
UCSF
UC San Francisco Previously Published Works

Title
Diet modulates brain network stability, a biomarker for brain aging, in young adults

Permalink
https://escholarship.org/uc/item/707132tt

Journal
Proceedings of the National Academy of Sciences of the United States of America, 
117(11)

ISSN
0027-8424

Authors
Mujica-Parodi, Lilianne R
Amgalan, Anar
Sultan, Syed Fahad
et al.

Publication Date
2020-03-17

DOI
10.1073/pnas.1913042117
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/707132tt
https://escholarship.org/uc/item/707132tt#author
https://escholarship.org
http://www.cdlib.org/


Diet modulates brain network stability, a biomarker for
brain aging, in young adults
Lilianne R. Mujica-Parodia,b,c,d,1,2, Anar Amgalanb,c,1

, Syed Fahad Sultane, Botond Antala, Xiaofei Sune, Steven Skienae,
Andrew Lithena, Noor Adraa, Eva-Maria Rataid, Corey Weistuchb,f, Sindhuja Tirumalai Govindarajana,
Helmut H. Streya,b, Ken A. Dillb,2, Steven M. Stufflebeamd, Richard L. Veechg,3, and Kieran Clarkeh

aDepartment of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794; bLaufer Center for Physical and Quantitative Biology, Stony Brook
University, Stony Brook, NY 11794; cDepartment of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794; dAthinoula A. Martinos Center
for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129; eDepartment of Computer Science, Stony
Brook University, Stony Brook, NY 11794; fDepartment of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794; gLaboratory
of Metabolic Control, NIH/National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852; and hDepartment of Physiology, Anatomy, and
Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom

Contributed by Ken A. Dill, January 9, 2020 (sent for review July 30, 2019; reviewed by Peter Crawford and Stephen C. Cunnane)

Epidemiological studies suggest that insulin resistance accelerates
progression of age-based cognitive impairment, which neuroimag-
ing has linked to brain glucose hypometabolism. As cellular inputs,
ketones increase Gibbs free energy change for ATP by 27% com-
pared to glucose. Here we test whether dietary changes are capa-
ble of modulating sustained functional communication between
brain regions (network stability) by changing their predominant
dietary fuel from glucose to ketones. We first established network
stability as a biomarker for brain aging using two large-scale (n =
292, ages 20 to 85 y; n = 636, ages 18 to 88 y) 3 T functional MRI
(fMRI) datasets. To determine whether diet can influence brain
network stability, we additionally scanned 42 adults, age < 50 y,
using ultrahigh-field (7 T) ultrafast (802 ms) fMRI optimized for
single-participant-level detection sensitivity. One cohort was
scanned under standard diet, overnight fasting, and ketogenic diet
conditions. To isolate the impact of fuel type, an independent
overnight fasted cohort was scanned before and after administra-
tion of a calorie-matched glucose and exogenous ketone ester
(D-β-hydroxybutyrate) bolus. Across the life span, brain network
destabilization correlated with decreased brain activity and cogni-
tive acuity. Effects emerged at 47 y, with the most rapid degener-
ation occurring at 60 y. Networks were destabilized by glucose
and stabilized by ketones, irrespective of whether ketosis was
achieved with a ketogenic diet or exogenous ketone ester. To-
gether, our results suggest that brain network destabilization
may reflect early signs of hypometabolism, associated with demen-
tia. Dietary interventions resulting in ketone utilization increase
available energy and thus may show potential in protecting
the aging brain.
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Because the human brain is only 2% of the body’s volume but
consumes over 20% of its energy (1, 2), it is particularly

vulnerable to changes in metabolism. Dietary increase in glyce-
mic load over the past 100 y has led to a national epidemic of
insulin resistance (type 2 diabetes [T2D]) (3, 4), which has been
identified by several large-scale epidemiological studies as an
early risk factor for later-life dementia (5). For example, a post
hoc analysis of the UK Whitehall II cohort study (n = 5,653)
reported that those with diabetes showed a 45% faster decline in
memory, a 29% faster decline in reasoning, and a 24% faster
decline in global cognitive score and that the risk of accelerated
cognitive decline in middle-aged patients with T2D is dependent
on both disease duration and glycemic control (6). Similar results
were reported using cohorts obtained from Israel (n = 897) (7)
and the United States (n = 4,135) (8), the latter of which found
the relationship between T2D and cognitive dysfunction to be
evident even in younger adults. This marked association has led
some researchers to propose that dementia may be the brain’s
manifestation of metabolic disease (9).

