UC Davis

UC Davis Previously Published Works

Title

Synthesis, Structure, and Spectroscopy of the Biscarboranyl Stannylenes (bc)Sn·THF and K2[(bc)Sn]2 (bc = 1,1'(ortho-Biscarborane)) and Dibiscarboranyl Ethene (bc)CH \square CH(bc)

Permalink https://escholarship.org/uc/item/7074j20c

Journal

Organometallics, 42(13)

ISSN

0276-7333

Authors

Phung, Alice C Fettinger, James C Power, Philip P

Publication Date

2023-07-10

DOI

10.1021/acs.organomet.3c00190

Peer reviewed

ORGANOMETALLICS

Article

Synthesis, Structure, and Spectroscopy of the Biscarboranyl Stannylenes (bc)Sn·THF and $K_2[(bc)Sn]_2$ (bc = 1,1'(*ortho*-Biscarborane)) and Dibiscarboranyl Ethene (bc)CH=CH(bc)

Alice C. Phung, James C. Fettinger, and Philip P. Power*

via salt metathesis. The synthetic procedures for (**bc**)Sn-THF (**bc** = 1,1' (*ortho*-carborane) (1) and $K_2[(\mathbf{bc})Sn]_2$ (2) involved the reaction of $K_2[\mathbf{bc}]$ with SnCl₂ in either a THF solution (1) or in a benzene/dichloromethane solvent mixture (2). Using the same solvent conditions as those used for 2 but using a shorter reaction time gave a dibiscarboranyl ethene (3). The products were characterized by ¹H, ¹³C, ¹¹B, ¹¹⁹Sn NMR, UV–vis, and IR spectroscopy, and by X-ray crystallography. The diffraction data for 1 and 2 show that the Sn atom has a trigonal pyramid environment and is constrained by the **bc** ligand in a planar five-membered C₄Sn

heterocycle. The ¹¹⁹Sn NMR spectrum of 1 displays a triplet of triplets pattern signal, which is unexpected given the absence of a Sn–H signal in the ¹H NMR, IR spectrum, and X-ray crystallographic data. However, a comparison with other organotin compounds featuring a Sn atom bonded to carboranes reveal similar multiplets in their ¹¹⁹Sn NMR spectra, likely arising from long-range nuclear spin–spin coupling between the carboranyl ¹¹B and ¹¹⁹Sn nuclei. Compound 3 displays structural and spectroscopic characteristics typical of conjugated alkenes.

INTRODUCTION

The charge-neutral compound 1,1'-bis(*ortho*-carborane) (H₂-**bc**), often described as a three-dimensional aromatic analogue of biphenyl, is an interesting ligand for the support of stannylenes due to its steric bulk and strong κ^2 -binding that can form strained five-membered metallacycles.^{1–3} The majority of **bc** ligand metal complexes feature a transition metal that is κ^2 -C,C- or κ^2 -B,C-bonded to the **bc** ligand and stabilized by an aryl or alkyl group^{3–11} or another **bc** ligand.^{3,12,13} In these cases, the central transition metal is constrained to a square planar or tetrahedral geometry due to the rigid nature of the **bc** ligand scaffold. Additionally, there are reports of deboronated **bc**-based transition-metal complexes incorporating the transition-metal atom into the **bc** cage.^{3,14–16}

In contrast, there are relatively few main group metal complexes stabilized by a **bc** ligand,^{17–22} and the synthesis of these complexes has required activation of the C–H vertices of **H**₂-**bc**. Since the boron-bonded hydrogens are hydridic while the carbon-bonded hydrogens are protic,^{1,2} lithiation is a common route for the C–H activation of **H**₂-**bc**. The phosphorus complex *closo*-(C₂B₁₀H₁₀)(PR₂)-*nido*-(C₂B₁₀H₉) (PHR₂) (R = *i*Pr, N(*i*Pr)₂, or Ph) describes the activation of **H**₂-**bc** by lithiation to produce the dilithio salt.¹⁸ Alternatively, the synthesis for the 9-borafluorene three-dimensional analogue (**bc**)B(N(*i*Pr)₂) generates the dipotassium salt of **bc** via

potassium bis(trimethylsilyl)amide prior to a salt metathesis reaction with $(iPr_2)NBCl_2$.¹⁹ Currently, the only known **bc** complex containing a heavy group 14 metal is the Sn(IV) complex, (**bc**)SnMe₂, synthesized via reaction of the Grignard intermediate (**bc**)Mg(DME)₂ (DME = 1,2-dimethoxyethane) with SnMe₂Cl₂ (Figure 1).²⁰

Unlike the rarity of bis-carboranyl group 14 complexes, several *ortho*- and *meta*-carboranes containing B–Sn and C–Sn bonds are known.^{23,24} The earliest reports in 1965 concerned the trialkylcarboranyl tin complexes $(C_2B_{10}H_{10})(SnR_3)_2$, (R = alkyl), with each carbon vertex of the carborane cage bonded to a Sn(IV) atom, although structural data was not provided.²⁵ The first isolable carboranyl tin structures were the organotin complexes $[o-C_2B_{10}H_{10}(CH_2NMe_2)SnR_2Br$ (R = Me or Ph; X = Cl or Br) which feature a Sn(IV) bonded to a carbon vertex and stabilized by a Lewis basic $-CH_2NMe_2$ chelating group (Table 2 and ref 26).²⁶ In general, the majority of the tincarborane complexes are achieved through an initial lithiation

 Received:
 April 20, 2023

 Published:
 June 26, 2023

© 2023 The Authors. Published by American Chemical Society = BH

= B

= C

 $\mathbf{O} = CH$

Wong, Y. O.; Smith, M. D; Peryshkov, D. V. Chem Eur J, 2016, 22, 6764-6767.18

Yruegas, S.; Axtell, J. C.; Kirlikovali, K. O.; Spokoyny, A. M.; Martin, C. D. Chem Comm 2019, 55, 2892-2895.19

Axtell, J. C.; Kirlikovali, K. O.; Dziedzic, R. M.; Gembicky, M.; Rheingold, A. L.; Spokoyny, A. M. Eur J Inorg Chem, 2017, 2017, 4411–4416.²⁰

Figure 1. Synthetic routes of other bc-supported main-group metal complexes.

step in the stannylation of the C–H vertices of the carboranes cages. $^{16,23-38}$

Monomeric, homoleptic stannylenes of the formula SnR₂ are usually supported by bulky organic or related ligands such as alkyl, aryl, silyl, amido, alkoxo, thiolato, etc.³⁹⁻⁴¹ Given the bulkiness and rigidity of H_2 -bc, the compound may be a suitable platform to support a stannylene, as biscarborane-supported stannylenes are not known prior to this work. Herein, we present the synthesis and characterization of complexes containing a 1,1'-bis(o-carboranyl) stannylene (bc)Sn moiety. These compounds were obtained by first deprotonating H2-bc via potassium bis(trimethylsilyl)amide (KHMDS) to create the potassium salt, $K_2[bc]$,⁹ which was then added to SnCl₂ in THF. The reaction of $K_2[bc]$ with SnCl₂ in a THF solution gives the THF-coordinated (bc)Sn·THF (1), while a benzene/dichloromethane mixture affords $K_2[(bc)Sn]_2$ (2). Shortening the reaction tme of the dipotassium salt from 24 h to 9 h prior to addition to a dichloromethane solution of SnCl₂ produced the alkene (bc)CH=CH(bc) (3) (Scheme 1), presumably through a coupling reaction between the mono-deprotonated K[H-bc] salt and CH₂Cl₂ solvent molecules. X-ray crystallography and ¹H NMR, ¹¹B NMR, ¹³C NMR, and UV-vis spectroscopy show that the (bc)Sn moiety in complexes 1 and 2 confer structural and spectroscopic similarities between the two. Compound 1 was further characterized by ¹¹⁹Sn NMR spectroscopy. Characterization by X-ray crystallography, ¹H, ¹¹B, ¹³C NMR, UV-vis, and IR spectroscopy of compound 3 confirms its conjugated alkene structure.

