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Key Points:16

• Discrete Fracture Network models are used to study reactive transport behavior.17

• We consider the irreversible chemical reaction A+B → C.18

• Reactions primarily occur in the network backbone and reaction locations are sen-19

sitive to chemical properties.20
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Abstract21

While several studies have linked network and in-fracture scale properties to conserva-22

tive transport behavior in subsurface fractured media, studies on reactive transport cases23

remain relatively underdeveloped. In this study, we explore the behavior of an irreversible24

kinetic reaction during the interaction of two solute plumes, one consisting of species A25

and the other species B. When the plumes converge, these species react kinetically to26

form a new species C via A + B
k−→ C. This reactive system is studied using a three-27

dimensional discrete fracture network (DFN) model coupled with reactive Lagrangian28

particle tracking. We find that the interplay of network topology and chemical proper-29

ties of the reactive solutes controls reactive transport processes. The network topology30

drives species A and B together and the chemical properties dictate whether and how31

quickly a reaction occurs. Results demonstrate that reactions are most likely to occur32

in high velocity fractures that make up the network backbone. The interplay between33

species’ chemical properties and transport are characterized by a non-dimensional Damköhler34

(Da) number. We show that the spatial distribution of reactions is sensitive to Da, which35

subsequently influences late-time tailing behavior in outlet breakthrough time distribu-36

tions. The results of this study provide initial insights into how an irreversible reaction37

occurs during transport in a fracture network, using a methodology that can be applied38

to study reactive transport in a wide range of fractured media environments and con-39

texts.40

1 Introduction41

In low-permeability subsurface rocks, interconnected fracture networks control fluid42

flow and associated transport of dissolved chemical species (Bonnet et al., 2001). Het-43

erogeneity in these systems occurs at multiple scales ranging from in-fracture scale prop-44

erties (e.g., aperture roughness (Detwiler et al., 2000; Boutt et al., 2006; Cardenas et al.,45

2007; Kang et al., 2016; Bouquain et al., 2012)), to fracture scale properties (e.g., frac-46

ture lengths and orientations (de Dreuzy et al., 2001; Davy et al., 2006; Baghbanan &47

Jing, 2007; J. D. Hyman & Jiménez-Mart́ınez, 2018)), to network structure, (e.g., den-48

sity and connectivity (Bour & Davy, 1997; de Dreuzy et al., 2004; Maillot et al., 2016)).49

The interplay across multi-scale heterogeneities results in spatially variable flow fields50

within the network and, in turn, affects transport properties at the network scale (de Dreuzy51

et al., 2012; Frampton et al., 2019; Makedonska et al., 2016). Characterizing this het-52

erogeneity and parameterizing it in high-fidelity modeling frameworks remains impor-53

tant for many engineering applications, including geothermal energy extraction (Pacala54

& Socolow, 2004), storage of spent nuclear fuel (Cvetkovic et al., 2004), CO2 sequestra-55

tion technologies (Barbier, 2002), groundwater risk assessment (Bolster et al., 2009), and56

groundwater remediation efforts (Steefel et al., 2005).57

Discrete fracture network (DFN) models are a computational tool for simulating58

flow and transport in fractured media where geophysical features are directly represented59

rather than their upscaled equivalents (Berre et al., 2018). In a three-dimensional (3D)60

DFN, fractures are represented as 2D planar objects embedded in a 3D rock matrix that61

is considered impermeable and non-reactive. Governing equations for flow are numer-62

ically solved on a meshed representation of the DFN to solve for the velocity field within63

the network, which in turn allows for the simulation of transport. Explicitly represent-64

ing the network structure requires more computational resources than conventional ap-65

proaches, such as effective continuum models, but enables flow field structure and trans-66

port behavior to be directly linked to structural properties. To this end, a variety of stud-67

ies have used DFN models to uncover the connections between geophysical, flow, and trans-68

port observations, thereby advancing our fundamental understanding of flow and trans-69

port in subsurface fractured media (Frampton & Cvetkovic, 2007; Frampton et al., 2019;70

de Dreuzy et al., 2012; J. D. Hyman et al., 2016; J. Hyman et al., 2019; J. D. Hyman,71
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Dentz, et al., 2019; Makedonska et al., 2016; Kang et al., 2017; Mourzenko et al., 2005;72

Sherman et al., 2019; Sherman, Hyman, et al., 2020).73

To date, simulations in 3D fractured media have been largely devoted to the case74

of non-reactive (conservative) transport. However, understanding the interplay of geo-75

physical structures and chemical reactions is critical for the successful advancement of76

our understanding of subsurface processes and applications, including each of those listed77

above. Given the DFN modeling success in linking geophysical features with conserva-78

tive transport observations, a natural extension is to consider how network structure im-79

pacts reactive transport through fractured media. While a variety of reactive transport80

models have been developed to consider the interaction of two or more chemical species81

in heterogeneous porous media flows, e.g. equivalent continuum models (Knutson et al.,82

