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Abstract 

Essays in Quantitative Marketing 

by 

Alexey Sinyashin 

Doctor of Philosophy in Business Administration 

University of California, Berkeley 

Professor J. Miguel Villas-Boas, Chair 

 

The dissertation has two chapters. In the first chapter, called “Optimal 
Policies for Differentiated Green Products: Characteristics and Usage of 
Electric Vehicles”, I study the issue of policy design for electric vehicles. 
When designing policies for electric vehicles (EVs) policymakers need to 
decide how to allocate policy support among EVs with different 
characteristics, since different EVs are likely to have differences in 
attractiveness to consumers and usage patterns and, hence, differences in 
environmental impact. In this paper, I build and estimate a structural model 
of the U.S. auto market that is able to predict market shares and usage 
patterns of electric and traditional vehicles with different characteristics 
under various market conditions and is able to assess the effects of policies 
differentiating on characteristics of EVs. On the demand side, I introduce 
the concept of consumer inconvenience costs of charging, which depend on 
EV battery range, charging infrastructure development level, consumer's 
driving needs, and other individual-specific factors. On the supply side, I 
model firm choice of prices and battery ranges. The estimation results show 
that the inconvenience costs have a dramatic effect on consumer purchase 
decisions and usage patterns of EVs, and, hence, their environmental 
impact. Also, the results indicate that firms are more likely to adjust battery 
ranges when policy support depends on battery range. I use the model 
estimates to evaluate the effects of two major U.S. policies for EVs, the 
federal subsidy and California's Zero Emission Vehicle regulation, on the 
environment, consumer surplus, firm profits, and social welfare. I also 
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experiment with alternative structures of the federal subsidy that 
differentiate on type and battery range of EVs. I find that more efficient 
structures can improve the environmental effect of the subsidy by 4.6% and 
the welfare effect by 1.6%. Interestingly, the more efficient structures result 
in fewer EVs sold, but in more electric miles traveled and more gasoline 
miles replaced. 

In the second chapter, called “Do Big Businesses Influence Media? The Case 
of Amazon.com and The Washington Post.”, I study whether media outlets 
bias their coverage of the news about their owners or companies the owners 
have vested interests in. To shed some light on this question, I look at how 
the acquisition of the Washington Post, a major U.S. daily newspaper, by 
Jeff Bezos, the founder and CEO of Amazon.com, affected the coverage of 
the news about Bezos and Amazon.com. Using data on news stories in 
several major newspapers, I document that the acquisition resulted in an 
increase in the number of mentions of Bezos, Amazon, or Amazon’s products 
in the Washington Post, relative to other newspapers and news stories about 
other big tech companies. From a simple sentiment analysis, however, I 
found no evidence of change in the sentiment of the stories. I discuss 
potential mechanisms that can explain the results, including a conflict of 
interest, a shift in preferences of the readership, improved access of the 
Washington Post to information about Bezos and Amazon, and a shift in 
the beliefs of the newspaper’s editors and journalists about the importance 
of news about Amazon and Bezos. 
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1 Introduction

Many countries use a variety of policies to encourage adoption of electric ve-
hicles (EVs) in order to reduce local air pollution and overall greenhouse gas
(GHG) emissions from the transportation sector, one of the biggest GHG
emission contributors.1 Designing policies for EVs, e.g., purchase subsidies, is
complicated by the fact that an electric car is a differentiated product and EVs
with different characteristics may potentially have different attractiveness to
consumers, driving patterns, and, hence, environmental benefits. To account
for these differences, some policies do differentiate among EVs with different
characteristics.2 In particular, policy support often depends on two character-
istics: type and battery (or electric) range of EVs, with the two most common
types being battery-electric (or all-electric) vehicles (BEVs) and plug-in hy-
brid electric vehicles (PHEVs),3 and the battery range being the maximum
distance a car can travel on one full battery charge using only electric energy
from the battery.

In this paper, I ask three research questions. First, how do characteristics
of EVs, in particular, type and battery range, affect consumer willingness to
buy and driving patterns of these vehicles? Second, how do policies differen-
tiating on these two characteristics affect firm choice of battery ranges, a key
characteristic of an EV? And, finally, how much should policies differentiate
among BEVs and PHEVs with different battery ranges?

To address these questions, I build an empirical model that is able to pre-
dict market shares and usage patterns of electric and traditional vehicles, as
well as firm choice of battery ranges under different market conditions and
policy scenarios. Incorporating usage of EVs and traditional cars is an im-
portant element of the model: environmental damages from burning gasoline
or generating electricity for charging EVs directly depend on how much con-

1In 2018, the transportation sector accounted for 28% of total U.S. GHG emissions
with passenger cars and light-duty trucks being the largest contributors (59%) within the
category (U.S. Environmental Protection Agency, 2020).

2Examples in the U.S. include the federal subsidy, the Zero Emission Vehicle regulation,
and some state subsidies. More details are provided in Section 2.2.

3BEVs run purely on electric energy stored in built-in rechargeable batteries that can
be charged from an electric outlet. PHEVs also have batteries that can be charged, but,
in addition, they have back-up gasoline engines that turn on once the electric battery is
depleted. Thus, PHEVs can be operated in two modes, electric and hybrid. Generally, when
operated in electric mode, PHEVs are similar to BEVs, and when operated in hybrid mode
they are similar to conventional hybrids. PHEVs should not be confused with conventional
hybrid cars (e.g., Toyota Prius), which have much smaller electric batteries and cannot be
charged from an external source of electricity.
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sumers drive their cars. The previous literature studying the effectiveness of
EV incentives largely ignored the aspect of usage, focusing instead on adoption
rates of EVs. This paper fills this gap by modeling how various factors, in-
cluding vehicle characteristics, availability of charging stations, heterogeneity
in consumer driving needs and other consumer-specific factors, affect not only
purchase rates but also usage patterns of different EV models.

What affects how consumers use electric cars and are EVs driven in similar
ways to traditional cars? On the one hand, fuel and maintenance costs per mile
are generally lower for EVs,4 which should encourage higher mileage drivers
to adopt electric cars and, hence, should result in higher than average mileage
driven. On the other hand, long charging times,5 limited electric ranges and
limited availability of public charging stations may discourage consumer adop-
tion of EVs, especially among higher-mileage drivers, who need to charge more
often and, hence, experience more inconvenience of charging. This inconve-
nience may result in less than average driving, especially for BEVs. In the
case of PHEVs, there is always a possibility of fueling up at a conventional
gas station and running on gasoline, hence the inconvenience is likely to only
limit the number of miles traveled on electricity. The existing evidence on
usage of EVs (Davis 2019, Burlig et al. 2021, UC Davis PHEV Center 2020),
including the data I use in this paper (California Air Resources Board, 2017),
suggests that the inconvenience of charging is an important factor that nega-
tively affects usage of BEVs and PHEVs in electric mode and therefore should
be accounted for in the analysis.6 To the best of my knowledge, this paper
is the first to estimate the inconvenience costs and to study their relation to
battery range, charging stations, and other factors.

The model is organized in the following way. On the demand side, con-
sumers choose which car to buy. They are endowed with an expected number of
miles they need to drive per year. Consumers make their decisions by maximiz-
ing a utility function that depends on vehicle characteristics, purchase price,
expected annual fuel costs and two terms capturing inconvenience of charging
BEVs and PHEVs, which are referred to as inconvenience cost terms. Each

4For example, in 2018, the U.S. average fuel cost per mile for BEVs was 4.7c, assuming
residential electricity prices; for conventional hybrids it was 6.9c, and for gasoline cars it
was 11c.

5The most common, level 2, chargers give 10-20 miles per hour of charging. DC
fast chargers may give at least 60 miles in 20 minutes, but they are expensive to build
and, hence, scarce. For more information, see https://www.epa.gov/greenvehicles/

plug-electric-vehicle-charging. On the upside, a convenient feature of EVs is their
ability to be charged at home.

6Section 3 presents more details on usage patterns of various EVs.
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inconvenience cost term is an increasing convex function of expected annual
mileage, in the case of BEVs, or expected annual mileage driven on electricity,
in the case of PHEVs. Both terms also depend on battery range, development
level of charging infrastructure and individual-specific factors. For PHEVs,
consumers are assumed to optimally choose the fraction of miles they expect
to drive on electricity, trading off the fuel cost savings and the PHEV incon-
venience costs.

On the supply side, carmakers choose prices and battery ranges.7 I model
choice of battery ranges for two reasons. First, policy incentive schemes that
depend on electric ranges or battery capacities are likely to affect producer
decisions on what size batteries to put in the cars. Carmakers are likely to
choose battery sizes carefully because battery cost is a substantial part of the
marginal production cost of EVs.8 Second, modeling battery choice allows
me to more precisely estimate battery costs. This provides useful information
about the evolution of the battery costs over time and about how close the
production costs of EVs with different ranges are to those of traditional cars.
In addition, the model estimates of the battery costs can be compared to the
industry estimates, as an auxiliary check on the model.

I estimate the model in the context of the U.S. auto market from 2013
to 2018. The estimation results confirm that inconvenience costs of charging
play an important role in purchase decisions of consumers with different driving
needs. In the case of BEVs, electric range and charging station availability
are important inconvenience costs determinants. For example, in 2018, for
an average consumer, the inconvenience cost over the car lifetime was around
$7,000 for the Tesla Model 3 with a 310 mile battery range, while for the 151
mile Nissan Leaf it was around $39,000. In California, a state with relatively
well developed charging infrastructure, these numbers were much lower: $800
for Model 3 and $5,000 for Leaf. Consumers who actually buy these BEVs have
much lower inconvenience costs than an average consumer: $1,600 for Model 3
and $3,000 for Leaf throughout the country, and $600 for Model 3 and $1,600
for Leaf in California. The difference in inconvenience costs between the actual
buyers and an average consumer within the same geographical area is driven
by heterogeneity in driving needs and other consumer-specific factors.

In the case of plug-in hybrids, according to the model estimates, the share
of driving on electricity strongly depends on the PHEV electric range and the

7In fact, I will model battery choice only for BEVs produced by American manufacturers.
More discussion is presented below.

8For example, UBS (2017) estimates the 2017 Chevy Bolt battery pack cost to be
$12,300, or 34% of its MSRP, and the 2018 Tesla Model 3 $9,075 or 26% of its MSRP.
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difference in the cost of an electric and gasoline mile, but charging station
availability doesn’t appear as an important factor, which is likely due to the
presence of a back-up gasoline engine. Inconvenience cost levels are generally
lower for PHEVs than in the case of BEVs, because PHEV consumers can
control the level of inconvenience by adjusting how much they drive on elec-
tricity. Drivers of longer-range PHEVs have higher inconvenience costs than
drivers of shorter-range PHEVs, on average, because the marginal benefit of
charging is higher on average for longer-range PHEVs.

The supply side estimates of the battery costs in general agree with the
estimates from the industry. I compute average battery costs per kWh by
calendar year and compare them to the estimates from the surveys conducted
by the Bloomberg New Energy Finance (BNEF).9 According to the model
predictions, the average battery cost dropped from $574 in 2013 to $214 in
2018, while the BNEF estimates are $650 in 2013 and $176 in 2018. Also, I
look at expert estimates of battery pack costs that are available for some EV
models and find that they are similar to the corresponding model predictions.

I use the model estimates to run two counterfactual exercises. In the first
exercise, I study the effects of two existing programs, the federal subsidy for
buyers of new EVs and California’s Zero Emission Vehicle (ZEV) regulation.
Both programs have comparable scales. One prominent difference is that, while
the ZEV regulation has separate incentive schemes for BEVs and PHEVs and
the amount of support it allocates depends on battery range, the federal sub-
sidy does not distinguish between EV types and is essentially flat for BEVs.
This difference plays an important role. First, I find that while the ZEV reg-
ulation has a significant impact on BEV ranges, resulting in range increases
from 4% to 36%, with a larger effect for more affordable models, the federal
subsidy program, with its flat structure, has almost no effect on BEV ranges.
Second, relative to the federal subsidy, each EV added due to the ZEV regu-
lation is driven on average more electric miles (14,638 vs. 11,962 miles) and
generates more environmental benefits ($3,636 vs. $3,214). Besides the en-
vironmental effects, both programs improve consumer surplus and producer
profits, with the welfare effect of the federal subsidy being $718M and that of
the ZEV regulation being $416M per quarter.

In the second counterfactual exercise, I solve for the optimal federal sub-
sidy structure that maximizes either environmental benefits or social welfare,
holding the program budget fixed. I allow the subsidy structure to distinguish
between BEVs and PHEVs and to depend piece-wise linearly on the battery

9see https://www.statista.com/statistics/883118/

global-lithium-ion-battery-pack-costs/

5

https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/
https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/


range, similarly to the ZEV regulation. I find that, relative to the current
subsidy, the subsidy that maximizes environmental benefits allocates more
support to BEVs, with the subsidy size increasing in range, and less support
to PHEVs, with PHEVs with less than 25 miles of range not getting any sub-
sidy. The optimal subsidy results in 4% fewer EVs added by the program, but
4.6% more electric miles traveled by added EVs, and in an $8.1M per quarter,
or 4.6%, increase in the environmental benefit of the program. Relative to
the subsidy that maximizes environmental benefits, the subsidy that maxi-
mizes social welfare gives less support to BEVs with small and intermediate
ranges, but PHEVs with less than 25 miles of range now get a non-zero sub-
sidy. Essentially, this scheme is focusing more on adoption of EVs with lower
inconvenience costs, which is why it is resulting in a smaller environmental
improvement, $4.9M per quarter, or 2.8%. The welfare-maximizing subsidy
results in $11.2M per quarter, or 1.6%, welfare improvement. Also, similarly
to the subsidy that maximizes environmental benefits, it results in fewer EVs
added by the program (-1.7%) but more electric miles traveled by added EVs
(+2.8%), which suggests that focusing on EV adoption rates can be misleading
if the real goal is maximizing environmental benefits or social welfare.

Literature review. This paper relates to three strands of literature.
First, there is a growing body of literature studying the effects of various gov-
ernment policies for EVs. DeShazo et al. (2017) and Muehlegger and Rapson
(2021) assess California’s EV rebate program. Li et al. (2017) and Springel
(2021) build a two-sided market framework to evaluate the effectiveness of sub-
sidies for EVs and charging stations in the U.S. and Norway, respectively. Li
(2019) studies the effect of a charging standard compatibility mandate in the
U.S. Xing et al. (2021) study what kind of vehicles EVs replace and assess al-
ternative subsidy designs, targeting lower-income households. Remmy (2020)
studies how subsidies affect battery ranges of EVs in the German market.
Jenn et al. (2018) assess the effects of various EV policies in the U.S. and also
provide a nice overview of papers studying incentives for conventional hybrid
cars and EVs. My paper contributes to this literature by formally introducing
the concept of consumer inconvenience costs of charging and modeling how
this inconvenience affects consumer utilities and usage patterns of EVs with
different characteristics under different policy scenarios and market conditions.
In addition, I model battery range choice by firms,10 and evaluate the effec-

10Remmy (2020) is a concurrent paper that also endogenizes EV battery choice, but for
the German market. My approach is different in that I explicitly model the link between
battery capacity and range, in that I make different assumptions about which manufacturers
respond to local policy changes with battery updates, and in some other details.
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tiveness of subsidy structures that differentiate on type and battery range of
EVs.

Second, this paper contributes to the literature modeling vehicle demand
and utilization (Mannering and Winston 1985, Goldberg 1998, West 2004,
Bento et al. 2009, D’Haultfœuille et al. 2014, Grigolon et al. 2018 etc.). The
paper argues that modeling usage of EVs requires taking into account the
inconvenience of charging and proposes a model that is able to predict usage
patterns of EVs consistent with the data. The demand side of the model
builds on Berry et al. (1995) and Petrin (2002) and captures key trade-offs
that consumers with different driving needs face when choosing among electric
and gasoline vehicles.

Finally, this work adds to the literature on endogenous product positioning
(Draganska et al. 2009, Eizenberg 2014, Wollmann 2018, Fan 2013, Remmy
2020, Crawford et al. 2019 etc.) by proposing an approach on how to endo-
genize choice of EV ranges by carmakers, taking into account technological
details, in particular the link between battery capacity and range.

The paper proceeds as follows. Section 2 provides an overview of the U.S.
market and policies for EVs, Section 3 provides a descriptive summary of
average mileage driven by EVs and traditional cars. Section 4 presents the
model. Section 5 describes the dataset. Section 6 discusses estimation and
identification of model parameters. Section 7 presents the estimation results.
Section 8 reports counterfactual analysis results and Section 9 concludes.

2 Market and Policy Overview

2.1 Market overview

The first modern mass-produced electric vehicles came to the U.S. market in
the early 2010s as a result of tightening environmental regulation, government
investments, and a series of improvements in the battery technology.11 High
battery production costs didn’t allow carmakers to use batteries that are large
enough for long-distance driving and, at the same time, keep the prices at
a reasonable level. For example, an all-electric Nissan Leaf, one of the best
selling EVs introduced in late 2010, had only 73 miles of battery range12 and
was priced at around $33,000 (before any subsidies). To facilitate long-distance
driving, carmakers came up with the idea of a plug-in hybrid car, which lets

11A more detailed history of EVs can be found at https://www.energy.gov/articles/
history-electric-car.

12All ranges are as rated by the U.S. Environmental Protection Agency (EPA).
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Figure 1: Sales of EVs over time in the U.S.

Notes: This figure shows BEV and PHEV sales by calendar year and combined
share (BEV + PHEV) in the total sales of new passenger cars and light duty trucks.

Data sources: U.S. DoE Alternative Fuels Data Center and Statista.com.

consumers do short trips using only energy from the battery and use a backup
gasoline engine for longer trips. The first commercial plug-in hybrid car was
the Chevrolet Volt, also released in late 2010, with 35 miles of battery range
and a price tag of $40,280. In 2011, around 9,700 Leafs and 7,700 Volts were
sold in the US, which comprised 98% of total EV sales and 0.14% of all new
car sales in the U.S. (see Figure 1).

Over time, declining battery costs and development of charging infrastruc-
ture led to a significant expansion of EVs. Manufacturers introduced more
models with various price and range options. Tesla Model S, introduced in
2012, was the first long-range mass-produced car with range options varying
from 139 to 265 miles, priced at $57,400 - $77,400. More affordable long-range
BEVs went on sale later: Chevrolet Bolt, 238 miles, priced at $36,620, in late
2016, and Tesla Model 3, 310 miles, priced at $46,500, in late 2017. Table 1
shows the evolution of EV models, prices and ranges for the 2013-2018 period.
The average prices consumers paid for BEVs and PHEVs before any incen-
tives13 were quite stable over time, about $53,000 for BEVs and $37,000 for
PHEVs, while the average ranges consumers were getting for these prices im-
proved dramatically for BEVs, from 149 to 281 miles, and to some extent for

13For example, federal and state consumer subsidies may add up to $13,500 depending
on various parameters such as state, time, EV type, range, MSRP etc.
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Table 1: Evolution of the number of models, prices and ranges of EVs.

2013 2014 2015 2016 2017 2018

BEVs

N models 9 13 12 13 14 15
MSRP

Mean $50,861 $44,766 $53,388 $60,027 $53,896 $55,621
Min $27,010 $25,560 $25,560 $25,510 $28,955 $29,120
Max $79,900 $79,900 $85,000 $83,000 $83,000 $96,000

Range, mi
Mean 149 129 159 183 224 281
Min 62 75 76 76 76 84
Max 265 265 270 270 310 335

PHEVs

N models 6 10 11 18 26 30
MSRP

Mean $35,970 $34,642 $35,466 $38,899 $37,294 $38,606
Min $32,000 $29,990 $29,990 $28,800 $27,120 $27,900
Max $40,100 $76,400 $77,200 $78,700 $78,700 $99,600

Range, mi
Mean 26.4 26.4 36.1 35.8 32.5 33.7
Min 11 11 11 11 9 9
Max 38 72 72 97 97 97

Notes: This table shows the evolution of the number of BEV and PHEV models,
prices and ranges in the U.S. by calendar year. All mean values are sales-weighted.

