vi for vi ∈ Vi.

Algorithm: uk+1 = FASD(uk)

v0 = uk ;
for i = 1 : N do

Compute the so-called subspace τ -perturbation: let ξi = Qivi−1 and

(16) τi := E′i(ξi)−RiE′(vi−1) ∈ V ′i;
Solve the subspace residual problem: Find ηi ∈ Vi, such that

(17) 〈E′i(ηi), w〉 = 〈τi, w〉, ∀w ∈ Vi;
Compute the search direction:

(18) si := ηi − ξi ∈ Vi;
Orthogonalize the subspace correction via the exact line search:

(19) εi := α∗i si,

where

(20) α∗i = argmin
α∈R

E(vi−1 + αsi);

Apply the subspace correction:

(21) vi := vi−1 + εi;

end
uk+1 := vN ;

Algorithm 2: Fast Subspace Descent (FASD) Method.

We shall view our Fast Subspace Descent (FASD) method as a hybrid of the SSO and
FAS methods. For the proof of convergence, it helps to treat FASD as an SSO iteration with
an inexact local solver. We could also say that FASD is essentially FAS with an additional
line search step.

Our FASD algorithm is listed in Algorithm 2. In the orthogonalization step, cf. (19),
we perform a line search to find the optimal step size which still requires the evaluation of
some of the “fine level” functions E(vi−1 +αsi), E′(vi−1 +αsi), and E′′(vi−1 +αsi) in
V . The computational cost is reduced compared with evaluation of vi−1 + w for multiple
w ∈ Vi. Algorithm 2 is an intermediate step towards the convergences proof of original
FAS. In Section 5, we shall analyze an algorithm that uses a simpler choice of step size,
one that is closer to the original FAS method. In Section 6, we shall consider the original
FAS, which corresponds to FASD with the step size αi = 1.

4.2. Strong Convexity of Local Energy and Well-Posedness. To show the well-posedness
of the local problem (17), and therefore Algorithm 2, we need some assumptions on the
energies Ei. As mentioned, we assume Ei : Vi → R is Fréchet differentiable for all points
v ∈ Vi. In addition, we introduce the following assumptions on the local energy, Ei, which
is just the local version of (E1):

(E3) (Strong convexity/Ellipticity:) There exists a constant µi such that for all v, w ∈ Vi

〈E′i(w)− E′i(v), w − v〉 ≥ µi‖w − v‖2V .
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For the local optimization problem, expressed in equation (17), we are not minimizing
an approximated energy Ei, i.e., not solving E′i(Qivi−1 + si) = 0. Instead a so-called
τ -perturbation is added to the right hand side. Still, this optimization problem is uniquely
solvable.

Lemma 4.1. Assume Ei satisfies the strong convexity assumption (E3). Then there exists
a unique solution to the residual equation (17).

Proof. The residual equation (17) is the Euler equation for the minimization problem

(22) min
v∈Vi

(Ei(v)− 〈τi, v〉) .

As Ei is strictly convex, and the linear shift 〈τi, v〉 will not affect the convexity, the global
minimizer of (22) exists, is unique, and satisfies the Euler equation (17). Detailed proofs
can be found in [9, p. 35], [8, Thm. 8.2-2], or [1, Thm. 3.3.13]. �

Remark 4.2. We note that Algorithm 2 (FASD) generalizes Algorithm 1 (SSO). They
yield the same approximations in the case that

Ei(η) := E(vi−1 −Qivi−1 + η), ∀ η ∈ Vi.

The projection Qi just needs to satisfy the usual property Qiη = η, for all η ∈ Vi. As a
consequence of this choice, τi ≡ 0 and, for all w ∈ Vi,

〈E′(vi−1 + si), w〉 = 〈E′(vi−1 −Qivi−1 + ηi), w〉 = 〈E′i(ηi), w〉 = 0.

With these choices in FASD, the last step (orthogonalization) is redundant because

〈E′(vi−1 + si), si〉 = 0

upon taking w = si. In other words, the orthogonality is valid with α∗i = 1 for SSO.

4.3. Lower bound. The first correction that we obtain in Algorithm 2, namely, si =
ηi − ξi, where ξi = Qivi−1 is the full approximation, is used as the search direction for
a line optimization. The line optimization confers an orthogonalization property to the
corrected approximation vi. Due to this orthogonalization and the convexity of E, the
proof of the lower bound for FASD is almost exactly the same as that for the SSO method.

Theorem 4.3. Suppose that E satisfies (E1) and Ei satisfies (E3), and let uk be the kth

iteration in the FASD algorithm (Algorithm 2). Then

E(uk)− E(uk+1) ≥ µ

2

N∑
i=1

‖εi‖2V .

Proof. We apply a similar technique as in the proof of Theorem 3.5. Due to the line search,
we still have an orthogonality property that can be utilized, namely,

〈E′(vi), w〉 = 0, w ∈ span{si}.

Then, applying Lemma 2.6, with the subspaceW = span{si}, and noting that

vi − vi−1 = εi = α∗i si ∈ span{si},

we have
E(vi−1)− E(vi) ≥

µ

2
‖vi−1 − vi‖2V =

µ

2
‖εi‖2V ,
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and consequently

E(uk)− E(uk+1) =

N∑
i=1

(E(vi−1)− E(vi)) ≥
µ

2

N∑
i=1

‖εi‖2V .

�

We will later need the following simple result, which follows because of the strong
convexity assumption (E3).

Lemma 4.4. Let si be computed as in Algorithm 2 and suppose that Ei satisfies assump-
tion (E3). Then si is a descent direction in the sense that

〈−E′(vi−1), si〉 ≥ µi‖si‖2V > 0.

Proof. The local problem (17) can be rewritten as follows: find ηi ∈ Vi s.t.

(23) 〈E′i(ηi)− E′i(ξi), w〉 = −〈RiE′(vi−1), w〉, ∀ w ∈ Vi.
Here recall that ξi = Qivi−1 ∈ Vi and ηi = ξi+si. Choosing w = si and using the strong
convexity of Ei, we obtain the inequality

〈−RiE′(vi−1), si〉 = 〈E′i(ηi)− E′i(ξi), si〉 ≥ µi‖si‖2V > 0.

�

4.4. Lipschitz continuity ofE′i and estimates of α∗i . As Theorem 4.3 implies, the energy
is always decreasing and iterates will remain in the sublevel set B, but the search region,
and, e.g., the point ξi+si, may not be contained inB. To be able to use Lipschitz continuity,
we introduce an enlarged set

(24) B+ := {v ∈ V | dist(v,B) ≤ √χ} ,
where χ is given by

χ :=
2L2

µmini µ2
i

(E(u0)− E(u)).

We then introduce a Lipschitz continuity of E′i with respect to the projection of B+:
(E4) (Lipschitz continuity of the first order derivative:) There exists a constant Li > 0,

such that
‖E′i(w)− E′i(v)‖V′ ≤ Li‖w − v‖V ,

for all w, v ∈ Bi := QiB+.

Remark 4.5. Observe that we must assume that (E3) holds for (E4) to make sense. In
other words, we cannot assume (E4) without first assuming (E3), since µi is involved in
the definition of χ and, therefore, B+. Regarding B+, note that it is not a sublevel set.
However, it is straightforward to verify that both B+ and Bi = QiB+ are convex. The
proofs are omitted for the sake of brevity.

