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ABSTRACT: Molecular dynamics simulations have become
indispensable for exploring complex biological processes, yet their
limitations in capturing rare events hinder our understanding of
drug−target kinetics. In this Perspective, we investigate the domain
of milestoning simulations to understand this challenge. The
milestoning approach divides the phase space of the drug−target
complex into discrete cells, offering extended time scale insights.
This Perspective traces the history, applications, and future potential
of milestoning simulations in the context of drug−target kinetics. It
explores the fundamental principles of milestoning, highlighting the
importance of probabilistic transitions and transition time
independence. Markovian milestoning with Voronoi tessellations is
revisited to address the traditional milestoning challenges. While
observing the advancements in this field, this Perspective also addresses impending challenges in estimating drug−target unbinding
rate constants through milestoning simulations, paving the way for more effective drug design strategies.

1. INTRODUCTION
Atomistic molecular dynamics (MD) simulations have
emerged as a powerful tool in studying complex biological
processes such as protein folding, protein−membrane
interactions, and drug−target interactions. Substantial growth
in algorithms, software, and hardware capabilities has extended
the time scale of simulations to observe such processes,
however, rigorously characterizing the kinetics and thermody-
namics of such processes is still challenging. MD simulations
are constrained to femtosecond-order timesteps, limiting their
ability to capture complex conformational transitions or rare
events (milliseconds or longer) in biological systems. Many
different types of enhanced sampling methods enable
researchers to bridge this gap in the time scale.1,2 Enhanced
sampling methods can be broadly grouped into two categories.
The first category introduces a bias potential to accelerate
transitions between conformational states. In some instances,
including replica exchange MD,3 selective integrated temper-
ing,4 and Gaussian accelerated MD,5 the bias is applied to the
whole system. In other instances, including metadynamics6 and
variationally enhanced sampling,7 the bias is selectively applied
to only certain forces within the system (so-called “collective
variables”). The second category of enhanced sampling
methods, termed path sampling methods, focuses on sampling
transition regions. These methods include transition path
sampling,8 weighted ensemble simulations,9 transition interface
sampling,10 and milestoning simulations.11

Drug−target binding and unbinding kinetics are critical
determinants in diverse biological phenomena, including
enzymatic catalysis, cellular signal transduction, and immune
system activation. These molecular interactions equip cells to
transduce external stimuli into biochemical signals, facilitating
essential physiological functions. Drugs characterized by
extended residence times demonstrate prolonged occupancy
within the active site of the target, thereby extending their
pharmacological effects. In contrast, fast-dissociating drugs
tend to be pharmacologically less efficacious. Therefore, a
comprehensive description of the kinetic profile is indispen-
sable for the rational design and optimization of targeted
therapeutic agents.12−18 While the advancements in MD
simulations have been pivotal for various biological processes,
their application to drug−target kinetics presents unique
challenges and opportunities.19−27 Drug−target interactions
often occur over varying time scales, on the order of seconds,
hours, or even longer. Time scale limitations constrain
conventional MD simulations to observe rare events. More-
over, large-scale conformational changes at the binding site, the
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accuracy of force fields accounting for bound-state polarization,
and experimental validation pose additional challenges for
investigating drug−target kinetics.
Recently, milestoning theory has emerged as a robust and

efficient approach for investigating drug−target kinetics.
Milestoning simplifies the analysis of complex processes by
dividing them into a series of transitional states, referred to as
milestones. These milestones, dispersed across the configura-
tional space of the system, surpass the limitations of
conventional MD simulations and simulate the kinetics of
biomolecular processes over extended timeframes. This
perspective covers advancements and challenges within
milestoning simulations for drug−target kinetics, providing
an overview of the history, applications, challenges, and future
prospects of milestoning simulations in drug−target kinetics.

2. MILESTONING THEORY: HISTORY AND CURRENT
DEVELOPMENTS
2.1. Traditional Milestoning Approach.Milestoning is a

computational method that simplifies the analysis of complex
processes by breaking them down into a series of transitions
between intermediate states, known as milestones, within the
configurational space of the system (Figure 1a).11,28−30 This
method enables the simulation of the overall kinetics of the

system over extended time scales, surpassing the limitations of
traditional MD simulations. There are two underlying
assumptions behind the milestoning theory.31 First, successive
transitions between milestones i(t′) at specific simulation times
t′ follow a probabilistic sequence i1(t1), i2(t2), i3(t3), ..., which is
determined by the likelihood ρi,j(t) of successfully transitioning
from one milestone i to the next milestone j within time t,
ensuring that the overall statistical behavior of this progression
mimics that of a discrete-time Markov process (eq 1):

t t t t t( ) ( ) ( )...i i i i i i, 1 , 2 1 , 3 20 1 1 2 2 3 (1)

In this process, the order of steps is essential, and the
probability ρi,j of each transition depends on the outcome of
the previous one, creating a coherent and predictable sequence.
Second, the transition times τ between successive milestone
crossings are statistically independent. Based on these
assumptions, the probability p of observing a given trajectory
(given transition rates) depends on the number of observed
transitions Nij in a simulation, the total time Ri spent after
crossing milestone i and before crossing any other milestone,

and a rate matrix Q with components =qij

N

R
ij

i
and is given by

eq 2:

Figure 1. (a) Phase space of the receptor−ligand complex divided by milestones into discrete cells. (b) Schematic representation of a long ergodic
trajectory crossing a set of six milestones. (c) The Markovian milestoning scheme, where replicas of the system evolve independently within the
milestones with the collision rule or reflective boundary conditions such that the overall flux is maintained while ensuring equilibrium distribution
within each milestone aligns with the Boltzmann−Gibbs distribution. (d) The weighted ensemble milestoning (WEM) method, where the
milestone (solid lines) is further partitioned into bins (dotted) with the WE method employed within these bins. Each milestone is a starting point,
while its neighbors serve as targets. Trajectories are halted upon reaching any milestone, unlike traditional steady-state simulations.
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Equation 2 forms the basis of milestoning theory. While this
formulation assumes a single long trajectory, in practice, the
milestoning method involves reinitializing short MD simu-
lations on each milestone. Specific sets of milestones, defined
as optimal milestones, satisfy the first assumption precisely,
simplifying the analysis of kinetic properties like the mean first
passage times (MFPT). Optimal milestones are difficult to
provide or approximate. Hence, an alternative approach
involves iteratively propagating trajectories between milestones
to achieve the exact milestoning methodology, such that
optimal milestones are not needed. While this approach does
not rely on any assumptions, it is important to note that the
precision of these calculations comes at a significantly higher
computational cost, often by an order of magnitude.
In overdamped systems, milestoning has proven to be well-

suited for accurately capturing the probabilistic transitions
between states. This approach accounts for physical details of
system dynamics, ensuring that the milestones selected lead to
precise kinetic analyses.31 If one approximates the placement of
optimal milestones, or utilizes an approach such as exact
milestoning to compensate for nonoptimal milestones, one
ensures a specific probabilistic transition pattern between
milestones. Optimal milestones are identified as isosurfaces of
the committor function, an important concept in transition
path theory. Utilizing isocommittor surfaces as milestones
guarantees the desired probabilistic behavior during tran-
sitions. While the second assumption may not hold universally,
exact computations of MFPTs are still achievable with these
optimal milestones, making them useful for efficient kinetic
analysis in complex systems.
Reinitialization of MD trajectories from the milestones may

be used to compensate for the suboptimal placement of
milestones. While having optimal milestones ensures that
transition probabilities between milestones are truly constant,
regardless of where the system has crossed the milestone
surface, optimal milestones can only be approximated and are
expensive to obtain, and it becomes necessary for one to
effectively reinitialize MD simulations from the milestones in a
manner that produces the correct transition probabilities and
transition times. One may account for the absence of optimal
milestones by estimating the first hitting point distribution
(FHPD), which relies on a density ρij(x) at position, x, which
refers to the probability of the first point a trajectory hitting
milestone j given that the trajectory initiated from milestone i.
A set of optimal milestones would have a density ρj(x) that
does not depend on the originating milestone i. To obtain an
FHPD, transition path theory (TPT) provides the framework,
where the FHPD density is defined by eq 3:

=
| |
| |
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q x

q x x
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V x
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where V(x) is the potential energy of the system at position x,
β = 1/kBT with temperature T and Boltzmann constant, kB,
and ∇q(x) is the gradent of the committor function q at
position x.
For the exact calculation of MFPTs, it is important to

understand that the second assumption about the statistical
independence of transition times between milestones only

sometimes holds true. However, we can still compute the
MFPT accurately with optimal milestones.30,32 When a
trajectory visits milestones successively, the total duration of
such a sequence is the sum of transition times between
milestone crossings (Figure 1b). These transition times can be
correlated, leading to the need to describe their statistical
properties through a joint probability density, which is a
complex task. However, regardless of their correlation, one can
always calculate the mean duration of such sequences
accurately. To compute the mean first passage time from
one milestone to another, a modified transition probability
matrix turns the last milestone into a sink state, preventing the
process from leaving it once reached and enabling the
calculation of MFPTs to be straightforward. This is a
significant advantage of the milestoning approach, as it
simplifies the calculation of kinetic properties.
Historically, MD simulations were limited to short time

scales and small spatial resolutions due to the computational
resources required for atomically detailed systems. Early
methods often relied on long MD trajectories that, while
conceptually simple, were inefficient for studying kinetic
processes over biologically relevant time scales. The
introduction of path-splitting methods such as milestoning
simulations enabled efficient calculation of kinetic and
thermodynamic properties by using many short trajectories
mapped onto coarse space variables, reducing computational
costs while maintaining atomistic details. In its early stages,
milestoning simulations provided approximate predictions for
processes such as ion permeation through membranes33 or
small molecule permeation through lipid bilayers,34 with
moderate accuracy. During the initial phases of SEEKR
development, milestoning was employed to compute the
kinetics of simple interactions, such as sodium-chloride
encounters, and to estimate the kon rate constants for simple
biological systems, including the binding of superoxide
dismutase with its natural substrate, the superoxide anion,
and the N-terminal domain of troponin C with calcium ion.35