EXPERIMENTAL SECTION

General Procedures. All manipulations were carried out by using modified Schlenk techniques under a N2 atmosphere. Solvents were dried over columns of activated alumina using a Grubbs-type purification system (Glass Contour), stored over Na (THF, toluene) mirrors, K (diethyl ether, hexanes) mirrors, or 3 Å molecular sieves (dichloromethane) and degassed via three freeze-pump-thaw cycles prior to use. KHMDS was purchased from Sigma-Aldrich and washed three times with hexanes prior to use. The compound H_2 -bc was synthesized according to literature procedures.^{10,42} The ¹H, ¹¹B{1H}, $^{13}C{^{1}H}$, and $^{119}Sn{^{1}H}$ NMR spectra were recorded on a Bruker AVANCE DRX 500 MHz spectrometer and the ¹H and ¹³C{¹H} spectra were referenced to the residual solvent signals in $C_6 D_6$ (¹H: δ 7.15 ppm, ¹³C: δ 128.06 ppm).⁴³ UV-visible spectra were recorded using dilute hexane solutions in 3.5 mL quartz cuvettes using an Olis 17 Modernized Cary 14 UV-vis/NIR spectrophotometer. Infrared spectra for 1 and 2 were recorded as Nujol mulls between CsI windows on a PerkinElmer 1430 spectrophotometer. The infrared spectrum for 3 was collected on a Bruker Tensor 27 ATRFTIR spectrometer. Melting points were determined on a Meltemp II apparatus in flame-sealed glass capillaries equipped with a partial immersion thermometer.

(*bc*)SnTHF (1). THF (ca. 50 mL) was added to a flask containing H₂bc (0.50 g, 1.75 mmol) and KHMDS (0.69 g, 3.5 mmol) and stirred at room temperature for 1 h. The resulting K₂[bc] solution was then added to a room-temperature THF suspension of SnCl₂ (0.33 g, 1.75 mmol). The solution was stirred overnight to afford a pale pink solution. The THF was removed under reduced pressure, and the resulting dark pink solid was re-dissolved in ca. 40 mL of warm toluene. Filtration through a Celite plug gave a pale-yellow solution. The toluene was removed under reduced pressure, and the solid was re-dissolved in dichloromethane. Concentration of the dichloromethane solution to ca. 10 mL and storage at ca. -18 °C gave pale yellow crystals of 1. Yield: 0.57 g (70%). mp 250–260 °C. ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 1.40 (m, 4H, THF CH₂(3,4)) δ 1.41–3.40 (m, BH), and δ 3.55 (m, 4H,

Scheme 1. Syntheses of 1-3

= C

THF CH₂(2,5)). ¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 20 °C) δ -11.47 (5B), δ -9.33 (6B), δ -8.12 (5B), δ 1.27 (2B), and δ 0.59 (2B). ¹³C{¹H} NMR (151 MHz, C₆D₆, 20 °C): δ 24.95 (THF CH₂(3,4), δ 62.91 (bc C) δ 69.99 (THF CH₂(2,5)), and δ 71.81 (bc C). ¹¹⁹Sn NMR (149 MHz, C_6D_6 , 20 °C): δ –137.31 (² J_{119Sn} –_{11B} = 1487 Hz). UV–Vis (toluene): λ_{max} (ϵ) 280 nm (15,000 mol⁻¹ L cm⁻¹) 345 nm (9600 mol⁻¹ L cm⁻¹).

 $K_2[(bc)Sn]_2$ (2). Benzene (ca. 50 mL) was added to a flask containing H₂-bc (0.50 g, 1.75 mmol) and KHMDS (0.69 g, 3.5 mmol) and stirred at room temperature until a tan-colored solution was achieved (approx. 24–48 h). The $K_2[bc]$ solution was then added directly to a roomtemperature dichloromethane solution of $SnCl_2$ (0.33 g, 1.75 mmol). The solution was stirred overnight to yield a pale pink solution. The solvent was removed under reduced pressure, and the orange solid was re-dissolved in warm toluene and separated from the light gray solid by filtration. Toluene was removed under reduced pressure, and the solid was re-dissolved in dichloromethane. Pale yellow crystals of 2 were grown from a concentrated dichloromethane solution (ca. 10 mL) stored at room temperature overnight. Yield: 0.39 g (50%). mp 240 °C. ¹H NMR (600 MHz, C₆D₆, 20 °C): δ 1.50–3.50 (m, BH). ¹¹B{¹H} NMR (160.5 MHz, C_6D_6 , 20 °C) δ –11.47 (5B) δ –9.33 (6B), δ –8.12 (5B), δ 1.27 (2B), and δ 0.59 (2B). ¹³C{¹H} NMR (151 MHz, C₆D₆, 20 °C): δ 62.91 (bc C), and δ 71.62 (bc C). ¹¹⁹Sn NMR signal not observed. UV–vis (toluene): λ_{max} (ϵ) 280 nm (3700 mol⁻¹ L cm⁻¹) $345 \text{ nm} (820 \text{ mol}^{-1} \text{ L cm}^{-1}).$

 $(bc)_2(CH)_2$ (3). Benzene (ca. 50 mL) was added to a flask containing H₂-bc (0.50 g, 1.75 mmol) and KHMDS (0.69 g, 3.5 mmol) and stirred at room temperature for 9-12 h. The pale-yellow slurry was then added directly to a room-temperature dichloromethane solution of SnCl₂ (0.33 g, 1.75 mmol). The solution was stirred overnight until all SnCl₂ solids were solubilized, affording a pale yellow-orange solution. The solvent was removed under reduced pressure, and the orange solid was re-dissolved in warm toluene to filter off the white solid. Toluene was removed under reduced pressure, and the product was re-dissolved in ca. 10 mL of benzene. Concentration of the benzene solution of the product to ca. 1 mL and storage overnight at room temperature gave yellow-orange crystals of 3. Yield: 0.27 g (50%). mp 260-270 °C. ¹H NMR (500 MHz, C₆D₆, 20 °C): δ 1.40-3.50 (m, BH), δ 3.78 (s, 2H, cage CH), δ 5.44 (s, 1H, olefinic CH), and δ 6.10 (s, 1H, C=CH).