PHEVs, from 26.4 to 33.7 miles. Overall, as Figure 1 shows, the EV sales had
reached 2% of all new car sales by 2018, with BEVs and PHEVs contributing
similarly until 2018. In 2018, right after its introduction, Tesla Model 3 gained
39% of all EV sales, making a huge contribution to BEV sales.

It is worth noting that for the period of the study the largest local market
for EVs in the U.S. was California, with the state EV sales comprising about
half of the national EV sales and the within-state market share of EVs reaching
8% in 2018. Several factors can potentially explain high adoption rates in
California, including the state’s strict environmental regulation, relatively high
gasoline prices and “green” preferences of the population.

9



2.2 Policy Overview

In this paper, I focus on two types of policies for EVs in the U.S.: the federal
subsidy and the Zero Emissions Vehicle (ZEV) regulation adopted in some
states. These policies, and state subsidies for EVs, will be explicitly accounted
for in the model.14 I describe them in detail below.

Federal subsidy. The federal subsidy comes in the form of the federal
income tax credit and is available to buyers of new EVs. The size of the subsidy
depends on the battery capacity, which must be at least 4 kWh. The subsidy
size formula is $2,500 plus $417 for each kWh over 4 kWh with a maximum
value of $7,500. Although how the battery kWh capacity translates into the car
range depends on other car characteristics, during the study period all BEVs
and longest-range PHEVs received the full subsidy, while some smaller-range
PHEV models got a partial subsidy.15,16

State subsidies. To further encourage consumer adoption of electric ve-
hicles, some states introduced their own purchase subsidies in addition to the
federal subsidy. During the study period, 16 states offered subsidies to con-
sumers, with subsidy conditions varying across states and time. Depending on
EV type, range, MSRP and household income, consumers were able to receive
from $500 to $6,000 of a state subsidy in these states.

ZEV regulation. The ZEV regulation was designed and adopted by
California in 1990 to achieve its long-term emission reduction goals by requiring
auto manufacturers to sell zero emission vehicles. Later it was adopted by nine
other states: Connecticut, Maine, Maryland, Massachusetts, New York, New
Jersey, Oregon, Rhode Island and Vermont.17

The ZEV program requires manufacturers to earn a certain amount of cred-
its each year by selling BEVs, PHEVs18 and some other types of “clean” vehi-

14Other, not explicitly accounted for, policies for EVs include subsidies for charging
equipment, access to carpool lanes, free parking etc. Some of these policies will be captured
by the model implicitly through the fixed effects.

15For example, Chevy Volt (35-53 miles) and Honda Clarity PHEV (48 miles) received the
full subsidy while Toyota Prius Prime (25 miles) was qualified for a $4,500 subsidy. The full
list of credit amounts can be found at https://www.fueleconomy.gov/feg/taxevb.shtml

16For each manufacturer, the federal subsidy starts to phase out once the manufacturer
has sold 200,000 qualified EVs. During the study period, Tesla and GM passed this mark,
in July and November 2018, respectively. However, buyers of Tesla and GM EVs were able
to receive the full credit during the entire study period.

17For more information on the ZEV regulation see https://ww2.arb.ca.gov/our-work/
programs/zero-emission-vehicle-program

18PHEVs are referred as transitional zero emissions vehicles (TZEVs) in the ZEV regu-
lation.
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cles19 in the states that adopted the ZEV regulation. For each manufacturer,
the required number of credits per year is proportional to the total number
of cars sold by this manufacturer in California on average each year, thus re-
quiring bigger manufacturers to sell more EVs. The requirement is tightening
over time. For example, the required number of credits was 4.5% of the total
sales in 2018 and 22% in 2025. Each EV can earn more or less than one credit
depending on its type and battery range. Prior to 2018, depending on the
range and technology used, each PHEV was earning up to 2.5 credits and each
BEV was earning up to 4 credits.20 Starting from 2018, the number of credits
has been proportional to the range and capped at 1.4 for PHEVs and at 4 per
BEVs. In case a carmaker does not satisfy the regulation’s requirements, it
has to pay a $5,000 fine for each missing credit.

In order to incorporate the ZEV regulation into the model, I need to esti-
mate the “market prices” of credits for BEVs, called ZEV credits, and credits
for PHEVs, called transitional ZEV (TZEV) credits. These two type of cred-
its have different values, with TZEV credits being less valuable because the
regulation can be fully satisfied with ZEV credits and only partially satisfied
with TZEV credits. Carmakers are allowed to trade ZEV and TZEV cred-
its, hence they have some monetary values, which are, however, not publicly
known. While we can observe how many credits were transferred between car-
makers in a given year and state, information on the corresponding monetary
transfers is not available. The only relevant publicly available information can
be found in Tesla’s quarterly financial reports prior to 2019, in which Tesla
disclosed its revenues from selling ZEV credits.21 I combine Tesla’s revenues
from ZEV credit sales and the number of ZEV credits transferred from Tesla
to other manufacturers each year to estimate ZEV credit prices. I found that
the average ZEV credit price was around $2,200 for the 2015-2018 period.22

This number is very similar to the estimates by McConnell et al. (2019), who
used the same methodology. I will assume that this price does not change

19For example, fuel cell electric vehicles (FCEVs). However, for the period of the study,
the sales of other vehicle types that earn the same credits as BEVs and PHEVs were ex-
tremely small.

20More precisely, carmakers could earn up to 9 credits in the case of BEVs if they were
able to demonstrate battery swapping ability. Only Tesla was able to do it and was earning
from 5 to 7 credits per car in 2012-2014. However, after the regulation changed in mid-2014,
no manufacturers were earning more than 4 credits.

21Since Tesla does not sell any gasoline cars, it’s not subject to the ZEV regulation
requirements. However, it still earns ZEV credits and sells them to other carmakers. Ac-
cording to its quarterly reports, Tesla earned around $165 million on average each year in
2013-2018 from selling ZEV credits.

22For earlier years, information on credit transfers is not available for some ZEV states.
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over time, which is reasonable because carmakers can bank their credits, i.e.,
credits earned in a given year do not expire and can be used in the future to
satisfy the ZEV program requirements.

Recovering TZEV credit prices is more complicated because Tesla earns
and sells only ZEV credits and no other data on ZEV or TZEV credit revenues
is available. However, I overcome this problem by analyzing credit transfers
between carmakers where credits of different types were exchanged. For ex-
ample, sometimes carmakers traded ZEV credits for TZEV credits. I found
several such occasions. Assuming that they didn’t involve any monetary trans-
fers, I estimate the TZEV credit price to be about 30% lower than the ZEV
credit price, or about $1,540. More details on the calculation of the ZEV and
TZEV credit prices are provided in Appendix A.

To summarize, credits that carmakers earn by selling EVs in the ZEV states
are estimated to have dollar values of up to $8,800 per car in the case of BEVs,
up to $3,850 per car in the case of PHEVs before 2018, and up to $2,156 per
car in the case of PHEVs starting in 2018. The exact values depend on car
ranges. Given that about 30% of all new cars and 60% of all EVs in the U.S.
are sold in the ten ZEV states, the ZEV regulation is likely to be an important
driver of car manufacturer decision-making at the state and national level.

3 Miles driven by EVs

In order to understand the environmental benefits of EVs and to be able to
make more informed policy decisions, it is important to look at how much
BEVs with different characteristics are driven relative to traditional cars and
what fraction of mileage PHEV drivers drive in the electric mode. Electric cars
are typically cheaper to drive per mile than gasoline cars due to lower fuel and
maintenance costs,23 which should encourage more adoption among drivers
who need to drive more. However, inconvenience of charging, related to long
charging times, limited availability of charging stations, and limited battery
ranges, may discourage adoption among the higher-mileage drivers, or, in the
case of PHEVs, discourage driving in the electric mode. These two factors
affect how EV adopters use their vehicles, as well as how much consumers are
willing to substitute EVs for traditional cars.

The existing evidence on how much EVs are driven is scarce. Davis (2019)
analyzes the data from the 2017 National Household Travel Survey (NHTS),

23See https://www.energy.gov/articles/egallon-how-much-cheaper-it-drive-electricity
for price comparison of a gasoline gallon and an “e-gallon” in different states.
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which includes a relatively small sample of adopters of early EV models, and
finds that on average BEVs are driven 38% and PHEVs 24% fewer miles per
year than an average gasoline car, with no data available on how much PHEVs
are driven on electricity versus gasoline. Burlig et al. (2021) analyze changes in
electricity consumption of households who recently purchased electric vehicles
in California during the period between 2014 and 2017 and find that these
changes indicate substantially lower usage of EVs (usage in the electric mode,
in the case of PHEVs) relative to gasoline cars. The UC Davis PHEV Center
(2020) conducted a representative survey of EV owners in California during
the 2015-2018 period.24 They document higher average usage of BEVs and
PHEVs than Davis (2019). Using logger25 data on 275 EVs they found that
longer-range BEVs are driven more miles on average than shorter-range BEVs
and that longer-range PHEVs are driven more electric miles than shorter-range
PHEVs.

In this paper, I use another data source for usage of EVs, which has several
models of EVs, includes vehicles in and outside California, and has a large
sample size.26 The average mileage numbers for Californian EVs from this
dataset are similar to those from the UC Davis PHEV Center (2020). The
data were collected by the California Air Resources Board (California Air
Resources Board, 2017) directly from car manufacturers for electric vehicles
nationwide. Seven car manufacturers submitted data for eleven EV models
during the 2014-2016 period to the California Air Resources Board (CARB).
The data summary is presented in Table 2. Although the individual car level
data are not available, the report has data on average mileage that is, for
some models, disaggregated by model-year and state (California vs. national),
which allows me to construct a rich set of moment conditions for the model
estimation.

To compare how much EVs are used relative to traditional cars, I add
the vehicle usage data from the 2017 National Household Travel Survey (the
2017 NHTS, Federal Highway Administration 2017). The survey includes data
on odometer readings and model-years of household vehicles, from which I
compute annual mileage for each car. I focus only on passenger cars and pick-

24Their analysis is also complemented by a smaller nationwide survey, but no loggers
were installed outside California, hence there is no data on PHEV usage on electricity
versus gasoline for non-Californian vehicles.

25A logger is a device that is plugged into a vehicle to record data on various usage
parameters.

26One concern about these data is that its representativeness cannot be confirmed. How-
ever, for some vehicle models the number of observations is close to the overall sales for a
given model-year, which should alleviate the concern.
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Table 2: EV usage summary statistics

Model Type Range, N vehicles Model years Mean VMT, Mean eVMT, % eVMT
miles miles miles

Tesla Model S BEV 265 37,635 2012-2015 13,494 13,494 100%
Nissan Leaf BEV 84 12,215 2011-2014 10,294 10,294 100%
Honda Fit BEV 82 645 2012-2013 9,789 9,789 100%
Ford Focus BEV 76 4,218 2012-2015 9,741 9,741 100%
BMW i3 BEV 81 4,193 2014-2015 7,916 7,916 100%
BMW i3 REX PHEV 72 8,309 2014-2015 9,063 8,387 93%
Chevrolet Volt PHEV 38 2,154 2011-2013 12,403 8,924 72%
Ford Fusion Energi PHEV 20 12,842 2013-2016 15,076 4,776 32%
Ford C-MAX Energi PHEV 20 10,253 2013-2015 13,920 4,574 33%
Honda Accord PHEV 13 189 2012 15,221 3,246 21%
Toyota Prius Plug-in PHEV 11 1,523 2013 15,283 2,304 15%

Notes: The table shows the number of vehicles in the sample, model-years of these
vehicles, the average annual vehicle-miles traveled (VMT) and the average annual
electric vehicle-miles traveled (eVMT). All miles of BEVs are electric, hence VMT
and eVMT are equal for BEVs.

Data source: California Air Resources Board (2017). The data were collected in

2013-2016.

up trucks under five years old.27,28 The CARB’s report compares the mileage
of EVs to the average mileage for gasoline cars computed using the California
smog check data for cars with ages 0 to 4, which is about 14,600 miles. As
a check, I compute the same statistic using the data I constructed from the
2017 NHTS and obtain a very similar number, 14,400 miles.

Figure 2 shows average mileage for EV models from the CARB data and
average mileage for gasoline and conventional hybrid cars from the 2017 NHTS.
Conventional hybrid cars are driven more miles on average than gasoline cars
(15,800 vs. 16,600 miles), which is consistent with the hypothesis that higher-
mileage drivers prefer more fuel-efficient vehicles. However, all the BEV mod-
els, despite their lower cost per mile, are driven fewer miles than gasoline and
conventional hybrid cars. This is true even for a relatively long range (265
miles) Tesla Model S, with average mileage of 13,494. Other, smaller range

27The 2017 NHTS contains odometer reading data for a number of electric vehicles as
well, but I decided not to use these data because the number of observations for each EV
model is small and the exact purchase date is unknown, which makes estimation of average
mileage imprecise. Moreover, the survey has no information on how much PHEVs are used
in electric and gasoline modes. Davis (2019) used the 2017 NHTS data to analyze how much
EVs are driven distinguishing only between BEVs and PHEVs.

28More details on how the vehicle usage data were constructed from the 2017 NHTS are
provided in Appendix C.1.

14



F
ig

u
re

2:
A

ve
ra

ge
an

n
u
al

m
il
ea

ge
of

el
ec

tr
ic

an
d

ga
so

li
n
e/

h
y
b
ri

d
ca

rs
.

N
o
te
s:

T
h

e
fi

g
u

re
sh

ow
s

av
er

a
g
e

el
ec

tr
ic

an
d

to
ta

l
m

il
ea

ge
of

va
ri

ou
s

B
E

V
an

d
P

H
E

V
m

o
d

el
s

w
it

h
b

at
te

ry
ra

n
ge

s
in

p
a
re

n
th

es
es

.
A

ve
ra

ge
m

il
ea

g
e

of
ga

so
li

n
e

an
d

h
y
b
ri

d
ca

rs
ar

e
co

m
p
u

te
d

fo
r

ve
h

ic
le

s
w

it
h

ag
es

le
ss

th
an

5
ye

ar
s.

95
%

co
n

fi
d

en
ce

in
te

rv
a
ls

ar
e

p
re

se
n
te

d
.

C
on

fi
d

en
ce

in
te

rv
al

s
fo

r
E

V
s

ar
e

ap
p

ro
x
im

at
ed

u
si

n
g

th
e

n
u

m
b

er
of

ob
se

rv
at

io
n

s

an
d

th
e

20
1
7

N
H

T
S

d
a
ta

.

D
a
ta

so
u

rc
es

:
C

al
if

or
n

ia
A

ir
R

es
o
u

rc
es

B
oa

rd
(2

01
7)

,
20

17
N

H
T

S
.

15



(a) BEV vs. gas version of the same model

(b) PHEV vs. gas/hyb version of the same model

Figure 3: Average annual mileage of electric versus gasoline/hybrid versions.

Notes: Subfigure (a) compares mileage of BEV and gasoline versions of same model.

Subfigure (b) compares mileage of PHEV and gasoline/hybrid versions of same

model. 95% confidence intervals are presented. Confidence intervals for EVs are

approximated using the number of observations and the 2017 NHTS data.

Data sources: California Air Resources Board (2017), 2017 NHTS.

BEVs (76-84 miles) are driven around 10,000 or even fewer miles per year on
average.

Besides range and per-mile costs, other car characteristics can be important
determinants of average mileage. Tesla Model S is a large sedan; other BEVs
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in the data are smaller, with BMW i3 being the smallest car.29 For a closer
comparison, Figure 3a looks at the electric and gasoline versions of the same
model. There are two cars for which this comparison is possible: Honda Fit
and Ford Focus. In both cases electric versions are driven significantly fewer
miles, around 9,800 for both BEVs versus 12,500 for gasoline Honda Fit and
14,300 for gasoline Ford Focus.

In the case of plug-in hybrids, how much consumers drive in electric mode
is strongly related to a car’s battery range, as Figure 2 shows. While drivers
of Chevrolet Volt with 38 miles of battery range drive on average almost 9,000
electric miles per year (72% of total annual mileage), 20-mile range Ford Fusion
Energi drivers drive around 4,800 electric miles (32% of total mileage) and 11-
mile range Toyota Prius Plug-in drivers drive only 2,300 electric miles per year
(15% of total mileage).

From Figures 2 and 3b we see that the average total (gas plus electric)
mileage of the smaller range PHEVs is comparable to the average mileage
of their gasoline and conventional hybrid counterparts. However, the longer
range PHEVs, Chevrolet Volt and BMW i3 REX,30 seem to be driven less on
average than gasoline cars. While, to some extent, this can be explained by the
relatively small sizes of the cars, especially in the case of BMW i3 REX, an-
other potential explanation is that consumers who purchase long range PHEVs
intend to drive them mostly on electricity, which is harder for consumers who
need to drive more. For a high-mileage driver, a conventional hybrid car can
be a better choice because it is generally less expensive than a PHEV and may
be more fuel efficient than long-range PHEVs in gasoline mode.31

To summarize, the evidence presented suggests that the inconvenience of
charging is an important force that affects usage of EVs, with the battery
range being a key factor affecting the inconvenience.32 In the next section, I
will introduce a structural model that will formally address how various factors
affect the inconvenience of charging, and how consumers with different driving

29From the 2017 NHTS, I found that smaller gasoline cars are driven less on average than
larger gasoline cars.

30With REX meaning “range extender”, BMW i3 REX is a modification of BMW i3 that
has a small gasoline engine and a small gasoline tank.

31Heavy batteries of long-range PHEVs make them less fuel efficient because they have
to carry more weight.

32One can also think about other mechanisms that affect average usage of EVs. For
example, if environmentally concerned consumers are more likely to drive less, e.g., because
they are more likely to substitute driving with public transport, cycling or walking, and
have higher preferences for EVs, this may result in lower average EV mileage. However, this
doesn’t explain the relationship between mileage patterns and battery ranges. Nevertheless,
the structural model will address this issue.
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needs and other characteristics choose which vehicle to buy.

4 Model

The model consists of two parts: vehicle demand and vehicle supply. On
the demand side, consumers make static choices on which car to purchase.
Besides purchase price and other vehicle characteristics, consumers account
for the future fuel expenses and, in the case of EVs, the cost of inconvenience
of charging. The two latter components depend on how many miles consumers
need to drive. I assume that each consumer is endowed with a certain number
of miles they expect to drive every year and this number is the same across the
cars in the choice set. One concern about this assumption is that it ignores
the possibility that consumers may drive more if they pay less per each mile
traveled, a form of what is called the rebound effect.33 Although there are
papers that allow for non-zero elasticities of individual demand for driving with
respect to fuel prices, car fuel economy, and other car characteristics,34 I do
not adopt that approach for several reasons. First, the data I use do not allow
me to reliably identify these elasticities and, at the same time, fully account
for heterogeneity in driving needs.35 Second, a number of papers report small
elasticities of demand for miles traveled with respect to fuel prices for gasoline
cars, which are also declining over time (e.g., Mannering and Winston 1985,
Goldberg 1998, Small and Dender 2007, Hughes et al. 2008, West et al. 2017).
Third, given that, in the presence of the inconvenience costs, EVs are on
average driven less than gasoline cars, the rebound effect does not seem to be
a first-order issue in this case.36

33For a review of the literature on the rebound effect see Gillingham et al. (2015) and
Linn (2016).

34These papers typically use the discrete-continuous framework of Dubin and McFadden
(1984) and focus on gasoline/diesel cars. For example, see Mannering and Winston (1985),
Goldberg (1998), West (2004), Bento et al. (2009), D’Haultfœuille et al. (2014).

35For example, some studies estimate the fuel price elasticity of miles traveled from
observing monthly household gasoline consumption together with gasoline prices. I do not
have this kind of data.