A significant advancement for SEEKR was the accurate
estimation of both kon and koff rates for simple host−guest
complexes, along with precise ΔG predictions,36 demonstrating
its ability to capture the kinetics and thermodynamics of these
interactions. With the development of state-of-the-art algo-
rithms and computational resources, milestoning can now
predict kinetics with high precision for complex biological
systems and large, highly branched, flexible ligands, with
applications extending to complex drug−target unbinding
events with residence time predictions ranging from seconds to
hours.37−39

2.1.1. Milestoning versus Markov State Models. Mile-
stoning and Markov state models (MSMs) focus on transitions
between distinct states in the configurational space of the
system. While the milestoning approach assumes statistically
independent transition events between surfaces in phase space
(milestones), MSMs focus on the transitions between states
represented by regions within the phase space of the
system.40−42 MSMs discretize the configuration space into
distinct states and model transitions between these states using
a Markov process. The milestoning approach, on the other
hand, defines milestones as interfaces between cells in the
phase space. In other words, instead of dividing the entire
configuration space of a system into finely segmented states (as
is the case of MSMs), the milestoning approach identifies key
points or conditions within the phase space that are
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strategically placed to capture significant events or transitions.
This method simplifies the analysis of complex processes by
focusing on these critical transitions. This approach allows for
a more manageable and computationally efficient exploration
by reducing the need for a detailed computation and analysis
of every possible state, thus making it particularly useful for
systems where identifying critical transitions is more relevant
than detailed state-by-state dynamics. Both methods have their
advantages and limitations. Milestoning is advantageous for its
simplicity, computational efficiency, and accuracy by focusing
on key transitions, making it suitable for specific analyses, such
as calculating the unbinding rate constant for drug−target
interactions. MSMs, while providing a broader view of the
system dynamics, are suited to certain types of detailed state-
by-state analyses, such as studying the folding pathways of
proteins where multiple alternative intermediate states exist.
Comparative studies with methods such as MSMs, transition
interface sampling10 (TIS), and forward flux sampling43 (FFS)
provide valuable insights into the efficacy of milestoning for
studying system kinetics. This method offers a comprehensive
approach to understanding complex processes, making it a
valuable tool for researchers in various fields.
2.1.2. Milestoning versus Weighted Ensemble Simula-

tions. The weighted ensemble9 (WE) and milestoning
approaches are path-splitting strategies to accelerate rare
events in MD simulations. Instead of relying on a single long
simulation, both methods partition the phase space of the
system by discrete cells (for milestoning simulations), or bins
(for WE simulations) based on a predefined CV and aim to
provide unbiased estimates of key observables, such as rate
constants and equilibrium state populations. In milestoning,
“cells” are typically 1D/2D Voronoi cells determined by
geometric partitioning through the Voronoi tessellation
approach. Similar in concept, “bins” are discrete regions
defined along the CVs that segment the phase space for
redistributing and reweighting trajectory walkers. Although
neither “bins” in WE, nor “cells” in milestoning are, necessarily,
Voronoi tessellations. The key differences lie in the sampling
strategies of these two methods. The WE method employs
intermittent communication between parallel simulations at
fixed intervals, with the frequency determined by the
resampling time. The trajectories are periodically reweighted
and resampled to accelerate the conformational search of rare
events while maintaining a constant flux of trajectories. The
transition rate between initial and final states is estimated using
the Hill relation,44 which relates the flux of transitions to the
MFPT. This method explores the entire CV space
comprehensively, such as the large-scale conformational
transitions. However, the application of the WE method in
calculating kinetics is computationally expensive, and it is
frequently combined with other enhanced sampling methods
to improve computational efficiency.45,46

2.2. Markovian Milestoning with Voronoi Tessella-
tions. Conventional milestoning is a powerful technique for
accelerated MD simulations but often presents several
challenges. Milestones must be strategically placed to capture
transitions in a complex potential energy landscape, but
determining their optimal locations can be complicated and
difficult to predict a priori. In conventional milestoning, when
estimating transition probabilities and transition times, short
trajectories are initiated on each milestone and run until they
reach another milestone.30 This process necessitates reinitializ-
ing trajectories from the milestones. The challenge here lies in

determining the correct probability distribution for reinitializa-
tion, which in conventional milestoning is done using the
equilibrium distribution of the system restricted to the
milestones (typically obtained via umbrella sampling).
However, this equilibrium distribution is usually not accurate
for reinitialization, and it can be challenging to compute the
FHPD explicitly. The exact milestoning procedure effectively
continues trajectories that have arrived directly from a previous
milestone, allowing one to obtain a closer estimate of the
FHPD, and thus, more correct results.47