¹¹B{¹H} NMR (160.5 MHz, C₆D₆, 20 °C) δ -11.47 (8B), δ -9.33 (11B), δ -8.04 (9B), δ -6.37 (2B), δ 1.27 (5B), and δ 0.56 (5B). ¹³C{¹H} NMR (151 MHz, C₆D₆, 20 °C): δ 2.65 (olefinic CH), δ 62.91 (bc C), and δ 71.82 (bc C). UV–vis (toluene): λ_{max} (ε) 284 nm (780 mol^{-1} L cm⁻¹), 334 nm (290 mol⁻¹ cm⁻¹). AT-FTIR: $\nu_{=CH}$ 3063 (s), $\nu_{=CH}$ 1254.13 (s), $\nu_{=CH}$ 1069.56 (s), $\nu_{=CH}$ 716.55 (s).

RESULTS AND DISCUSSION

Synthesis. C-H activation in organometallic species often involves their treatment with alkyl lithium reagents to create a reactive C-Li bond. Working with the biscarborane system presents an interesting synthetic challenge, as both the hydridic B-H and protic C-H vertices of H_2 -bc are potentially susceptible to lithiation,^{44,45} with the lack of selectivity previously noted to lead to isomers¹⁰ or cage-opened products.^{17,18,46} Peryshkov and co-workers in 2016 had intended to synthesize an "independently C-substituted biscarborane cluster" and bind a phosphorus atom to the bc ligand through the carbon vertices in κ^1 -mode.¹⁸ However, addition of a dialkylphosphine chloride to the Li₂[bc]/THF solution gave an asymmetric scaffold, with one of the carborane cages of the bc molecule undergoing a cage-opening reaction to produce the closo- $(C_2B_{10}H_{10})$ -nido- $(C_2B_{10}H_9)$ backbone.¹⁸ Nido-carboranyl species are a known decomposition product of H_2 -bc in the presence of a strong base or nucleophile.^{44,4/-}

Synthetic methods for selective bc vertex-activation were first reported in 2018 with the (bc)Pt(dtb-bpy) (dtb-bpy = 4,4'-di*tert*-butyl-2,2'-bipyridine) isomers.⁹ The κ^2 -C,C-bound isomer was generated by reacting H2-bc with 2 equiv of the nonnucleophilic and mild base potassium bis(trimethylsilyl)amide (KHMDS) and the κ^2 -B,C-bound isomer was generated by reacting H₂-bc stepwise with 1 equiv of KHMDS and 1 equiv of MeLi.⁹ This method of selectively activating the C-H vertices without forming deboronated nido-carboranyl side products via a non-nucleophilic, mild base was utilized to generate compounds 1–3.

Initially, following the procedure of Spokoyny and coworkers⁹ produced a tan-colored THF solution of $K_2[bc]$ which was added to a THF suspension of 1 equiv of $SnCl_2$ and resulted in the isolation of compound 1. Recrystallization from dichloromethane gave pale yellow crystals of 1. X-ray crystallographic data revealed a THF molecule bound to the central Sn atom in addition to the bc ligand.

The synthesis of **2** proceeded similarly to that of **1** but with the difference that the THF solvent was replaced with a benzene/ dichloromethane mixture (Scheme 1). Generating $K_2[bc]$ in a benzene solution required increased time due to the low solubility of the dipotassium salt in benzene in comparison to that in THF. Once a benzene solution assumed the same tan color as the $K_2[bc]$ /THF solution, approx. 24–48 h at room temperature, addition to a rapidly stirring dichloromethane solution of 1 equiv of SnCl₂ gave, after workup and recrystallization in the same manner as **1**, light orange crystals of **2**.

Compound 3 was synthesized by a procedure similar to that of 2, with the only difference being the amount of time the benzene solution was allowed to stir (Scheme 1). Stirring 1 equiv of H_2 bc with 2 equiv of KHMDS in benzene for approx. 9-12 h afforded an ivory-colored to pale-yellow solution which was then added to a rapidly stirring dichloromethane solution of 1 equiv of SnCl₂. Workup and recrystallization from benzene gave paleorange crystals of 3. The additional carbon atoms to afford the C=C bridging fragment are from the dichloromethane solvent. Given the pale color of the $K_2[bc]$ benzene solution observed with the shortened reaction time, it is likely that the KHMDS had activated only one C-H vertex prior to addition to the SnCl₂/CH₂Cl₂ solution. This mono-activated K[H-bc] proceeded to react with the solvent molecules to afford a C=Cbond. The reaction was repeated without SnCl₂, but compound 3 was not generated, suggesting that $SnCl_2$ is required to create the bridging alkene, possibly via a coupling mechanism similar to the Stille reaction.³

X-ray Crystal Structures. Due to the rigid nature of the bc ligand, the stannylenes in 1 and 2 are constrained to a fivemembered C₄Sn cycle. The sum of the angles of the stannocycles equal 533.45° in 1 and 538.55 and 538.96° in 2, indicating an essentially planar C₄Sn cyclic moiety. The C-C bond that links the carborane cages together in 1 and 2 is in the range 1.532(5) – 1.542(4) Å, which is slightly shorter than the C–C bond in the H_2 -bc precursor (1.602(2)).⁵¹ Additionally, the Sn–C bonds of 1 and 2 are 2.272(3)-2.309(3) Å (Table 1), slightly longer than the sum of the covalent radii of Sn (1.40 Å) and C (0.75 Å).⁵² The shortened C_{cage} - C_{cage} bond and the minor elongation of the Sn-C single bond likely function to relieve strain to accommodate the larger Sn atom into the planar heterocycle. This constrained framework has also forced a narrow sub-90° angle at the central Sn atom at $83.05(12)^\circ$ in 1 and 81.69 and 81.86° in 2 (Table 1), enabling a C-Sn-C bond angle narrower than other 5-membered organotin heterocycles (82.9(9)- $93.8(2)^{\circ}$).⁵³⁻⁶⁴

Compound 1 co-crystallizes with two dichloromethane molecules and shows that a THF molecule is coordinated to the κ^2 -C,C-bonded Sn atom. The Sn–O_{THF} distance of 2.239(3) Å is within the range of other Sn–O_{THF} distances in THF-coordinated Sn(II) complexes (2.261(14)–2.422(6) Å),^{65–68} consistent with a dative Sn \leftarrow O interaction. Additionally, the THF molecule is bonded to the Sn atom at approximately perpendicular to the C₄Sn plane, with C–Sn-O_{THF} angles at 90.95(12) and 93.12(12)° (Figure 2b). In total, the sum of the

Table 1. Selected Structural Data for 1-3

compound	1	2	3
C _{cage} –Sn, Å	2.272(3), 2.279(4)	Sn1: 2.276(3), 2.309(3)	
		Sn2: 2.288(4), 2.289(3)	
Sn−O or Sn−K, Å	2.249(3)	Sn1: 2.5876(8)	
		Sn2: 2.5855(9)	
C _{cage} -Sn-C _{cage} , deg	83.05(12)	Sn1: 81.69(11)	
		Sn2: 81.86(12)	
C–Sn–THF or C–Sn–K, deg	90.95(12), 93.12(12)	Sn1: 88.23(10), 94.11(7)	
		Sn2: 92.68(7), 90.89(7)	
С=С, Å			1.319(4)
C _{cage} -C _{olefin} Å			1.488(3)
$C_{cage} - C_{olefin} - C_{olefin}$, deg			123.1(1)

angles around the tin atom equals $267.12(12)^{\circ}$ and indicates a highly pyramidalized geometry. The coordination geometry at Sn is typical of other THF-coordinated Sn complexes, which report C-Sn-O_{THF} angles in the range $84.8(3)-94.6(6)^{\circ}$.