36Another aspect that can potentially be important and is ignored by the model is the
possibility of usage substitution among vehicles of households with multiple vehicles. For
example, households with a BEV and a gasoline car can potentially choose which vehicle to
use for each trip, trying to maximize usage of the BEV to minimize fuel expenses. Hence,
the problem becomes similar to that of a PHEV driver, who chooses the optimal share of
driving on electricity, as will be described below. The model, in principle, allows households
to have multiple vehicles, but it assumes that households are endowed with a fixed number
of driving needs, which are also fixed, which means that households do not optimize over
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On the supply side, carmakers maximize static profits by choosing prices
and EV battery ranges. When deciding on battery ranges, carmakers are as-
sumed to face the trade-off between consumer valuation of ranges and marginal
production costs of batteries, holding other car characteristics constant. While
this assumption seems to be realistic for BEVs, it is likely to be unrealistic
for PHEVs because of the more complicated nature of the battery size choice
problem. In addition to higher production costs of larger batteries, PHEV
manufacturers face serious space constraints because they have to fit together
electric equipment, including battery and motor, and gasoline equipment, in-
cluding internal combustion engine and gas tank. Therefore, adding an extra
kWh of battery energy can be quite challenging and is likely to affect other
car characteristics. For this reason, I will model battery choice only for BEV
models. To be even more realistic, I will focus only on BEVs produced by
American manufacturers because, unlike foreign manufacturers, they are more
likely to adjust battery ranges in response to changes in U.S. policies.

Both demand and supply sides of the model assume static behavior of
agents, although dynamic aspects can potentially be important, given ongo-
ing improvements in the EV battery technology. On the demand side, one
can argue that consumers may have incentives to strategically postpone vehi-
cle purchases, waiting for the arrival of more affordable and longer-range EV
models, as well as for more charging stations to be built. However, the value
of postponing is likely to be limited for several reasons. First, consumers may
place a much larger weight on their current, rather than future, driving needs,
when deciding when to buy a car. Second, consumers are likely to face a lot of
uncertainty about when better EVs will arrive on the market and what their
prices and characteristics will be, as well as whether more charging stations
will be built in places where they need to drive, all of which should discourage
forward-looking behavior. Third, there is a rich set of traditional vehicles to
choose from at any point of time, which makes waiting less attractive relative
to buying now. Even if, nevertheless, consumers are still strategically waiting
for better EVs in the future, this should be captured by BEV and PHEV fixed
effects in the model. As long as counterfactual policies do not have a notice-
able effect on consumer beliefs about future EVs, the model should give valid

how much to drive each vehicle depending on which vehicle bundle they decide to own. The
main reason for this approach is data limitations. The only source available to me that
has information on vehicle bundles and mileage driven by each vehicle is the 2017 NHTS,
which has few observations of households owning EVs, with these EVs being mainly early
models. When estimating the demand, I tried to account for the effect of multiple vehicles
by including the number of vehicles in the inconvenience cost terms (presented below), but
the coefficients were not economically significant.
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predictions.37

On the supply side, while modeling pricing decisions in a static manner
seems plausible, battery range choices may potentially entail dynamic consid-
erations in reality, if battery updates are costly. However, this may have a
limited impact if battery ranges are updated mainly during scheduled vehicle
redesigns. Also, as Wollmann (2018) points out, vehicle manufacturers tend
to approximate the solutions to complicated budgeting and discounting prob-
lems by using solutions to simpler problems. The approach he uses suggests
that firms make updates to their vehicle lineups if the ratio of the expected
profit gain in the next period over the investment exceeds a certain threshold,
i.e., firms, essentially, solve a static problem. Consistent with this approach, I
model firm battery range choice as a static optimization over the next period,
solving a range optimization problem only when I observe a vehicle entry or
a battery update.38 However, I do not attempt to recover firms’ profit change
thresholds for battery updates because of a limited number of update occasions
in the data and concerns that update timing may coincide with scheduled ve-
hicle redesigns. Hence, for the counterfactual analysis I will assume that firms
always respond with updating battery ranges.

4.1 Demand

The demand-side model adopts a discrete choice random coefficient utility
framework. Consumers arrive at the market and choose from one of the j =
1, ..., J inside options or the outside option (j = 0). Consumer i expects to
drive di miles per year, with di being independent of j. Her utility from car j
in geographic market m is:39

Uijm = uijm+εijm = xjβ
x
i −α

p
i p
c
jm−α

f
i fuelcostijm−BEVj·cbev(di, rj, chstjm, vbi )

− PHEVj · cphev(ψ∗ijmdi, rj, chstjm, v
p
i ) + FEs+ ξjm + εijm, (1)

where xj is a vector of K observed car characteristics, pcjm is consumer price,
which is equal to MSRP minus federal and state subsidies, fuelcostijm is ex-

37Another argument for validity of the static approach can be found in Springel (2021),
who estimates a dynamic version of the demand model in addition to her main static spec-
ification. She finds no evidence of consumers strategically postponing EV purchases in
Norway.

38When possible, I also check what happens if firms actually optimize over several future
periods. I didn’t find that the results would be much different.

39I drop time subscripts for ease of notation. A geographic market here is a state, with
several exceptions.
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pected annual fuel expenses and βxi , αpi and αfi are individual-specific coef-
ficients on these terms; cbev(di, rj, chstjm, v

b
i ) and cphev(ψ

∗
ijmdi, rj, chstjm, v

p
i )

are BEV and PHEV inconvenience costs, which depend on annual mileage
di, car electric range rj, market m’s charging infrastructure level of develop-
ment chstjm, unobserved individual-specific factors vbi and vpi and, for PHEVs,
expected share of driving on electricity ψ∗ijm (also called the utility factor);
FEs is a set of brand and geographic market fixed effects; ξjm is unobserved
vehicle-market taste, and εijm is an i.i.d. type I extreme value error term. The
mean utility of the outside option is normalized to 0.

I assume the following functional form of the taste parameters for charac-
teristics, prices and fuel expenses: βxi

logαpi
logαfi

 =

βxαp
αf

+BZi + Σvi, vi ∼ N(0, IK+2),

where Zi is a vector of demographic characteristics (e.g., income, family size),
B is a matrix of coefficients and Σ is a diagonal matrix of standard deviations
of the elements of vi.

The fuel cost term fuelcostijm includes only one year of fuel expenses,

hence the fuel cost sensitivity coefficient αfi incorporates discounting over the
expected number of years of car ownership together with possible consumer
myopia with respect to the future fuel expenses. For gasoline, conventional
hybrid cars and BEVs expected annual fuel costs depend on local fuel costs per
mile wjm and the consumer’s annual mileage di. For PHEVs, fuel expenditures
also depend on the fraction of miles a consumer expects to drive on electricity,
ψ∗ijm, as well as costs per mile in electric and gasoline modes, we,jm and wg,jm.
Hence,

fuelcostijm =

{
wjmdi if j is gasoline, hybrid or BEV,[
ψ∗ijmwe,jm + (1− ψ∗ijm)wg,jm

]
di if j is PHEV.

The goal of including BEV and PHEV inconvenience cost terms is to ex-
plain the driving patterns of EVs presented in section 3. I assume that these
two inconvenience cost functions are convex and increasing functions of mileage
di, in the case of BEVs, and electric mileage ψ∗ijmdi, in the case of PHEVs.40 I
assume that other factors that can potentially affect consumer inconvenience

40Appendix D also presents a simplified demand model to give more intuition on how
the inconvenience cost terms help rationalize the usage patterns of EVs.
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include the car’s electric range rj, development level of the charging infras-
tructure chstjm and unobserved individual factors vbi and vpi , assumed to be
independent standard normal. These individual factors may capture, for ex-
ample, (in)convenience of charging station locations for a particular driver,
access to charging infrastructure at work and at home, specific driving needs
and patterns (e.g., long versus short trips) and, also, consumer “green” prefer-
ences, with more environmentally conscious consumers willing to incur higher
inconvenience costs in order to make a lower environmental impact. For BEVs,
I assume the following functional form of the inconvenience cost:

cbev(di, rj, chstjm, v
b
i ) = d2i · exp(θb1 + θb2 log rj + θb3chstjm + θb4v

b
i ),

where θb = (θb1, θb2, θb3, θb4) is a vector of parameters to be estimated.41

Unlike BEV drivers, PHEV drivers can optimally choose their inconve-
nience cost level by deciding on what fraction of their mileage to drive on
electricity. In order to save more money on fuel costs or to minimize their
environmental impact, PHEV drivers may want to exert more effort to drive
more on electricity by adjusting their trip schedules and driving routes or
spending more time at the charging stations. I assume that potential PHEV
buyers evaluate all the relevant factors and form consistent beliefs about their
optimal share of driving on electricity. In particular, they are assumed to solve
the following problem:

min
ψ

[ψwe,jm + (1− ψ)wg,jm]di +
cphev(ψdi, rj, chstjm, v

p
i )

θph5
.

The first term represents annual fuel expenses, which are decreasing in ψ,
assuming wg,jm > we,jm, i.e., driving on electricity is cheaper. The second term
is annualized inconvenience cost (PHEV lifetime inconvenience cost divided by
multiplier θph5), which is increasing in ψ. Assuming that

cphev(ψdi, rj, chstjm, v
p
i ) = θph5(ψdi)

2 exp(θph1+θph2 log rj+θph3chstjm+θph4v
p
i ),

and denoting Θph
ijm = θph1 + θph2 log rj + θph3chstjm + θph4v

p
i , the solution is

given by:

ψ∗ijm = min

[
1,
wg,jm − we,jm
2di exp(Θph

ijm)

]
. (2)

41Likely, consumers anticipate that more charging stations will be built in the future.
Hence, coefficient θb3 captures consumer expectations about the number of charging stations
in the future, given the current state of charging infrastructure development, chstjm.
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Figure 4: An example of PHEV optimal share of driving on electricity (the
utility factor) as a function of the total annual mileage

Notes: This figure shows an example of a PHEV driver’s optimal share of mileage

driven in electric mode as a function of her total mileage, given by equation (2), for

some set of parameters, holding everything else fixed.

Figure 4 depicts ψ∗ijm as a function of annual mileage di. The optimal share
of driving on electricity is decreasing in total mileage, reflecting that it is more
difficult for higher-mileage drivers to drive a higher fraction of their miles in
the electric mode. On the contrary, if di is small enough, all the driving can
be done using only electricity, i.e., ψ∗ijm = 1. Changes in fuel prices, car’s
electric range, charging infrastructure quality or unobserved consumer-specific
factors can shift the curve, resulting in more or less driving on electricity for
the same total mileage. The relationship between ψ∗ijm and di predicted by
(2) is consistent with Figure B1 from Appendix B, which shows a scatterplot
of the individual utility factors for the PHEV models from the CARB data.
From this scatterplot, it can be noticed that higher-mileage drivers tend to
have a lower percentage of electric miles, for all the PHEV models.

Optimal shares of driving on electricity for PHEVs, ψ∗ijm, are then plugged
into PHEV inconvenience and fuel cost expressions, which are part of the
utility specification (1). Product market shares are then given by familiar
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multinomial logit formulas:

sjm =

∫
exp(uijm)

1 +
∑J

l=1 exp(uilm)
dF (vi)dF (zi, di), (3)

where F (vi) is the joint (multivariate normal) CDF of (vi, v
b
i , v

p
i ) and F (zi, di)

is the joint CDF of consumer demographic variables zi and annual mileage di.

4.2 Supply

On the supply side, I model manufacturer choice of prices and BEV ranges,
assuming other car characteristics are exogenously given. I assume that, while
carmakers set prices every period, battery range decisions are made less fre-
quently (e.g., during scheduled redesigns). The model first order conditions
for battery ranges will be applied only when range updates are actually ob-
served or when new BEV models are introduced. Also, I will limit my analysis
of battery range decisions only to American manufacturers (Tesla, General
Motors, Ford, Fiat-Chrysler), since they are likely to base their range deci-
sions mainly on the U.S. market policies and conditions, and to those models
of foreign manufacturers that were developed specifically for the U.S. market
(e.g., Honda Fit EV and Toyota RAV4 EV). I assume that the timing of range
updates and new model introductions is exogenous.

Each firm f , offering an exogenous set of products Ff , is assumed to max-
imize the following static profit function:

Πf =
∑
j∈Ff

∑
m

(pj −mcj + ZEVjm)sjmMm,

where sjm are market shares given by (3), Mm is the size of geographic market
m, pj are car prices (MSRPs), mcj are car marginal costs and ZEVjm are dollar
values of ZEV credits that carmakers earn in the ZEV states for selling electric
cars (ZEVjm = 0 if m is not a ZEV state or j is not an EV). Assuming ZEV
credit dollar values are the same across the ZEV states, let ZEVj = ZEVjm if
m is a ZEV state. The first order conditions with respect to price and battery
range are then given by:

∂Πf

∂pj
= Sj +

∑
k∈Ff

(pk −mck)
∂Sk
∂pj

+
∑
k∈Ff

ZEVk
∂Szev,k
∂pj

= 0, (4)

∂Πf

∂rj
= −∂mcj

∂rj
Sj +

∑
k∈Ff

(pk −mck)
∂Sk
∂rj

+
∂ZEVj
∂rj

Szev,j +
∑
k∈Ff

ZEVk
∂Szev,k
∂rj

= 0.

(5)
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Here, Sj are sales of model j in all states and Szev,j are sales only in the ZEV
states. The first two terms of the price equation (4) are standard and the
third one reflects the effect of price changes on ZEV credit revenues through
the impact on the market shares. According to the range equation (5), the
battery range affects the profits in four ways: through the direct impact on
marginal costs (first term) and consumer utility, hence market shares (second
term), and through the impact on ZEV credit revenues, by affecting the credit
amount per car (third term) and overall sales in ZEV states (fourth term).

Equations (4) and (5) allow us to recover marginal costs, mcj, and marginal
cost derivatives with respect to range, ∂mcj/∂rj. For the counterfactual anal-
ysis, I need to specify a functional relationship between marginal costs and
battery range. The main characteristic of a battery pack is its energy capac-
ity, usually expressed in kWh, which does not depend on other car character-
istics. In contrast, a battery range is a function of the battery energy capacity
and the car’s characteristics, such as weight, size and shape. For example,
a battery pack with the same energy capacity would typically translate into
more miles of range for smaller cars than for bigger cars because the latter
consume more energy. For this reason, I expect less variation in battery costs
per kWh than per mile across manufacturers and car models, and therefore
I model marginal costs as a function of battery energy capacity rather than
range. More specifically, I assume the following relationship between range
and capacity:

rj = µ1j log(1 + µ2bj). (6)

Here, range rj is an increasing concave function of battery energy capacity bj.
This functional form allows me to capture decreasing returns to adding more
kWh’s of battery energy: an extra kWh increases the car’s weight, thus in-
creasing the car’s energy consumption per mile traveled. The variables µ1j and
µ2 are positive constants with µ1j being model-specific, capturing differences
in car sizes, shapes, body types, horsepower and other characteristics that
affect cars’ energy consumption. For the empirical application, I calibrate µ2

using data on battery capacities and ranges of some BEV models that offer
several range options.42 I assume that µ2 = 0.007. After that, I compute µ1j

for each BEV model using their battery capacity and range specifications.43

The relationship (6) is used to convert the marginal cost derivatives with

42These are mainly Tesla models: S, X and 3.
43Equation (6) assumes that manufacturers know exactly how battery capacity translates

into range, while in reality the range is learned only after regulatory agencies have conducted
their range tests. Hence, I assume that carmakers are able to correctly predict the test
results.

25



respect to range, ∂mcj/∂rj, into derivatives with respect to battery capacity,
∂mcj/∂bj:

∂mcj
∂bj

=
µ1jµ2

1 + µ2bj

∂mcj
∂rj

.

Then, I assume the following simple marginal cost function:

mcj = λxj + batcostj + εj, (7)

where xj is a vector of car characteristics, batcostj is the cost of all EV battery
components that vary with the battery energy capacity, which I will refer to
as the battery pack cost,44 and εj are i.i.d. errors.

I assume that the battery pack cost term, batcostj, is a quadratic function
of the battery capacity and time t:

batcostj = (γ0 + γ1t+ γ2bj + γ3t · bj + ηj)bj,

where ηj is a model-specific error term. This specification allows me to capture
two things. First, including interactions with the time trend t allows me to
capture the substantial decline in battery costs per kWh over the period of
the study. Second, including quadratic terms of battery capacity allows me
to capture the nonlinear relationship between battery pack cost and battery
capacity.45 Marginal cost derivatives with respect to battery capacity are then
given by

∂mcj
∂bj

= γ0 + γ1t+ 2γ2bj + 2γ3t · bj + ηj. (8)

5 Data

I combine several data sources to estimate the model. First, the U.S. vehicle
sales data for the calendar years from 2013 to 2018 come from IHS Markit/R.L.
Polk and Co. It reports the quarterly number of new vehicle registrations
by state, and by designated market area (DMA) for California. The data
are broken down by brand, model name, model year, fuel type and, in some
cases, model trim. For each car model included in the analysis, I distinguish
between different fuel types (gasoline, hybrid, plug-in hybrid or all-electric)46

44Conventional hybrids have electric batteries, too, but they are usually much smaller
than EV batteries. I assume that their costs are captured by conventional hybrid dummies.

45There is some evidence that larger battery packs have lower costs per kWh; see, e.g.,
The International Council on Clean Transportation (2019).

46The sales of diesel passenger cars are quite small, so I will not distinguish them from
gasoline cars.
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and assume the most popular model trim and model year for each fuel type at
a given time point. To avoid dealing with zero market shares, I combine states
with relatively small sales of EVs into several regional markets based on these
states’ geographic proximity and drop several states with low population and
extremely low market shares of EVs. On the other hand, I split California,
the state with the largest number of EVs in the U.S., into four markets with
the centers in San Francisco, Sacramento, Los Angeles and San Diego. I end
up with 34 geographic markets and 816 market-quarters.

Consumer choice sets are constructed by including all EVs available in a
given quarter and state47 and around 100 gasoline and conventional hybrid
cars. To select these cars, I analyzed sales data in San Francisco DMA, a
DMA with the highest share of EV sales in California, and picked top-selling
passenger cars in each calendar year, assuming they are closest substitutes for
EVs. The market size is defined as the total number of passenger vehicles
and light duty trucks sold in a given market-quarter. This is a convenient
assumption that allows me, first, to work with the empirical distribution of
consumer driving needs without making parametric assumptions, which would
be needed to recover the driving needs of those who opt out of a new vehicle
purchase. Second, I do not need to make any assumptions about emissions
generated by consumers who choose not to buy a new car.

The sales data are complemented with vehicle prices (MSRPs) and charac-
teristics collected from two online sources: msn autos (www.msn.com/en-us/
autos) and www.fueleconomy.gov. Information on federal and state subsi-
dies for EVs is collected from online legislative records. Average gasoline and
electricity prices are collected from the U.S. Energy Information Administra-
tion (EIA). I use residential electricity prices to compute EV charging costs
since charging at home is common among EV drivers48 and since I do not have
more precise data on charging locations and costs of EV drivers. All prices
and subsidies are converted into 2018 U.S. dollars using the BLS CPI.

The data on charging stations with exact locations and opening dates come
from the U.S. Department of Energy Alternative Fuels Data Center. I con-
struct a measure of the regional charging infrastructure development level by
dividing the number of level 2 and level 3 charging outlets in a state or a region
by the number of gasoline stations in the same state or region.

Information on vehicle mileage and consumer demographics completes the

47Sometimes carmakers do not offer their EVs nationwide but rather focus on some of
the ZEV states or other selected regions.

48For example, according to https://www.energy.gov/eere/electricvehicles/

charging-home, more than 80% of EV charging happens at home.
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dataset. Data on average mileage for 11 electric vehicle models comes from
California Air Resources Board (2017) and is described in Section 3. The 2017
National Household Travel Survey (Federal Highway Administration, 2017)
contains data on demographics and travel behavior of about 130,000 U.S.
households in all 50 states. I use this survey to construct a joint distribution
of driving needs and consumer demographics for each geographic market and
to compute aggregate statistics to build moment conditions for the estimation.
I focus only on relatively new vehicles, with model years from 2013 to 2017,
i.e., not older than five years at the time of the survey. I end up with a sample
of 49,902 vehicles, including information on vehicle make, model, model year,
fuel type, odometer reading and owner’s location and demographics.