Later, we will show that ξi + si ∈ Bi so that we can take advantage of the Lipschitz
continuity of E′i in our analysis. Notice that the Lipschitz continuity of E′i is imposed for
the set QiB+, which is related to B used in (E2). Interestingly, there is no relationship
between E and Ei that is explicitly assumed for the moment. Indeed E and Ei are just
related through the upper and lower bound of the first derivatives and norms. In general,
based on the assumptions (E3) and (E4), we have the following lemma, which gives results
analogous to those in Lemma 2.2 and 2.4.
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Lemma 4.6. Assume Ei satisfies assumptions (E3) and (E4). For any v, w ∈ Bi,

µi ‖w − v‖2V ≤ 〈E
′
i(w)− E′i(v), w − v〉 ≤ Li ‖w − v‖2V ,

and

µi
2
‖w − v‖2V + 〈E′i(v), w − v〉 ≤ Ei(w)− Ei(v) ≤ 〈E′i(v), w − v〉+

Li
2
‖w − v‖2V .

Though it is not required, if it happens that ui ∈ Bi, where ui ∈ Vi is the global minimizer
of Ei, then for all w ∈ Bi,

µi
2
‖w − ui‖2V ≤ Ei(w)− Ei(ui) ≤

Li
2
‖w − ui‖2V .

The lower bounds above hold for all w ∈ Vi, without restriction.

In order to better understand the choice of the step size, we introduce the scalar function
fi. See Figure 2 and Equation (25).

α

fi(α)

αoL,i

fi(α
o
L,i)α∗i

fi(0)

fi(α
∗
i )

αL,i

FIGURE 2. The function fi defined in (25). fi is a one-dimensional
energy section. It is straightforward to prove that its minimizer, α∗i is
positive.

Proposition 4.7. Suppose thatE satisfies assumption (E1) and the local energyEi satisfies
assumption (E3). Define the one-dimensional energy section

(25) fi(α) := E(vi−1 + αsi).

Then

f ′i(0) = 〈E′(vi−1), si〉 ≤ −µi ‖si‖2V .

Furthermore, α∗i > 0, and, for all α ∈ (0, α∗i ], fi(α) < fi(0).

Proof. Lemma 4.4 implies f ′i(0) < 0. As f ′i is continuous, we conclude that the minimiz-
ing point is positive, α∗i > 0, and for all α ∈ (0, α∗i ], fi(α) < fi(0) = E(vi−1). �
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Lemma 4.8. Assume E satisfies assumptions (E1) – (E2). Then fi(α), defined in (25), is
differentiable and strongly convex in the following sense: for all α, β ∈ R,

(f ′i(α)− f ′i(β))(α− β) ≥ (α− β)2µ‖si‖2V .

Furthermore, f ′i is Lipschitz in the following sense: for all 0 ≤ α, β ≤ αL,i,

|f ′i(α)− f ′i(β)| ≤ L‖si‖2V |α− β|,

where αL,i := (1 +
√
µ/L)α∗i .

Proof. The proof is based on the following identity

f ′i(α)− f ′i(β) = 〈E′(vi−1 + αsi)− E′(vi−1 + βsi), si〉.

Then, by assumption (E1),

(f ′i(α)− f ′i(β))(α− β) = 〈E′(vi−1 + αsi)− E′(vi−1 + βsi), αsi − βsi〉
≥ µ‖(α− β)si‖2V .

To use the Lipschitz inequality involving E′, we need to ensure that the points of eval-
uation are inside the set B, which imposes an upper bound on α and β. As f ′i(0) < 0 and
f ′i(α

∗
i ) = 0, by coercivity, there exists αoL,i > α∗i , such that fi(0) = fi(α

o
L,i), and, for all

α ∈ (0, αoL,i), fi(α) < fi(0). This implies vi−1 + αsi ∈ B, for all α ∈ (0, αoL,i).

We then show f ′i is Lipschitz with constant L‖si‖2V on the interval [0, αoL,i]. For all
α, β ∈ (0, αoL,i), α 6= β,

|f ′i(α)− f ′i(β)| = |〈E′(vi−1 + αsi)− E′(vi−1 + βsi), si〉|

=
1

|α− β|
|〈E′(vi−1 + αsi)− E′(vi−1 + βsi), (α− β)si〉|

≤ 1

|α− β|
L‖(α− β)si‖2V

= L‖si‖2V |α− β|.

We now estimate αoL,i. As f ′i(α
∗
i ) = 0 and f ′i is Lipschitz in (0, αoL,i), we have

0 < fi(α
o
L,i)− fi(α∗i ) ≤ (αoL,i − α∗i )2L

2
‖si‖2V .

On the other hand, and again from Lemma 2.6,

fi(α
o
L,i)− fi(α∗i ) = fi(0)− fi(α∗i ) ≥

µ(α∗i )
2

2
‖si‖2V .

The desired bound

αoL,i ≥ αL,i :=

(
1 +

√
µ

L

)
α∗i > α∗i > 0

then follows. Note that we need only f ′i is Lipschitz with the same constant on the smaller
interval [0, αL,i] ⊆ [0, αoL,i]. The proof is complete. �

To use the Lipschitz continuity of Ei, we require ξi + si ∈ Bi = QiB+, which will be
proved by a lower bound of the optimal step size.
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Lemma 4.9. Assume the energy E satisfies assumptions (E1) – (E2) and the local energy
Ei satisfies the strong convexity assumption (E3), then we have the lower bound

µi
L
≤ α∗i .

Consequently,

αoL,i ≥ αL,i :=

(
1 +

√
µ

L

)
α∗i > α∗i ≥

µi
L
> 0.

Proof. Recall that εi = α∗i si ∈ span{si}, and, due to the line search, we still have an
orthogonality property that can be utilized, namely,

〈E′(vi), w〉 = 0, ∀w ∈ span{si}.
Thus E′(vi−1 + εi) = 0 in the dual of span{si}. By step 2 in the FASD Algorithm 2,

−E′(vi−1) = E′i(ξi + si)− E′i(ξi) in V ′i.
The lower bound is obtained by the strong convexity of Ei and Lipschitz continuity of E′:

α∗iL‖si‖2V =
1

α∗i
L‖εi‖2V ≥

1

α∗i
〈E′(vi−1 + εi)− E′(vi−1), εi〉

= 〈E′(vi−1 + εi)− E′(vi−1), si〉
= −〈E′(vi−1), si〉
= 〈E′i(ξi + si)− E′i(ξi), si〉
≥ µi‖si‖2V .

Note that vi−1 + εi ∈ B by Lemma 4.8 so that we can use Lipschitz continuity of E′. �

Next we show the norm of si is bounded and thus ξi + si ∈ Bi.

Lemma 4.10. The point ξi + si is in the set Bi.

Proof. To show that ξi + si ∈ Bi, it suffices to show that vi−1 + si ∈ B+, since ξi + si =
Qi(vi−1 + si). To start, we know that vi−1 ∈ B; so by the definition of B+ in (24), it
suffices to prove that ‖si‖2V ≤ χ. By Theorem 4.3 and Lemma 4.9, we have

µ2
i

L2
‖si‖2V ≤ (α∗i )

2‖si‖2V = ‖εi‖2V ≤
2

µ
(E(vi−1)− E(vi)) ≤

2

µ
(E(u0)− E(u)),

which implies

‖si‖2V ≤
2L2

µmini µ2
i

(E(u0)− E(u)) = χ.