Compound 2 co-crystallizes with two dichloromethane molecules as well as two K⁺ ions from K₂[**bc**] in the first step in the synthesis. One K⁺ ion forms a Sn–K–Sn bridging fragment between two (**bc**)Sn moieties (Figure 3a), and the other K⁺ ion appears as a counterion coordinated to the B–H vertices of the **bc** cage (Figure 3b). Compound 2 is unusual in that the Sn–K distances at 2.5866(8) and 2.5855(9) Å are significantly shorter than the Sn–K distances of low-valent Sn(II) and Sn(I) complexes containing a K⁺ counterion, which report values within the range 3.460(4)–3.7202(1) Å.^{69–72} The short Sn–K distances in 2 indicates a strong interaction between the two atoms, though whether this arises from the rigid sterics or electron-withdrawing influence of the **bc** ligands cannot be determined. The counteranion charge should be delocalized over the biscarborane cages.^{1,3}

Structural data for compound **3** shows an inversion center which imposes a *trans* configuration around the central C1–C1' bond (Figure 4). The C1–C1' bond distance (1.319(4) Å) and C2–C1–C1' bond angle (123.1(2)°) are consistent with the presence of a C=C double bond.⁶⁷ Overall, compound **3** has C_{2h} symmetry. A series of dicarboranyl ethenes R(C₂B₁₀H₁₀)-CH=CH(C₂B₁₀H₁₀)R (R = Ph or C₆H₄Me-*p*) analogous to compound **3** similarly contain a trans C=C double bond.⁴⁶ More recently, carborane clusters linked via a phenyl group have also been reported, generally containing the formula $(C_2B_{10}H_{11})$ –Ph– $(C_2B_{10}H_{11})$.^{73–75} To the best of our knowledge, compound **3** is the first dibiscarboranyl ethene in the literature.

Spectroscopy. Compounds 1-3 were characterized by ¹H NMR, ¹¹B NMR, ¹³C NMR, UV-vis, and IR spectroscopy. Compound 1 was also characterized by ¹¹⁹Sn NMR spectroscopy.

The ¹H NMR spectrum for **1** displays the coordinated THF proton signals at 1.40 and 3.55 ppm, which is in the same range as those of other THF-coordinated Sn(II) complexes ($\delta_{\text{CH}_2(3,4)} = 1.3-1.8$; $\delta_{\text{CH}_2(2,5)} = 3.5-3.7$)^{65–68} as well as signals due to free THF in C₆D₆ ($\delta_{\text{CH}_2(3,4)} = 1.43$; $\delta_{\text{CH}_2(2,5)} = 3.57$).⁴³

The ¹¹⁹Sn NMR spectrum for **1** displays a signal at -137.31 ppm. Related (**bc**)Sn compounds have ¹¹⁹Sn signals further downfield than compound **1**, with (**bc**)SnMe₂ having a signal at

Figure 2. Thermal ellipsoid plot (50%) of 1. CH_2Cl_2 solvent molecules are not shown for clarity. (a) "Top" view of 2. (b) "Side" view of 2. Selected bond lengths (Å) and angles (deg): C1-Sn1 = 2.272(3), C4-Sn1 = 2.279(4), O1-Sn1 = 2.249(3), C1-Sn1-C4 = 83.05(12), C1-Sn1-O1 = 90.95(12), C4-Sn1-O1 = 93.12(12).

Figure 3. Thermal ellipsoid plot (50%) of **2**. (a) "Top" view of **2** to show coordination of K1. CH_2Cl_2 solvent molecules are not shown for clarity. (b) Expanded view of **2** to show coordination of K2. (c) "Side" view of **2** to show coordination of K1. CH_2Cl_2 solvent molecules are not shown for clarity. Selected bond lengths (Å) and angles (deg): C1-Sn1 = 2.276(3), C4-Sn1 = 2.309(3), C5-Sn2 = 2.288(4), C8-Sn2 = 2.289(3), K1-Sn1 = 2.5876(8), K1-Sn2 = 2.5855(9), C1-Sn1-C4 = 81.69(11), C5-Sn2-C8 = 81.86(12), C1-Sn1-K1 = 88.23(10), C4-Sn1-K1 = 94.11(7), C5-Sn2-K1 = 92.68(7), C8-Sn2-K1 = 90.89(7).

−21.22 ppm in d⁸-THF and the methyl-substituted derivative (**Mebc**)SnMe₂ (**Mebc** = 8,8',9,9',10,10',12,12'-octamethyl-1,1'-bis(*o*-carborane)) at 9.20 ppm in d⁸-THF and 53.10 ppm in C₆D₆ (Table 2).²⁰ A decrease in the coordination environment around the Sn atom usually results in a downfield shift of the ¹¹⁹Sn resonance.⁷⁶ Nonetheless, 3-coordinate 1 displays an upfield shift in comparison to the 4-coordinate (**bc**)SnMe₂ and (**Mebc**)SnMe₂. The three-coordinate, THF-bonded complexes Sn[OC(C₄H₃S)₃]₂(THF)⁶⁵ and [Sn(box)(THF)]⁺ (box = 1,1-bis[(4S)-4-phenyl-1,3-oxazolin-2-yl]ethane)⁶⁷ report ¹¹⁹Sn NMR signals upfield of the chemical shifts of 1 at −244.5 and −377.1 ppm, respectively. As the signal for 1 is observed between its tetra-coordinated analogues and Sn(II) ← THF derivatives, THF coordination aids in shielding the tin atom,

leading to a more shielded Sn atom than that in (bc)SnMe₂ and (Mebc)SnMe₂, while the electron-withdrawing effect of the bc ligand causes a deshielding on Sn relative to other Sn(II) \leftarrow THF complexes.

The triplet of triplets which occurs in the ¹¹⁹Sn NMR spectrum of compound 1 is unusual, given the absence of a Sn– H signal in its ¹H NMR and IR spectra and X-ray structural data. Additionally, ¹¹⁹Sn NMR signals for Sn(II) \leftarrow THF complexes often appear as singlets in the spectrum (Table 2).^{65–67} However, multivalent Sn complexes bonded to electronwithdrawing groups and supported by a Sn \leftarrow X (X = N or P) dative bond report multiplets in their ¹¹⁹Sn NMR spectra (Table 2).^{26–28,66} The carboranyl–tin complexes by Gielen and coworkers report 1:2:3:4:3:2:1 septets in their corresponding

Figure 4. Thermal ellipsoid plot (50%) of **3**. Cage-bonded H atoms are not shown for clarity. Selected bond lengths (Å) and angles (deg): C1-C1' = 1.319(4), C1-C2 = 1.488(3), C3-C4 = 1.533(3), C2-C1-C1' = 123.1(2).