6 Estimation and Identification

Demand. The demand estimation procedure is similar to Petrin (2002).
I estimate the parameters by minimizing a generalized method of moments
(GMM) objective function using two sets of moment conditions. The first
set are orthogonality conditions between the vector of instruments Zjm and
the structural econometric error term ξjm, i.e., E[Zjmξjm] = 0. I assume that
vehicle characteristics xj are exogenously given, hence they are valid instru-
ments for themselves, but prices pcjm are potentially correlated with unobserved
vehicle characteristics and demand shocks included in ξjm.49 To instrument
for price, I use state subsidies for EVs, which vary across states, time and EV
models.50,51 One concern about using this instrument is that the subsidies may
be set endogenously, in response to unobserved local preferences for electric
cars. To address this issue, I include market fixed effects and their interactions
with the EV dummy variable in order to capture local preferences and policies
that do not vary over the period of the study, and that may be correlated
with the subsidy amounts chosen by the states. The remaining concern is

49Notice that xj does not include battery range and charging station variables, which
enter only through the inconvenience cost terms and, in the case of PHEVs, indirectly,
through the fuel cost term. Endogeneity of charging station entry was recognized by previous
literature (Li et al. 2017, Li 2019, Springel 2021, and Shriver 2015, with the latter focusing
on ethanol fueling stations). I address this issue by identifying the parameters related
to charging stations and battery ranges using the second set of the moment conditions,
described below.

50A rich set of demographic moment conditions described further below allows me to not
use BLP instruments, commonly criticized for potentially being endogenous.

51Li (2019) also uses federal subsidies as a price instrument. I found that in my setting
they perform poorly, likely because they do not vary across states and time.

28



that the exact timing of subsidy introduction or discontinuation, or changes in
subsidy amounts, may be caused by unobserved changes in local preferences.
However, anecdotal evidence suggests that this is unlikely because of the long-
term nature of policy planning, with legislation procedures being unable to
react promptly to slight changes in consumer preferences.

The second set of moment conditions matches consumer demographic and
mileage statistics to their model predictions. First, using the 2017 NHTS data,
I match average household income and household size of buyers of expensive
(MSRP is over $43,000), moderately expensive (MSRP is between $26,000
and $33,000) and least expensive (MSRP is below $21,000) cars to identify the
parameters on the interaction terms between price and these demographics. I
also add moment conditions for average income and household size of hybrid,
plug-in hybrid and all-electric car buyers, which helps with the identification
of the interaction between fuel costs and these demographics.

Second, I construct the moment conditions for average mileage of various
vehicle models. Using the CARB data, I construct 22 moment conditions for
EVs, including average mileage for five BEVs, and average total and electric
mileage for six PHEVs. For four of these models, I am able to construct
the moment conditions separately for Californian and non-Californian drivers.
Next, using the 2017 NHTS data, I form average mileage moment conditions
for 43 gasoline and conventional hybrid models. Together with variation in fuel
and purchase prices, quality of the charging infrastructure, and vehicle char-
acteristics, including fuel consumption rate and electric range, these moment
conditions help identify the parameters inside the utility terms that depend on
consumer mileage, including the fuel expenses term and the BEV and PHEV
inconvenience cost terms. Intuitively, consumers with different driving needs
are trading off purchase prices, future fuel expenses and, in the case of EVs,
inconvenience costs of charging. Changes in fuel prices, charging infrastruc-
ture or vehicle ranges affect both market shares and average mileage. Hence,
knowing market shares and average mileage of vehicles with different prices,
costs per mile and electric ranges, which are purchased in regions or time pe-
riods with different levels of charging infrastructure development, allows me
to identify the corresponding parameters.

Supply. The supply side model is estimated separately from the demand
side. First, demand side estimates are used to recover marginal costs and
marginal cost derivatives with respect to range using firms’ first order con-
ditions (4) and (5). Next, supply side parameters (λ, γ) are estimated using
equations (7) and (8), assuming E[εj | xj, bj, ηj] = E[ηj | bj] = 0. Make
dummies are included in equation (7) to capture correlation between observed
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characteristics and unobserved ones, such as quality.52

7 Results

7.1 Demand

Reduced form results. Before presenting the estimates from the full model,
I first discuss performance of the state subsidies as a price instrument using
simple OLS and IV Logit regressions. The second and third columns of Table
3 show that the absolute value of the price coefficient increases by more than 4
times, from 0.034 to 0.14, when the instrument is used. This translates to an
absolute mean own price elasticity increase from 1.06 to 4.32. These results
suggest that the price endogeneity problem is serious and the instrument plays
an important role in correcting the issue. The last column reports the first
stage results of the 2SLS IV procedure. The F-statistic of the instrument
relevance test is very large, suggesting that the instrument is strong.

Table 3: OLS/IV Logit demand results

OLS IV First Stage

Price -0.034 (0.001) -0.140 (0.016)
State subsidy (Instrument) -1.015 (0.063)
Characteristics Yes Yes Yes
Make FEs Yes Yes Yes
Market, Market×EV FEs Yes Yes Yes
Time trend Yes Yes Yes

N obs. 82,830 82,830 82,830
Mean own price elasticity -1.06 -4.32
First stage F-statistic 259.85

Notes: Heteroskedasticity robust standard errors are in parentheses. Prices are in

$1,000. The second column reports simple OLS logit demand estimates. The third

column reports 2SLS logit estimates using state subsidies as an instrument, with

the first stage results shown in the last column.

52I also tried including make fixed effects in equation (8); this didn’t affect the estimates
significantly, and due to a relatively small number of observations in (8), I decided to drop
them.
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Vehicle characteristics. Table 4 reports the estimates from the full
model, which, in addition to the reported parameters, also includes make,
market, market×EV, and quarter dummies. The base coefficients on vehicle
characteristics are statistically significant and have the expected signs. The EV
indicator is interacted with the time trend, consumer mileage, and unobserved
consumer heterogeneity term (v1,i). The interaction with the time trend is in-
cluded to capture the ongoing changes in preferences for EVs among consumers
shopping for new vehicles. These changes may include trends in consumer en-
vironmental preferences, confidence in the new technology, awareness about
EVs etc., i.e., trends that are common within the general population. Also,
this term may capture changes in the composition of the new vehicle buyers.
In particular, the negative sign of the coefficient may suggest that consumers
with higher preferences for EVs were more likely to come to the market earlier
in time. Next, the interaction with consumer mileage is included to capture
the possible correlation between environmental preferences of consumers and
their attitudes towards driving. For example, one may expect that environ-
mentally concerned consumers have higher preferences for EVs (as well as
other “green” products) and drive less on average, because, e.g., they prefer
more environmentally friendly ways of transportation, like public transport,
cycling or walking. If this is true, then we should expect the coefficient on
the interaction between EV and mileage to be negative. The estimate of this
coefficient is, indeed, negative, but statistically insignificant and very close to
zero, indicating that this effect, if present, has a very limited impact. Finally,
the interaction with the unobserved heterogeneity term is intended to capture
consumer heterogeneity in preferences for EVs that is unrelated to how much
consumers need to drive.

There are two more demographic interaction terms for vehicle character-
istics I include in the final specification.53 The first one is the footprint of
the car interacted with log mileage. This term is included to capture the idea
that consumers who need to drive more miles prefer bigger cars. The second
term is the interaction between household size and minivan, which captures
the preferences of large households for minivans.

Price coefficient. The parameter estimates of the price coefficient suggest
that price sensitivity is decreasing in income, which is intuitive. The estimated
mean own-price elasticity is equal to -6.26, which is somewhat higher in ab-
solute terms than elasticities computed by Berry et al. (1995), which range
from -6.5 to -3. However, given that the period of my study begins more

53I started with a larger number of interaction terms and eventually kept those that were
consistently impactful.
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Table 4: Demand estimates

Parameter estimate Standard error

Vehicle characteristics
Constant -9.706 0.360
AWD 0.185 0.094
Horsepower/Weight 34.655 3.521
Footprint (L*W), ft2 0.0369 0.0043
Interior Volume, ft3 0.0328 0.0030
SUV 0.443 0.084
Minivan -30.942 0.294
Hybrid -2.121 0.079
PHEV -1.170 0.122
BEV 0.592 0.134
Time -0.0507 0.0028
EV × Time -0.0607 0.0053
EV × Mileage -0.0085 0.0091
EV × v1,i 0.202 1.005
Footprint × Log Mileage 0.0276 0.0018
Minivan × Log Household Size 18.696 1.033

Log coefficient on Price
Const. -0.864 0.077
Income -0.120 0.0062
v2,i 0.017 0.336

Log coefficient on Fuel Expenses
Const. -1.010 0.069
Income 0.232 0.0047

BEV Inconvenience Cost term
Const. 9.354 0.416
Log Battery range -2.530 0.138
Charging stations -1.676 0.319
vbi 1.250 0.101

PHEV Inconvenience Cost term
Const. -2.560 0.667
Log Battery range -0.998 0.218
Charging stations -0.075 0.065
vpi 0.641 0.398
PHEV Cost multiplier 6.942 3.840

N obs. 82,830

Notes: The table shows GMM parameter estimates of the utility function (1).

The specification also includes make, market, market×EV, and quarter dummies.

Asymptotic standard errors are reported. v1,i, v2,i, v
b
i , and vpi are i.i.d. standard

normal. Mileage, income and household size are drawn from a joint empirical dis-

tribution, built from the 2017 NHTS.
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than 20 years after the last year of the data used in Berry et al. (1995), this
difference can be due to some significant changes that happened in the U.S.
auto industry, such as an increased number of products and more intensive
competition.

Fuel cost coefficient. Unlike price sensitivity, the estimated fuel cost
sensitivity is increasing in income, which echoes a result from a seminal work
by Hausman (1979), who studied consumer tradeoff between purchase price
and operating costs for room air conditioners and found that lower-income
households had considerably larger implied discount rates for future utilization
costs relative to higher income ones. Hausman (1979) argues that this result
can be due to different marginal tax rates and availability of credit, as well as
lack of savings and uncertainty of income streams of lower-income consumers.

In the case of passenger cars, understanding how much consumers discount
future fuel expenses is important for designing policies aimed at reducing trans-
portation emissions. For example, if consumers discount future fuel costs by a
lot, then subsidizing purchase prices of more fuel efficient vehicles can be more
effective than increasing gasoline tax rates (see, e.g., Grigolon et al., 2018). I
follow Hausman’s work and compute fuel cost discount rates implied by the
estimates of my model for consumers from different income groups. I assume
that consumers expect future gasoline and electricity prices to be equal to the
prices at the moment of purchase (Anderson et al., 2013) and that consumers
expect to drive the same number of miles every year in the future. Then the
expected discounted fuel expenses can be written as:

Gijm =
S∑
s=1

1

(1 + δi)s
fuelcostijm,

where δi is the individual discount rate, fuelcostijm is the expected annual fuel
cost (see utility specification (1)) and S is the expected car lifespan, which is
assumed to be 15 years. Gijm has to be multiplied by the price coefficient αpi
when it enters the utility function, hence the relationship between αpi and the
fuel cost coefficient αfi is:

αfi = αpi

S∑
s=1

1

(1 + δi)s

and δi can be recovered from the ratio of fuel cost and purchase price coef-
ficients. I compute the averages of these ratios by income group to recover
discount rates for the population of new vehicle buyers. The results, pre-
sented in Table 5, show that the discount rate varies greatly with income,
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Table 5: Estimated discount rates by income group

Income group Share of new car buyers Implied discount rate

<$35,000 11.7% 42.9%
$35,000-$50,000 9.6% 23.3%
$50,000-$75,000 18% 15.3%
$75,000-$100,000 16% 8.9%
$100,000-$150,000 24.2% 1.7%
>$150,000 20.5% -6.7%

All incomes 3.2%

Notes: The table uses average ratios of fuel cost and purchase price coefficients by

income group to compute annual discount rates of future fuel expenses.

from 42.9% for households with income less than $35,000 to -6.7% for house-
holds with income over $150,000. In addition to the reasons mentioned by
Hausman (1979), this result can also be explained by potential correlation of
income with consumer myopia toward future expenses and by “green” pref-
erences, with “green” preferences being related to utility gains from driving
more fuel efficient vehicles because they are more environmentally friendly, on
top of utility gains from lower future fuel expenditures.54

The last row of Table 5 reports the discount rate computed for all income
groups. It is equal to 3.2%. The recent literature on consumer myopia about
future fuel costs, including Grigolon et al. (2018), Sallee et al. (2016), Allcott
and Wozny (2014) and Busse et al. (2013), assume a discount rate of 5-6%,
estimate a myopia parameter,55 and find that consumer undervaluation of
fuel costs is moderate to absent on average. By comparing their assumed
discount rates with the discount rate for all income groups computed here, I
can conclude that my results imply no undervaluation, consistent with these
papers, and even slight overvaluation of fuel costs on average. However, as
was discussed earlier, consumer heterogeneity plays an important role. In the
context of EVs, the results indicate that policies aimed at reducing purchase

54Notice that “green” preferences captured here are not specific to EVs. In the model,
“green” preferences specific to EVs are captured by the inconvenience cost terms, BEV and
PHEV dummies and market fixed effects interacted with the EV dummy.

55Estimating consumer myopia by income group requires making assumptions about
discount rates, which are likely to be different for different income groups. This is out of
the scope of this paper.
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prices, e.g., purchase subsidies, can potentially be a more effective tool to
encourage adoption among lower-income consumers relative to policies taxing
usage of gasoline cars or subsidizing charging costs for electric cars.

BEV inconvenience costs. Coefficient estimates of the BEV inconve-
nience cost term from Table 4 indicate that both battery range and charg-
ing infrastructure are important factors in consumer inconvenience related to
charging and driving a BEV. Also, the coefficient on the random term vbi sug-
gests that there is considerable heterogeneity in the unobserved factors. To
make economic sense of these estimates, I compute dollar values of the in-
convenience costs for several BEV models with different battery ranges over
time.

Figures 5a and 5b show evolution of average inconvenience costs nationally
and in California for four BEV models: relatively inexpensive and short-range
Nissan Leaf, expensive and long-range Tesla Model S, and two relatively af-
fordable and long-range models introduced in 2017: Chevrolet Bolt and Tesla
Model 3. Solid lines represent inconvenience costs conditional on purchase,
i.e., those of actual buyers of these vehicles, and dashed lines are uncondi-
tional inconvenience costs, i.e., inconvenience costs of the general population
of new vehicle buyers. First, these graphs indicate a large difference in incon-
venience costs between BEV adopters and an average consumer. For example,
from Figure 5a, the average inconvenience costs of Nissan Leaf buyers are es-
timated to fall from around $7,000 in 2013 to $3,000 in 2018, while average
costs among all consumers, which is outside the plot, decreased from $250,000
to $39,000 at the same time.56 The longer-range models show lower average
inconvenience costs for both buyers and, especially, the general population.
The difference between the two groups is much smaller than in the case of
Leaf, indicating that, for longer-range BEVs, other factors start to play less
important roles, but it is still considerable.

Limited availability of charging stations is an important factor in BEV
inconvenience. This can be noted from negative time trends of the inconve-
nience costs graphs, especially those for the general population, since more
charging stations were built over time. I note that some of this effect can
be due to vehicle range updates. To get a clearer picture, Figure 5b shows
inconvenience cost estimates for the same models in California, a state with

56One might think that the numbers for an average consumer are unrealistically large,
but recall that the model assumes that consumers have to drive a given number of miles
every year regardless of what car they purchase. For example, if a consumer needs to drive
long distances regularly in places without adequate charging infrastructure, then buying a
75-mile Nissan Leaf would make it impossible to satisfy those driving needs. This will be
captured in the model by a huge cost of inconvenience.
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Figure 5: BEV inconvenience costs and average mileage predicted by the model
Notes: Figures a) and b) show the average estimated inconvenience costs for four

BEV models in all states and California, respectively. Solid lines represent estimates

conditional on purchase; dashed lines are average population estimates. Average

population costs for Nissan Leaf are outside the plots; they decrease from $250,000

in 2013 to $39,000 in 2018 for all states, and from $106,000 to $4,800 for California.

Figures c) and d) show average model predicted mileage for the same cars together

with national and state averages for all passenger vehicles, computed from the 2017

NHTS. BEV ranges are in parentheses. Nissan Leaf range was updated in 2014

from 75mi to 84mi, in 2016 to 107mi and in 2018 to 151mi. Tesla Model S range is

assumed to be updated in 2018 from 265mi to 335mi.
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a relatively large number of charging stations.57 The inconvenience costs in
California are much lower for an average consumer, i.e., unconditional on pur-
chase. This is especially prominent for shorter-range BEVs. For example, in
2018, the average inconvenience costs for the 151-mile Nissan Leaf are $39,000
nationally and $4,800 in California, while for the 335-mile Tesla Model S these
numbers are around $7,000 and $700. The difference in inconvenience costs
of actual buyers is not that large between California and all states. However,
due to more charging stations, there are relatively more consumers with lower
inconvenience costs in California. Noticeably, the inconvenience costs of buy-
ers and an average driver in California have essentially converged by 2018 for
BEVs with more than 300 miles of range (Tesla Model S and 3), but are still
above zero, at the level of about $500-$1,000.

Figures 5c and 5d show model predicted average mileages for the same
BEV models. The estimation objective function includes moment conditions
for Model S and Leaf in 2013-2014, and the model predictions match these
moment conditions well. Over time, as the inconvenience costs are falling,
the average mileages of Model S and Leaf are increasing and get close to the
state average in California by 2018. Nationally, though, Leaf mileage is still
considerably below the national average. Interestingly, despite having a range
similar to the Tesla Model S (310mi and 335mi), the Tesla Model 3 is driven
about 2,000 miles more on average. Since Model S is much more expensive
than Model 3 (over $80,000 vs. $46,500), Model S buyers have higher incomes
on average and, hence, are less sensitive to purchase price and more sensitive
to future fuel expenses. Thus, they do not need to drive many miles for a
large enough difference in fuel costs relative to gasoline cars to justify the
purchase of Model S. On the contrary, Model 3 buyers are relatively more
price sensitive, hence, they need to drive relatively more miles to justify their
purchase of Model 3. A similar argument explains why Chevrolet Bolt, which
has a smaller range (238mi) and much lower price ($36,600) than Model S, is
driven a number of miles that is similar to Model S.

PHEV inconvenience costs. Finally, the last portion of Table 4 reports
parameter estimates of the PHEV inconvenience cost term. Similarly to BEVs,
battery range is an important factor. However, charging stations do not seem
to play an important role; the corresponding coefficient is neither statistically
nor economically significant.58 A possible explanation is that PHEV drivers

57According to the measure used in this paper, the level of charging infrastructure devel-
opment in California is on average 5-6 times higher than in other states.

58This can be checked by plugging in values of the charging stations variable, whose mean
is equal to 0.34 and the maximum value is equal to 1.67.
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charge their cars mostly at home and, when needed, rely on the gas engine
rather than public charging stations.

Understanding how much PHEVs are driven on electricity versus gasoline is
crucial for understanding the environmental impact of plug-in hybrids and for
policy design. Policymakers typically rely on assumed PHEV utility factors,
i.e., proportions of electric mileage in total mileage driven by a typical driver.
In my model, individual utility factors are given by ψ∗ijm and the model is able
to predict how these utility factors are changing under various circumstances,
e.g., changes in battery ranges, fuel prices, market conditions etc., both for
buyers and non-buyers of PHEVs. To illustrate, Figure 6a shows predicted
average utility factors for three PHEV models with different battery ranges:
Chevrolet Volt with 38 and then 53 miles of range, Ford Fusion Energy with 20
and then 26 miles of range and the plug-in version of Toyota Prius with 11 and
then 25 miles of range. These predicted utility factors are markedly different
for PHEVs with different battery ranges, e.g., in 2013, the average utility factor
for a 38-mile Volt is predicted to be about 95%, for a 20-mile Fusion about 55%,
and for an 11-mile Prius Plug-in about 20%. The model also predicts strong
response to fuel prices: when gasoline prices dropped drastically in 2015, so
did the utility factors. The model predicts that the difference in utility factors
between buyers and non-buyers is relatively small, and sometimes non-buyers
even have larger utility factors,59 although, as shown in Figure 6b, buyers
generally have lower inconvenience costs than non-buyers.