Therefore,
dist(B, vi−1 + si) ≤ ‖si‖V ≤

√
χ,

and the result is proven. �

4.5. Upper bound. With our estimates of α∗i in place, we are now ready to establish an
upper bound for the iterates in our FASD Algorithm 2.

Theorem 4.11. Suppose the space decomposition satisfies (SS1) and (SS2), the energy E
satisfies (E1) – (E2), and Ei satisfies (E3) – (E4). Then we have the upper bound

E(uk+1)− E(u) ≤ CU
N∑
i=1

‖εi‖2V ,

where CU := C2
A [CS + L (1 + maxi{Li/µi})]2 /(2µ).
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Proof. Note, for any w ∈ V , we choose a stable decomposition w =
∑N
i=1 wi, then

〈E′(uk+1), w〉 =

N∑
i=1

〈E′(uk+1), wi〉

=

N∑
i=1

(
〈E′(uk+1)− E′(vi), wi〉+ 〈E′(vi), wi〉

)
= I1 + I2,

where

I1 :=

N∑
i=1

〈E′(uk+1)− E′(vi), wi〉 and I2 :=

N∑
i=1

〈E′(vi), wi〉.

Using the stability of the decomposition (SS1) and the strengthened Cauchy-Schwartz in-
equality (SS2), I1 can be estimated in exactly the same way as in Theorem 3.7. Therefore,

I1 ≤ CSCA

(
N∑
i=1

‖εi‖2V

)1/2

‖w‖V .

For I2, we insert τi − E′i(ξi + si), which is zero in V ′i , use the Lipschitz continuities, the
standard Cauchy-Schwartz inequality, to get

I2 =

N∑
i=1

〈E′(vi)− E′(vi−1)− E′i(ξi + si) + E′i(ξi), wi〉

≤
N∑
i=1

(L‖εi‖V + Li‖si‖V) ‖wi‖V

≤ L
N∑
i=1

(
1 +

Li
µi

)
‖εi‖V‖wi‖V

≤ LCA
(

1 + max
1≤i≤N

Li
µi

)( N∑
i=1

‖εi‖2V

)1/2

‖w‖V .

In the last estimate, we used the relation si = α∗i
−1εi and the lower bound of α∗i given in

Lemma 4.9.
Putting the estimates together, we have,

∥∥E′(uk+1)
∥∥2

V′ ≤ C2
A

[
CS + L

(
1 + max

1≤i≤N

Li
µi

)]2 N∑
i=1

‖εi‖2V .

Using inequality (8) in Lemma 2.5 with v = uk+1, the result follows. �

Remark 4.12. Our theory suggests we can simply choose

(26) Ei(w) =
1

2
‖w − ξi‖2V =

1

2
‖w −Qivi−1‖2V , ∀w ∈ Vi;

for then (E3) and (E4) hold with Li = µi = 1. Moreover, the local problem becomes like
that of the linear preconditioned gradient descent method:

(27) (ηi − ξi, w)Vi = −〈RiE′(vi−1), w〉, ∀w ∈ Vi.
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In this case (23) has the closed form solution

ηi − ξi =: si = −RiRiE
′(vi−1),

where Ri is the Riesz map V ′i → Vi and its realization is the inverse of an SPD matrix of
size dimVi. In fact, we can even use, for any fixed gi ∈ Vi that we like,

Ei(w) =
1

2
‖w − gi‖2V , ∀w ∈ Vi,

and the same basic result is true (by linearity): si = −RiRiE
′(vi−1).

In any case, solving a linear local problem can dramatically reduce the computational
cost of the FASD. See Section 7 for a practical discussion of this point. In this setting,
FASD is closely related to the coordinate descent methods analyzed in [20]. See also, for
example, [10]. Another advantage of using (26) is that one does not need to worry about
the particular choice of Bi. The quadratic energy in (26) is globally Lipschitz.

Remark 4.13. We can also choose the local quadratic energy

(28) Ei(w) =
1

2
‖w − ξi‖2E′′(ξi)

:=
1

2
〈E′′(ξi)(w − ξi), w − ξi〉, ∀w ∈ Vi.

Here, recall that ξi = Qivi−1 and E′′(ξi) should be understood as the restriction of the
bilinear form E′′(ξi) on subspace Vi × Vi. Then the local problem becomes one damped
Newton’s iteration in subspace Vi

si = −(RiE
′′(ξi)Ii)

−1RiE
′(vi−1).

In this setting, the block Newton’s method proposed in [18] can be interpreted as a FASD
with space decomposition. We will investigate the randomized version in a future paper.

Corollary 4.14. In addition to the hypotheses of the last theorem, let us assume that Ei is
quadratic, chosen as in (26). Then,

E(uk+1)− E(u) ≤ C2
A(CS + 2L)2

2µ

N∑
i=1

‖εi‖2V .

4.6. Convergence. Using Theorems 4.3 and 4.11, and Corollary 3.4, we obtain the fol-
lowing linear convergence result.

Corollary 4.15. Let uk be the k-th iteration and uk+1 = FASD(uk). Suppose that the
space decomposition satisfies assumptions (SS1) and (SS2), the energy E satisfies assump-
tion (E1) – (E2), and the energy Ei satisfies assumption (E3) – (E4), then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
C2
A [CS + L (1 + maxi{Li/µi})]2

C2
A [CS + L (1 + maxi{Li/µi})]2 + µ2

.

Furthermore if Ei is quadratic, chosen as in (26), then

ρ =
C2
A (CS + 2L)

2

C2
A (CS + 2L)

2
+ µ2

.
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5. FAST SUBSPACE DESCENT METHOD WITH APPROXIMATE LINE SEARCH

In this section, we consider the FASD algorithm with approximated line search. The
method is detailed in Algorithm 3. The key difference between this algorithm and Algo-
rithm 2 is that a fixed step size αi is employed rather than computing α∗i via a line search.
In this case, there is no need to repeatedly evaluate E and its derivatives in the subspace.
We need only compute RiE′(vi−1) once for the local problem (for use in the computation
of τi and αi).

In the next section, Section 6, we shall also consider the original FAS, which corre-
sponds to FASD with the step size αi = 1. We prove its convergence based on an additional
approximation property.

Algorithm: uk+1 = FASD−ALS(uk)

v0 = uk ;
for i = 1 : N do

Compute the subspace τ -perturbation: let ξi = Qivi−1 and

(29) τi := E′i(ξi)−RiE′(vi−1) ∈ V ′i;
Solve the subspace residual problem: Find ηi ∈ Vi, such that

(30) 〈E′i(ηi), w〉 = 〈τi, w〉, ∀w ∈ Vi.
Compute the search direction and the quadratic step size:

si := ηi − ξi ∈ Vi,(31)

αqi := −〈RiE
′(vi−1), si〉
L‖si‖2V

.(32)

Apply the subspace correction:

(33) vi := vi−1 + αqi si.

end
uk+1 := vN ;

Algorithm 3: FASD algorithm with approximate line search (ALS).