To tackle the prior-mentioned challenges in traditional
milestoning, a procedure was introduced in the milestoning
scheme, i.e., Markovian milestoning with Voronoi tessellations
(MMVT).48 There are three key ideas in MMVT. First, this
procedure defines milestones as the edges of a Voronoi
tessellation generated based on a set of points in Cartesian
space. Each milestone corresponds to a portion of a
hyperplane, and their boundaries are naturally determined by
the regions where two milestones intersect. Second, MMVT
assumes that the evolution of the system follows a continuous-
time Markov jump process, and successive transitions between
the milestones are statistically independent. Third, independ-
ent replicas of the system are sampled by running unbiased
MD simulations in individual Voronoi cells, with a collision
rule that constrains the dynamics of the system within these
cells by implementing reflective boundary conditions (Figure
1c). With the transition counts between edges (milestones)
within the Voronoi cells, a transition matrix is constructed by a
maximum likelihood analysis to calculate the MFPT for the
transition from the initial to the target state.
2.3. Weighted Ensemble Milestoning and Markovian

Weighted Ensemble Milestoning Approaches. Weighted
ensemble milestoning (WEM) combines the efficiency of WE
simulations with the theoretical framework of the milestoning
approach (Figure 1d).49 The milestoning approach involves
dividing the phase space of the complex into noninteracting
hypersurfaces and estimating the probability flux between
them. At the same time, the WE simulation method employs
parallel trajectories with predefined weights.9 Evolving
trajectories are pruned or split based on progress toward a
target state, focusing the computing effort on functional
transitions. The configurational space spanned by the progress
coordinates is divided into bins, and each bin keeps
instantaneous trajectories or walkers constant by pruning or
splitting them based on their weights. The WEM approach
involves dividing the phase space between milestones into bins
and employing the WE approach to sample trajectories within
these bins, aiming to improve or accelerate the convergence of
transition probabilities and time scales while reducing
computational resources. The WEM scheme has been
implemented on model systems, including a 1D double-well
potential, a high-dimensional potential, and alanine dipeptide
while reproducing kinetics from MD and other simulation
methods with a reduced computational time. The applications
of the WEM method are limited to model systems, and
expanding its validation to complex receptor−ligand systems
would be useful for future research.
The Markovian weighted ensemble milestoning (M-WEM)

approach is another variant of the WEM approach, where the
Markovian milestoning scheme (as discussed previously) is
combined with the WE simulations to study the kinetics and
free energy of rare events in systems of interest.50 This method
employed the dynamic binning scheme in the WE simulations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Perspective

https://doi.org/10.1021/acs.jctc.4c01108
J. Chem. Theory Comput. 2024, 20, 9759−9769

9762

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.4c01108?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


While this adaptation is not explicitly discussed in terms of the
Markovian property, it suggests that the method adjusts the
sampling strategy based on the current state of the system,
which aligns with the idea of maintaining the Markovian
property. Another aspect of M-WEM is the elimination of
trajectory interruptions at milestone interfaces. Traditional
methods often require stopping trajectories and initiating new
ones at milestone boundaries. By avoiding this interruption, M-
WEM maintains the continuity of the trajectory, ensuring that
the behavior of the system remains Markovian. The M-WEM
method has been applied to study the two-dimensional toy
model of the Müller-Brown potential, conformational tran-
sitions in alanine dipeptide, and the study of protein−ligand
(un)binding kinetics for the trypsin−benzamidine complex.
While the M-WEM method has shown promise in diverse
applications, addressing the complexities of drug−target
interactions characterized by a higher degree of freedom
remains an area for further investigation. The applicability and
limitations of M-WEM in such scenarios require additional
exploration and validation.

3. DRUG−TARGET KINETICS STUDIED BY THE
MILESTONING APPROACH
3.1. Simulation-Enabled Estimation of Kinetic Rates

(SEEKR): A Multiscale Milestoning Framework for
Estimating kon and koff. Simulation Enabled Estimation of
Kinetic Rates (SEEKR) estimates drug−target binding and
unbinding kinetic rate constants using atomistic MD
simulations and less detailed but computationally efficient
Brownian dynamics (BD) simulations.36,51 The SEEKR
workflow starts with a three-dimensional structure of a

bound-state receptor−ligand complex.52 A collective variable
(CV) is defined, which, in most occurrences, is the center of
mass (COM)−COM distance between the ligand and the
alpha carbons of the bound state. Based on the CV, the phase
space of the complex is divided into MD and BD regions. The
MD region is further partitioned into Voronoi cells between
milestones. Starting structures for simulations are obtained by
running steered MD (SMD) or metadynamics simulations
from the bound to the unbound state, where copies of the
receptor−ligand complex are saved for each Voronoi cell as the
ligand slowly moves out of the binding pocket. Independent
and parallel MD simulations are performed in the space
between milestones, while BD simulations are performed in
the BD region. Reflective boundary conditions are imposed to
confine the trajectories between respective milestones.
Transition counts and time spent in each Voronoi cell account
for the transition matrix, which is then solved to calculate the
drug−target unbinding rate constant (koff). BD simulations
offer a computationally efficient method for calculating the
binding rate constant (kon) for drug−target complexes. Unlike
MD simulations, BD simulations use simplified models and
approximations, such as treating molecules as rigid bodies and
using implicit solvents, allowing larger time steps in the
simulations. Despite these simplifications, BD can accurately
model the initial stages of drug-binding events and account for
explicit electrostatic interactions. The SEEKR framework
incorporates the Browndye simulation package, which employs
the Luty−McCammon−Zhou algorithm to generate multiple
trajectories of ligands around receptors to estimate the
association rate.53 These trajectories either end in a molecular
encounter or escape, and the probabilities of such encounters