¹¹⁹Sn NMR spectra at -166.3 and -166.2 ppm, with coupling constants of 1268 and 1271 Hz²⁸ similar to the coupling constant for the ¹¹⁹Sn NMR signal of 1 (1487 Hz). In addition, carboranyl tin complexes supported by a Sn \leftarrow X dative bond (X = N or P) typically observe doublets in the ¹¹⁹Sn NMR spectrum, depending on both the identity of the X atom and coordination about Sn.^{26–28,30,76–78} The splitting patterns which appear in the ¹¹⁹Sn NMR spectra of compound 1 and carboranyl tin coordination complexes presumably arise from long-range nuclear spin–spin coupling between the carboranyl boron and tin nuclei.^{79,80} The quadrupolar relaxation rate of the ¹¹B nucleus (I = 3/2) is known to influence the appearance of the resonances of nuclei with spin I = 1/2, such as ¹¹⁹Sn.^{79–81} Specific to compound 1, the four boron atoms bonded to the tinbound carbon atom (B3, B6, B7, and B11) exist in two different chemical environments due to the $C_{2\nu}$ symmetry of the ocarborane cage (Figure 5), likely causing the triplet of triplets displayed in the ¹¹⁹Sn spectrum of 1.

Despite numerous attempts to record spectra, with the use of a wide variety of parameters, the ¹¹⁹Sn NMR signal for compound 2 could not be detected. Problems in obtaining the ¹¹⁹Sn data were also encountered for the dianions $K_2[Ar^{iPr6}SnSnAr^{iPr6}]$, which was hypothesized to be caused by the unsymmetric electron environment at the Sn atoms, which may cause rapid relaxation through the high anisotropy of the chemical shift tensor.^{70,82} The THF ligand in 1 appears to stabilize the electron environment at the Sn atom to facilitate detection of a signal. In addition, though the ¹¹B NMR spectra of 1 and 2 are both proton-decoupled, the spectrum for 2 displays tin satellites at -14 and -5 ppm (See Supporting Information, Figure S5) that are absent in the spectrum for 1. This difference can also be attributed to the coordination of THF to the ¹¹⁹Sn nucleus in 1 but not 2.

The UV-vis spectrum of 1 displays two absorptions in the near-UV region at 280 and 345 nm. These absorptions persist in 2, appearing also at 280 and 345 nm regardless of whether a THF or K ion is coordinated to Sn. The similar absorptions in the UV-vis spectra for 1 and 2 suggests that compounds 1 and 2

Table 2. '	¹¹⁹ Sn NMR	Chemical	Shifts	for 1	and	Selected
Compour	nds ^a					

$\bigcirc = BH \\ \bullet = B \\ \bullet = CH \\ \bullet = C$	¹¹⁹ Sn δ (ppm)/ (Solvent)	J _{119sn} (Hz)	Reference
Sn Me	-21.22 (s) / (d ⁸ -THF)	-	20
Me Me Me Me Me Me Me Me Me	9.20 (s) / (d ⁸ -THF) 53.10 (s) / (C ₆ D ₆)	-	20
(SC₄H ₃) ₃ CO Sn ← O (SC₄H ₃) ₃ CO	-244.5 (s) / (CDCl ₃)	-	65
$\left[\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	-377.1 (s) / (d ⁸ -THF)	-	67
Me N-Sn-N Cefs CoFs	-127 (quint) / (CDCl ₃)	412.5	66
	-137 (tt) / (C6D6)	1487	this work
	-166.3 (sept) / (n.r.)	1268	28
	-166.2 (sept) / (n.r.)	1271	28
Br Me Sn Me	-118.63 (n.r.) / (CDCl ₃)	(n.r.)	26
Br Me Sn PPh ₂	-30.2 (d) / (CDCl ₃)	320.3	27
SnMe ₂ Cl PPh ₂	108.3 (d) / (CDCl ₃)	72.6	27

^{*a*}n.r.: not reported.

exist as the same compound in the solution phase. The relatively intense absorptions at 280 nm and similarly at 284 nm in the UV-vis spectrum for 3 can be tentatively assigned to an energy transfer on the bis-carborane ligand. The near-UV vis region of the absorption bands of 1 and 2 suggests a high-energy HOMO \rightarrow LUMO transition of the (bc)Sn compounds.

Compound **3** exhibits spectroscopic features characteristic of alkenes. The olefin protons appear at 5.43 and 6.10 ppm in the ¹H NMR spectrum and the olefin carbon at 2.65 ppm in the ¹³C NMR spectrum at the high frequency shifts indicative of more conjugated alkenes.⁸³ The UV–vis spectrum of **3** displays a

Figure 5. Left: Tin-bonded carbon vertex face is marked with a blue circle. Right: "Front" view of the blue-circled face, showing the two chemical environments of B3/B6 (italicized) vs B7/B11.

shoulder at 334 nm, corresponding to an olefin $\pi \rightarrow \pi^*$ transition at a relatively longer wavelength for alkenes groups, further confirming a conjugated alkene.⁸³ Interestingly, a $\nu_{\rm C=C}$ stretching frequency in the IR spectrum within the characteristic 1680–1640 cm⁻¹ region is not observed.

CONCLUSIONS

The syntheses for 1-3 proceeded in a similar way to each other with only simple modifications in solvents or reaction time. In THF solvent, the synthetic procedure gave the THFcoordinated 1, while using a stepwise benzene and dichloromethane solvent mixture gave 2. Shortening the reaction period of the step that generates the dipotassium salt from 24-48 h to 9-12 h gave the alkene 3. Compound 1 exists as a Lewis acid– base pair with THF, as displayed in the X-ray structural data. Furthermore, the **bc** ligand platform confers interesting spectroscopic characteristics in the ¹¹⁹Sn NMR spectrum that is unusual for Sn(II)–THF complexes but usual for organotin complexes featuring electron-withdrawing ligands like carboranes. X-ray structural data for 2 show that the Sn atom contains a similar structural motif to that of 1. Compound 3 is the first example of a dibiscarborane-supported alkene.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.3c00190.

Crystallographic data and NMR, IR, and UV-vis spectra (PDF)

Accession Codes

CCDC 2248737–2248739 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Philip P. Power – Department of Chemistry, University of California, Davis, California 95616, United States;
orcid.org/0000-0002-6262-3209; Email: pppower@ucdavis.edu

Authors

Alice C. Phung – Department of Chemistry, University of California, Davis, California 95616, United States Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.3c00190

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Office of Basic Energy Sciences, U.S. Department of Energy (DE-PB02-07ER4675) for financial support and the X-ray diffractometer (NSF Grant 0840444). A.C.P. would like to thank Dr. Kent Kirlokovali and Dr. Rafal Dziedzic for useful comments and Dr. Alexander Spokoyny for his continued interest and mentorship.

REFERENCES

(1) Grimes, R. N. Carboranes; Elsevier, 2016.

(2) Grimes, R. N. Carboranes in the Chemist's Toolbox. *Dalton Trans.* 2015, 44, 5939–5956.

(3) Welch, A. J. Bis(Carboranes) and Their Derivatives. 50th Anniversary of Electron Counting Paradigms for Polyhedral Molecules, 2021; pp 163–195.

(4) Jeans, R. J.; Chan, A. P. Y.; Riley, L. E.; Taylor, J.; Rosair, G. M.; Welch, A. J.; Sivaev, I. B. Arene–Ruthenium Complexes of 1,1'-Bis(Ortho-Carborane): Synthesis, Characterization, and Catalysis. *Inorg. Chem.* **2019**, *58*, 11751–11761.

(5) Sivaev, I. B.; Bregadze, V. I. 1,1'-Bis(Ortho-Carborane)-Based Transition Metal Complexes. *Coord. Chem. Rev.* **2019**, 392, 146–176.