Recall the scalar function fi(α) := E(vi−1 + αsi), with fi(0) = E(vi−1), f ′i(0) =
〈E′(vi−1), si〉 < 0. Using fi(0) and f ′i(0), we define the quadratic function

(34) qi(α) := fi(0) + f ′i(0)α+
L‖si‖2V

2
α2.

The optimal step size for FASD is, of course, α∗i = argminα∈R fi(α). Our choice for this
new algorithm is

αqi = argmin
α∈R

qi(α) = − f ′i(0)

L‖si‖2V
= −〈RiE

′(vi−1), si〉
L‖si‖2V

,

which satisfies the following estimate:

Lemma 5.1. Assume the energy E satisfies the Lipschitz continuity assumption (E2) and
the local energy Ei satisfies the strong convexity assumptions (E3), then

µi
L
≤ αqi ≤ α

∗
i .
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Proof. The lower bound is obtained by the definition of αqi and Lemma 4.4. To prove the
upper bound, we notice that, due to line search,

f ′i(α
∗
i ) = 〈E′(vi−1 + α∗i si), si〉 = 0

and thus

αqiL‖si‖
2
V = −〈RiE′(vi−1), si〉 = 〈E′(vi−1 + α∗i si)− E′(vi−1), si〉 ≤ α∗iL‖si‖2V .

�

fi(α)

qi(α)

α
αoL,i

fi(α
o
L,i)α∗iαqi

fi(0)

fi(α
∗
i )

qi(α
q
i )

αL,i

FIGURE 3. The functions fi, defined in (25), and its quadratic approxi-
mation qi, defined in (34). The quadratic minimizer αqi is always to the
left of α∗i by construction.

Now, since the optimal linear search procedure is broken, the orthogonality conditions
with respect to the corrections are broken, and establishing the lower bound is a little more
complicated.

Theorem 5.2. Let uk be the k-th iteration and uk+1 = FASD−ALS(uk). Suppose that
E satisfies assumption (E1) – (E2) and the local energy Ei is strongly convex, satisfying
assumption (E3). Then, we have

E(uk)− E(uk+1) ≥ CL
N∑
i=1

‖αqi si‖
2
V , CL =

L

2
.

Proof. It suffices to prove

E(vi−1)− E(vi) = f(0)− f(αqi ) ≥
L

2
‖αqi si‖

2.
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By Lemma 4.8, for α ∈ [0, αL,i], f ′i is Lipschitz continuous with constant L‖si‖2V . Then
for α ∈ [0, αL,i],

fi(α)− qi(α) = fi(α)− fi(0)− αf ′i(0)− L‖si‖2V
2

α2 ≤ 0.

Namely fi(α) ≤ qi(α) for all α ∈ [0, αL,i]. As αqi = argminα∈R qi(α), and αqi ≤ α∗i , we
get

fi(α
q
i ) ≤ qi(α

q
i ) = min

α∈R
qi(α) = fi(0)− 1

2L‖si‖2V
|f ′i(0)|2 = fi(0)− L

2
‖αqi si‖

2
V .

In the last step, we have used the definition of αqi and this completes the proof. �

Since αqi has the same lower bound as α∗i , we can derive the upper bound in exactly the
same way as the proof of Theorem 4.11, only replacing εi = α∗i si by αqi si and using the
lower bound from Lemma 5.1. Thus, we only state the theorem below, and the proof is
omitted.

Theorem 5.3. Let uk be the k-th iteration and uk+1 = FASD−ALS(uk). Suppose the
space decomposition satisfies (SS1) and (SS2), the energy E satisfies (E1) – (E2), and Ei
satisfies (E3) – (E4). Then we have the upper bound

E(uk+1)− E(u) ≤ CU
N∑
i=1

‖αqi si‖
2
V ,

where CU := C2
A [CS + L (1 + maxi{Li/µi})]2 /(2µ).

We summarize the linear convergence result below.

Corollary 5.4. Let uk be the k-th iteration and uk+1 = FASD−ALS(uk). Suppose
that the space decomposition satisfies assumptions (SS1) and (SS2), the energy E satisfies
assumption (E1) – (E2), and the energy Ei satisfies assumption (E3) – (E4), then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
C2
A [CS + L (1 + maxi{Li/µi})]2

C2
A [CS + L (1 + maxi{Li/µi})]2 + Lµ

.

The Lipschitz constant L is used in the step size αi which can be replaced by a local
Lipschitz constant for the scalar function fi(α), for α ∈ (0, α∗i ) and popular line search
algorithms can be used.

Remark 5.5. Consider a special case that V := Rn with an orthogonal decomposition
V = V1

⊕
V2

⊕
· · ·
⊕
VN , Vi ⊂ V . If we simply chooseEi(w) = 1

2‖w−ξi‖
2, ∀w ∈ Vi,

where ‖ · ‖ denotes the standard `2-norm induced by the standard `2-inner product (·, ·)
defined on Rn, then we have si = −RiE′(vi−1) and the FASD algorithm (Algorithm 3)
becomes the block coordinated descent method discussed in [20, 2]. Therefore, Corol-
lary 5.4 gives a convergence analysis of the cyclic variant of the block coordinate descent
method. To the best of our knowledge, the only convergence results for the cyclic block
coordinated descent method was presented in [2]. Here, we give a linear convergence result
from a subspace decomposition point of view for the strongly convex case and our result
can be generalized to other related methods as well, for example, the preconditioned block
coordinated descent method.
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6. ORIGINAL FAS METHOD: FASD WITHOUT LINE SEARCH

Notice that the original FAS does not have the last line search step. Traditional FAS,
listed as Algorithm 4, applies the subspace correction via

vi := vi−1 + αFAS
i si, αFAS

i = 1.

Algorithm: uk+1 = FAS(uk)

v0 = uk ;
for i = 1 : N do

Compute the subspace τ -perturbation: let ξi = Qivi−1 and

(35) τi := E′i(ξi)−RiE′(vi−1) ∈ V ′i;
Solve the subspace residual problem: Find ηi ∈ Vi, such that

(36) 〈E′i(ηi), w〉 = 〈τi, w〉, ∀w ∈ Vi;
Compute the correction

(37) si := ηi − ξi ∈ Vi;
Apply the subspace correction:

(38) vi := vi−1 + si.

end
uk+1 := vN ;

Algorithm 4: Traditional FAS: FASD with no line search.

Previously, our choice of step size was motivated by the choice of step size in the gra-
dient descent method [21]. We shall prove αFAS

i = 1 is also allowed – that is to say, it
leads to a convergent algorithm – provided that the following approximation property is
satisfied.

(AP) Both E and Ei are twice Fréchet differentiable. Furthermore, there exists a con-
stant 0 < ε < µ/2 so that for all w ∈ B, ηi ∈ Vi and all ui, vi ∈ Vi
|〈E′′(w + ηi)ui, vi〉 − 〈E′′i (Qiw + ηi)ui, vi〉| ≤ ε‖ui‖V‖vi‖V .

For quadratic energy, RiE′′Ii is the coarse matrix on Vi formed by the triple product,
via the so-called Galerkin method, and E′′i is the matrix obtained using the bilinear form
associated to the local energy Ei. They should be close in a certain norm.