According to Figure 6b, overall levels of PHEV inconvenience costs are
lower than those in the case of BEVs. This is also true for the difference
between PHEV buyers and the general population. This is not surprising
because consumers can control their level of inconvenience by adjusting utility
factors. The optimal inconvenience costs are higher for longer-range PHEVs,
because, on the margin, each unit of the inconvenience results in more electric
miles driven and, hence, larger fuel cost savings for longer range PHEVs.
Also, not surprisingly, when gasoline prices fall, driving on gasoline becomes
relatively cheap and consumers choose smaller utility factors with lower levels
of inconvenience.

59Overall, buyer and non-buyer utility factors are determined by multiple factors, in-
cluding purchase and fuel prices, and fuel consumption of competitive cars and PHEVs in
electric and gasoline modes. For example, lower mileage drivers may have larger utility
factors, but, since they do not drive a lot of miles, their potential fuel cost savings do not
justify paying a higher purchase price for a PHEV, which may result in the utility factor
being larger on average for non-buyers.
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b) PHEV inconvenience costs

Chevy Volt (38-53mi) - buyers
Ford Fusion Energi (20-26mi) - buyers
Toyota Prius Plug-in (Prime) (11-25mi) - buyers

Chevy Volt - all consumers
Ford Fusion Energi - all consumers
Toyota Prius Plug-in (Prime) - all consumers

Figure 6: PHEV utility factors and inconvenience costs predicted by the model
Notes: This figure shows the average consumer utility factor (share of electric miles

in total mileage) and inconvenience cost estimates for three PHEV models. Solid

lines represent estimates conditional on purchase; dashed lines are average popula-

tion estimates. Electric ranges are in parentheses. Chevy Volt range was updated

in 2016 from 38mi to 53mi. Ford Fusion Energi range was updated at the end of

2018 from 20mi to 26mi. Toyota Prius Plug-in (11mi) was discontinued in 2015 and

was reintroduced as Prius Prime (25mi) at the end of 2016.

7.2 Supply

Markups implied by the model generally match public financial disclosures.60

For gasoline and conventional hybrids the average profit margin is predicted
to be 19%, while for EVs it is 13%, if ZEV credits are included in the revenues,
and 6%, if not. Lower markup estimates for EVs can be explained by their
relatively high production costs and limited demand due to charging incon-
venience. Interestingly, the model predicts that EVs that are not available
outside the ZEV states are not profitable on average if ZEV credits are ex-
cluded from the revenues, with corresponding average margins equal to -0.2%,
or -2.2% if weighted by sales. This finding suggests that manufacturers of
these vehicles find it more profitable to sell these cars only in the ZEV states

60The estimates of the marginal costs are reasonable, too. Chevrolet Spark with an
MSRP of about $13,000 has the lowest estimated marginal cost of about $8,700. Tesla
Model X with an MSRP of $96,000 and 100kWh battery pack has the highest marginal cost
estimate of about $86,000.

39



Table 6: Marginal cost parameter estimates

Parameter estimate Standard error

Specs except battery (λ)
AWD 0.857 0.308
Footprint (L*W) 0.262 0.013
SUV 0.584 0.279
Minivan -3.132 0.393
Gas engine HP 0.0751 0.0028
Electric motor HP 0.0493 0.0113
BEV 9.823 1.486
PHEV 5.940 1.279
Hybrid 3.126 0.161

PHEV battery cost (PHEV γ)
kWh 0.915 0.265
t*kWh -0.0509 0.0068
kWh2 -0.0095 0.0096
t*kWh2 0.0013 0.00034

BEV battery cost (BEV γ)
kWh 0.842 0.0422
t*kWh -0.0235 0.0019
kWh2 -0.0051 0.00045
t*kWh2 1.61e-4 2.07e-5

N obs. 2623
R2 0.948

Notes: Make dummies are included in equation (7). Heteroskedasticity robust stan-

dard errors are reported.

at lower prices and make profits through earning ZEV credits, rather than to
sell them nationally at higher prices and thereby earning fewer ZEV credits.

Equations (7) and (8) are used to estimate marginal cost parameters γ and
λ. Table 6 reports the results. The coefficient estimates can be interpreted
as partial effects measured in $1,000. For example, adding one square foot
to a car’s footprint is estimated to cost on average $262 and transforming a
two-wheel drive vehicle into an all-wheel drive one costs $857. Battery cost
function parameters are estimated more precisely for BEVs than for PHEVs,
because for BEVs the estimation is aided by the marginal cost derivative in
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Notes: Vertical bars represent 95% confidence intervals. BloombergNEF survey

results can be found at https://about.bnef.com/.

Equation (8). Equation (8) also allows me to recover vehicle-specific shocks
to battery costs, hence different BEV models are allowed to have different
battery cost structures, which I will use for the counterfactual analysis. The
results indicate that the battery cost function is concave in its capacity and
decreasing in time, which is consistent with industry technical reports.

To check whether the battery cost estimates agree with other sources, I
compute average battery costs per kWh over time and compare them to the
BloombergNEF (BNEF) annual battery price surveys, which consider EV and
stationary storage batteries. Figure 7 shows the results. The BNEF numbers
and the model estimates are very similar. The model predicts that the av-
erage battery costs per kWh declined from $574 to $214 during 2013-2018,
while corresponding BNEF numbers are $650 and $176. The figure also shows
battery cost estimates for Tesla, an anecdotally recognized leader during this
period. Consistently with the anecdotal evidence, the model predicts that
Tesla paid on average $53 less per kWh than other carmakers, with the dif-
ference declining to $33 by 2018. It is worth noting that Tesla’s estimated
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battery cost advantage comes from two sources. The first is from the concave
structure of the battery cost function and relatively large batteries that Tesla
puts in the cars. The second is from model specific battery cost shocks, which
are on average negative for Tesla models. Finally, I check publicly available
battery cost estimates of some EV models against the model predictions. For
example, UBS (2017) estimates the battery pack cost of the 2017 Chevrolet
Bolt to be $11,500-$12,500, while the model estimate is $13,000. The same
report’s estimate for the 2018 Tesla Model 3 battery pack is $12,000-$14,200,
while the model prediction is $14,900.

8 Counterfactual Analysis

In this section, I use the model estimates to perform two counterfactual exer-
cises. In the first exercise, I analyze the effects of two major American policy
programs for EVs: federal purchase subsidies for consumers and the ZEV reg-
ulation. In the second exercise, I solve for the federal subsidy structure that
maximizes either environmental benefits or total welfare holding the program
budget fixed, allowing the subsidy to distinguish between BEVs and PHEVs
and to depend linearly on battery range.

For each exercise, I assume that carmaker product offerings are given ex-
ogenously, but carmakers respond by adjusting prices of their vehicles. Also,
American manufacturers are assumed to respond with battery range adjust-
ments of their BEVs while holding other vehicle characteristics fixed. The
analysis is performed for the fourth quarter of 2018. In this quarter, there are
four BEVs for which the battery range is assumed to be endogenous. These
vehicles are sold nationally and include three Tesla models - model S with 335
miles of range and an MSRP of $94,000, model X (295mi, $96,000) and model
3 (310 mi, $46,500) - and Chevrolet Bolt (238mi, $36,620). These four vehicles
together make up 88% of the total BEV sales in this quarter.

I compute policy environmental effects and the effects on consumer surplus
and producer profits. The effects on consumer surplus are computed using the
compensating variation formula (Small and Rosen, 1981):

∆CS =

∫
1

αpi

[
ln

(
1 +

J∑
j=1

exp(u1ijm)

)
− ln

(
1 +

J∑
j=1

exp(u0ijm)

)]
dF (vi)dF (zi, di),

where 0 indicates a baseline scenario and 1 indicates a counterfactual scenario.
The environmental effects are approximated by the effects on total CO2 emis-
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sions.61 I start by computing annual emissions for each vehicle. For gasoline
cars, I use gasoline consumption ratings (MPG) and model predicted annual
mileages to compute annual gasoline consumption, which is then converted
into CO2 emissions. For BEVs and PHEVs in electric mode there are no
tailpipe emissions, but emissions are produced when electricity that is used
for charging is generated. To account for this, I use data on CO2 emissions
per kWh of electric energy produced in a given state from the U.S. Energy
Information Administration’s state electricity profiles.62 These data are then
combined with vehicle electricity consumption per mile (kWh per mile) and
model predicted average mileages to compute annual CO2 emissions. In the
next step, dollar values of CO2 emission damages are calculated assuming a
$50 social cost of CO2 per metric ton (U.S. Environmental Protection Agency,
2016) and 15 years of average car lifespan.

8.1 Federal Subsidy and ZEV Regulation Effects

To evaluate effects of the federal subsidies and the ZEV regulation, I will
proceed by removing one program at a time. Thus, the baseline is a market
where both programs are in place.63 The ZEV regulation will be “removed”
by setting ZEV credit prices to zero. In reality this would mean relaxing
the ZEV regulation requirements to a degree that they do not affect seller
decision-making.

A detailed description of the ZEV regulation (as well as the federal sub-
sidies) is provided in Section 2.2. For the purpose of this counterfactual, one
can think about the ZEV regulation as a system of subsidies to sellers, where
the subsidy size depends on the EV’s type and range. After having converted
ZEV credits into their dollar values, Figure 8 compares the structures of the
two programs. The federal subsidy does not distinguish between BEVs and
PHEVs and, essentially, gives a flat $7,500 subsidy to all BEVs (the lowest
BEV range in the given quarter is 84mi), with some differences for ranges rele-
vant to plug-in hybrids.64 The structure of the ZEV regulation is different in a

61I consider only CO2 for simplicity. Some studies, however, also take into account other
pollutants; see, e.g., Holland et al. (2016).

62I use average emission rates, although, ideally, I need marginal emissions rates instead.
However, the latter is not readily available to me.

63An alternative approach would be to remove both programs and then add one at a
time to see their effects. However, since each program is estimated to have a large impact
on the EV segment of the market, it seems implausible to believe that the product offerings
would be the same if both programs were removed.

64The federal subsidy is actually a function of the battery capacity, not range, hence the
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and the ZEV regulation. The non-flat part of the federal subsidy is approximate,

since the actual subsidy is a function of battery capacity rather than range. ZEV

credit dollar values are my estimates. The vertical dashed lines represent the battery

ranges of some BEV and PHEV models available in 2018.

couple of ways. First, it distinguishes between BEVs and PHEVs and it gives
much greater support to BEVs – up to $8,800 – while for PHEVs it is up to
around $2,000. Second, both BEV and PHEV schemes have non-flat regions
relevant to corresponding EV type ranges: up to 240 miles for BEVs and up to
70 miles for PHEVs. Which structure is better for the environment or social
welfare is an empirical question because of the presence of multiple factors,
including the trade-off between charging inconvenience and production costs
of EV batteries, discussed earlier.

I start my analysis by exploring the effects of the two programs on battery
ranges. As Table 7 shows, while the federal subsidy, which is flat for BEVs, has
no noticeable effect on BEV ranges, the effect of the ZEV regulation, which
gives more support to longer range BEVs, is significant, especially for more
affordable models: the range of Chevrolet Bolt decreases from 238 miles to

non-flat part on the picture is approximate.
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Table 7: Federal subsidy and ZEV regulation effects on BEV ranges

Range, mi

Model Actual range no Fed subsidy no ZEV regulation

Chevrolet Bolt 238 240 153
Tesla Model 3 310 312 265
Tesla Model S 335 338 321
Tesla Model X 295 297 282

Notes: The last two columns report the range predictions if the federal subsidy is

removed (column 3) or the ZEV credit prices are set to zero (column 4).

153 miles and of Tesla Model 3 from 310 to 265 miles if the ZEV regulation is
removed.

Table 8 shows the estimated program effects on other outcomes of interest.
First, to make sure the programs have comparable scales, I compute the total
amount of the federal subsidies received by consumers and the total dollar value
of the ZEV credits earned by sellers. The federal subsidy has a larger scale
of $577M, while the ZEV regulation’s scale is $301M; however, the numbers
are quite comparable. Both programs have a large impact on sales of EVs and
total annual electric miles traveled; without the federal subsidy, EV sales would
drop by 65% and electric mileage by 67%, and, without the ZEV regulation,
EV sales would drop by 38% and electric mileage by 48%.

The ZEV regulation adds relatively more electric miles and, hence, replaces
more gasoline miles: an EV added due to the ZEV regulation is driven on av-
erage 14,638 electric miles while an EV added due to the federal subsidy is
driven 11,962 electric miles on average. This translates into larger environmen-
tal benefits of an added electric vehicle due to the ZEV regulation: $3,636,
versus $3,214 in the case of the federal subsidy. This can be attributed to
the differences in the program structures: the ZEV regulation gives relatively
more support to BEVs and even more support to longer-range BEVs.

Both programs are estimated to improve consumer surplus, which is not
surprising, because they make EVs more affordable while not much affecting
the prices of traditional vehicles. An interesting question is to what extent
consumers capture the program benefits. For the federal subsidy, the estimated
pass-through rate to the consumers is 101%, i.e., consumers fully capture the
subsidy. This finding is in line with the results by Sallee (2011), who studied
tax credits for Toyota Prius in the 2000s, and Muehlegger and Rapson (2021),
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Table 8: Federal subsidy and ZEV regulation effects

no Federal Subsidy no ZEV Regulation

Program scale $577M $301M
∆EV sales -54,756 (-65%) -32,177 (-38%)
∆E-miles -655M (-67%) -471M (-48%)
Average e-mileage of added EVs 11,962mi 14,638mi
CO2 emissions benefit -$176M -$117M
CO2 benefit per added EV $3,214 $3,636
∆Consumer surplus -$373M -$229M
∆Profit -$169M -$44M
∆Welfare -$718M -$390M
∆Welfare (plus tax dollars) -$141M -$390M

Pass-through rate to consumers 101% 61%

Notes: The effects are relative to the market with both programs present. Program

scale is the total value of subsidies received by consumers or ZEV credits earned by

carmakers. CO2 emission benefits are computed assuming $50 social cost of CO2 per

metric ton and 15 years of average car lifespan. Welfare is the sum of CO2 benefit,

consumer surplus and firm profits. All numbers are computed for the market as of

the fourth quarter of 2018.

who studied subsidies for EVs in California. Both papers found that consumers
fully capture the subsidy. In the case of the ZEV regulation, the pass-through
rate of ZEV credits to consumers is lower and equal to 61%. This lower value
is because sellers earn ZEV credits only in the ZEV states, but set the prices
nationally. Hence, they have incentives to reduce the prices of their EVs, but
they do not reduce them too much in order to maintain profit margins for sales
outside the ZEV states.

To compute the effect on carmaker profits, revenues from ZEV credits are
counted as a part of the profit function and the regulation compliance costs are
subtracted when necessary. Removing the federal subsidy hurts seller profits,
because the subsidy encourages consumers to buy EVs, which helps the sellers
earn ZEV credits. When the ZEV regulation is removed, the carmakers don’t
earn revenues from ZEV credits and, also, don’t pay costs of compliance with
the ZEV regulation. This is beneficial for traditional carmakers, whose profits
are estimated to increase by $100M. However, for Tesla, which is the only
carmaker that doesn’t sell any gasoline cars and, hence, doesn’t incur any cost
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of compliance, removing the ZEV regulation means only losing profits, with
the profit loss estimated to be $144M. Thus, the estimated overall effect of
removing the ZEV regulation on the industry profits is negative and equal
to -$44M. This negative effect, however, may potentially be reversed in the
future, because the requirements of the ZEV regulation are tightening over
time, meaning increasing compliance costs. Hence, in the long run, the ZEV
regulation may be hurting the overall industry profits.

Finally, both programs are estimated to improve social welfare: the federal
subsidy effect is $718M and the ZEV regulation effect is $390M. However, the
federal subsidy is funded directly by taxpayers, hence, the program scale can
be seen as the social cost of the subsidy. After subtracting it from the welfare
effect above, the net welfare effect is equal to $141M. In the case of the ZEV
regulation, the aforementioned number is already the net effect, although, for
a more complete picture, it’s important to take into account the long run effect
of the ZEV regulation on the firms’ profits.

8.2 Optimal Federal Subsidy

Next, I investigate whether it is possible to improve performance of the fed-
eral subsidy by employing a structure similar to that of the ZEV regulation,
i.e., distinguishing between BEVs and PHEVs and depending piece-wise lin-
early on battery range. I will solve for the optimal subsidy scheme holding
the program scale fixed and assuming either of two objectives: maximizing
social welfare or maximizing the environmental effect of the program. Focus-
ing on the environmental effect rather than social welfare may be useful for
two reasons. First, in this case, assumed dollar costs of emission damages
do not affect the solution,65 while the subsidy that optimizes social welfare
depends on assumed dollar values of CO2 emissions, which some readers may
find too ad hoc. Second, it may better reflect long-term regulation goals be-
cause an emission-minimizing subsidy may be more efficient at encouraging
future development and entry of vehicles with more environmentally favorable
characteristics.

Figure 9 presents the optimal structures of the federal subsidy depending
on which objective function is optimized. I will start by comparing the scheme
maximizing CO2 benefit with the status quo subsidy. First, the CO2 optimal
subsidy allocates more support to BEVs with relatively long ranges (more than
125 miles) and less support to PHEVs. The maximum subsidy is $8,260 for
BEVs and $5,335 for PHEVs, while the current subsidy scheme gives at most

65However, I will still present the estimated effects in dollars for ease of interpretation.
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subsidy budget.

$7,500 for both BEVs and PHEVs. The optimal subsidy gives progressively
more support to longer-range BEVs. For example, a 100-mile BEV receives
around $7,300 while 240-mile and longer range BEVs receive the maximum,
$8,260. For the ZEV regulation, the corresponding numbers are $4,200 and
$8,800, i.e., the optimal subsidy is much flatter because the ZEV regulation is
already steep enough.

The CO2 optimal subsidy does not give any support to PHEVs with ranges
less than 25 miles. At the time of the counterfactual analysis, most plug-in
hybrids with ranges below 25 miles were plug-in versions of vehicles of luxury
brands such as BMW, Mercedes or Audi, which are relatively fuel-inefficient
and not expected to be driven a lot on electricity. Hence, it’s not surprising
that reallocating subsidies from these vehicles to BEVs or longer-range and
more affordable PHEVs is beneficial for the environment.

Table 9 reports the effects of the optimal subsidy schemes relative to the
status quo, with percentage changes being relative to the effects of the actual
subsidy (reported in Table 8). The CO2 optimal subsidy results in lower
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Table 9: Optimal federal subsidy effects

Objective ∆EV sales ∆E-miles ∆CO2 effect ∆Cons. Surpl. ∆Profit ∆Welfare

CO2 benefit -4.0% +4.6% +$8.1M (+4.6%) -$9.3M (-2.5%) +$4.5M (+2.7%) +$3.2M (+0.4%)
Welfare -1.7% +2.9% +$4.9M (+2.8%) -$0.0M (-0.0%) +$6.3M (+3.7%) +$11.2M (+1.6%)

Notes: Percentage effects are relative to the federal subsidy effects reported in Table

8.

sales of EVs (-4.0%), but more electric miles traveled (+4.6%) and higher
environmental impact of the program (+$8.1M, or +4.6%), which means that
a subsidy scheme maximizing CO2 benefits does not necessarily maximize sales
of EVs. This result illustrates that focusing on EV sales can be misleading if
the true goal is minimizing emissions (or maximizing social welfare, as will be
discussed later).