This association is all the more surprising because, until quite
recently, the brain was assumed to make use of purely insulin-
independent transport of glucose into cells (GLUT3), utilizing
neither insulin nor insulin transport (GLUT4). However, there
now is rapidly accumulating evidence that insulin is directly
relevant to neurons, brain aging, and associated memory deficits.
For example, an early breakthrough study with radioactive insulin
staining found that, contrary to the assumption that neurons did
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matched bolus, producing changes in overall brain activity that
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not utilize insulin, the rat brain was, in fact, densely populated
with insulin receptors in both the hippocampus and cortex (10).
Positron emission tomography in humans has demonstrated re-
duced glucose uptake in insulin-resistant participants versus healthy
controls (11), suggesting that even the earliest stages of T2D in-
duce hypometabolism of neurons, as with other cells in the body
and as per brain glucose hypometabolism commonly seen in de-
mentia. Finally, infusing insulin, without increasing glucose, has
been shown to increase memory for Alzheimer’s disease patients
(12). These clinical studies suggest that deleterious cognitive ef-
fects of insulin resistance may result from metabolic stress, as
neurons gradually lose access to glucose. If so, it may be possible
to bypass insulin resistance to refeed neurons by exploiting ketone
bodies as an alternative fuel.
Endogenous ketone bodies, including D-β-hydroxybutyrate, are

primarily produced in the liver from long- and medium-chain free
fatty acids released from adipose tissue during hypocaloric/fasting
states or food when following a low-carbohydrate/moderate-
protein/high-fat diet (13). In rats, neurological and cognitive
effects of glucocorticoid-induced insulin resistance in the hip-
pocampus were reversed by ketone bodies (D-β-hydroxybutyrate)
and mannose but not by either glucose or fructose (14). Like-
wise, in humans there is evidence that even as older brains
become hypometabolic to glucose, neural uptake of ketone bodies
remains unaffected, even for the most severe glucose hypo-
metabolism endemic to Alzheimer’s disease (15, 16). Finally,
lifelong hypocalorically induced ketosis preserves synaptic plas-
ticity (17) and cognition (18) in elderly animals [chronological age
equivalent to ∼87 to 93 human years (19)].
Beyond the ability to short-circuit insulin resistance, however,

ketone bodies have other metabolic advantages (20–24) that may
confer neurobiological benefits even to younger healthy indi-
viduals not yet in a deficit (hypometabolic) state. Of those ad-
vantages, one of the most fundamental is that, as cellular inputs,
β-hydroxybutyrate molecules increase Gibbs free energy change
for ATP by 27% compared to glucose (24). While it is currently
unknown how increasing available energy might impact a healthy
brain, one consequence suggested by prior animal data is an in-
crease in neurotransmitter production. Eight- to ten-month-old
mice, the chronological equivalent of ∼27- to 33-y-old humans
(19), showed increased synaptic efficiency, low-theta band oscilla-
tions, and learning consolidation during intermittent-fasting-induced
ketosis (25). Mechanistically, this increase in synaptic efficiency was
linked to increased expression of the N-methyl-D-aspartate
(NMDA) receptor for glutamate.
Here we test two hypotheses. First, we investigate the time

course of brain aging in humans to determine whether there is
evidence for a long-term degenerative process that lays the foun-
dation for neurometabolic stress—decades before cognitive effects
become evident. This is clinically critical because it identifies a
window of time during which neurodegenerative effects may still be
reversible if we can increase neurons’ access to fuel. Second, to
isolate the role of energy in modulating this variable, we hold age
constant while testing the neurobiological impact of switching the
primary fuel source of the human brain from glucose to ketone
bodies. The above translational results showed that fasting in-
creases NMDA-driven synaptic efficiency (25); neurotransmission,
in turn, has been shown to drive change in cerebral blood flow (26)
and thus functional communication between brain regions mea-
sured by blood oxygen level–dependent (BOLD) functional MRI
(fMRI) resting-state connectivity (27). Therefore, we expected that
ketone bodies might improve fMRI-derived measures of neurobi-
ological functioning, even in healthy younger adults.
To test these hypotheses, we proceeded in two stages. First,

using independent large-scale human fMRI datasets, sampling
across the adult life span (ages 18 to 88), we established a whole-
brain-scale biomarker (network stability, defined as the brain’s
ability to sustain functional communication between its regions)

that robustly associates with brain aging. Second, we conducted
two targeted experiments in humans, optimized for detection
sensitivity at the single-participant level, to test the impact of
manipulating fuel type: glucose versus ketone bodies, using both
diet and bolus, on that biomarker. Of note, while translational
studies tend to employ long-term (“lifelong”) dietary modifications—
equivalent to 20 to 30 y of human life span—for our targeted ex-
periments we deliberately focused on rapid effects (after 1 wk
of the ketogenic diet and half an hour for the D-βHb ketone
ester). This was done for three reasons. First, it permitted a
within-subject design, thereby rigorously controlling for genetic
and environmental differences between subjects. Second, it
narrowed down the number of potential biological mechanisms to
those capable of acting over minutes or days, rather than months,
years, or decades. Finally, we maximized clinical relevance by
using dietary modifications that would be realistic to implement by
most individuals in real-world environments.

Methods
Life Span Neuroimaging Datasets. To identify network stability across the life
span, we analyzed two large-scale open-source 3 T fMRI resting-state
datasets: Max Planck Institute Leipzig Mind-Brain-Body (28) (Leipzig: ages
20 to 85, n = 292) and Cambridge Centre for Ageing and Neuroscience Stage
II (29) (Cam-CAN: ages 18 to 88, n = 636). Leipzig showed a bimodal distri-
bution of individuals older and younger than 50, which required statistical
analyses of age as a discrete variable. Cam-CAN sampled more evenly across
the life span, permitting additional statistical analyses of age as a continuous
variable.