The original FAS is to choose Ei = E|Vi so that is E′′i = E′′ on Vi × Vi. Assume
furthermore E′′ is also Lipschitz continuous. Then (AP) can be verified

(39) ‖E′′(w + ηi)− E′′(Qiw + ηi)‖ ≤ C‖w −Qiw‖.
Note that in this case the local problem E′(ηi) = τi is cheaper than solving the Euler
equation E′(vi−1 + ei) = 0 in SSO.

Lemma 6.1. Assume the energy E satisfies the assumptions (E1) and (E2), and the ap-
proximation assumption (AP) holds. Then, E′i satisfies the Lipschitz condition and strongly
convexity condition as follows,

(µ− ε)‖v − w‖2V ≤ 〈E′i(v)− E′i(w), v − w〉 ≤ (L+ ε)‖v − w‖2V , ∀ v, w ∈ B ∩ Vi.
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Proof. For any v, w ∈ Vi, by Taylor’s Theorem with integral reminder, we have

〈E′i(v)− E′i(w), v − w〉

=

∫ 1

0

〈E′′i (z(t))(v − w), v − w〉dt

=

∫ 1

0

〈E′′(z(t))(v − w), v − w〉dt

+

∫ 1

0

〈E′′i (z(t))(v − w), v − w〉 − 〈E′′(z(t))(v − w), v − w〉dt

= 〈E′(v)− E′(w), v − w〉

+

∫ 1

0

〈E′′i (z(t))(v − w), v − w〉 − 〈E′′(z(t))(v − w), v − w〉dt,

where z(t) = tv + (1 − t)w ∈ Vi, and thus Qiz = z. When v, w ∈ B ∩ Vi, using
assumptions (E2) and (AP), we have

〈E′i(v)− E′i(w), v − w〉 ≤ L‖v − w‖2V + ε‖v − w‖2V = (L+ ε)‖v − w‖2V .

On the other hand, when v, w ∈ B ∩ Vi, using assumptions (E1) and (AP), we have

〈E′i(v)− E′i(w), v − w〉 ≥ µ‖v − w‖2V − ε‖v − w‖2V = (µ− ε)‖v − w‖2V .

�

Theorem 6.2. Let uk be the k-th iteration and uk+1 = FAS(uk), as in Algorithm 4, with
local step size αFAS

i = 1. Suppose that E satisfies assumption (E1) and the approximation
assumption (AP) holds with ε < µ/2. Then, we have

E(uk)− E(uk+1) ≥ CL
N∑
i=1

‖si‖2V , CL =
(µ

2
− ε
)
.

Proof. Recall that ξi = Qivi−1 and Qisi = si. Using equation (36) and Taylor’s theorem
with integral remainder, we first estimate |〈E′(vi), si〉| by

|〈E′(vi), si〉| = |〈E′(vi−1 + si), si〉 − 〈E′(vi−1), si〉 − [〈E′i(ξi + si), si〉 − 〈E′i(ξi), si〉]|

=

∣∣∣∣∫ 1

0

〈E′′(y(t)) si, si〉 − 〈E′′i (Qiy(t)) si, si〉dt
∣∣∣∣

≤
∫ 1

0

|〈E′′(y(t)) si, si〉 − 〈E′′i (Qiy(t)) si, si〉| dt

≤ ε‖si‖2V ,

where y(t) := (1− t)vi−1 + t(vi−1 + si) = vi−1 + tsi. Note that vi−1 ∈ B and si ∈ Vi
which allows us to use Assumption (AP) in the last step.

Using assumption (E1) – specifically estimate (4) of Theorem 2.1 – we get

(40) E(vi−1)− E(vi−1 + si) ≥ −〈E′(vi−1 + si), si〉+
µ

2
‖si‖2V ≥

(µ
2
− ε
)
‖si‖2V .

�

The upper bound for FAS (where αFAS
i = 1) is easy, as there is now no need to have a

lower bound of the step size.
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Theorem 6.3. Let uk be the k-th iteration and uk+1 = FAS(uk) with local step size
αi = 1. Suppose the space decomposition satisfies (SS1) and (SS2), the energy E satisfies
(E1) – (E2), and assumption (AP) holds. Then we have the upper bound

E(uk+1)− E(u) ≤ CU
N∑
i=1

‖si‖2V ,

where CU = C2
A(CS + ε)2/(2µ).

Proof. For any w ∈ V , we choose a stable decomposition w =
∑N
i=1 wi, then

〈E′(uk+1), w〉 =

N∑
i=1

〈E′(uk+1), wi〉

=

N∑
i=1

〈E′(uk+1)− E′(vi), wi〉+

N∑
i=1

〈E′(vi), wi〉

= I1 + I2

The first term is bounded as before. Therefore,

I1 ≤ CSCA

(
N∑
i=1

‖si‖2V

)1/2

‖w‖V .

For the second term, we insert τi − E′i(ξi + si) = −E′(vi−1) + E′i(ξi) − E′i(ξi +
si), which is zero in V ′i , and use Taylor’s Theorem with integral remainder, followed by
assumption (AP), to get

I2 =

N∑
i=1

〈E′(vi)− E′(vi−1)− [E′i(ξi + si)− E′i(ξi)] , wi〉

≤ ε
N∑
i=1

‖si‖V‖wi‖V

≤ εCA

(
N∑
i=1

‖si‖2V

)1/2

‖w‖V .

�

Corollary 6.4. Let uk be the k-th iteration and uk+1 = FAS(uk). Suppose that the space
decomposition satisfies assumptions (SS1) and (SS2), the energy E satisfies assumption
(E1) – (E2), and the energy Ei satisfies assumption (AP) with ε < µ/2, then we have

E(uk+1)− E(u) ≤ ρ(E(uk)− E(u)),

with

ρ =
(CS + ε)2C2

A

(CS + ε)2C2
A + µ(µ− 2ε)

.

7. APPLICATION AND NUMERICAL EXPERIMENTS

In this section we shall apply our theory to a model nonlinear problem with polynomial
nonlinearity and provide numerical examples to illustrate the efficiency of a variant of FAS
(Algorithm 4) with a local quadratic energy.
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7.1. A Model Nonlinear Problem. Suppose that Ω ⊂ Rd, d = 2, 3, is a star-shaped
polytope, i.e. a polygon in 2-D or a polyhedron in 3-D. Suppose that 2 ≤ p < ∞, when
d = 2, and 2 ≤ p ≤ 6, when d = 3. We consider the following problem: given f ∈ L2(Ω),
find u ∈ H1

0 (Ω) such that

(41)
(
|u|p−2u, ξ

)
+ ε2 (∇u,∇ξ) = (f, ξ) , ∀ ξ ∈ H1

0 (Ω),

where ε > 0 is parameter. One can show that the unique solution of (41) is the unique
minimizer of a certain strictly convex energy.

Theorem 7.1. Suppose that Ω ⊂ Rd, d = 2, 3, is a star-shaped polytope, i.e. a polygon in
2-D or a polyhedron in 3-D. Suppose that 2 ≤ p <∞, when d = 2, and 2 ≤ p ≤ 6, when
d = 3. For any ν ∈ H1

0 (Ω), define the energy

(42) E(ν) :=
1

p
‖ν‖pLp +

ε2

2
‖∇ν‖2 − (f, ν) .