(6) Chambrier, I.; Hughes, D. L.; Jeans, R. J.; Welch, A. J.; Budzelaar, P. H. M.; Bochmann, M. Do Gold(III) Complexes Form Hydrogen Bonds? An Exploration of Au^{III} Dicarboranyl Chemistry. *Chem.—Eur. J.* **2020**, *26*, 939–947.

(7) Martin, M. J.; Man, W. Y.; Rosair, G. M.; Welch, A. J. 1,1'-Bis(Ortho-Carborane) as a κ^2 Co-Ligand. J. Organomet. Chem. 2015, 798, 36–40.

(8) Yao, Z.-J.; Zhang, Y.-Y.; Jin, G.-X. Pseudo-Aromatic Bis-o-Carborane Iridium and Rhodium Complexes. *J. Organomet. Chem.* 2015, 798, 274–277.

(9) Kirlikovali, K. O.; Axtell, J. C.; Anderson, K.; Djurovich, P. I.; Rheingold, A. L.; Spokoyny, A. M. Fine-Tuning Electronic Properties of Luminescent Pt(II) Complexes via Vertex-Differentiated Coordination of Sterically Invariant Carborane-Based Ligands. *Organometallics* **2018**, 37, 3122–3131.

(10) Kirlikovali, K. O.; Axtell, J. C.; Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. Luminescent Metal Complexes Featuring Photophysically Innocent Boron Cluster Ligands. *Chem. Sci.* **2016**, *7*, 5132–5138.

(11) Jeans, R. J.; Rosair, G. M.; Welch, A. J. C,C'-Ru to C,B'-Ru Isomerisation in Bis(Phosphine)Ru Complexes of [1,1'-Bis(Ortho-Carborane)]. *Chem. Commun.* **2022**, *58*, 64–67.

(12) Owen, D. A.; Hawthorne, M. F. Novel Chelated Biscarborane Transition Metal Complexes Formed through Carbon-Metal .Sigma. Bonds. J. Am. Chem. Soc. **1970**, *92*, 3194–3196.

(13) Harwell, D. E.; McMillan, J.; Knobler, C. B.; Hawthorne, M. F. Structural Characterization of Representative d^7 , d^8 , and d^9 Transition Metal Complexes of Bis(o - Carborane). *Inorg. Chem.* **1997**, *36*, 5951–5955.

(14) Mandal, D.; Rosair, G. M. Exploration of Bis(Nickelation) of 1,1'-Bis(o-Carborane). *Crystals* **2020**, *11*, 16.

(15) Chan, A. P. Y.; Rosair, G. M.; Welch, A. J. Exopolyhedral Ligand Orientation Controls Diastereoisomer in Mixed-Metal Bis-(Carboranes). *Molecules* **2020**, *25*, 519.

(16) Cui, C.-X.; Ren, S.; Qiu, Z.; Xie, Z. Synthesis of Carborane-Fused Carbo- and Heterocycles via Zirconacyclopentane Intermediates. *Dalton Trans.* **2018**, 47, 2453–2459.

(17) Wong, Y. O.; Smith, M. D.; Peryshkov, D. v. Reversible Water Activation Driven by Contraction and Expansion of a 12-Vertex-Closo-12-Vertex-Nido Biscarborane Cluster. *Chem. Commun.* **2016**, *52*, 12710–12713.

(18) Wong, Y. O.; Smith, M. D.; Peryshkov, D. v. Synthesis of the First Example of the 12-Vertex-Closo/12-Vertex-Nido Biscarborane Cluster by a Metal-Free B–H Activation at a Phosphorus(III) Center. *Chem.*— *Eur. J.* **2016**, *22*, 6764–6767.

(19) Yruegas, S.; Axtell, J. C.; Kirlikovali, K. O.; Spokoyny, A. M.; Martin, C. D. Synthesis of 9-Borafluorene Analogues Featuring a Three-Dimensional 1,1'-Bis(o-Carborane) Backbone. *Chem. Commun.* **2019**, *55*, 2892–2895.

(20) Axtell, J. C.; Kirlikovali, K. O.; Dziedzic, R. M.; Gembicky, M.; Rheingold, A. L.; Spokoyny, A. M. Magnesium Reagents Featuring a 1,1'-Bis(o-carborane) Ligand Platform. *Eur. J. Inorg. Chem.* **2017**, 2017, 4411–4416.

(21) Zhang, C.; Wang, J.; Lin, Z.; Ye, Q. Synthesis, Characterization, and Properties of Three-Dimensional Analogues of 9-Borafluorenes. *Inorg. Chem.* **2022**, *61*, 18275–18284.

(22) Riley, L. E.; Krämer, T.; McMullin, C. L.; Ellis, D.; Rosair, G. M.; Sivaev, I. B.; Welch, A. J. Large, Weakly Basic Bis(Carboranyl)-Phosphines: An Experimental and Computational Study. *Dalton Trans.* **2017**, *46*, 5218–5228.

(23) Schroeder, H.; Papetti, S.; Alexander, R. P.; Sieckhaus, J. F.; L, H. T. Icosahedral carboranes. XI. Germanium and Tin Derivatives of o-mand p-Carborane and Their Polymers. *Inorg. Chem.* **1969**, *8*, 2444–2449.

(24) Bregadze, V. I.; Dzhashiashvili, T. K.; Sadzhaya, D. N.; Petriashvili, M. v.; Ponomareva, O. B.; Shcherbina, T. M.; Kampel', V. T.; Kukushkina, L. B.; Rochev, V. Y.; Godovikov, N. N. Carborane Derivatives with Boron-Tin Bond. *Bull. Acad. Sci. USSR, Div. Chem. Sci.* **1983**, 32, 824–827.

(25) Zakharkin, L. I.; Bregadze, V. I.; Okhlobystin, O. Y. Synthesis of Organoelement Derivatives of Barenes (Carboranes). *J. Organomet. Chem.* **1965**, *4*, 211–216.

(26) Lee, J.-D.; Kim, S.-J.; Yoo, D.; Ko, J.; Cho, S.; Kang, S. O. Synthesis and Reactivity of Intramolecularly Stabilized Organotin Compounds Containing the C,N-Chelating o-Carboranylamino Ligand $[o-C_2B_{10}H_{10}(CH_2NMe_2)-C,N]^-$ (Cab^{C,N}). X-Ray Structures of $(Cab^{C,N})SnR_2X$ (R = Me, X = Cl; R = Ph, X = Cl), $(Cab^{C,N})_2$ Hg, and $[(Cab^{C,N})SnMe_2]_2$. Organometallics **2000**, *19*, 1695–1703.

(27) Lee, T.; Lee, S. W.; Jang, H. G.; Kang, S. O.; Ko, J. Synthesis and Reactivity of Organotin Compounds Containing the C,P-Chelating o-Carboranylphosphino Ligand $[o-C_2B_{10}H_{10}PPh_2-C,P](Cab^{C,P})$. X-Ray Structures of $(Cab^{C,CH2P})SnMe_2Br$, $[(Cab^{C,P})SnMe_2]_2Pd$, and $[(Cab^{C,P})SnMe_2]Pd(PEt_3)Cl$. Organometallics **2001**, 20, 741–748.

(28) Gielen, M.; Kayser, F.; Zhidkova, O. B.; Kampel, V. T.; Bregadze, V. l.; de Vos, D.; Biesemans, M.; Mahieu, B.; Willem, R. Synthesis, Characterization and In Vitro Antitumour Activity of Novel Organotin Derivatives of 1,2- and 1,7-Dicarba-Closo-Dodecaboranes. *Met. Base. Drugs* **1995**, *2*, 37–42.