Metabolic Neuroimaging Datasets. To determine whether fuel affects brain
network stability, we conducted resting-state scans on two independent
cohorts of young healthy adults. Subjects were asked to keep their eyes open
and let their minds wander while focusing on a white orienting cross on an
otherwise black screen. To achieve the higher signal/noise required to ana-
lyze data at the single-participant level, participants were scanned using
ultrahigh-field (7 T) fMRI at the Massachusetts General Hospital Athinoula A.
Martinos Center for Biomedical Imaging, using acquisition parameters
quantitatively optimized via dynamic phantom for detection sensitivity to
resting-state networks (30). Immediately prior to and following each scan,
blood glucose and ketone (D-β-hydroxybutyrate) levels were measured using
Precision Xtra test strips (Abbott Laboratories) (Table 1). Exclusion criteria for
all three studies included MR contraindications for ultrahigh-field imaging;
diagnoses of psychiatric and/or neurological disorders; traumatic brain in-
juries; recreational drug usage, including severe alcohol use; and/or (for
females) pregnancy. Participants were excluded if they were currently fol-
lowing or had recently followed (within past 6 mo) a low-carbohydrate or
ketogenic diet. Detailed clinical and demographic characteristics for all in-
dividuals participating in the metabolic studies can be found in SI Appendix,
Table S1. Studies were registered as a clinical trial on ClinicalTrials.gov
(identifier NCT04106882) and approved by the institutional review boards of
Massachusetts General Hospital (Partner’s Healthcare) and Stony Brook
University; all participants provided informed consent. For access to relevant
datasets (31) and code used to process and analyze the data, see Datasets
S1–S4.

For the first experiment (diet) (n = 12, μage = 28 ± 7 y; 4 female), we
scanned participants under three conditions: 1) standard diet: following
their standard diet, without fasting; 2) fasting: following their standard diet,
with an overnight (12 h) fast; and 3) ketogenic diet: following a ketogenic
(high-fat, moderate-protein, low-carbohydrate [<50 g/d]) diet for 1 wk, by
which point all participants were in ketosis (>0.6 mmol/L ketone blood
concentration).

For the second experiment (bolus) (n = 30, μage = 29 ± 8 y; 18 female), we
scanned an independent cohort of participants under three conditions: 1)
fasting: following their standard diet, with an overnight fast; 2) glucose
bolus: breaking the fast with a glucose drink (Glucose Tolerance Test Bev-
erages, Fisher Scientific Inc.); and 3) D-βHb ketone ester bolus: breaking the
fast with a ketone drink (D-β-hydroxybutyrate ketone ester; HVMN).

The D-βHb ketone ester was weight dosed for each participant at 395
mg/kg and calorically matched (μcal = 125 ± 19) between D-βHb ketone ester
(μKETdose = 26.65 ± 3.97 g) and glucose (μGLUdose = 31.33 ± 4.57 g). Prior to
neuroimaging, we acquired fasting plasma glucose and insulin measures
for calculation of insulin resistance using HbA1c (μHbA1c = 5.14 ± 0.32%
[min/max = 4.6 to 5.8%; insulin resistant > 5.6%]) and the Homeostatic Model
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Assessment of Insulin Resistance (HOMA-IR) (μHOMA-IR = 1.41 ± 0.59 [min/max =
0.41 to 2.87; insulin resistant > 2.0]). HOMA-IR was calculated as fasting insulin
(μU/mL) × fasting glucose (mg/dL)/405 (32).

While ketone pharmacokinetics for human peripheral blood concentra-
tions have been established (33), ketone pharmacokinetics for the human
brain were unknown. Thus, to establish optimal timing for the bolus study,
we first performed a magnetic resonance spectroscopy (MRS) study (n = 8;
μage = 27 ± 5 y; 3 female) to determine the bolus time course in the brain.
Using a within-participant time-locked design, as well as weight- and calorie-
matched dosing as described below, we measured brain glucose and
β-hydroxybutyrate at baseline, then every 5 min for 90 min after adminis-
tering each bolus. As per SI Appendix, Fig. S2, MRS showed glucose and
ketones reaching peak concentrations in the brain at ∼30 min postbolus. Of
the two fuel types, glucose was confirmed to be shorter acting and more
volatile compared to ketones (postpeak coefficient of variation was 2.1 ± 0.8
for glucose and 0.14 ± 0.03 for the D-βHb ketone ester; P = 0.04), which
remained at their peak for at least 90 min postbolus. Thus, to ensure peak
concentrations in the brain for both glucose and ketones, for the bolus ex-
periment we acquired 10 min resting-state scans starting 30 min postbolus.

To check for potential interactions between diet and bolus conditions, as
well as to test whether the D-βHb ketone ester could, in principle, counteract
the effects of higher glycemic load, we conducted an additional investiga-
tion using one participant (case study: female, age 47, HbA1c = 5.8%). For
the case study, the baseline condition consisted of a standard diet supple-
mented 30 min prior to the scan with a 75 g glucose bolus, a standardized
challenge dose used clinically for the oral glucose tolerance test (34). In a
time-locked within-subject design, the participant was scanned twice: on
one day with a weight-dosed (395 mg/kg) 25 g D-βHb ketone ester bolus and
on another day without it. Each of these two conditions was conducted at
resting state and while performing spatial navigation and motor tasks, as
described below.