The energy functional E defined in (42) is twice Fréchet differentiable and satisfies as-
sumptions (E1) and (E2) with respect to the space V = H1

0 (Ω), equipped with the norm
‖∇v‖, for v ∈ V . Therefore E has a unique global minimizer in H1

0 (Ω). Furthermore,
u ∈ H1

0 (Ω) is the unique minimizer of (42) iff it is the solution of (41).

Proof. We verify that E satisfies our assumptions. The first Fréchet derivative of E at a
point ν may be calculated as follows: for any ξ ∈ H1

0 (Ω),

d

dt
E(ν + tξ)

∣∣∣∣
t=0

= 〈E′(ν), ξ〉 =
(
|ν|p−2ν, ξ

)
+ ε2 (∇ν,∇ξ)− (f, ξ) .

The second Fréchet derivative exists for p ≥ 2 and is a continuous bilinear operator.
Given a fixed ν ∈ H1

0 (Ω), the action of the second variation on the arbitrary pair (ξ, η) ∈
H1

0 (Ω)×H1
0 (Ω) is given by

〈E′′(ν)ξ, η〉 = (p− 1)
(
|ν|p−2ξ, η

)
+ ε2 (∇ξ,∇η) .

Without loss of generality, we choose u0 = 0, so that E(u0) = 0. Recall that B =
{v ∈ V | E(v) ≤ E(u0)}. Observe that B is convex, since E is convex. For v ∈ B,
E(v) ≤ 0, and we have

1

p
‖v‖pLp +

ε2

2
‖∇v‖2 ≤ (f, v) ≤ ‖f‖‖v‖ ≤ C0(ε, CP)‖f‖2 +

ε2

4
‖∇v‖2,

where CP = CP(Ω) > 0 is the constant in the Poincare inequality:

‖v‖ ≤ CP(Ω) ‖∇v‖ , ∀ v ∈ H1
0 (Ω).

Thus, for v ∈ B, the follow norms are bounded:

(43) ‖v‖Lp + ‖∇v‖ ≤ C1 = C1(u0, ε, p, f).

By the mean value theorem, there exists a z = tv + (1− t)w, for some t ∈ [0, 1], such
that

〈E′(w), ξ〉 − 〈E′(v), ξ〉 = 〈E′′(z)ξ, w − v〉, ∀ ξ ∈ H1
0 (Ω).

If w, v ∈ B, then, since B is convex, z ∈ B. By (43) ‖z‖Lp ≤ C1. Using Hölder’s
inequality, we have

|〈E′′(ν)ξ, η〉| ≤ (p− 1) ‖ν‖p−2
Lp ‖ξ‖Lp ‖η‖Lp + ε2 ‖∇ξ‖ · ‖∇η‖

≤
[
(p− 1)C2

P ‖ν‖
p−2
Lp + ε2

]
‖∇ξ‖ · ‖∇η‖ .
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Therefore, ∣∣〈E′(w), ξ〉−〈E′(v), ξ〉
∣∣ = |〈E′′(z)ξ, w − v〉|

≤
[
(p− 1)C2

PC
p−2
1 + ε2

]
‖∇ξ‖ · ‖∇(w − v)‖ .

Namely (E2) holds with L := (p− 1)C2
PC

p−2
1 + ε2.

To see that E is uniformly elliptic, for any w, v ∈ V , there is an η ∈ V ,

〈E′(w)− E′(v), w − v〉 = 〈E′′(z)(w − v), w − v〉,
= (p− 1)

(
|ν|p−2(w − v), w − v

)
+ ε2 (∇(w − v),∇(w − v))

≥ ε2 ‖∇(w − v)‖2 .

(E1) holds with µ = ε2.
It follows that there is a unique global minimizer of the energy (42):

u := argmin
ν∈H1

0 (Ω)

E(ν).

Consequently, there is a unique solution to the Euler problem which is equation (41). �

Now, suppose that Ω ⊂ R2 is a polygonal domain and TH is a conforming triangulation
of Ω. Let Th be the triangulation obtained by quadri-secting TH . Specifically, if Ki ∈ Th
is one of the four daughter triangles (i = 1, · · · , 4) obtained by quadri-secting K ∈ TH –
that is by connecting the midpoints of K – then hKi

= HK/2, i = 1, · · · , 4. A family of
meshes constructed in this way is known to be globally quasi-uniform.

Define
Sh :=

{
v ∈ C(Ω) ∩H1

0 (Ω)
∣∣v|K ∈ P1(K), ∀K ∈ Th

}
.

With a similar definition for SH . Then, SH ⊂ Sh, and the containment is proper.
We shall consider the minimization of energy E restricted to Sh which is a subspace of

H1
0 (Ω)

min
v∈Sh

E(v),

and thus now V = Sh with norm |v|1 = ‖∇v‖. Notice that (E1) and (E2) still hold, as
Sh ⊂ H1

0 (Ω).
Next we give a two-level space decomposition of V as follows. LetN = {xi}Ni=1 ⊂ R2

be the set of interior nodes of Th and define the Lagrange nodal basis

Bh = {ψi ∈ Sh, 1 ≤ i ≤ N | ψi(xj) = δi,j , 1 ≤ i, j ≤ N} .

Bh is a bona fide basis for Sh, and we may use the following decomposition

(44) V =

N∑
i=0

Vi = Sh,

where V0 = SH , Vi = span({ψi}), 1 ≤ i ≤ N . (Note that we give the coarse space the
index 0.)

The fact that this forms a stable decomposition is well known, i.e., Assumption (SS1)
holds.

Lemma 7.2. The decomposition of the finite element space Sh described in (44) satisfies
Assumption (SS1).
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Proof. Let QH : L2(Ω)→ SH be the L2-projection into SH :

(QHv, w) = (v, w), ∀ w ∈ SH .

For any v ∈ Sh, let ṽ = (I−QH)v ∈ Sh denote the error, and suppose that ṽ =
∑N
i=1 ṽi is

the nodal decomposition of the error in Sh. By the standard approximation property ofQH
on quasi-uniform grids, an inverse inequality, and the stability of nodal decompositions in
the L2-norm, we have

N∑
i=1

|ṽi|21 ≤ C
N∑
i=1

h−2‖ṽi‖2 ≤ Ch−2‖ṽ‖2 ≤ C|v|21.

By the H1-stability of QH on quasi-uniform grids, we also have |QHv|1 . |v|1. In
conclusion, Assumption (SS1) holds if, for v ∈ Sh, we use the decomposition

v = QHv + (v −QHv) = QHv +

N∑
i=1

ṽi.

�

Lemma 7.3. Let E be defined as in (42), and let V = Sh be decomposed into subspaces
as in (44). Then Assumption (SS2) holds.