The CO2 optimal subsidy improves seller profits since it encourages adop-
tion of EVs that earn more ZEV credits, but hurts consumer surplus, which
is intuitive, because it gives lower or no subsidy to vehicles with the low-
est expected inconvenience costs, which are plug-in hybrids, especially plug-in
hybrids with smaller battery ranges.

Relative to the CO2 optimal subsidy, the welfare optimizing scheme gives
some support to PHEVs with ranges below 25 miles by giving a lower subsidy
to BEVs with small and intermediate battery ranges. By this, it essentially
reallocates support from vehicles with the highest inconvenience costs to ve-
hicles with the lowest inconvenience costs. As a result, this scheme does not
hurt consumer surplus but results in a lower improvement in the environmen-
tal benefit, which drops from $8.1M to $4.9M. The total welfare improvement
is estimated to be $11.2M, which is 1.6% of the effect reported in Table 8,
or 7.9% if compared to the net effect, after subtracting the program budget.
Similarly to the CO2 optimal subsidy, the welfare optimizing scheme results in
lower EV sales added by the program (-1.7%) but more electric miles traveled
(+2.9%).

9 Conclusion

Many countries seek to reduce greenhouse gas emissions from the transporta-
tion sector by promoting adoption of electric vehicles. Designing policies for
electric cars, in particular purchase subsidies, requires understanding of the
environmental benefits and production costs of different types of electric ve-
hicles with different characteristics. Some current policies allocate differential
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support to all-electric and plug-in hybrid electric vehicles with different bat-
tery ranges, recognizing the differences in production costs, attractiveness to
consumers, usage patterns, and environmental benefits. This paper develops
an empirical framework that allows evaluation of environmental and welfare
effects of various policies for electric vehicles, taking into account vehicle usage
and firm pricing and battery range choice decisions. The framework also al-
lows evaluation of the inconvenience costs of charging electric cars depending
on such factors as consumer driving needs, available charging infrastructure,
and battery range.

I use the framework to evaluate the effects of two major U.S. policies, the
federal subsidy and the Zero Emission Vehicle regulation. Also, I solve for
the optimal federal subsidy structure that distinguishes between BEVs and
PHEVs and depends on battery range. The optimal structure improves the
environmental effect of the subsidy by 4.6% and the social welfare effect by
1.6%, depending on whether the environmental effect or the social welfare is
maximized, holding the subsidy budget fixed.
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Chapter 2

Do Big Businesses Influence Media?
The Case of Amazon.com and the

Washington Post
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1 Introduction

On October 1, 2013, Jeff Bezos, the founder and CEO of Amazon.com, offi-
cially acquired the Washington Post from the Graham family. The acquisition
raised concerns about a potential conflict of interest: the Washington Post
coverage of Amazon.com may have become biased to benefit the company and
the new owner.

A situation, where media owners have vested interests in other companies,
is not uncommon. For example, Rupert Murdoch through News Corp. is the
owner of a number of news outlets, including the Wall Street Journal, the
New York Post, Fox News, and he also controls the 20th Century Fox movie
studio. The Walt Disney Company owns ABC television network, as well as a
film studio, Disney parks etc. Warner Media controls HBO, CNN and a film
studio. Should one be concerned about these media outlets being biased to
favor affiliated businesses?

To shed some light on this issue, in this paper I study how the Washington
Post coverage of Amazon.com changed after the acquisition of the newspaper
by Jeff Bezos. For the analysis, I use data on news stories from four large
American newspapers – the Washington Post, the New York Times, the New
York Post, and the Los Angeles Times. The data spans over several years
before and after the acquisition, from June 2009 to June 2018.

I start with investigating how the acquisition affected the amount of cover-
age of Amazon.com by the Washington Post. First, I do a simple difference-in-
difference analysis on the number of mentions of Amazon.com and its products
(e.g. Amazon Alexa, Amazon Prime etc.), comparing the number of mentions
in the Washington Post to the number of mentions in the other three news-
papers before and after the acquisition. I find that the acquisition resulted in
a statistically significant increase in the number of mentions, with the effect
being persistent over time.

Next, I investigate whether this result may reflect the change in the Wash-
ington Post’s coverage policy, which could be trying to focus more on the
Internet users, who, in their turn, could be more interested in tech companies.
To address this issue, besides Amazon, I include in the analysis other big tech
companies, namely, Facebook, Google and Netflix, to control for the changes
in the coverage of these companies. The triple-difference analysis produces
similar results, showing an increase in the number of mentions, but with a
slightly lower magnitude.

Next, I investigate what types of news stories drive the result. I classify
all the stories that mention Amazon.com into 3 types: stories with a high
concentration of Amazon.com mentions, i.e., those where Amazon.com is likely
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to be the main theme, stories with a moderate concentration of Amazon.com
mentions, and stories with a low concentration of Amazon.com mentions, i.e.,
those that mention Amazon.com occasionally. The results indicate that the
increase in the coverage is driven by the first two types, i.e. by the stories
where Amazon.com is the main or one the main topics.

I next turn to discussing potential mechanisms. First, seven months before
the acquisition there was a change of the executive editor of the Washington
Post. Hence, the change in the Amazon.com coverage may simply reflect the
preferences of the new editor. Although, the date of the new editor appoint-
ment does not exactly coincide with the acquisition date, the period between
the two events largely overlaps the negotiation period, hence the Amazon.com
coverage in this period could potentially be affected both by the executive ed-
itor change and the anticipation of the future acquisition. Although, I cannot
completely rule out the effect of the executive editor change, I can investi-
gate how the coverage of Amazon.com changed at the Boston Globe, where
the Washington Post’s new editor had an appointment as the executive editor
before. After including data from the Boston Globe in the analysis I didn’t
find any evidence that the coverage of Amazon.com in the Boston Globe had
changed after the executive editor was changed there, suggesting that the
change in the coverage of Amazon.com in the Washington Post, likely, was not
due to the executive editor change.

There are several potential explanations of an increased coverage of Ama-
zon.com in the Washington Post that the analysis in the paper cannot rule out.
The first one is a potential conflict of interest, where the newspaper provides
more coverage about Amazon.com and related products and services to bene-
fit the owner, for example, by advertising Amazon and its products this way.
Second, readers that are interested in Bezos and Amazon.com may be more
likely to subscribe to the Washington Post after the Bezos’ acquisition, and
the newspaper could be simply addressing their demands by providing more
stories about Amazon.com and Bezos. Third, as a result of the acquisition,
the Washington Post may have got cheaper or faster access to the news about
Amazon.com, which resulted in more stories about the company. Finally, since
the acquisition was a major event for the Washington Post’s journalists and
editors, they may have updated their beliefs about the importance of the news
about Amazon.com and, as a result, they started to publish more stories.

In the second part of the paper, I explore whether the acquisition affected
the tone of the coverage of Amazon.com in the Washington Post. To do this,
I use an approach similar to Tetlock (2007) and Tetlock et al. (2008). I con-
struct a simple sentiment measure which is equal to the fraction of negative
words in the total number of words in a news story, assuming that it reflects
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the overall tone of the article. I use two lists of negative words from two dic-
tionaries, the commonly used Harvard IV-4 psychosociological dictionary and
the Loughran/McDonald dictionary, constructed by Loughran and McDonald
(2011) for financial applications. The latter one can be useful since some of
the news stories discuss Amazon’s financial indicators, such as stock prices,
profits, sales etc.

One can think about several ways of how the owner-related news stories in
a given outlet can be biased. First, media outlets may give more coverage to
favorable stories and underplay stories that are critical of the owner. Second,
the news stories can be given more positive outlook in general, even the critical
ones. The sentiment measure used here can capture both mechanisms, but
cannot distinguish between them.66

The results of the sentiment analysis are inconclusive. While the measure
based on the Loughran/McDonald dictionary provides some weak evidence
that the coverage of Amazon in the Washington Post became more positive
after the acquisition, the measure based on the Harvard IV-4 dictionary doesn’t
detect any statistically significant change of the coverage tone.

Literature review. The literature on media bias has been focusing mainly
on the political side of the issue (Groseclose and Milyo (2005), Gentzkow and
Shapiro (2010), Larcinese et al. (2011), Durante and Knight (2012)). A few
papers study media bias due to pressure of advertisers (Ellman and Germano
(2009), Beattie et al. (2017)). In particular, Beattie et al. (2017) in their
empirical study find that newspapers provide less coverage of car safety recalls
by auto manufacturers if these auto manufacturers buy ads in the newspapers.
The closest study to my paper is Dellavigna and Hermle (2017), where they
explore media bias due to cross-ownership. In particular, they consider movie
reviews in media outlets owned by News Corp and Time Warner and test
whether these outlets provide biased ratings for the movies produced by the
affiliated film studios 20th Century Fox and the Warner Bros, respectively,
and find no evidence of bias. The paper gives three possible explanations of
this finding: high reputational costs, high distance between the outlets and
the movie studios, and a low return to bias.

The paper proceeds as follows. Section 2 describes the data. Section 3
studies the effect on the coverage volume. Section 4 studies the effect on the
story sentiment and Section 5 concludes.

66Also, a general issue of this method is its inability in some cases to detect the true
sentiment because negative words do not always identify negative context (e.g sarcasm,
negation, disagreement with negative opinions, etc.).

54



2 Data

I use digital archives of the news stories from four major US newspapers:
the Washington Post, the New York Times, the New York Post and the Los
Angeles Times. The archives of the Washington Post and the New York Post
come from LexisNexis, and the archives of the New York Times and the Los
Angeles Times come from ProQuest. The data spans from June 2009 to June
2018, i.e., approximately four years before and five years after the acquisition
of the Washington Post by Jeff Bezos.

The Washington Post and the New York Times’ archives contain articles
both from the printed versions of the newspapers and from the online blogs on
the newspapers’ websites. I use only articles from the printed versions because:
1) the archives of other newspapers don’t have stories from their online blogs,
and 2) the stories from the online blogs for the Washington Post and the New
York Times are missing for some time periods.

The data cleaning process consists of two steps. First, for each newspaper,
I search for the news stories that contain keywords “Amazon” or “Jeff Bezos”.
This gives 14,450 stories in total from the all four newspapers. However,
some of these stories are irrelevant for the analysis since, for example, they
are related to the Amazon river or rainforest or they are book reviews with
a link to Amazon website. Hence, in the second step, I analyze a subset of
the news stories by identifying some keywords that are likely to indicate that
a given story is about the Amazon river or rainforest or a book review. For
instance, most stories that mention keywords “river”, “forest”, or “rainforest”
and don’t mention Amazon.com or Jeff Bezos in the story’s metadata are not
about Amazon.com. I drop those stories from the analysis. Also, I drop stories
that mention Amazon only within a web link, since those links were almost
always related to book reviews.

3 Effect on Coverage Volume

In this section, I study how the acquisition of the Washington Post by Jeff
Bezos affected the volume of the coverage of Amazon in the Washington Post.
As a main measure of the coverage volume, I will focus on how many times
Amazon, its products, and Jeff Bezos are mentioned every month in each
newspaper from my dataset. Then, I will also split all the news stories into
three groups according to the concentration of the Amazon-related keywords –
from the stories with the highest concentration, where Amazon, its products,
or Jeff Bezos are likely to be the main theme of the story, to the stories with
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the lowest concentration, i.e., where Amazon, its products, or Jeff Bezos are
only mentioned occasionally. I will study the effect of the acquisition on the
number of stories from each group. That will allow us to learn more about the
types of the news stories where the effect on the coverage volume is coming
from.

3.1 Model-free Evidence

I start with presenting some model-free evidence on how the acquisition af-
fected the number of Amazon-related mentions. For illustration, for each
newspaper I normalize the monthly number of mentions by its pre-acquisition
mean. Figure 1 shows the results. The figure has four subplots: three subplots
compare the number of mentions in the Washington Post to each newspaper
from the “control” group – the New York Times, the New York Post, and the
Los Angeles Times, and the fourth one plots the number of Amazon-related
mentions for the New York Post versus the New York Times.

One can see a huge spike in the number of mentions for the Washington
Post at the time of the acquisition. This spike is coming mainly from the news
stories related to the acquisition itself and to the vision of the newspaper’s
future. The effect vanishes quickly. At the same time, the other newspapers
did not see a noticeable increase in the number of Amazon-related mentions
when the acquisition of the Washington Post by Jeff Bezos was announced.

From the three subplots that compare the number of mentions in the Wash-
ington Post versus other newspapers one can see a noticeable gap during the
period after the acquisition, which indicates a relative increase in the number
of mentions of Amazon and related keywords for the Washington post as a
result of the acquisition. Noticeably, this gap is persistent over time. There is
no noticeable gap when comparing the number of mentions between the New
York Post and the New York Times (shown on Figure 1), as well as other pairs
of the “control” group newspapers (not shown on Figure 1).

3.2 Difference-in-Difference Analysis

Next, I do formal statistical analysis to establish the effect of the acquisi-
tion on the Amazon coverage volume in the Washington Post. I start with
difference-in-difference analysis, where I study how the number of Amazon-
related mentions in the Washington Post changed after the acquisition relative
to “control” group newspapers – the New York Times, the Los Angeles Times,
and the New York Post. I estimate the following regression equation:
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Figure 1: Model-free evidence on the effect on the coverage volume
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Notes: The graphs show monthly number of Amazon-related mentions normalized

by pre-acquisition averages for each newspaper.

LogMentionsit = αi +
5∑

k=−3

δkDkt +
5∑

k=−3

βkDkt ·WPosti + θsizeit + εit, (9)

The dependent variable is the natural logarithm of the number of Amazon-
realted mentions in newspaper i in month t. On the right-hand side, αi is the
newspaper i’s fixed effect, Dkt is a dummy variable for year k, where k runs
from -3 to 5. WPosti is an indicator for the Washington Post newspaper.
Coefficients βk represent the acquisition effect in year k, with β−3 to β0 rep-
resenting the years before the acquisition, and β1 to β5 representing the years
after the acquisition. I normalize coefficient β−1 to zero, i.e., the estimated
acquisition effects for each year should be interpreted as being relative to the
year between two and one years before the acquisition. The year right be-
fore the acquisition, represented by coefficient β0, may have potentially been
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affected by negotiations between Bezos and Graham Holdings, then-owner of
the newspaper, while the earlier periods, from -3 to -1, are unlikely to be
affected by the future acquisition. I exclude the period between the acquisi-
tion announcement and the actual transaction, i.e., the period from August
to October 2013, from the analysis. During this period the Washington Post
released a large number of stories about the acquisition. Outside this period
there are a very few stories about the acquisition. Finally, I control for news-
paper size, sizeit, which is defined as the total number of stories in a given
month.

Table 1 presents the estimation results. Panel A shows the estimates of
the acquisition effect by year. Columns 1 to 3 show the estimation results
when one of the “control” group newspapers is used for comparison, and the
regression from column 4 uses all the three newspapers together.

Most of the coefficients for the post-acquisition years, 1 to 5, are posi-
tive and statistically significant, indicating that the acquisition resulted in
increased coverage of Amazon, its products, and Jeff Bezos in the Washing-
ton Post. The coefficients β−3 and β−2 have a smaller magnitude and are
not statistically significant, supporting the “parallel trend” assumption used
by the difference-in-difference strategy. The coefficient β0 is positive and has
a larger magnitudes relative to β−3 and β−2 for each regression, which may
indicate some effect on coverage during the negotiations, however, it’s still not
statistically significant.

Panel B of Table 1 shows the “average” acquisition affect, which is an
outcome of a regression, where all the pre-acquisition years are combined into
one time period and all the post-acquisition years are combined into another
time period. The acquisition effect is positive and statistically significant.
Panel C shows the average effect from a similar regression, where the year
just before the acquisition is dropped from the analysis so that the results are
not affected by the negotiations before the acquisition. This results in even
larger estimate of the acquisition effect on Amazon-related coverage in the
Washington Post.

3.3 Controlling for the News Coverage of Other Big
Tech Companies

Potentially, an increase in the Amazon-related coverage in the Washington
Post can be an indicator of a change in the overall editorial policy that could
be affecting the coverage of the entire tech sector. Hence, besides Amazon, we
may see an increase in the coverage of other tech companies in the Washington
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Table 1: The effect on coverage volume: difference-in-difference analysis.

Dependent variable: Log Number of Amazon Mentions
(1) (2) (3) (4)

Control group: NY Times NY Post LA Times All newsp
Panel A: Yearly effects

β−3 0.0119 0.286 0.0539 0.123
(0.249) (0.254) (0.307) (0.208)

β−2 0.166 0.223 -0.189 0.098
(0.252) (0.257) (0.382) (0.225)

β−1 0 0 0 0
(-) (-) (-) (-)

β0 0.267 0.430* 0.272 0.307
(0.221) (0.226) (0.279) (0.186)

β1 0.573** 0.752*** 0.788*** 0.678***
(0.230) (0.201) (0.277) (0.186)

β2 0.577*** 0.617*** 0.570** 0.587***
(0.211) (0.209) (0.273) (0.182)

β3 0.472** 0.559*** 0.445* 0.511***
(0.214) (0.166) (0.253) (0.165)

β4 0.378* 0.259 0.254 0.319
(0.225) (0.183) (0.283) (0.186)

β5 0.659*** 0.703*** 0.723*** 0.728***
(0.209) (0.199) (0.264) (0.178)

Observations 214 214 214 428
R-squared 0.783 0.677 0.603 0.742
Panel B: Average effect, year before acquisition included

Average effect 0.417*** 0.344*** 0.464*** 0.420***
(0.115) (0.117) (0.127) (0.088)

Observations 214 214 214 428
R-squared 0.779 0.668 0.588 0.739
Panel C: Average effect, year before acquisition excluded

Average effect 0.498*** 0.404*** 0.603*** 0.481***
(0.147) (0.131) (0.172) (0.106)

Observations 190 190 190 380
R-squared 0.785 0.685 0.604 0.743

Notes: Time periods -3 to 0 correspond to pre-acquisition years and time periods

1 to 5 correspond to post-acquisition years. All the regressions include newspaper

and year FEs and control for the total monthly number of articles. Standard errors

are clustered by month.

*** p<0.01, ** p<0.05, * p<0.1
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Figure 2: Coverage of other big tech companies. Model-free evidence.
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Notes: The graphs show monthly number of mentions normalized by pre-acquisition

averages for each newspaper and company.

Post. To account for that, I include in the analysis the news stories about some
big tech companies, namely, Google, Facebook, and Netflix.

I start with presenting some model-free evidence on how the coverage vol-
ume of Google, Facebook, and Netflix in the four newspapers evolved before
and after the acquisition of the Washington Post by Jeff Bezos. Figure 2 com-
pares the number of mentions of Google, Facebook, and Netflix in the Wash-
ington Post against each of the newspaper from the control group. As before,
the number of mentions is normalized by the pre-acquisition mean for each
company and newspaper. The evidence is inconclusive. In some cases there
is a noticeable gap in the post-acquisition coverage, e.g., in case of Google,
between the Washington Post and the New York Post. However, in general,
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it’s hard to conclude whether the acquisition affected the coverage of Google,
Facebook, or Netflix in the Washington Post. Hence, I am turning to the
formal analysis.

Formally, I include the stories about Google, Facebook, and Netflix from
all the four newspapers in another control group and run a triple-difference
analysis. In particular, I estimate the following regression:

LogMentionsijt = αi+γj+
5∑

k=−3

δkDkt+
5∑

k=−3

ηkDkt·WPosti+
5∑

k=−3

σkDkt·Amazonj

+ ψ ·WPosti ·Amazonj +
5∑

k=−3

βkDkt ·WPosti ·Amazonj + θ · sizeit + εit,

(10)

Here, αi and γj are newspaper and company fixed effects, respectively;
Dkt is an indicator for year k; WPosti is a dummy for the Washington Post;
Amazonj is a dummy for Amazon. We are interested in the coefficients βk,
which represent the acquisition effect on Amazon-related coverage in the Wash-
ington Post in year k.