Figure 2. Hierarchical mapping of receptor and ligand complexity in benchmark systems for validating existing and new milestoning simulation
algorithms for (a) β-cyclodextrin−ligand complexes, (b) trypsin−benzamidine complex, (c) JAK−inhibitor complexes, (d) TTK−inhibitors
complexes, and (e) Hsp90−inhibitor complexes. The x axis represents receptor complexity, incorporating factors such as the conformational
diversity of the protein, allosteric regulation sites, protein−ligand interaction strength, the number of amino acid residues, residence time, and the
flexibility of the binding site and associated loops/hinges. The y axis represents the ligand complexity, considering molecular size, chemical
diversity, stereochemistry, dynamic behavior within the binding site, and structural flexibility.
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is used to compute the binding rate constant. The method is
particularly useful when electrostatic forces are significant in
molecular recognition and binding. The SEEKR framework
demonstrated close-to-experiment koff rates for a range of
receptor−ligand complexes, encompassing residence times that
vary from microseconds to hours. These applications span
from relatively straightforward systems such as β-cyclodextrin−
ligand54 and trypsin−benzamidine complexes55 to more
challenging cases such as JAK−inhibitor complexes,37 a series
of Hsp90−inhibitor complexes,38 and a series of threonine-
tyrosine kinase (TTK) inhibitors.39 One valid concern about
drug−target kinetics relates to whether milestoning can
effectively capture the effects of flexibility and conformational
changes in complex biological systems, which are not explicitly
represented in the milestoning model. In such a case, if the
time scales of flexible motions are short relative to the
durations of individual milestoning simulations, such that these
motions are sufficiently sampled within the span of these
simulations, then these motions will be automatically
accounted for within the milestoning model. However, if
these motions are slow enough and not adequately sampled in
a single milestoning simulation, and if these slow, flexible
motions would directly impact the time scales or energetics of
the process under consideration (such as binding/unbinding),
then the motions themselves ought to be explicitly
characterized with a CV and milestoned to be correctly
accounted for. If more than one CV is required to examine a
system under question, then multidimensional milestoning
must be employed using, for example, a Voronoi tessellation.
This capability readily exists within the SEEKR software.
3.2. Independent Kinetic Studies with a Milestoning

Simulation Approach. While the SEEKR framework stream-
lines the method of calculating kon and koff rates using
multiscale approaches, it is worth noting that several
independent milestoning studies have been conducted
specifically to calculate koff rate constants. These studies have
added depth to our understanding of drug−target (un)binding
kinetics by exploring various drug−target complexes and
scenarios, further establishing these approaches as an efficient
method for estimating koff rates. Figure 2 illustrates the diverse
complexity levels encountered in receptors and their
corresponding inhibitors across various benchmark systems
used in milestoning simulations. These systems include β-
cyclodextrin−ligand, trypsin−benzamidine, JAK−inhibitor,
TTK−inhibitor, and Hsp90−inhibitor complexes. Several
factors contribute to the complexity of the receptor−ligand
complexes and underscore the necessity of novel simulation
approaches to capture such dynamics accurately. While the
complexity of ligands encompasses factors such as molecular
size, chemical diversity, stereochemistry, dynamic behavior,
structural flexibility, and their specificity and selectivity in
interactions, the complexity of receptors depends on their
conformational diversity, allosteric regulation sites, protein−
ligand interaction strength, and the flexibility of binding sites
and associated loops or hinges.
A recent study used milestoning to investigate the molecular

dissociation pathway and absolute dissociation rate of Gleevec
from Abl kinase, a key target in cancer therapy.56 Using the
milestoning simulation approach, an average MFPT (1/koff)
was estimated to be 0.055 s, against the experimentally
estimated residence time of 0.04 ± 0.01 s, with a total
simulation time of 1 μs. The milestones were decided on a
progressive approach where SMD simulations were employed

to generate the initial 43 milestones. As unconstrained
trajectories starting from these initial milestones deviated
from the SMD path, new milestones were subsequently
discovered, and this process was iterated until a connected
transition matrix and a finite MFPT were obtained. The MFPT
was determined by summing all possible paths leading from
the reactant (bound state) to the product (unbound state) and
considering the adjusted transition probabilities between
milestones.
Another study estimated the dissociation rate constant of a

ligand from the serine-threonine kinase, glycogen synthase
kinase 3β (GSK-3β), which is a potential drug target for the
treatment of various diseases, including neurodegenerative
disorders and diabetes.57 Similar milestoning protocols were
employed as in the previous study. An absolute dissociation
rate (koff) was estimated to be 15.4 ± 0.3 s, against the
experimentally estimated koff of 18.4 s, with a total simulation
time of less than 1 μs.