Proof. Suppose that wi,j ∈ B, ui ∈ Vi, vj ∈ Vj , with wi,j +ui ∈ B. By Taylor’s theorem,

N∑
i=0

N∑
j=i+1

〈E′(wi,j + ui)−E′(wi,j), vj〉

=

N∑
i=0

N∑
j=i+1

〈E′′(zi,j)vj , ui〉

≤
N∑
i=0

N∑
j=i+1

∣∣(p− 1)
(
|zi,j |p−2ui, vj

)
+ ε2 (∇ui,∇vj)

∣∣ ,
for some zi,j ∈ B between wi,j ∈ B and wi,j + ui ∈ B, which satisfies the bound (43).
The functions ui, 1 ≤ i, j ≤ N , are local, though u0 may have global support. The support
of vi, 1 ≤ i ≤ N , denoted Si, is exactly equal to the union of those triangles that have the
node xi as a vertex. Define

N (i) := {j > i | Sj ∩ Si 6= ∅} .
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Observe that # (N (i)) is bounded by an integer that is much smaller than N . We have,
using the continuous and discrete Cauchy-Schwartz inequalities,

N∑
i=0

N∑
j=i+1

(∇ui,∇vj) =

N∑
i=0

∑
j∈N (i)

(∇ui,∇vj)Si∩Sj

≤
N∑
i=0

∑
j∈N (i)

‖∇ui‖Si∩Sj
‖∇vj‖Si∩Sj

≤

 N∑
i=0

∑
j∈N (i)

‖∇ui‖2Si∩Sj

 1
2
 N∑
i=0

∑
j∈N (i)

‖∇vj‖2Si∩Sj

 1
2

≤

(
CT

N∑
i=0

‖∇ui‖2
) 1

2

CT N∑
j=0

‖∇vj‖2
 1

2

,

where CT > 0 is a mesh-structure-dependent parameter. Since our mesh is shape regular
and quasi-uniform, CT is independent of N and h.

Similarly,
N∑
i=0

∑
j∈N (i)

(
|zi,j |p−2ui, vj

)
=

N∑
i=0

∑
j∈N (i)

(
|zi,j |p−2ui, vj

)
Si∩Sj

≤
N∑
i=0

∑
j∈N (i)

‖zi,j‖p−2
Lp(Si∩Sj) ‖ui‖Lp(Si∩Sj) ‖vj‖Lp(Si∩Sj)

≤
N∑
i=0

∑
j∈N (i)

‖zi,j‖p−2
Lp(Ω) ‖ui‖Lp(Si∩Sj) ‖vj‖Lp(Si∩Sj)

≤
N∑
i=0

∑
j∈N (i)

Cp−2
1 ‖ui‖Lp(Si∩Sj) ‖vj‖Lp(Si∩Sj)

≤ Cp−2
1

 N∑
i=0

∑
j∈N (i)

‖ui‖2Lp(Si∩Sj)

 1
2

×

 N∑
i=0

∑
j∈N (i)

‖vj‖2Lp(Si∩Sj)

 1
2

≤ Cp−2
1

(
CT

N∑
i=0

‖ui‖2Lp

) 1
2
(
CT

N∑
i=0

‖vi‖2Lp

) 1
2

≤ Cp−2
1 CT

(
N∑
i=0

C2
P ‖∇ui‖

2

) 1
2
(

N∑
i=0

C2
P ‖∇vi‖

2
Lp

) 1
2

= Cp−2
1 CT C

2
P

(
N∑
i=0

‖∇ui‖2
) 1

2
(

N∑
i=0

‖∇vi‖2Lp

) 1
2

.
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Therefore, there is a CS > 0 such that

N∑
i=0

N∑
j=i+1

〈E′(wi,j + ui)− E′(wi,j), vj〉 ≤ CS

(
N∑
i=0

‖∇ui‖2
) 1

2

 N∑
j=0

‖∇vj‖2
 1

2

.

In particular, CS := LCT . Assumption (SS2) holds. �

For our FAS-like algorithm, we apply SSO (nonlinear Gauss-Seidel) to each subspace
Vi on the fine level, which is equivalent to, according to Remark 4.2, using Ei(η) :=
E(vi−1 − Qivi−1 + η). On the coarse space, we use EH = E|VH . The Assumption
(AP) can be verified by (39) and a standard approximation property of the projection QH ,
i.e., ‖w − QHw‖ ≤ CH‖w‖1. We then have ε = CH for this case and, therefore, the
condition ε < µ/2 = ε2/2 in Theorem 6.2 holds when H is small enough. For finite
element functions w ∈ Vh, when near the minimizer, we could expect w ∈ H3/2−δ for
any 0 < δ � 1 and thus a higher-order approximation ‖w−QHw‖ ≤ CH3/2−δ‖w‖3/2−δ
may hold.

7.2. Numerical Examples. In this subsection, we present some numerical results for the
nonlinear problems described in the previous two subsections to illustrate our theoretical
results. For both problems, we will use piece-wise linear finite elements define Sh, and
we use different versions FAS to solve the discretized nonlinear equations. Our algorithms
are implemented in MATLAB based on the software package iFEM [6]. The numerical
experiments are conducted on a System76 Galago with an Intel Core i7-8550U CPU and
32GB RAM.

We mainly focus on three different implementations of FAS (Algorithm 4), based on
different choices of space decomposition and local energy. The geometric multigrid setting
is considered here, i.e., we have a set of uniformly refined meshes and nested linear finite
element spaces V1 ⊂ V2 ⊂ · · · ⊂ VJ , where V` = span{φ`1, φ`2, · · · , φ`N`

}, with φ`i being
the ith nodal linear finite element basis element on level `.

(1) The first implementation is the original FAS. We consider standard multilevel
nodal-based space decomposition V =

∑J
`=1

∑N`

i=1 span{φ`i} and the local en-
ergy Ei is defined as the restriction of E on the subspace span{φ`i}. Newton’s
method is used to solve the local nonlinear problem and we set the tolerance to
be 10−10 and at most 100 iterations are allowed (in general, less than 5 iterations
are needed for solving the local problems in all of our numerical tests). We use a
small tolerance to make sure each local problem is solved exactly in order to be
consistent with our theoretical analysis.

(2) The second implementation is a simplified version of FAS based on Remark 4.12
and we refer to it as “FASq1”. We again consider the multilevel nodal-based
space decomposition V =

∑J
`=1

∑N`

i=1 span{φ`i} but quadratic energy Ei defined
as in (26) is used, which requires that we solve a linear system for each local
correction. In fact, since nodal-based space decomposition is used here, we solve
a scalar linear equation on each subspace.

(3) The third implementation is a further simplified version and we refer it as “FASq2”.
In this case, we use space decomposition V =

∑J
`=1 V` and consider quadratic

energy (26). As mentioned in Remark 4.12, this involves the Riesz map which
can be computed by inverting an SPD matrix defined on V`. For our example,
this is equivalent to solving a discrete Laplacian matrix on each level, which is
still expensive. Therefore, we solve the discrete Laplacian matrix approximately



30 LONG CHEN, XIAOZHE HU, AND STEVEN M. WISE

by just applying one step of symmetric Gauss-Seidel (SGS) method. This is be-
cause we use multilevel space decomposition here and SGS method is usually
used as a smoother in multigrid methods for solving discrete Laplacian matrix. Of
course, other types of iterative methods can also be used here, such as Richard-
son’s method or Jacobi’s method. For the sake of simplicity, we only consider
SGS method here.

In all of our numerical experiments, we use Newton’s method to solve the nonlinear prob-
lem on the coarsest level. We use 10−10 as the tolerance and maximal number of iterations
is 100, which means that the coarse problem is solved exactly. Moreover, we use αi = 1
in the tests to make sure our implementation is simple and practical. The overall stopping
criterion of FAS is 10−10.