(29) Dostál, L.; Růžička, A.; Jambor, R. Synthesis of $Me_2LSn(o-CH_3-C_2B_{10}H_{10})$: Crystal Structure of Sn \leftarrow O Intramolecularly Coordinated Organotin Compound Containing 1-Methyl-o-Carborane. *Inorg. Chim. Acta.* **2010**, 363, 2051–2054.

(30) Lee, J.-D.; Kim, H.-S.; Han, W.-S.; Kang, S. O. Chiral Organotin Complexes Stabilized by C,N-Chelating Oxazolinyl-o-Carboranes. *J. Organomet. Chem.* **2010**, *695*, 463–468.

(31) Nakamura, H.; Aoyagi, K.; Yamamoto, Y. O-Carborane as a Novel Protective Group for Aldehydes and Ketones. *J. Org. Chem.* **1997**, *62*, 780–781.

(32) Nakamura, H.; Yamamoto, Y. Novel Addition and [3+2] Cycloaddition Reactions of Stannyl- and Silyl-Ortho-Carboranes to Carbonyl Compounds. Collect. Czech. Chem. Commun. 1999, 64, 829–846.

(33) Lee, C.; Lee, J.; Lee, S. W.; Kang, S. O.; Ko, J. Synthesis and Reactivity of 1,2-Bis(Chlorodimethylgermyl)Carborane and 1,2-Bis-(Bromodimethylstannyl)Carborane. *Inorg. Chem.* **2002**, *41*, 3084–3090.

(34) Batsanov, A. S.; Fox, M. A.; Hibbert, T. G.; Howard, J. A. K.; Kivekäs, R.; Laromaine, A.; Sillanpää, R.; Viñas, C.; Wade, K. Sulfur, Tin and Gold Derivatives of 1-(2'-Pyridyl)-Ortho-Carborane, 1-R-2-X-1,2- $C_2B_{10}H_{10}$ (R = 2'-Pyridyl, X = SH, SnMe₃ or AuPPh₃). *Dalton Trans.* **2004**, 3822–3828.

(35) Dröse, P.; Hrib, C. G.; Edelmann, F. T. Carboranylamidinates. J. Am. Chem. Soc. **2010**, *132*, 15540–15541.

(36) Harmgarth, N.; Gräsing, D.; Dröse, P.; Hrib, C. G.; Jones, P. G.; Lorenz, V.; Hilfert, L.; Busse, S.; Edelmann, F. T. Novel Inorganic Heterocycles from Dimetalated Carboranylamidinates. *Dalton Trans.* **2014**, 43, 5001–5013.

(37) Harmgarth, N.; Liebing, P.; Förster, A.; Hilfert, L.; Busse, S.; Edelmann, F. T. Spontaneous vs. Base-Induced Dehydrochlorination of Group 14 Ortho-Carboranylamidinates. *Eur. J. Inorg. Chem.* **2017**, 2017, 4473–4479.

(38) Crujeiras, P.; Rodríguez-Rey, J. L.; Sousa-Pedrares, A. Coordinating Ability of the Iminophosphorane Group in Ortho-Carborane Derivatives. *Eur. J. Inorg. Chem.* **2017**, 2017, 4653–4667.

(39) Neumann, W. P. Germylenes and Stannylenes. *Chem. Rev.* **1991**, *91*, 311–334.

(40) Tokitoh, N.; Okazaki, R. Recent Topics in the Chemistry of Heavier Congeners of Carbenes. *Coord. Chem. Rev.* 2000, 210, 251–277.

(41) Product Subclass 7: Stannylenes. In *Category 1, Organometallics;* Moloney, M. G., Ed.; Georg Thieme Verlag: Stuttgart, 2003.

(42) Ren, S.; Xie, Z. A Facile and Practical Synthetic Route to 1,1'-Bis(o-Carborane). Organometallics **2008**, 27, 5167–5168.

(43) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* **2010**, *29*, 2176–2179.

(44) Kazakov, G. S.; Sivaev, I. B.; Suponitsky, K. Y.; Kirilin, A. D.; Bregadze, V. I.; Welch, A. J. Facile Synthesis of Closo-Nido Bis(Carborane) and Its Highly Regioselective Halogenation. J. Organomet. Chem. 2016, 805, 1–5.

(45) Popescu, A.-R.; Musteti, A. D.; Ferrer-Ugalde, A.; Viñas, C.; Núñez, R.; Teixidor, F. Influential Role of Ethereal Solvent on Organolithium Compounds: The Case of Carboranyllithium. *Chem.*— *Eur. J.* **2012**, *18*, 3174–3184.

(46) Thomas, R. Ll.; Rosair, G. M.; Welch, A. J. Synthesis and Molecular Structure of Dicarbaboryl Ethenes and an Unexpected Dimetallated Derivative. *Chem. Commun.* **1996**, 1327.

(47) Wiesboeck, R. A.; Hawthorne, M. F. Dicarbaundecaborane(13) and Derivatives. J. Am. Chem. Soc. **1964**, 86, 1642–1643.

(48) Hawthorne, M. F.; Young, D. C.; Garrett, P. M.; Owen, D. A.; Schwerin, S. G.; Tebbe, F. N.; Wegner, P. A. Preparation and Characterization of the (3)-1,2- and (3)-1,7-Dicarbadodecahydroundecaborate(-1) Ions. J. Am. Chem. Soc. **1968**, 90, 862–868.

(49) Hawthorne, M. F.; Owen, D. A.; Wiggins, J. W. Degradation of Biscarborane. *Inorg. Chem.* **1971**, *10*, 1304–1306.

(50) Aleena, M. B.; Philip, R. M.; Anilkumar, G. Advances in Nonpalladium-catalysed Stille Couplings. *Appl. Organomet. Chem.* **2021**, 35, No. e6430.

(51) Yang, X.; Jiang, W.; Knobler, C. B.; Mortimer, M. D.; Hawthorne, M. F. The Synthesis and Structural Characterization of Carborane Oligomers Connected by Carbon-Carbon and Carbon-Boron Bonds between Icosahedra. *Inorg. Chim. Acta.* **1995**, *240*, 371–378.

(52) Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1-118. *Chem.—Eur. J.* **2009**, *15*, 186–197.

(53) Clegg, W.; Harrington, R. W. CCDC 2055793: Experimental Crystal Structure Determination; CSD Communication, 2021.

Stannylenoid Formation from the Corresponding Stannylene and Cesium Fluoride. Angew. Chem., Int. Ed. 2016, 55, 14784–14787.

(56) Schäfer, A.; Saak, W.; Haase, D.; Müller, T. Persistent Dialkyl(Silyl)Stannylium Ions. J. Am. Chem. Soc. 2011, 133, 14562– 14565.

(57) Kira, M.; Yauchibara, R.; Hirano, R.; Kabuto, C.; Sakurai, H. Chemistry of Organosilicon Compounds. 287. Synthesis and x-Ray Structure of the First Dicoordinate Dialkylstannylene That Is Monomeric in the Solid State. *J. Am. Chem. Soc.* **1991**, *113*, 7785–7787. (58) Saito, M.; Shiratake, M.; Tajima, T.; Guo, J. D.; Nagase, S. Synthesis and Structure of the Dithienostannole Anion. *J. Organomet. Chem.* **2009**, *694*, 4056–4061.