4. CHALLENGES AND FUTURE DIRECTIONS
4.1. Force Field Accuracy. The interaction of a drug

molecule at its binding site is a complex interplay of molecular
forces involving electrostatics, van der Waals forces, hydrogen
bonding, and polarization. Polarization at the bound state, i.e.,
electron-density redistribution in response to an external
electric field, generally affects drug−target interactions. Thus,
an important and active area of research involves creating
better fixed charge force fields for use in drug discovery and
design (e.g., see the efforts of the Open Force Field
Initiative58−60). While the drug molecule and the binding
site residues can undergo electronic polarization, leading to
changes in their charge distributions, it is worth noting that
nonpolarizable force fields can still perform well in specific
milestoning calculations, depending on the system being
studied. A precise estimation of such polarization effects is
crucial because they influence the binding affinity, kinetics,
and, ultimately, the therapeutic efficacy of a drug. Polarizable
force fields, such as AMOEBA61 and CHARMM Drude force
fields,62 are tailored to capture electronic polarization in
receptor−ligand complexes, providing a more realistic
description of polarization-induced effects on (un)binding
kinetics. A recent study focused on the quantum mechanical
reparameterization of ligand charges at its binding site, refining
the potential energy landscape within the bound state of the
receptor−ligand complex and offering a more accurate
representation of intermolecular interactions and polarization
effects at the bound state.38 This approach, named QMrebind
(Quantum Mechanical force field reparameterization at the
receptor−ligand binding site), has been integrated into the
multiscale milestoning simulation approach, i.e., SEEKR2, and
has been successful in accurately estimating and rank-ordering
the drug−target unbinding rate constants for a series of
Hsp90−inhibitor complexes. Early work on quantum mechan-
ical corrections has also shown the importance of efficient
QM/MM free energy methods for capturing polarization
effects.63 Charge transfer is another phenomenon influencing
the estimation of drug−target kinetics, involving the transfer of
electrons from one molecular entity to another, leading to
changes in their charge states. Augmentation of force fields
with charge transfer models can explicitly account for such
events during (un)binding kinetics. Milestoning simulations
coupled with force fields that accommodate the charge transfer
models can potentially provide a dynamic view of electron
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transfer processes within the binding pocket, shedding light on
their influence on (un)binding kinetics.64

4.2. Determining the Best Estimate of the Free
Energy Profile of the Ligand Dissociation. In the context
of milestoning simulations, determining initial conditions,
particularly the starting milestones, is crucial. Traditional
approaches employ SMD simulations, potentially leading to
strained receptor−ligand dynamics as the ligand moves out of
the binding pocket. One of the essential aspects of milestoning
simulations, therefore, is obtaining an accurate estimate of the
free energy profile for a dissociating ligand from its binding
site.
Dissipation-corrected targeted MD65 (dcTMD) is a novel

approach for calculating free energy profiles for slow processes.
It addresses the challenge of accurately simulating complex
processes, such as the ligand dissociation from a binding site,
by incorporating corrections for energy dissipation, providing a
more accurate estimate of the dynamics of the system. dcTMD
corrects for energy dissipation by considering the cumulative
effect of friction during the simulation, ensuring that the
calculated free energy profiles accurately account for energy
losses due to dissipation. dcTMD applies a biasing force to a
specific set of atoms, typically the ligand in a receptor−ligand
complex, to drive the ligand unbinding process as a steering
mechanism, guiding the system along a predefined reaction
coordinate. It leverages Jarzynski’s identity,66 which relates the
exponential average of work done on the system to the free
energy change associated with an unbinding mechanism. A
unique feature of dcTMD is its ability to separate the total
reaction flux into multiple pathways, each with its own energy
curves and friction factors. This separation allows dcTMD to
handle complex free energy landscapes, which can be
particularly beneficial when dealing with systems where the
energy landscape is divided into multiple pathways (e.g., T4

lysozyme, HSP90, among others). By providing optimized
initial conditions for simulations, dcTMD ensures that
milestoning simulations start from a more realistic and
representative state, improving their accuracy.
Random acceleration MD (RAMD) is another enhanced

sampling approach that applies randomly oriented forces to the
ligand to accelerate protein−ligand dissociation events.67 A
small and randomly oriented force of constant magnitude is
applied to the ligand during MD simulations. The orientation
of this force is initially chosen randomly and may change based
on the motion of the ligand relative to the receptor protein.
The procedure involves several key parameters, including the
time interval for inspecting ligand motion, ligand−receptor
displacement threshold, maximum ligand displacement, and
the magnitude of the applied force. A free energy profile can
then be generated employing RAMD simulations that
efficiently sample the ligand unbinding pathway. Snapshots
representing the ligand unbinding simulation pathway can be
saved as starting structures for milestoning simulations.
Recently, a modified version of RAMD, i.e., τ-RAMD, has
been employed to estimate relative drug−target unbinding
kinetics and rank order a series of Hsp90−inhibitor complexes
based on their residence times.68 Incorporating RAMD or τ-
RAMD in milestoning simulations for predicting initial
milestones could help estimate accurate kinetic rate constants.
The metadynamics approach, specifically well-tempered

metadynamics, offers an alternative method for estimating
the free energy profile of ligand dissociation in milestoning
simulations.69 Metadynamics facilitates the escape of the ligand
from its energy minima by iteratively applying a history-
dependent biasing potential to the system, thereby accelerating
the sampling of unbinding events. A ligand dissociation free
energy profile is generated, providing insights into the potential
barriers and stable states involved in ligand dissociation. This