MRI Acquisition. Both life span datasets were acquired at 3 T field strength;
Leipzig had a time to repetition (TR) = 1,400 ms over 15 min and 30 s, while
Cam-CAN had a TR = 1,970 ms over 8 min and 40 s [further details may be
found in dataset documentation (28, 29)]. Given the focus on clinical ap-
plications, requiring single-participant-level resolution, all metabolic
datasets were acquired at ultrahigh-field (7 T) field strength and included
whole-brain BOLD (echoplanar imaging, EPI), field map, and T1-weighted
structural (multi-echo magnetization prepared rapid gradient echo
[MEMPRAGE]) images. BOLD images were acquired using a protocol quan-
titatively optimized, using a dynamic phantom (BrainDancer; ALA Scientific
Instruments), for detection sensitivity to resting-state networks (30): Simul-
taneous multi-slice (SMS) slice acceleration factor = 5, R = 2 acceleration in
the primary phase encoding direction (62 reference lines) and online gen-
eralized autocalibrating partially parallel acquisition (GRAPPA) image re-
construction, TR = 802 ms, echo time (TE) = 20 ms, flip angle = 33°, voxel
size = 2 × 2 × 1.5 mm, slices = 85, and number of measurements = 2,320 in
each of the prebolus and postbolus intervals, for a total acquisition time of
62 min. Field map images were acquired using the following parameters:
TR = 723 ms, TE1 = 4.60 ms, TE2 = 5.62 ms, flip angle = 36°, voxel size = 1.7 ×
1.7 × 1.5 mm, and slices = 89, for a total acquisition time of 3 min, 14 s. The

whole-brain T1-weighted structural volumes were acquired with 1 mm iso-
tropic voxel size and four echoes with the following protocol parameters:
TE1 = 1.61 ms, TE2 = 3.47 ms, TE3 = 5.33 ms, TE4 = 7.19 ms, TR = 2,530 ms,
and flip angle = 7°, with R = 2 acceleration in the primary phase encoding
direction (32 reference lines) and online GRAPPA image reconstruction, for a
total volume acquisition time of 6 min, 3 s.

Spatial Navigation and Motor Tasks. To assess whether effects extended be-
yond resting state to tasks that increased cognitive load and therefore brain
metabolic demand, for the diet study and case study, participants additionally
navigated virtual reality mazes using an MR-compatible joystick (Nata
Technologies). We created thesemazes using the Aldous–Broder algorithm in
Daedalus (https://www.astrolog.org/labyrnth/daedalus.htm) and programmed
them for a virtual reality scanner environment using Vizard (WorldViz). For
the spatial navigation task, participants made use of spatial encoding and
memory in finding their way from one end of the maze and back. For the
motor task, participants simply followed a corridor and therefore navi-
gated without making decisions.

MRI Preprocessing. Life span preprocessing was conducted in the FMRIB
Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/): Anatomical im-
ages were skull stripped and coregistered to Montreal Neurological Institute
(MNI) templates and mean functional images. Functional images were mo-
tion and field map corrected, brain extracted, and coregistered to MNI
templates using transformations learned through the anatomical image.
Metabolic preprocessing used Statistical Parametric Mapping 12 (SPM12;
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) combined with an image
processing workflow established with fMRIPrep (35). Anatomical images
(MEMPRAGE) were normalized to MNI templates using unified segmentation
and registration. Images of each individual participant were realigned to ac-
count for head movements and field map corrected for geometric distortions
caused by the magnetic field inhomogeneity, followed by normalization to
MNI space. Physiological confounds were removed using the Component
Based Noise Correction Method (CompCor) (36). No spatial smoothing was
applied to any of the datasets. For all datasets, voxelwise data were parceled
into the Willard 499 functional region of interest (ROI) atlas, which further
coarse grained data into 14 resting-state networks (37).

fMRI Network Analyses. To probe temporal dynamics and reorganization of
communication across brain regions (interregional communication, typically
described as brain networks, and those networks’ persistence over time,
defined as network stability), ROI-level fMRI time series were binned into
nonoverlapping time windows, or “snapshots,” of 24 s. From each window
an all-to-all, signed, symmetric network of correlation strengths was extracted.
We quantified the stability of brain networks in two complementary ways. To
measure gross difference, we calculated total instability, defined as the (scalar)
norm of difference in the correlation matrix for each pair of distinct snapshots
of the brain network, where τ is the time duration (in units of 24 s) over which
persistence was calculated (SI Appendix, Fig. S5). To identify which networks
across the brain were most responsible for these effects, we calculated the
least absolute shrinkage and selection operator (LASSO) regression on the fea-
ture set of instabilities calculated from resting-state networks and structural

Table 1. Blood glucose and ketone measurements for MRS time course (n = 8) and fMRI bolus (n = 30) studies