(59) Kavara, A.; Kampf, J. W.; Banaszak Holl, M. M. Direct Formation of Propargyltin Compounds via C–H Activation. *Organometallics* **2008**, *27*, 2896–2897.

(60) Kavara, A.; Kheir, M. M.; Kampf, J. W.; Banaszak Holl, M. M. Aryl Halide Radical Clocks as Probes of Stannylene/Aryl Halide C–H Activation Rates. *J. Inorg. Organomet. Polym. Mater.* **2014**, *24*, 250–257.

(61) Yan, C.; Xu, Z.; Xiao, X.-Q.; Li, Z.; Lu, Q.; Lai, G.; Kira, M. Reactions of an Isolable Dialkylstannylene with Carbon Disulfide and Related Heterocumulenes. *Organometallics* **2016**, *35*, 1323–1328.

(62) Kavara, A.; Cousineau, K. D.; Rohr, A. D.; Kampf, J. W.; Banaszak Holl, M. M. A Stannylene/Aryl Iodide Reagent for Allylic CH Activation and Double Bond Addition Chemistry. *Organometallics* **2008**, *27*, 1041–1043.

(63) Izod, K.; McFarlane, W.; Tyson, B. V.; Carr, I.; Clegg, W.; Harrington, R. W. Stabilization of a Dialkylstannylene by Unusual B– H…Sn γ -Agostic-Type Interactions. A Structural, Spectroscopic, and DFT Study. *Organometallics* **2006**, *25*, 1135–1143.

(64) Krebs, K. M.; Wiederkehr, J.; Schneider, J.; Schubert, H.; Eichele, K.; Wesemann, L. η^3 -Allyl Coordination at Tin(II)-Reactivity towards Alkynes and Benzonitrile. *Angew. Chem., Int. Ed.* **2015**, *54*, 5502–5506. (65) Veith, M.; Belot, C.; Huch, V.; Zimmer, M. Influence of the Solvent on the Formation of New Tin(II) Methoxides Containing Thienyl Substituents: Crystal Structure and NMR Investigations. Z. Anorg. Allg. Chem. **2009**, *635*, 942–948.

(66) Huang, M.; Kireenko, M. M.; Lermontova, E. Kh.; Churakov, A. V.; Oprunenko, Y. F.; Zaitsev, K. V.; Sorokin, D.; Harms, K.; Sundermeyer, J.; Zaitseva, G. S.; Karlov, S. S. Novel Stannylenes Stabilized with Diethylenetriamido and Related Amido Ligands: Synthesis, Structure, and Chemical Properties. *Z. Anorg. Allg. Chem.* **2013**, *639*, 502–511.

(67) Arii, H.; Matsuo, M.; Nakadate, F.; Mochida, K.; Kawashima, T. Coordination of a Chiral Tin(Ii) Cation Bearing a Bis(Oxazoline) Ligand with Tetrahydrofuran Derivatives. *Dalton Trans.* **2012**, *41*, 11195.

(68) Eisler, D. J.; Chivers, T. Chalcogenide Derivatives of Imidotin Cage Complexes. *Chem.—Eur. J.* 2006, 12, 233–243.

(69) McGeary, M. J.; Cayton, R. H.; Folting, K.; Huffman, J. C.; Caulton, K. G. Potassium Triphenylsiloxide "-Ate" Compounds of Tin(II): Molecular and Separated Ion Forms and Variable Potassium Coordination Numbers. *Polyhedron* **1992**, *11*, 1369–1382.

(70) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. Germanium and Tin Analogues of Alkynes and Their Reduction Products. *J. Am. Chem. Soc.* **2003**, *125*, 11626–11636.

(71) Becker, M.; Förster, C.; Franzen, C.; Hartrath, J.; Kirsten, E.; Knuth, J.; Klinkhammer, K. W.; Sharma, A.; Hinderberger, D. Persistent Radicals of Trivalent Tin and Lead. *Inorg. Chem.* **2008**, *47*, 9965–9978.

(72) Zheng, X.; Crumpton, A. E.; Protchenko, A. V.; Heilmann, A.; Ellwanger, M. A.; Aldridge, S. Disproportionation and Ligand Lability in Low Oxidation State Boryl-Tin Chemistry. *Chem.—Eur. J.* **2023**, *29*, No. e202203395.

(73) Endo, Y.; Songkram, C.; Ohta, K.; Kaszynski, P.; Yamaguchi, K. Distorted Benzene Bearing Two Bulky Substituents on Adjacent

Positions: Structure of 1,2-Bis(1,2-Dicarba-Closo-Dodecaboran-1-Yl)-Benzene. *Tetrahedron Lett.* **2005**, *46*, 699–702.

(74) Endo, Y.; Songkram, C.; Ohta, K.; Yamaguchi, K. Synthesis of Distorted Molecules Based on Spatial Control with Icosahedral Carboranes. J. Organomet. Chem. **2005**, 690, 2750–2756.

(75) Harder, R. A.; Hugh MacBride, J. A.; Rivers, G. P.; Yufit, D. S.; Goeta, A. E.; Howard, J. A. K.; Wade, K.; Fox, M. A. Studies on Bis(1'-Ortho-Carboranyl)Benzenes and Bis(1'-Ortho-Carboranyl)Biphenyls. *Tetrahedron* **2014**, *70*, 5182–5189.

(76) Wrackmeyer, B. ¹¹⁹Sn-NMR Parameters, Annual Reports on NMR Spectroscopy; Elesiver, 1985; pp 73–186.

(77) Otera, J. 119Sn Chemical Shifts in five- and six-coordinate organotin chelates. J. Organomet. Chem. **1981**, 221, 57–61.

(78) Mitchell, T. N. Carbon-13 NMR Investigations on Organotin Compounds. J. Organomet. Chem. 1973, 59, 189–197.

(79) Wrackmeyer, B. Long-Range Nuclear Spin-Spin Coupling between ¹¹B and ¹³C, ²⁹Si or ¹¹⁹Sn: A Promising Tool for Structural Assignment. *Polyhedron* **1986**, *5*, 1709–1721.

(80) Abragam, A. The Principles of Nuclear Magnetism; Oxford University Press: Oxford, 1961.

(81) Suzuki, M.; Kubo, R. Theoretical Calculation of N.M.R. Spectral Line Shapes. *Mol. Phys.* **1964**, *7*, 201–209.

(82) Eichler, B. E.; Power, P. P. Characterization of the Sterically Encumbered Terphenyl-Substituted Species 2,6-Trip₂H₃C₆sn–Sn-(Me)₂C₆H₃-2,6-Trip₂, an Unsymmetric, Group 14 Element, Methylmethylene, Valence Isomer of an Alkene, Its Related Lithium Derivative 2,6-Trip₂H₃C₆(Me)₂Sn–Sn(Li)(Me)C₆H₃-2,6-Trip₂, and the Monomer Sn(t-Bu)C₆H₃-2,6-Trip₂ (Trip = C₆H₂-2,4,6-i-Pr₃). *Inorg. Chem.* **2000**, 39, 5444–5449.

(83) Kalsi, P. S. Spectroscopy of Organic Compounds; New Age International, 2007.