Table 2 shows the estimation results. In this table, columns 1-3 represent
the regressions where all the three control group newspapers but only one
of the control group companies, Google, Facebook, or Netflix, are included
in the data. Columns 4-6 show the estimation results, where all the control
group companies but only one of the control group newspapers are included
in the data. Finally, the last column regression includes all the companies and
newspapers. The results are robust to the composition of the control group,
so I will focus on the estimates in the last column of Table 2. The coefficient
estimates for yearly effects are similar to those previously reported in Table 1.
The average effects reported in Panels B and C of Table 2 are also similar to
the corresponding estimates from Table 1. Hence, including the news coverage
data for other big tech companies did not affect the results substantially.

3.4 What kind of stories drive the effect?

Next, I investigate what type of Amazon-related coverage drives the previously
established effect. Since I measure the coverage volume using the number of
Amazon-related mentions, the results don’t tell us much about whether the
increase in the number of mentions is coming from an increase in the number
of stories where Amazon, its products, or Jeff Bezos are the main theme, or
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Table 2: The effect on coverage volume relative to other newspapers and other
big tech companies.

Dependent variable: Log Number of Mentions
(1) (2) (3) (4) (5) (6) (7)

Control group: All newspapers All companies All comp.
Google Facebook Netflix NY Times NY Post LA Times All newsp.

Panel A: Yearly effects

β−3 0.186 -0.268 -0.152 -0.0990 0.0496 -0.185 -0.0780
(0.201) (0.231) (0.292) (0.219) (0.267) (0.266) (0.192)

β−2 0.123 -0.0486 -0.0881 -0.00278 0.228 -0.239 -0.00446
(0.199) (0.256) (0.278) (0.232) (0.282) (0.316) (0.215)

β−1 0 0 0 0 0 0 0
(-) (-) (-) (-) (-) (-) (-)

β0 0.189 0.298 0.00695 0.134 0.271 0.0892 0.165
(0.231) (0.212) (0.193) (0.205) (0.249) (0.272) (0.185)

β1 0.447** 0.594*** 0.264 0.450** 0.408* 0.447 0.435**
(0.200) (0.214) (0.228) (0.212) (0.214) (0.279) (0.184)

β2 0.521** 0.542** 0.448** 0.696*** 0.446** 0.369 0.504***
(0.200) (0.217) (0.190) (0.207) (0.219) (0.264) (0.173)

β3 0.389** 0.620*** 0.430* 0.710*** 0.388* 0.342 0.480***
(0.175) (0.189) (0.220) (0.202) (0.198) (0.238) (0.158)

β4 0.336* 0.266 0.198 0.575*** 0.0676 0.156 0.266
(0.200) (0.199) (0.172) (0.189) (0.196) (0.256) (0.164)

β5 0.496*** 0.440** 0.624*** 0.845*** 0.323* 0.391 0.520***
(0.184) (0.211) (0.172) (0.197) (0.175) (0.263) (0.162)

Observations 856 856 856 856 856 856 1,712
R-squared 0.800 0.819 0.755 0.808 0.685 0.635 0.727
Panel B: Average effect, year before acquisition included

Average effect 0.307*** 0.510*** 0.443*** 0.641*** 0.193 0.426*** 0.420***
(0.0866) (0.0989) (0.125) (0.0951) (0.123) (0.112) (0.0878)

Observations 856 856 856 856 856 856 1,712
R-squared 0.767 0.806 0.728 0.800 0.674 0.622 0.719
Panel C: Average effect, year before acquisition excluded

Average effect 0.327*** 0.609*** 0.465*** 0.683*** 0.236* 0.482*** 0.467***
(0.0919) (0.112) (0.146) (0.107) (0.138) (0.128) (0.0983)

Observations 760 760 760 760 760 760 1,520
R-squared 0.765 0.804 0.745 0.796 0.664 0.612 0.713

Notes: Regressions 1-3 include all the newspapers and regressions 4-6 include all the com-

panies. Time periods -3 to 0 correspond to pre-acquisition years and time periods 1 to 5

correspond to post-acquisition years. All the regressions include newspaper, company, and

year fixed effects and control for the total monthly number of articles. Standard errors are

clustered by month.

*** p<0.01, ** p<0.05, * p<0.1
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Table 3: The composition of news stories that mention Amazon by story type.

Overall
Total N articles Type 1 Type 2 Type 3

The Washington Post 3613 258 (7%) 943 (26%) 2412 (67%)
The New York Times 7398 503 (7%) 1100 (15%) 5795 (78%)
The New York Post 1922 234 (12%) 356 (19%) 1332 (69%)
The Los Angeles Times 3636 380 (10%) 530 (15%) 2726 (75%)

Before the acquisition
Total N articles Type 1 Type 2 Type 3

The Washington Post 1023 39 (4%) 197 (19%) 787 (77%)
The New York Times 2179 170 (8%) 379 (17%) 1630 (75%)
The New York Post 535 64 (12%) 111 (21%) 360 (67%)
The Los Angeles Times 1154 159 (14%) 206 (18%) 789 (68%)

After the acquisition
Total N articles Type 1 Type 2 Type 3

The Washington Post 2481 198 (8%) 718 (29%) 1565 (63%)
The New York Times 5121 323 (6%) 703 (14%) 4095 (80%)
The New York Post 1361 167 (12%) 237 (18%) 957 (70%)
The Los Angeles Times 2427 211 (9%) 313 (13%) 1903 (78%)

Notes: The table shows the number and the fraction of stories of different types that mention

Amazon by newspaper. Type 1 stories has the highest concentration of Amazon-related

mentions, type 2 stories has intermediate concentration, and Type 3 stories has the lowest

concentration.

whether it is coming from an increase in the number of occasional mentions in
news stories about various things, or it is a combination of those two.

To study this aspect of coverage, I split all the news stories that mention
Amazon into three groups – those with the highest concentration of Amazon-
related keywords, i.e., where Amazon is likely to be the main topic (type 1
stories), those with intermediate concentration, i.e., where Amazon is a sub-
stantial part of the story, but is potentially not the main theme (type 2 stories),
and, finally, stories with the lowest concentration, where Amazon is, likely, be-
ing mentioned just occasionally (type 3 stories). To define the thresholds of
Amazon-related keywords concentration for the three types, I read and an-
alyzed a subset of stories that mention Amazon from each newspaper and
manually set the threshold values.

Table 3 shows the number of stories of each type, as well as the fraction
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of stories of each type in the total number of stories for each newspaper. A
vast majority of the stories (67%-78%) where Amazon is mentioned mention
it occasionally. The stories where Amazon is the main theme constitute only
about 7% to 12%. The table shows a substantial increase in the fraction of type
1 and type 2 stories for the Washington Post in the post-acquisition period
relative to the period before the acquisition.

Tables 4-6 present the estimation results of regressions similar to (9) and
(10) for each type of stories. Table 4 shows the results for type 1 stories, i.e.,
stories with the highest concentration of Amazon-related keywords. Columns
1 and 2 show the estimates of difference-in-difference regressions, similar to
(9), and columns 3 and 4 show the estimates of triple-difference regressions,
similar to (10). For the triple-difference strategy, I include type 1 stories about
Google, Facebook, and Netflix, where I use the same keyword concentration
thresholds as for Amazon to classify stories that mention these companies into
three types. As a dependent variable I use the natural logarithm of either
the number of mentions or the number of stories in a newspaper-month. The
estimates from Table 4 show a statistically significant effect of the acquisition
on the number of type 1 stories, as well as on the overall number of Amazon-
related mentions in type 1 stories. Hence, the acquisition resulted in a higher
number of stories mainly devoted to Amazon or Jeff Bezos.

Table 5 shows the estimation results for type 2 stories, where Amazon is
likely to be a substantial part of the story, but not necessarily the main one.
The estimates show a statistically significant increase in the coverage related
to type 2 stories as well.

Finally, Table 6 shows the results for type 3 stories, i.e. stories that occa-
sionally mention Amazon. For this type of stories we do not see any significant
positive effect, some of the coefficients are even negative and statistically sig-
nificant. Hence, the effect, if any, is likely to be negative for the stories that
mention Amazon occasionally.

To summarize, I found an empirical evidence that the previously estab-
lished positive effect of the acquisition on Amazon-related coverage is coming
from the stories where Amazon is at least a substantial part of the story, and
it’s not coming from occasionally mentioning Amazon in stories where Amazon
is not a substantial part of the story.
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Table 4: The effect of the acquisition on Type 1 stories.

(1) (2) (3) (4)
Diff-in-diff Diff-in-diff-in-diff

Dep. var: logMentions logNstories logMentions logNstories
Panel A: Yearly effects

β−3 0.971* 0.356* 0.271 0.0733
(0.580) (0.203) (0.675) (0.260)

β−2 0.485 0.216 0.325 0.154
(0.633) (0.284) (0.686) (0.298)

β−1 0 0 0 0
(-) (-) (-) (-)

β0 0.491 0.193 0.715 0.256
(0.549) (0.190) (0.701) (0.252)

β1 2.278*** 0.775*** 1.959*** 0.628***
(0.413) (0.172) (0.610) (0.237)

β2 1.856*** 0.570*** 1.761*** 0.595**
(0.516) (0.188) (0.643) (0.237)

β3 1.776*** 0.551*** 1.549** 0.475*
(0.561) (0.197) (0.693) (0.260)

β4 1.547*** 0.401** 1.055* 0.229
(0.480) (0.200) (0.633) (0.249)

β5 2.487*** 1.020*** 1.511*** 0.560**
(0.398) (0.178) (0.553) (0.233)

Observations 428 428 1,712 1,712
R-squared 0.442 0.419 0.464 0.474
Panel B: Average effect, year before acquisition included

Average effect 1.481*** 0.456*** 1.244*** 0.376***
(0.268) (0.106) (0.303) (0.120)

Observations 428 428 1,712 1,712
R-squared 0.432 0.406 0.448 0.458
Panel C: Average effect, year before acquisition excluded

Average effect 1.476*** 0.445*** 1.367*** 0.419***
(0.311) (0.128) (0.329) (0.135)

Observations 380 380 1,520 1,520
R-squared 0.429 0.399 0.438 0.446

Notes: Type 1 stories are stories with the highest concentration of Amazon-related

keywords. All regressions include newspaper and year fixed effects and control for

the total monthly number of articles. Standard errors are clustered by month.

*** p<0.01, ** p<0.05, * p<0.1
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Table 5: The effect of the acquisition on Type 2 stories

(1) (2) (3) (4)
Diff-in-diff Diff-in-diff-in-diff

Dep. var: logMentions logNstories logMentions logNstories
Panel A: Yearly effects

β−3 -0.290 -0.296 -0.659 -0.526**
(0.438) (0.234) (0.407) (0.212)

β−2 0.455 0.101 0.0284 -0.0867
(0.332) (0.193) (0.353) (0.206)

β−1 0 0 0 0
(-) (-) (-) (-)

β0 0.180 0.0892 -0.0775 0.0149
(0.328) (0.216) (0.294) (0.212)

β1 0.475 0.463** 0.636** 0.592***
(0.332) (0.223) (0.289) (0.203)

β2 0.695** 0.525** 0.611* 0.517**
(0.332) (0.206) (0.335) (0.229)

β3 0.678** 0.529*** 0.891*** 0.814***
(0.281) (0.198) (0.280) (0.201)

β4 0.512* 0.562*** 0.815*** 0.910***
(0.283) (0.201) (0.269) (0.180)

β5 0.863*** 0.866*** 0.791*** 0.913***
(0.295) (0.201) (0.254) (0.180)

Observations 428 428 1,712 1,712
R-squared 0.600 0.628 0.591 0.630
Panel B: Average effect, year before acquisition included

Average effect 0.603*** 0.636*** 0.943*** 0.905***
(0.157) (0.0978) (0.170) (0.109)

Observations 428 428 1,712 1,712
R-squared 0.562 0.582 0.584 0.622
Panel C: Average effect, year before acquisition excluded

Average effect 0.600*** 0.650*** 0.980*** 0.962***
(0.193) (0.112) (0.199) (0.118)

Observations 380 380 1,520 1,520
R-squared 0.597 0.633 0.591 0.626

Notes: Type 2 stories are stories with intermediate concentration of Amazon-related

keywords. All regressions include newspaper and year fixed effects and control for

the total monthly number of articles. Standard errors are clustered by month.

*** p<0.01, ** p<0.05, * p<0.1
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Table 6: The effect of the acquisition on Type 3 stories.

(1) (2) (3) (4)
Diff-in-diff Diff-in-diff-in-diff

Dep. var: logMentions logNstories logMentions logNstories
Panel A: Yearly effects

β−3 -0.0609 -0.0623 0.0113 0.0394
(0.157) (0.147) (0.159) (0.148)

β−2 -0.0937 -0.116 0.130 0.0800
(0.122) (0.103) (0.135) (0.106)

β−1 0 0 0 0
(-) (-) (-) (-)

β0 0.358*** 0.215** 0.331*** 0.219**
(0.105) (0.101) (0.117) (0.0992)

β1 0.396*** 0.242** 0.302** 0.177
(0.129) (0.116) (0.149) (0.133)

β2 0.102 0.0488 0.271** 0.266**
(0.119) (0.109) (0.124) (0.107)

β3 -0.126 -0.260** 0.139 0.0177
(0.136) (0.120) (0.138) (0.122)

β4 -0.310** -0.629*** -0.0169 -0.377***
(0.122) (0.110) (0.124) (0.104)

β5 -0.260** -0.436*** 0.0339 -0.237**
(0.120) (0.118) (0.130) (0.112)

Observations 428 428 1,712 1,712
R-squared 0.882 0.872 0.836 0.851
Panel B: Average effect, year before acquisition included

Average effect -0.0766 -0.198*** 0.0382 -0.102
(0.0716) (0.0719) (0.0653) (0.0673)

Observations 428 428 1,712 1,712
R-squared 0.853 0.830 0.829 0.844
Panel C: Average effect, year before acquisition excluded

Average effect 0.00563 -0.154* 0.107 -0.0595
(0.0791) (0.0798) (0.0737) (0.0747)

Observations 380 380 1,520 1,520
R-squared 0.869 0.852 0.826 0.841

Notes: Type 3 stories are stories with the lowest concentration of Amazon-related

keywords. All regressions include newspaper and year fixed effects and control for

the total monthly number of articles. Standard errors are clustered by month.

*** p<0.01, ** p<0.05, * p<0.1
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3.5 Alternative Explanations: Change of the Executive
Editor

On January 2, 2013, seven months before the acquisition, the Washington Post
appointed a new chief executive editor, Martin Baron, who previously had held
a similar position at the Boston Globe. Hence, the increase in the Amazon-
related coverage at the Washington Post that we have found can potentially be
attributed to the change of the chief executive editor, especially given that we
see some weak evidence of the coverage increase during the negotiation stage
before the acquisition.

In this subsection I investigate whether the change in the Amazon-related
coverage at the Washington Post can, indeed, be attributed to the preferences
of the new chief executive editor. To do that, I will study how the Amazon-
related coverage changed at the Boston Globe after Martin Baron left his
position there. I need to acknowledge the limitations of this strategy. For
example, even if don’t see any change in news coverage at the Boston Globe,
that could be explained by inertia or similar tastes of the new chief editor at
the Boston Globe.

Nevertheless, in addition to the data I have I collected the data on the
coverage of Amazon.com, as well as Google, Facebook, and Netflix, from the
Boston Globe archives and ran regressions similar to (9) and (10), replacing
the number of Amazon-related mentions in the Washington Post with the
number of Amazon-related mentions in the Boston Globe. Table 7 presents the
results. Some of the yearly coefficients are positive and statistically significant,
indicating an increase in Amazon.com coverage in these periods. However, this
can be explained by the coverage of local news related to Amazon.com. For
example, in period 0 Amazon.com purchased a robot-maker company Kiva,
located in Massachusetts. Also, there was a debate around the sales tax deal
between Amazon.com and the state in this period. Increased coverage in
period 5 can be explained by the news about Amazon.com choosing a location
for its second headquarters, where Boston was one of the candidates. A small
and statistically insignificant estimate of the average effect suggests that the
Amazon-related coverage in the Boston Globe was not affected by the executive
editor change. Keeping in mind the limitations I discussed above, these results
suggest that the change in the Amazon-related coverage at the Washington
Post at the time of the acquisition is, likely, not due to the chief editor change
happened seven months before the acquisition.
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Table 7: The effect of the chief editor change on Amazon coverage in the
Boston Globe.

Dependent variable: Log Number of Amazon mentions
(1) (2)

Diff-in-diff Diff-in-diff-in-diff
Panel A: Yearly effects

β−2 0.621*** 0.102
(0.172) (0.179)

β−1 0 0
(-) (-)

β0 0.706*** 0.600***
(0.189) (0.179)

β1 0.303 0.256
(0.198) (0.196)

β2 0.0211 -0.194
(0.192) (0.212)

β3 0.624*** 0.275
(0.209) (0.205)

β4 0.547* 0.221
(0.316) (0.206)

β5 0.629** 0.686***
(0.242) (0.180)

Observations 436 1,744
R-squared 0.731 0.735
Panel B: Average effect

Average effect -0.0811 0.0759
(0.114) (0.107)

Observations 436 1,744
R-squared 0.718 0.720

Notes: All regressions include newspaper and year fixed effects and control for the

total monthly number of articles. Standard errors are clustered by month.

*** p<0.01, ** p<0.05, * p<0.1

3.6 Discussion of Potential Mechanisms

So far, we have established that the acquisition of the Washington Post by
Amazon’s founder Jeff Bezos resulted in increased coverage of topics related
to Amazon, its products, and Bezos. Here, I will discuss some potential mech-
anisms that can explain the effect.

One potential explanation is a conflict of interest, where either the new
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owner demands more coverage of Amazon or the newspaper voluntarily gives
more coverage of Amazon for the benefit of the owner and/or for the benefit
of the newspaper. For instance, more coverage may raise more awareness and
serve as an advertising tool for Amazon and its products.

Another explanation is a possible change in the readership preferences and
the newspaper’s response to this change. For instance, after the acquisition,
consumers who were interested in Amazon or Bezos became more likely to sub-
scribe to the Washington Post, and the newspaper responded to an increased
demand by providing more stories about Amazon.

Next, it’s possible that the Washington Post got an easier access to informa-
tion about Amazon relative to other newspapers and responded by providing
more coverage.

Finally, there could be a behavioral explanation, where journalists and ed-
itors of the Washington Post have updated their beliefs about the importance
of news about Amazon relative to other news topics, and this resulted in more
coverage about what they believe became more important.

The empirical strategy I use in this paper cannot distinguish among these
possible mechanisms and, hence, it cannot say which of them are more or less
likely to explain the results.

4 Effect on Coverage Tone

In this section I study another aspect of the possible acquisition effect – the
effect on coverage sentiment, i.e., whether the acquisition resulted in more
positive (or negative) coverage of Amazon and Jeff Bezos in the Washington
Post.

4.1 Sentiment Measure

I construct two sentiment measures using two dictionaries: Harvard IV-4 psy-
chosocial dictionary and Loughran/McDonald dictionary (LM dictionary on-
wards, Loughran and McDonald (2011)). The latter one was developed for
sentiment analysis in financial texts, which can be relevant in this analysis
since some stories about Amazon concern Amazon’s financial indicators.

The Harvard dictionary has 77 predetermined word categories and the LM
dictionary has six categories. However, according to some previous research,67

67see, e.g., Tetlock (2007), Tetlock et al. (2008), Loughran and McDonald (2011)
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the most useful category for sentiment analysis is negative words68. Sometimes
researchers also use positive words, but they are more often negated than
negative words, which makes the inference more limited.