MRS time course study

Glucose bolus Ketone ester bolus

PRE POST 10 min POST 80 min PRE POST 10 min POST 80 min

Blood glucose,
mg/dL (mmol/L)

91 ± 13 (5.1 ± 0.7) 95 ± 14 (5.3 ± 0.8) 89 ± 12 (4.9 ± 0.7) 89 ± 6 (4.9 ± 0.3) 82 ± 9 (4.6 ± 0.5) 67 ± 7 (3.7 ± 0.4)

Blood βHb, mmol/L 0.2 ± 0.1 0.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.4 ± 0.4 3.6 ± 0.7
Bolus study

Glucose bolus Ketone ester bolus

PRE POST 10 min POST 50 min PRE POST 10 min POST 50 min

Blood glucose,
mg/dL (mmol/L)

95 ± 12 (5.3 ± 0.7) 101 ± 16 (5.6 ± 0.9) 90 ± 13 (5.0 ± 0.7) 92 ± 11 (5.1 ± 0.6) 91 ± 12 (5.1 ± 0.7) 74 ± 12 (4.1 ± 0.7)

Blood βHb, mmol/L 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 1.4 ± 1.2 3.5 ± 1.1

The Abbott Precision Xtra Glucose & Ketone Monitoring System was used for all fingerstick blood measurements. PRE = prebolus; POST = postbolus.

6172 | www.pnas.org/cgi/doi/10.1073/pnas.1913042117 Mujica-Parodi et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913042117/-/DCSupplemental
https://www.astrolog.org/labyrnth/daedalus.htm
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913042117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1913042117


parcellations as defined by the Automated Anatomical Labeling atlas (AAL;
http://www.gin.cnrs.fr/en/tools/aal-aal2/). These identified a data-driven con-
struct, brain age, with the minimum number of coefficients. To measure large-
scale functional reorganization, we calculated module instability for fMRI data
acquired from the diet study (n = 12), indicating the extent to which nodes in a
network module switched modules over time. Modules are defined as the
nonoverlapping partition of all nodes in the network, such that intramodule
connections are maximized relative to the intermodule connections. For each
network matrix, modules were extracted using the Louvain parameter-free
modularity-maximization algorithm (38). To obtain the (scalar) module in-
stability, we averaged over all nodes: calculating the percentage of the node’s
neighbors within the samemodule that failed to remain in the samemodule for
the next network snapshot. Finally, to quantify general brain activity (39, 40), we
calculated the whole-brain signal amplitude for low-frequency (0.01 to 0.1 Hz)
fluctuations (ALFF).

Results
Brain Networks Destabilize with Age.Across the life span measured
by Cam-CAN, cognitive acuity declined with age, as measured by
the standard clinical instrument used to assess dementia, the
Mini-Mental State Examination (MMSE) (41) (r = –0.30, P =
3.63 × 10−15). Cam-CAN and Leipzig resting-state datasets show
that increased age, in turn, was associated with destabilization of
brain networks (Leipzig <50 y [n = 214] vs. ≥50 y [n = 78], Mann–
Whitney U test = 0.28, P = 1.4 × 10−8; Cam-CAN <50 y [n = 281]
vs. ≥50 y [n = 355], Mann–Whitney U test = 0.27, P = 1.6 × 10−22;
Fig. 1 A, Left). This effect was driven primarily by the dynamics of
three resting-state functional networks (37): auditory (superior
temporal gyrus), higher visual processing (V2) and basal ganglia
(thalamus, caudate, inferior frontal gyrus). LASSO regression with
instability of the 12 resting-state networks as predictor variables and
age as the predicted variable identified these three networks with
high selectivity (r = 0.30, P = 7.11 × 10−19), assigning all other net-
works zero weight.
Age-associated degradation in network stability was sigmoidal

(Fig. 1 A, Right; n = 636; sigmoid reduced χ2 = 1.07 vs. linear
reduced χ2 = 1.39), with an inflection point of 60 ± 2 y, indicating

the age at which network stability degraded most precipitously.
The base of the sigmoid was 13 y earlier; thus, networks in our
life span dataset started to destabilize at ∼47 y. Importantly, this
suggests that the first latent markers for brain aging may be ca-
pable of neurobiological detection decades before cognitive
symptoms become evident.
The three most dominantly affected networks were combined

into a single variable, brain age, linearly composed of Cam-CAN-
derived network stability values for the auditory (βnorm/raw: 0.25/
1.77), higher visual processing (βnorm/raw: 0.35/2.51), and basal
ganglia (βnorm/raw: 0.16/1.19) networks. Brain age inversely cor-
related with cognitive acuity (Fig. 1 B, Left). Moreover, for
younger individuals, T2D accelerated brain aging compared to
age-matched healthy controls (Fig. 1 B, Right). Mean actual ages
for younger individuals with (51 ± 4 y) and without (51 ± 5 y)
T2D were equivalent, while brain age for young diabetics was
significantly higher than that of healthy controls (younger T2D
vs. HC, Mann–Whitney U test = 0.34, P = 0.0002). For older
individuals, both mean actual ages for individuals with (73 ± 6 y)
and without (74 ± 6 y) T2D and brain ages for the two groups
(older T2D vs. HC, Mann–Whitney U test = 0.48, P = 0.87) were
equivalent. Thus, younger individuals with T2D showed brain
network destabilization (i.e., brain age) that, for nondiabetics,
normally would be seen at an older age.