Figure 3. (left) Energy landscape of the Muller potential with transition path illustrating the potential energy surface between the equilibrium states
A and B marked. A one-dimensional collective variable is defined as a reaction function (typically linear) along which anchors are placed, with only
two neighbors each, along the transition from state A to state B. (right) Optimized transition path through a Muller potential landscape using a
Voronoi tessellation approach, representing the most probable pathway of the evolution of the system from state A to state B within a two-
dimensional space. A Voronoi diagram is generated by a set of input points that serve as anchors, each defining a Voronoi cell, essentially the
nearest set of points to its respective anchor. The cell boundaries determine the transition between regions closest to adjacent anchor points.
Within this framework, a two-dimensional Voronoi tessellation is generated from these anchor points. Milestones, positioned at equal intervals
between anchors, further segment the space into distinct Voronoi cells.
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iterative process not only aids in escaping local minima but
also ensures a smoother convergence toward the true free
energy surface. Incorporating metadynamics into the mile-
stoning framework has provided a successful approach by
efficiently identifying initial structures and enhancing the
accuracy of kinetic rate constant predictions.39

4.3. Finding Accurate Collective Variable Estimates
and Employing Multidimensional Milestoning
Schemes. Complex biological processes, such as drug−target
(un)binding events, often undergo multiple conformational
changes, and employing a one-dimensional CV may over-
simplify the process, potentially missing higher dimensional
conformational configurations and transitions in the system. In
other words, milestoning may result in biased or inaccurate
kinetics if the selected CV does not represent the slowest
process of the system. There are potential avenues where
multidimensional milestoning would be advantageous. Em-
ploying multidimensional CVs in milestoning enables the
description of more complex and curved reaction pathways. By
combining two or more CVs within a multidimensional grid,
we can represent a higher-dimensional free energy landscape,
allowing for a more accurate and detailed exploration of the
energy landscape. Moreover, certain energy barriers may only
be evident when employing multiple dimensions in the
reaction pathway. Additionally, it facilitates the observation
of processes involving coordinated movements across various
dimensions, offering reliable insights into reaction pathways,
transition rates, and energy landscapes. Figure 3 illustrates the
energy landscape of the Muller potential. It compares a one-
dimensional CV approach, marked along the minimum energy
pathway between states A and B, with a two-dimensional
Voronoi tessellation, which offers a more probable and detailed
pathway representation within a complex energy landscape.
4.4. Scope of QM/MM MD Simulations in the

Milestoning Scheme. Quantum Mechanics/Molecular Me-
chanics MD (QM/MM MD) simulations combine the
accuracy of QM calculations with the efficiency of MM
simulations to study biological processes in complex environ-

ments, where a subset of atoms, often the active site or a region
of interest, is treated quantum mechanically, while the
remaining atoms or residues are treated classically using
molecular mechanics.70 Certain mechanisms during the drug−
target (un)binding processes, such as proton transfer,
electronic rearrangements, bond formation, and cleavage, can
be quantitatively estimated using QM/MM MD simulations
near the binding site regions. QM/MM MD simulations are
particularly useful in determining transition states, i.e., the high
energy regions along the CV, providing information about the
rate-limiting steps for the unbinding processes, which is crucial
for understanding the kinetics of a process. The initial
innermost milestones along the CV are situated near the
drug−target binding site, presenting an opportunity to apply
QM/MM MD simulations. While QM/MM simulations
within these milestones require substantial computational
resources, exploring the leverage of enhanced accuracy on
the simulation time scale would be interesting.
4.5. Expanding the Breadth of Benchmarking Studies

and Potential ML Application of Milestoning-Gener-
ated Trajectories. Existing enhanced sampling methods for
predicting drug−target kinetics have been applied to diverse
target proteins, many of which share little structural complexity
and chemical composition overlap. The trypsin−benzamidine
complex has gained widespread recognition as a benchmark
system well-suited for method development.50,51,71 Never-
theless, its simplicity as a drug−target complex, lacking hidden
CVs, poses a limitation.20 Within this system, the unbinding
process is straightforward, involving a transition out of the
binding pocket, sometimes followed by surface diffusion,
leading the benzamidine into the solvent. A recent study,
however, highlighted additional complexities in the trypsin−
benzamidine complex, particularly regarding the role of water
molecules, where the CVs used primarily focused on the
behavior and arrangement of water molecules in the binding
cavity.72 This revelation contests the previous understanding of
trypsin−benzamidine as a simple drug−target complex,
underscoring the necessity of considering these additional