Thus, I construct a sentiment score for each news story where Amazon or
Jeff Bezos are the main theme69 using a list of negative words from each of the
two dictionaries. The score is equal to the fraction of negative words in the
total number of words in a story. The average sentiment score of a story for
the Harvard dictionary is 0.088 with the standard deviation of 0.031. For the
LM dictionary the average is 0.040 and the standard deviation is 0.024. The
correlation between the two scores is 0.54, which indicates that there is some
disagreement between the two measures on how positive or negative a story
is.

4.2 Empirical Strategy and Results

To study the effect of the acquisition on Amazon-related coverage sentiment I
use the difference-in-difference strategy, where the control group includes the
same three newspapers as before. I estimate the following model:

negit = αi +
4∑

k=−1

δkDkt +
4∑

k=−2

βkDkt ·WPosti + εit, (11)

where negit is a sentiment score based either on the Harvard or LM dictionary;
αi - newspaper i fixed effect; WPosti - indicator for the Washington Post; and
Dkt - a dummy variable for year k. As before, I normalize year -1, the year
between two and one years before the acquisition, to zero.

Table 8 presents the estimation results. The estimates based on the Har-
vard dictionary don’t show any evidence that the acquisition affected the sen-
timent of Amazon-related stories in the Washington Post. There are positive
and negative coefficients, none of them are statistically significant. For the
LM dictionary, the coefficients are negative, meaning that the stories became
more positive, but only one coefficient is statistically significant at 95% level.

Overall, there is no convincing empirical evidence that the sentiment of
the coverage of Amazon-related news changed as a result of the acquisition.
This can be because there was no such a change in reality, e.g., because of
potential reputational damages or because of a high degree of independence of

68The full list of categories and words can be found on http://www.wjh.harvard.

edu/~inquirer/ for the Harvard dictionary and https://www3.nd.edu/~mcdonald/Word_

Lists.html for LM dictionary
69I drop stories shorter than 250 words because they are too short to extract sentiment.
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Table 8: The effect of the acquisition on the coverage sentiment

(1) (2)
negLM negHarv

β0 -0.0160 -0.0125
(0.0118) (0.0123)

β1 -0.0193* 0.00497
(0.0107) (0.0113)

β2 -0.0235** -0.0105
(0.0114) (0.0111)

β3 -0.0149 0.00347
(0.0108) (0.0118)

β4 -0.0130 0.0121
(0.0105) (0.0112)

Newspaper FE Yes Yes
Time FE Yes Yes

Clusters 103 103
Observations 768 768
R-squared 0.101 0.081

Notes: The coefficient for the year -1 is normalized to zero. Standard errors are
clustered by newspaper-quarter

*** p<0.01, ** p<0.05, * p<0.1

the editorial board. Alternatively, this can be because the sentiment measure
or the empirical strategy is not accurate enough to detect the effect and a
different approach is required.

5 Conclusion

This work studies a conflict of interest that may potentially arise in a situation
where media outlets are owned by someone who has vested interest in other
businesses. These media outlets may benefit their owners by providing more
favorable coverage of the affiliated companies. I study this issue in the context
of the Washington Post, a major U.S. daily newspaper, that was acquired in
2013 by Jeff Bezos, the founder of Amazon.com.

I study the effect of the newspaper acquisition on coverage volume and
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coverage sentiment of Amazon-related stories. I found that the acquisition
resulted in increased coverage of Amazon, but I didn’t find convincing evidence
on the effect on the coverage tone. The paper also discusses some potential
mechanisms that can explain the results.
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Appendices

Appendix to Chapter 1

Appendix A Calculation of ZEV credit prices

Two sources are used to estimate the prices of ZEV credits, i.e., credits that
manufacturers earn by selling BEVs in the ZEV states. The first one is Tesla’s
quarterly shareholder letters, where the company reports its quarterly revenues
from selling ZEV credits. The second source is the ZEV states’ annual reports
on ZEV credit balances and transfers between manufacturers. The reports
were not available for some of the states before 2015, so I only use the reports
starting from 2015. Table A1 shows the number of ZEV credits transferred
by Tesla in each ZEV state for each year during the 2015-2018 period, and
Tesla’s revenues from selling ZEV credits for the same period. ZEV credit
prices are computed by dividing Tesla’s revenues by the total number of credits
it transferred in a given period. Yearly estimates range from $1,506 to $2,404
per credit. After adjusting for inflation, the average price for the entire period
is estimated to be $2,200 per credit (2018 dollars).

To estimate prices of TZEV credits, i.e., credits earned by PHEVs, I use
the states’ ZEV credit reports and analyze cases when manufacturers exchange
credits of different types. The reports have no information on monetary trans-
fers between carmakers, so I have to assume that no money were transferred
in the exchange cases that I focus on. The idea is to infer the price of TZEV
credits relative to the price of ZEV credits. For example, in 2018 in Mary-
land, Fiat-Chrysler transferred 58 ZEV credits to Honda and received back
650 PZEV credits. Hence, I conclude that one ZEV credit is worth 9.15 PZEV
credits. Next, in 2017 in California, General Motors transferred 6,000 TZEV
credits to Honda and received back 2,500 ZEV credits and 12,700 PZEV cred-
its, which is 3,888 ZEV credits in total, after converting PZEV credits into
ZEV credits. Hence, I conclude that 6,000 TZEV credits are worth 3,888 ZEV
credits, i.e one TZEV credit is worth 0.65 ZEV credits. A similar analysis
of several more exchange cases resulted in similar estimates, so I ended up
assuming the relative price of a TZEV credit being 0.7 of the price of a ZEV
credit, or $1,540.

78



Table A1: ZEV credit prices calculated from Tesla’s ZEV credit transfers and
revenues

State 2015 2016 2017 2018

California 44,421 80,227 51,776 88,214
Connecticut 536 264 2,236 3,220
Maine 0 111 54 206
Maryland 756 360 2,862 6,604
Massachusetts 944 375 4,684 7,498
New Jersey 2,697 2,550 8,036 8,512
New York 37,598 850 10,827 8,854
Oregon 255 215 2,434 6,239
Rhode Island 88 0 85 0
Vermont 0 58 130 224

Total credits 86,952 84,737 79,935 123,108

Tesla revenues $170M $203.7M $120.4M $281.7
Revenue per credit (credit price) $1,955 $2,404 $1,506 $2,288

Notes: Each cell in the upper part of the table is the number of ZEV credits trans-

ferred by Tesla to other carmakers in a given state and year. ZEV credit prices are

computed by dividing Tesla’s revenues from selling ZEV credits by the total number

of transferred credits.
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Appendix B Individual PHEV utility factors

Figure B1: Individual utility factors, CARB data

Source: The California’s advanced clean cars midterm review. Appendix G. (Cali-

fornia Air Resources Board, 2017)

Appendix C Data and computational details

C.1 Mileage and demographic data construction

I use the 2017 NHTS data to construct a joint distribution of household de-
mographics and driving needs. The survey contains data on household demo-
graphics, including household size, income, location, ages and education levels
of household members etc. It also includes data on household vehicles, includ-
ing the number of vehicles, their makes, models, model years and odometer
readings at the day of survey. I compute average annual mileage for each
household vehicle and assume that these average mileages represent driving
needs that households consider when they shop for a new car, and I assume
that these driving needs are fixed and don’t depend on vehicle choice. I focus
only on passenger cars, SUVs, minivans and pickup trucks, i.e., excluding, for
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example, motorcycles, RVs etc. Also, since I estimate the model only for new
vehicle purchases, I restrict my attention to relatively new vehicles from the
survey, focusing on the model-years from 2013 to 2017.

Estimating average mileages is complicated by the fact that the exact pur-
chase dates of vehicles are unknown, and making careful assumptions about
this is important because of relatively short ownership periods. In general, I
assume that a vehicle was purchased in the middle of the calendar year corre-
sponding to the vehicle’s model year, and define the ownership period length
as the difference between the month when the survey was taken and the as-
sumed purchase date. Whenever possible, I use other information to improve
precision of the ownership period length computation. For example, the sur-
vey has data on the number of months of ownership if a vehicle was purchased
less than a year ago, in which case I use this as the ownership period length.
Also, I incorporate release dates of some popular vehicles if their sales start at
a time point other than around the beginning of a new calendar year.

The joint distribution of mileage and demographics is then used to con-
struct moment conditions for average mileage of gasoline and conventional
hybrid vehicles, and for average demographics of buyers of various vehicle cat-
egories, as described in Section 6 of the paper. For the demand estimation, I
construct separate distributions for each geographic market, so that for each
market consumers are drawn at random from the corresponding distributions.

The moment conditions for average mileages of EVs are constructed using
the CARB data, from which I observe only the averages and the number of ob-
servations used to compute those averages. To construct appropriate weights
for these moment conditions for the demand estimation, I approximate the
variances of the moments using the number of observations from the CARB
data and standard deviations of mileage distributions of various vehicle models
from the 2017 NHTS.70 In particular, I assume that the standard deviation of
a vehicle’s mileage distribution is a linear function of the mean of this distri-
bution. I estimate the parameters of this linear function using averages and
standard deviations of mileage distributions of various vehicles from the 2017
NHTS. Then, I use the estimated relationship to infer the standard deviations
of the mileage distributions for the EVs from the CARB data, and, finally,
compute standard errors and variances of the average mileage estimates from
the CARB data.

70I also use these variance approximations to construct confidence intervals for the de-
scriptive evidence in Section 3 of the paper.
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C.2 Demand estimation

The demand estimation procedure follows Berry et al. (1995) and Petrin
(2002), except that it doesn’t use supply side moment conditions, i.e., those
derived from the first order conditions of firms’ profits. The model parameters
are estimated by minimizing a GMM objective function, which is a weighted
average of two sets of moment conditions. The first set is formed by multiply-
ing the vector of errors ξjm’s by a set of instruments Zjm, that include state
subsidies and vehicle characteristics, included in the utility function, except
price and battery range. In the first estimation step, these moment conditions
are weighted with a consistent estimate of matrix E[ZZ ′]−1, where Z is a (col-
umn) vector of instruments. In the second step, I use the first step estimates
of ξjm to construct an estimate of the optimal weighting matrix E[Zξξ′Z ′]−1.

The second set of moment conditions matches demographic and mileage
micromoments from the 2017 NHTS and the CARB data to the corresponding
model predictions. The moment conditions built using the 2017 NHTS are
weighted by the inverse of an estimate of the variance-covariance matrix of
these moments, which is constructed using the delta method, as described in
Appendix B.1 of Petrin (2001). For the CARB data moments, the absence of
individual-level data didn’t allow me to estimate a variance-covariance matrix
in a similar way, hence I weighted these moments by inversed approximated
variances (see the previous subsection).

To solve for δ values that equate observed and predicted by the model
market shares, instead of using the contraction mapping suggested in Berry
et al. (1995), I used the SQUAREM method proposed by Varadhan and Roland
(2008). It gave identical δ values and significantly improved the speed of the
objective function computation.

C.3 Solving for counterfactual policy prices and ranges

For all the counterfactual exercises I assume that firms update prices and,
in case of American carmakers, ranges of BEV. After solving for the new
equilibrium prices and ranges, I compute the other outcomes of interest. The
new prices and ranges are computed by the following procedure:

1. Start by guessing initial prices, p0, and ranges, r0.

2. Holding the range values fixed, use the price FOC to solve for a vector
of new prices, p1.

3. For the vector of new prices p1, use the range FOC to solve for a vector
of new ranges, r1.
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4. Iterate 2 and 3 until convergence.

There is no guarantee of the equilibrium uniqueness. However, it makes
sense to expect that the counterfactual outcomes should not be “too far” from
the status quo. Hence, I start the procedure with the status quo prices and
ranges for all the exercises. For robustness, I also tried some other starting
points, and arrived at the same results.

Appendix D Usage of EVs: Theory

In this section I present a simplified version of the demand model, which il-
lustrates how the inconvenience costs of charging affect the average mileage
driven by BEV and PHEV drivers relative to drivers of traditional vehicles. I
assume that there is a consumer, who needs to drive d miles per year. The
consumer’s choice set includes three vehicles, a BEV, a PHEV, and a tradi-
tional (gasoline) vehicle, which can be a pure gasoline or a conventional hybrid
car. Let the purchase prices be pbev, pph and pg for the BEV, the PHEV and
the traditional car, respectively. The fuel economy of the vehicles will be char-
acterized by prices per mile: we for the BEV, wg for the traditional car, and
wph,e and wph,g for the PHEV, when driven on electricity and gas, respectively.
I assume that driving on electricity is cheaper, i.e., wg > we, wph,g > wph,e and
wg > wph,e. The electric ranges of the BEV and the PHEV are given by rbev
and rphev, respectively. Other characteristics of the three vehicles are assumed
to be identical across the vehicles.

I assume that the consumer utility specification includes price, fuel costs,
and BEV and PHEV inconvenience costs, ignoring other vehicle characteris-
tics, since they do not vary across the cars.

Next, I will describe consumer choice and how it depends on consumer
mileage d. First, I will consider choice between the traditional car and the
BEV, then, choice between the traditional car and the PHEV, and, finally,
choice between the BEV and the PHEV.

BEV and traditional vehicle. Consumer utility for the traditional car
is given by

ug = −αppg − αfwgd,
and the utility for the BEV is given by

ubev = −αppbev − αfwed− cbev(d; rbev, chst),

where cbev(d; rbev, chst) is the BEV inconvenience cost, which is assumed to be
continuous, strictly convex and strictly increasing in d, with cbev(0; ·, ·) = 0.
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Figure D1: Choice between BEV and traditional car
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Notes: LHS is the left-hand side and RHS is the right-hand side of inequality (12).

I also assume that cbev(d; rbev, chst) is decreasing in range, rbev, and charging
station availability, chst. A consumer chooses the BEV when

αp(pg − pbev) + αf (wg − we)d > cbev(d; rbev, chst). (12)

Figure D1a shows the left-hand side and the right-hand side of this in-
equality, assuming pbev > pg. While the left-hand side is increasing linearly
in d, the right-hand side is increasing and convex in d. Hence, as d increases,
at some point, the inconvenience costs start to outweigh the fuel cost savings,
and the consumer prefers to buy the traditional car despite the lower fuel costs
of the BEV. An increase in battery range or the number of charging stations
(Figure D1c) results in attracting drivers from a wider range of d, especially
those with larger d, which is consistent with the evidence that longer range
BEVs are driven more miles on average than shorter range BEVs. Figure D1b
shows the effect of a policy that equalizes the purchase prices of the BEV and
the traditional car, e.g., a subsidy for the BEV. Unlike the previous case, the
policy does not affect the inconvenience costs. It attracts consumers from a
wider range of d, too, but affects lower-mileage consumers to a larger extent.

PHEV and traditional vehicle. Now consider a choice between the
traditional vehicle and the PHEV. The utility of the traditional vehicle is the
same as before. The utility for the PHEV is given by

uph = −αppph − αf [ψ∗wph,e + (1− ψ∗)wph,g] d− cphev(ψ∗d; rphev, chst),

where cphev(ψ
∗d; rphev, chst) is the PHEV inconvenience cost function, which is

continuous, strictly convex and strictly increasing in ψ∗d, decreasing in range,
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rbev, and charging station availability, chst, with cphev(0; ·, ·) = 0. ψ∗ is the
optimal share of d driven on electricity. I assume that cphev has a functional
form that is similar to the full model:

cphev(ψ
∗d; rphev, chst) = θ(ψ∗d)2f(rphev, chst),

where f(rphev, chst) is decreasing in rphev and chst. As in the full model, ψ∗ is
given by the solution of a problem where a consumer is minimizing the sum
of fuel expenses and inconvenience costs:

ψ∗ = min

[
1,

wph,g − wph,e
2df(rphev, chst)

]
.

Since in reality nearly all PHEV drivers drive less than 100% of mileage
on electricity, I will focus on the case when ψ∗ < 1. The utility for the PHEV
then can be rewritten as

uph = −αppph − αfwph,gd+
(wph,g − wph,e)2

2f(rphev, chst)

(
αf − θ

2

)
,

and a consumer chooses the PHEV when

αp(pg − pph) +
(wph,g − wph,e)2

2f(rphev, chst)

(
αf − θ

2

)
+ αf (wg − wph,g)d > 0. (13)

The last term of the left-hand side of this inequality plays a key role in
defining whether drivers with higher values of d are more or less likely to
adopt the PHEV. If the closest substitute for the PHEV is a vehicle with
wg > wph,g, i.e., a vehicle that is less fuel efficient than the PHEV in the
hybrid (gasoline) mode, then higher-mileage drivers would prefer the PHEV.
If, instead, the closest substitute is a car that is more fuel efficient than the
PHEV in the hybrid mode (wg > wph,g), then higher-mileage drivers would be
less likely to adopt the PHEV. An example of the latter would be the choice
between a PHEV and a conventional hybrid car. A PHEV, especially a PHEV
with a larger battery, can be less fuel efficient when driven on gasoline than
a similar conventional hybrid car, because it has to carry more weight from a
larger battery and other related components. In this case, since higher-mileage
drivers tend to drive more miles on gasoline, then the difference wg−wph,g for
them is increasingly important when d is increasing, which makes them more
likely to choose a conventional hybrid car. This, in particular, can explain a
relatively low average mileage of Chevrolet Volt when compared to shorter-
range PHEVs and conventional hybrids (Section 3 of the paper).
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BEV and PHEV. Finally, I consider a choice between the BEV and the
PHEV. A consumer chooses the BEV when

αp(pph−pbev)−
(wph,g − wph,e)2

2f(rphev, chst)

(
αf − θ

2

)
+αf (wph,g−we)d > cbev(d; rbev, chst).

(14)
This inequality is similar to the one from the case of the BEV and the

traditional vehicle, except for the second term in the left-hand side, which,
depending on its sign, can make choice of the PHEV more or less attractive.
The left-hand side of inequality (14) is increasing linearly in d, while the right-
hand side is increasing and convex in d. Hence, higher-mileage drivers would
prefer the PHEV to the BEV.
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Appendix to Chapter 2

More on Sentiment Measure

To understand what the sentiment score measures we can take a look at
stories’ headlines with the highest and lowest fraction of negative words. For
example, these are the top-five stories from the New York Times with the
highest fraction of negative words, according to the Harvard dictionary:

1. Amazon v. the States

2. Amazon’s Tax Dodge: Online retailer takes advantage of California’s
dysfunctional politics

3. Trump, Amazon and ’Internet Taxes’: What Did He Mean?

4. Amazon and California in Deal on Tax

5. In Tax Fight, Amazon Hands Baton To eBay

And these are the top-five negative stories according to the LM dictionary:

1. Amazon v. the States

2. Amazon’s E-Book Business Being Investigated in Europe

3. German Publishers Seek Amazon Inquiry

4. The Kindle Fire And a Debate On Tablets

5. Amazon’s Prophet And Losses

We see that only one story is in both lists. The top negative stories accord-
ing to the Harvard dictionary are all related to the sales tax dispute71, while
the LM dictionary list has stories on various topics. Most likely, the reason is
that the word “tax” is classified as negative by the Harvard dictionary, unlike
the LM dictionary. In general, it can be noticed that the top negative stories
are generally related to some disputes or conflicts around Amazon, such as
sales tax collection, conflicts with publishers, lawsuits and other.

71The dispute is about whether Amazon should collect sales taxes from customers in
states where it doesn’t have physical presence
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The top five stories from the New York Times with the smallest fraction
of negative words according to the Harvard dictionary include:

1. Amazon Publishing Push Grows to Children’s Books

2. At Amazon Art Site, Everyone’s a Critic

3. The Amazon That Readers Can Walk Into

4. Amazon to Open Manhattan Retail Store

5. Amazon to Pursue Education Technology With a Marketplace for Teach-
ers

and according to the LM dictionary:

1. Daily Report: The Next Voice You Hear Will Be Amazon’s

2. Walmart Sticks With Arkansas Headquarters as Amazon Plays the Field

3. Amazon to Open Manhattan Retail Store

4. Amazon’s Boom In the Cloud

5. Voters Speak, And Amazon Orders Shows

Stories with the smallest fraction of negative words typically don’t discuss
any conflicts, they rather tell about Amazon’s products and services.
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