Ketosis Stabilizes Brain Networks. Experimental modulation of
fuel intake shows that brain networks are stabilized in healthy
younger adults through ketosis both induced by a 1 wk change of
diet (τ = 1, repeated-measures ANOVA least significant differ-
ence (LSD) post hoc, standard vs. ketogenic diet: t = 5.4, P =
0.0000001, n = 12; Fig. 2A) and as rapidly as 30 min following
ingestion of exogenous D-βHb ketone ester (τ = 1, paired t test,
glucose bolus–fasting vs. D-βHb ketone ester bolus–fasting, t =
2.9, P = 0.004, n = 30; Fig. 2B). Overall, both ketosis induced by
a ketogenic diet and ketosis induced by drinking exogenous D-
βHb ketone ester showed effects equivalent to those seen with

Age-Matched T2D/HC, from Cam-CAN (N=219)

Age-Impacted Networks:  Auditory, Higher Visual Processing (V2), Basal Ganglia 
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Fig. 1. Brain networks destabilize with age, with the strongest impact in the auditory, higher visual processing (V2), and basal ganglia networks (total n =
928). (A) Leipzig Mind-Brain-Body open-source dataset, ages 20 to 85, binarized into younger (n = 214) vs. older (n = 78) participants (Mann–Whitney U = 0.28;
P = 1.4 × 10−8) and Cam-CAN open-source dataset, ages 18 to 88, binarized into younger (n = 281) vs. older (n = 355) participants (Mann–Whitney U test =
0.27, P = 1.6 × 10−22). We fit network instability for the Cam-CAN dataset using a (logistic) sigmoidal function (nonlinear least squares with weights inversely
proportional to the SD, reduced χ2 = 1.07). From this fit, we obtained the inflection point (switch point), which occurs at 60 ± 2 y, and the width accounting for
90% of the transition of 13 ± 6 y, resulting in an onset of degeneration at 47 y. A linear fit to the data resulted in a 30% larger reduced χ2 value, indicating
that the data are more accurately fitted by a sigmoidal rather than linear fit. (B) Increasing brain age, defined by network stability, predicts progressively
lower cognition (MMSE scores). Linear fit to brain age vs. MMSE score data finds a slope of –0.66 ± 0.27 (estimate ± SE), implying instability-derived brain age
increases 0.66 y for every point decrease in MMSE score (P < 0.01, CI = [–1.18, –0.14]). For younger individuals, T2D accelerates brain aging compared to age-
matched healthy controls. Mean actual ages for younger individuals with (51 ± 4 y, n = 14) and without (51 ± 5 y, n = 109) T2D were equivalent, while brain
age for young diabetics was significantly increased over that of healthy controls (younger T2D vs. HC, Mann–Whitney U = 0.34, P = 0.0002). For older in-
dividuals, mean actual ages for T2D (73 ± 6 y, n = 14) and for HC (74 ± 6 y, n = 82) were equivalent to their respective brain ages (older T2D vs. HC, Mann–
Whitney U test = 0.48, P = 0.87).
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Fig. 2. Brain networks destabilize with glucose and stabilize with ketones. (A) In the diet experiment, each participant was scanned three separate times, time locked to
eliminate diurnal variability: while following a standard diet (STD), after overnight fasting, and after following a ketogenic diet for 1 wk (τ = 1, repeated-measures
ANOVA LSD post hoc, standard vs. ketogenic diet: t = 5.4 P = 0.0000001). (B) To isolate fuel source as the variable of interest between the diets, we followed up with a
bolus experiment. Each participant was scanned two separate times, again time locked to eliminate diurnal variability, with the D-βHb ketone ester individually weight
dosed (395 mg/kg). Each individual’s glucose dose was then calorie matched to his or her D-βHb ketone ester dose. For each session we subtracted intrasession fasting
values from each bolus value (τ = 1, paired t test, glucose bolus minus fasting vs. ketone ester bolus minus fasting: t = 2.9, P = 0.004). (C) The ketone ester’s stabilizing
effects were observed even under high glycemic load; here we show network stability values for a single participant, following a standard diet that included a 75 g
glucose challenge, with and without administration of the ketone ester (τ = 1, paired t test, high-glycemic standard diet with vs. without 25 g D-βHb ketone ester bolus:
t = 4.12, P = 0.0001). Error bars for the case study (n = 1) reflect statistics calculated over up to 24 windows for τ = 1, 23 windows for τ = 2, etc. Equivalent effects for the
same participant performing motor and spatial navigation tasks are shown in SI Appendix, Fig. S4. n.s., not statistically significant; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.0001.
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fasting (τ = 1, repeated-measures ANOVA LSD post hoc, Die-
tKET–FAST: P = 0.75, n = 12; BolusKET–FAST: P = 0.1, n = 30; Fig. 2
A and B), while a standard diet and glucose bolus consistently
destabilized brain networks. As a measure, network stability
showed robust test–retest reliability, with minimal intrasubject
variation across the bolus study’s two fasting sessions spaced an
average of 4 d (±2 d) apart (τ = 1, repeated-measures ANOVA
LSD post hoc, fasting session 1 vs. fasting session 2, P = 0.28,
n = 30; SI Appendix, Fig. S3).
Clearly visible even at the single-participant level, our case