TABLE 1. Numerical results of FAS (varying p and ε, fix h = 1/64)

FAS ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 15 (0.195) 15 (0.193) 14 (0.189) 14 (0.186) 14 (0.186) 12 (0.164) 10 (0.133)
p = 5.5 14 (0.195) 14 (0.192) 14 (0.189) 14 (0.189) 14 (0.189) 12 (0.166) 11 (0.162)
p = 6 15 (0.195) 15 (0.192) 14 (0.190) 14 (0.190) 14 (0.189) 13 (0.167) 11 (0.167)
p = 8 15 (0.196) 15 (0.193) 15 (0.192) 14 (0.191) 14 (0.190) 13 (0.176) 12 (0.173)
p = 10 15 (0.198) 15 (0.196) 15 (0.194) 15 (0.192) 14 (0.191) 13 (0.178) 12 (0.170)
p = 20 16 (0.216) 16 (0.221) 16 (0.210) 15 (0.197) 15 (0.194) 14 (0.182) 13 (0.178)
p = 40 18 (0.267) 18 (0.273) 17 (0.248) 16 (0.209) 16 (0.204) 14 (0.188) 13 (0.180)
p = 80 21 (0.333) 21 (0.338) 20 (0.304) 18 (0.243) 17 (0.226) 15 (0.192) 14 (0.200)

TABLE 2. Numerical results of FASq1 (varying p and ε, fix h = 1/64)

FASq1 ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 15 (0.193) 15 (0.189) 14 (0.185) 14 (0.180) 13 (0.179) 23 (0.331) -
p = 5.5 15 (0.192) 15 (0.189) 14 (0.186) 14 (0.184) 14 (0.183) - -
p = 6 15 (0.192) 15 (0.189) 14 (0.187) 14 (0.185) 14 (0.183) - -
p = 8 15 (0.193) 15 (0.190) 14 (0.190) 14 (0.191) 14 (0.186) - -
p = 10 15 (0.195) 15 (0.193) 14 (0.191) 14 (0.192) 14 (0.187) - -
p = 20 16 (0.211) 16 (0.215) 16 (0.215) 16 (0.216) 16 (0.220) - -
p = 40 18 (0.260) 18 (0.281) 19 (0.298) 21 (0.334) 23 (0.367) - -
p = 80 21 (0.342) 23 (0.383) 25 (0.407) 109 (0.844) - - -

TABLE 3. Numerical results of FASq2 (varying p and ε, fix h = 1/64)

FASq2 ε2 = 1 ε2 = 1/2 ε2 = 1/4 ε2 = 1/8 ε2 = 10−1 ε2 = 10−2 ε2 = 10−3

p = 4 14 (0.190) 14 (0.187) 14 (0.183) 14 (0.181) 14 (0.181) - -
p = 5.5 14 (0.189) 14 (0.189) 14 (0.183) 14 (0.185) 14 (0.187) - -
p = 6 14 (0.188) 14 (0.186) 14 (0.185) 14 (0.188) 14 (0.190) - -
p = 8 14 (0.190) 14 (0.190) 14 (0.188) 14 (0.193) 15 (0.196) - -
p = 10 15 (0.191) 15 (0.191) 15 (0.193) 15 (0.199) 15 (0.202) - -
p = 20 15 (0.211) 16 (0.223) 17 (0.239) 18 (0.265) 20 (0.290) - -
p = 40 18 (0.264) 19 (0.300) 21 (0.334) 29 (0.452) 49 (0.643) - -
p = 80 21 (0.350) 24 (0.393) 32 (0.504) - - - -

In Table 1, 2, and 3, we report the numerical results of FAS, FASq1, and FASq2, re-
spectively. Here, we fix the finest mesh size h = 1/64 and the coarsest mesh size is 1/4
but change p and ε to adjust the nonlinearity. In this case, bigger p and/or smaller ε lead to
stronger nonlinearity.
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TABLE 4. Computational complexity comparison with ε = 1 and p = 6

FAS FASq2
h #iter CPU time #iter CPU time

1/32 15 1.65 14 0.03
1/64 15 7.86 14 0.05
1/128 16 45.60 14 0.16
1/256 16 391.08 15 0.49
1/512 16 >1,000 15 1.67
1/1024 16 >1,000 15 7.12

Number of iterations and convergence rates (in the parenthesis) are listed in Table 1, 2,
and 3. Notation “-” means that the methods stagnates or diverges. As we can see, FAS is
the most robust one and converges for all the choices of our parameters. The number of
iterations are quite stable, ranging from 10−21 iterations, and the convergence rate is about
0.2. This is consistent with our theoretical results presented in Section 6. For FAS, the
local energy Ei is defined as the restriction of E on the subspace. Then Assumption (AP)
holds with ε < µ/2. Therefore, according to Corollary 6.4, FAS converges robustly. For
FASq1 and FASq2, both implementations perform well when p is relatively small and/or ε
is relatively big. We can clearly see that the number of iterations grows when p gets larger
or ε gets smaller. Both implementations fail to converge when nonlinearity is strong, while
FASq1 seems to be slightly more robust than FASq2 since it converges for slight larger
set of parameters. This observation is also consistent with Corollary 6.4. For both FASq1
and FASq2, the local energy Ei is the quadratic energy (26). When p is relatively small
and/or ε is relatively big, the nonlinearity of the model problem is relatively weak, and
the quadratic energy provides a good approximation in the sense that Assumption (AP)
holds with ε < µ/2. According to Corollary 6.4, the methods should converge. However,
when p gets larger and/or ε gets smaller, the problem becomes more nonlinear and the
quadratic energy is not a good approximation of the original energy E any more. Then
Assumption (AP) does not hold with ε < µ/2 and, according to Corollary 6.4, the method
may not converge. Although FASq1 and FASq2 might not converge for strongly nonlinear
problems, the advantage of using quadratic energy on local subspaces is that we only need
to solve linear problems locally, which could save computational cost considerably.

Next, we compare the CPU time of FAS and FASq2. The reason we choose FASq2
to compare is that FASq2 only involves symmetric Gauss-Seidel smoother on each level,
which basically has the same cost as the multigrid method for solving linear problems.
This could dramatically improve the computational complexity for solving our model prob-
lem (41). The results are shown in Table 4.

In Table 4, we fix ε = 1 and p = 6 and change h. As we can see, for these choices of p
and ε, the quadratic energy provides a good approximation of the global energy restricted
to the subspace, therefore, the number of iterations of FASq2 is similar with the number
of iterations of FAS and remains robust with respect to the mesh size h. The CPU time
of FAS grows faster than linear, which is due to the inefficiency of large for loops in our
current MATLAB implementation.

In contrast, FASq2 is significantly faster than FAS and scales linearly. This demon-
strates that, when nonlinearity is mild, we can use a simple quadratic energy and save
considerable computational cost.
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On the other hand, we want to point out that FAS is more robust than FASq2, as shown
before. We have also tested the quadratic energy defined by the Hessian at the previous
iteration c.f., (28), which is more or less equivalent to using one approximated Newton’s
iteration, and the results are similar. Therefore, in practice, we should consider the trade-
off between robustness and efficiency in order to decide which kind of local energy should
be used on each subspace.
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