Figure 4. (a) Scatter plot illustrating the dissociation rate constants (koff) for 70 Hsp90 inhibitors, with each point representing an inhibitor, with its
corresponding koff rate. The inhibitors are categorized based on their dissociation rate constants into fast-dissociating (koff > 10−1 s−1) and slow-
dissociating (koff < 10−3 s−1). (b) Categorizing 70 Hsp90 inhibitors based on their structural diversity, scaffold, and chemical motifs, namely,
resorcinol, hydroxyindazole, benzamide, aminoquinazoline, 7-imidazopyridine, adenine, 7-azaindole, aminothienopyridine, aminopyrrolopyr-
imidine, 6-hydroxyindole, and 2-aminopyramidine.
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variables for more accurate predictions of drug−target kinetics.
To thoroughly assess new enhanced sampling methods, the
benchmark systems must feature a set of diverse ligands with
varying chemical scaffolds. Moreover, these systems must be
supported by high-resolution experimental structures and
kinetics data to facilitate comprehensive evaluations. Recent
studies have made significant strides focusing on a series of
Hsp90−inhibitor complexes, where ligands exhibited diverse
scaffold structures, varying residence times, and multiple
(un)binding pathways. Notably, these complexes also featured
substantial conformational changes during ligand dissociation.
Such characteristics position the Hsp90−inhibitor complexes
as one of the most comprehensive and robust benchmarking
systems available for the rigorous evaluation of new enhanced
sampling methods in drug−target kinetics prediction. The set
of eight inhibitors of the TTK system also provides a medically
relevant, although smaller, set of benchmarking compounds
kinetics predictions.39 Figure 4 depicts a scatter plot of
dissociation rate constants for 70 Hsp90 inhibitors, categorized
by their rate constants and scaffold diversity, demonstrating the
variety and complexity of this benchmark system.
Machine learning (ML) offers multiple potential applica-

tions within milestoning simulations, enhancing various aspects
of the method, from applying ML-driven force fields to
identifying key collective variables. One promising approach
involves postprocessing SEEKR-generated trajectories, where
ML models analyze simulation data sets to uncover hidden
patterns or correlations between specific molecular features,
such as ligand functional groups, and their interactions with
protein side chains, directly linking them to kinetic or
thermodynamic properties. Variational autoencoders
(VAEs)73 and generative neural networks (GNNs)74 can
analyze simulation trajectories to identify potential ligand-
unbinding exit pathways, uncovering alternative (un)binding
pathways that may be missed in standard simulations. Training
on SEEKR-generated trajectories can also be employed for
ligand design, where such models identify structural
modifications that optimize binding kinetics or selectivity.
ML-driven force fields,75,76 trained on high-level quantum
mechanical data further enhance simulation accuracy by
dynamically adjusting force field parameters in individual
Voronoi cells during SEEKR runs, leading to improved
predictions of on/off rates and free energy landscapes.

5. CONCLUSION
Milestoning simulations have emerged as a powerful and
versatile approach for studying the kinetics of complex
biological processes, particularly in drug−target interactions.
This perspective attempts a comprehensive overview of the
history, applications, challenges, and future directions of
milestoning simulations in drug−target kinetics. Several
advancements in milestoning simulations have been presented,
including MMVT, which addresses traditional milestoning
challenges. The introduction of multiscale approaches such as
SEEKR has provided a framework for accurately estimating
drug−target binding and unbinding rate constants. Addition-
ally, incorporating WEM and M-WEM approaches has further
improved the efficiency and convergence of milestoning
simulations. However, several challenges lie ahead in the
field. Key challenges and opportunities in milestoning
simulations include improving force field accuracy to account
for polarization and charge transfer effects, ensuring precise
determination of initial simulation conditions, exploring

multidimensional milestoning for complex processes, and
enhancing accuracy through the integration of QM/MM
simulations at the innermost milestones, all while expanding
benchmarking studies to encompass diverse ligands and
complex target proteins. Optimizing starting structures and
protonation states for milestoning simulations is essential for
accurate kinetic estimates, and, as mentioned previously, both
kinetics and thermodynamics can be highly representative of
the efficacy of a drug candidate. With the goal of a
computational method that can efficiently and accurately
predict the on-rate, off-rate, and free energy of binding, it can
be used to evaluate new lead compounds confidently, and tools
such as SEEKR can provide atomic-level details that might
suggest potential modifications to lead compounds to optimize
the desired quantities. These refinements are essential for
capturing the true dynamics of drug−target (un)binding
processes and ensuring simulations mirror physiological
conditions, thereby improving the reproducibility and
reliability of milestoning simulations. Milestoning simulations,
while a powerful enhanced sampling method, are computa-
tionally intensive in large-scale drug discovery projects where
multiple inhibitors must be screened efficiently. Recent
advancements in computational power and parallel computing
have reduced computational loads. Algorithmic developments,
including the incorporation of machine learning models and a
better choice of collective variables, coupled with the
integration of adaptive algorithms that can dynamically refine
milestone placement based on real-time simulation data, are
expected to make significant strides in efficient phase space
exploration. This approach would allow for a more focused
sampling in regions with high transition probabilities or kinetic
significance. Using cloud computing resources and distributed
computing platforms would enable the scaling up of
simulations, facilitating the simultaneous processing of multiple
trajectories, which is especially advantageous for high-
throughput screening in drug discovery. The impact of
milestoning simulations extends beyond academic research
into the practical world of drug discovery and development. In
the pharmaceutical industry, where the average time to bring a
new drug to market can exceed a decade and cost billions,
milestoning simulations offer a particularly promising avenue
for accelerating the drug discovery and development process.
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