study showed the D-βHb ketone ester has brain network stabi-
lizing effects even under high glycemic load (τ = 1, paired t test,
standard diet+75g glucose bolus with vs. without D-βHb ketone
ester bolus, t = 4.12, P = 0.0001; Fig. 2C and SI Appendix, Fig.
S4). Blood values for the case study are provided in SI Appendix,
Fig. S2 and Table S2.
Further analyses showed network instability occurs from large-

scale reorganization of network modules (network switching; SI
Appendix, Figs. S5A and S6 A and B), rather than changing of
connection strengths while preserving modules (network dimming
or flickering; SI Appendix, Figs. S5B and S6 C and D). The
fMRI signal’s ALFF, a general measure of brain activity, was
consistently higher—across both rest and task conditions—for the
participants following a ketogenic diet or fasting compared to
following their standard diets (resting state: P = 1.1 × 10−3; motor
task: P = 1.3 × 10−6; spatial navigation [early: 0 to 10 min]: P =
6.7 × 10−5; spatial navigation [late: 10 to 40 min]: P = 7.7 × 10−17,
n = 12; Fig. 3). Across datasets, network switching became in-
creasingly prominent with reduction of ALFF (diet: r = –0.39, P =
0.00003; Leipzig: r = –0.33, P = 2.63 × 10−7; Cam-CAN: r = –0.25,
P = 4.15 × 10−13). Characterizing each network with respect to
its total ALFF-derived activity for all nodes, we then compared
symmetry for each “switch”: between transitions from lower- to
higher-activity networks versus transitions from higher- to lower-
activity networks. Both the ketogenic and fasting conditions showed
mean zero bias (one-sample t test, keto diet: t = –0.22, P = 0.83; fast:
t = 0.26, P = 0.80), whereas the standard diet condition biased the
brain toward switching from higher- to lower-activity states
(standard diet: t = –3.29, P = 0.007). Thus, network switching may
reflect the brain’s inability to sustain the cost of more active,

metabolically taxing, networks, thereby defaulting to metabolically
“cheaper” (42) alternatives.

Discussion
Our data provide evidence that, starting at around the age of 47 y,
the stability of brain networks begins to degrade with age, with the
most dramatic changes occurring around the age of 60 y. Since
glucose hypometabolism remains one of the hallmark clinical
features of dementia and its prodrome (43), we hypothesized that
the network destabilization seen with aging might reflect the
earliest stages of latent metabolic stress. Thus, we tested whether
diets with different energetic yield might modulate network sta-
bility even in a younger population expected to be decades prior to
any overt symptoms of age-based cognitive impairment. While
glucose is normally considered to be the brain’s default fuel,
β-hydroxybutyrate metabolism increases by 27% the Gibbs free
energy change for ATP compared to glucose (23, 24). Consistent
with that advantage, our results showed that even in younger
(<50 y) adults, dietary ketosis increased overall brain activity
and stabilized functional networks.
We first chose to manipulate diet in order to assess real-world

clinical implications of food choices on the brain. However, change
of diet within an ecologically realistic environment is a complex
variable and therefore cannot dissociate whether the observed
changes result from what is being taken away (carbohydrates) versus
what is being added (fat) or even whether the changes might reflect
different caloric intake (e.g., due to differences in satiety) for the
two conditions. We thus followed up with a second study in which
all participants followed their standard diets, fasted overnight, were
scanned in a fasted state, and were then scanned again 30 min after
drinking an individually weight-dosed and calorie-matched
bolus: glucose on one day and D-βHb ketone ester on the other,
counterbalanced for order. We found that the stabilizing effects seen
with dietary ketosis were replicated with administration of exoge-
nous ketones, which suggests that effects observed with mod-
ulating diet were specific to metabolism of glucose versus ketone
bodies rather than more holistic changes seen between diets.
It should be noted that one difficulty in isolating the impact of

each fuel type is the frequently observed (but potentially clini-
cally beneficial in its own right) side effect of exogenous ketones
in lowering glucose levels. This reflects a previously reported bias

Fig. 3. ALFF, a general measure of brain activity, was increased for participants on the ketogenic diet compared to their standard (std) diets (n = 12). This
remained true for resting state, as well as during motor and spatial navigation tasks. Resting state and motor tasks were of 10 min duration. Spatial navi-
gation shows the first 10 min (for comparison with other tasks) and then an additional 30 min, for 40 min total. This was done to assess fatigue effects over
longer periods of time. Comparing symmetry over time between shifts from lower- to higher-activity states versus shifts from higher- to lower-activity states,
both the ketogenic and fasting conditions showed a mean of zero bias (one-sample t test ketogenic diet: t = –0.22, P = 0.83; overnight fast: t = 0.26, P = 0.80),
whereas the standard diet condition showed the brain switching from high- to lower-activity states (standard diet: t = –3.29, P = 0.007).
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between the fuels: Ketone bodies, whenever present, are im-
mediately utilized by the brain regardless of need, whereas glu-
cose is only taken up by cells via GLUT transporters as required
(15, 44). Thus, in the (inherently physiologically unnatural) state
in which exogenous ketones are administered concomitantly with
glucose, ketone bodies saturate cells, and the cerebral metabolic
rate of glucose is down-regulated (44). However, ketone bodies
would stabilize networks by lowering glucose levels only if glucose
levels were already abnormally elevated, either due to insulin re-
sistance or in response to a physiological perturbative bolus. The
fact that network stabilizing effects were observed even in non-
insulin resistant individuals—tested in a stable state of dietary
glycolysis—suggests that those effects were consequent to ketosis
rather than correcting a pathological state of hyperglycemia.
We next considered whether any systematic physiological ef-

fects of ketosis, such as diuresis (and therefore lowered blood
pressure) or reduced cellular need for oxygen, might confound
our fMRI results. However, if so, BOLD signal would have de-
creased in the ketogenic condition (45). The fact that ALFF and
network stability increased during that condition suggests that
the observed neurobiological effects did not result from global
changes in hydration or oxygen. On the other hand, since ketone
bodies have been shown to increase blood flow in the heart (46)
and brain (47), an increase in cerebral blood flow would be
consistent with increased BOLD, and therefore ALFF, but not
with the network behavior we observed. Experiments combining
arterial spin labeling and fMRI show increased cerebral blood
flow is associated with increased fMRI connectivity (48), a
modulation of connection strength. However, the observed, net-
work instability reflects a qualitatively different behavior, in which
networks transition between distinct topological configurations. We
believe this behavior is more consistent with mechanisms of syn-
aptic transmission, as suggested by previous animal experiments
(19). Establishing potential mechanisms by which energy avail-
ability, at the cellular level, affects “rerouting” of neural signals will
be an important future direction for multimodal and translational
research.
For both diet and bolus experiments, D-βHb ketone ester and

fasting conditions produced equivalent effects in stabilizing brain
networks. Glycogen, when stored in the liver and skeletal muscle,
typically sustains glycolysis for fasts of up to ∼30 h. However, the
brain primarily utilizes glycogen stored in glia, which 13C MRS
has shown in humans to become depleted in ∼5 to 10 h (49).
Thus, following the typical overnight fast of ∼10 to 12 h, it is
likely that the brains of non-insulin-resistant participants had
already transitioned to endogenous ketosis, even if it was not yet
detectable with assays of peripheral ketosis measured by blood or
urine. Overall, our neuroimaging results support the hypothesis
that at least some of the beneficial neural effects reported with
hypocaloric states, such as intermittent fasting, severe caloric
restriction, and exercise, may result from the brain’s transition to

ketone bodies as fuel (50). While, for healthy individuals, the
benefits of endogenous ketosis may be naturally achieved in
multiple ways (e.g., ketogenic diet, fasting, exercise), this may not
be necessarily true for those with insulin resistance, as chroni-
cally elevated insulin levels associated with insulin resistance—
present even during fasting (32)—physiologically inhibit glucagon
and therefore ketogenesis (51). Thus, while we showed endoge-
nous and exogenous ketones to be qualitatively similar in stabi-
lizing brain networks in young healthy adults, for insulin-resistant
individuals, exogenous ketones may provide a useful adjunct in
achieving the neurobiological benefits seen with endogenous ke-
tosis, a further area for future study.
Finally, our focus on acute effects of modulating fuel source

controlled for the role of several potential mechanisms associ-
ated with differences seen in large-scale epidemiological studies
comparing diets. For example, insulin resistance has been
suggested to indirectly facilitate vascular dementia, as hyperglycemia
increases inflammation (52) and blocks nitric oxide (53), thereby
effectively narrowing brain vasculature while also increasing blood
viscosity (54). With respect to Alzheimer’s disease, recent results
(55) have identified an insulin-degrading enzyme as playing a
critical role in removing both excess insulin and amyloid β-protein
from the brain. Since insulin and the protein compete with one
another for the same enzyme, one consequence of the sustained
high insulin levels associated with insulin resistance is depletion of
the enzyme and therefore accumulated deposition of β-amyloid
plaque. In addition, ketones have been shown to reduce inflam-
mation and production of reactive oxygen species, as well as to up-
regulate mitochondria in the brain. While all of these may have
significant cumulative and synergistic effects in the months or
years that precede cognitive impairment, it is striking how quickly
the brain responded to a single week of dietary change or 30 min
following a single dose of D-βHb. This rapid response effectively
ruled out indirect inflammatory, antioxidant, tau/amyloid, and/or
adaptive mitochondrial mechanisms of action, allowing us to isolate
a more straightforward role of diet on metabolism. While further
experiments will be needed to elucidate the mechanism at a
microscopic scale and to explore its impact on the aging brain
over longer time periods, the near-immediate changes in network
stability, clearly visible even at the scale of the single participant,
are encouraging, as they suggest that dietary interventions can have
marked and measurable neurobiological effects on timescales
relevant to clinical intervention.
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