2007), effective kinetics models (Sanchez-Vila et al., 2010), fractional advection-dispersion83

equations (fADE) (Bolster et al., 2012), lamelar models (Anna et al., 2014; de Anna et84

al., 2014), particle tracking methods (Ding et al., 2013; Benson et al., 2017; Sund et al.,85

2017; Wright et al., 2017; Ding et al., 2017) and kernel density estimation approaches86

(Sole-Mari et al., 2017), they have yet be applied to flows in three-dimensional fracture87

network simulations.88

In this study, we simulate irreversible kinetic reactions in a 3D DFN to provide a89

preliminary understanding of the connection between network structure and reactive trans-90

port. We simulate steady flow through a semi-generic fracture network topology using91

the dfnWorks simulator (J. D. Hyman, Karra, et al., 2015). We consider an irreversible92

kinetic reaction with the form A + B → C and study reactive transport for different93

solute chemical properties by varying the system’s Damköhler number Da, a non-dimensional94

number characterizing the ratio of diffusive to reactive time scales. Although this form95

is highly idealized, it serves as a foundational equation that can be expanded to under-96

stand more complex reactive processes (Gillespie, 1977). We consider a pulse injection97

of two plumes (one each species A and B) which have equal masses and placed into a98

steady-state flow field within the DFN. Species A and B are initially injected into sep-99

arate regions of the DFN, but later converge via the flow structure. We observe the amount100

of species A, B, and C at the outlet plane as well as identify the specific timing and lo-101

cation of where reactions occur, and measure how behaviors vary based on the solute chem-102

ical properties as quantified via Da. It is important to note that reactive transport sys-103

tems are much more sensitive to boundary and initial condition selections (Wood et al.,104

2000) and that different setups can behave quite differently (Valocchi et al., 2019), but105

that our chosen setup is an important end member that provides valuable initial insights.106

In porous media, heterogeneity in the fluid velocity field results in reactive trans-107

port behavior that may significantly differ from that in a pure diffusive environment (Dentz108

et al., 2011; De Barros et al., 2012; Rolle & Le Borgne, 2019; Valocchi et al., 2019). For109

example, reactions can occur predominantly in hot-spot regions where velocity gradients110

are particularly strong (De Barros et al., 2012; Engdahl et al., 2017) or flow focusing oc-111

curs (Werth et al., 2006). Thus, in the context of fractured media we ask (i) how does112

spatial variability in the velocity field alter behavior relative to a pure diffusive system;113

(ii) how does the relative interplay of transport and reaction kinetics alter such behav-114

iors and (iii) where do the majority of reactions occur? Our goal here is to present an115

initial modeling framework that can be used for reactive transport studies in subsurface116

fractured media and provide insights on how such behavior is influenced by network topo-117

logical and chemical properties.118
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2 Numerical Simulations119

2.1 Discrete Fracture Network Simulation120

The three-dimensional fracture network is created using dfnWorks (J. D. Hyman,121

Karra, et al., 2015). Network generation and meshing are performed using the feature122

rejection algorithm for meshing (FRAM) (J. D. Hyman et al., 2014), which produces123

a conforming Delaunay triangulation of the fracture network. The dual mesh of the tri-124

angulation, the Voronoi control volumes, are used by the massively parallel subsurface125

flow and transport code PFLOTRAN (Lichtner et al., 2015) to determine the steady126

state pressure solution within the network. An extension of the walkabout particle track-127

ing method (Makedonska et al., 2015; Painter et al., 2012) is used to determine path-128

lines through the DFN and simulate solute transport.129

Figure 1. (Left) steady state pressure field in the entire DFN and (Right) the velocity vector

field on a single fracture

We generate a generic three-dimensional fracture network composed of disc shaped130

fractures with radius of 1 m in a cubic domain of size 5 m × 5 m × 5 m. The fracture131

orientations and locations are uniformly random. Fracture apertures are uniform within132

each fracture and equal to b = 10−4 m, which is a physically reasonable aperture value133

for a 1 meter fracture in crystalline rock (Svensk Kärnbränslehantering AB, 2010). Each134

fracture is meshed with a conforming Delaunay triangulation so the velocity field within135

each fracture can be fully resolved (J. D. Hyman et al., 2014). Flow in the fracture net-136

work is modeled using the Reynolds equation (Zimmerman & Bodvarsson, 1996), which137

provides volumetric flow rates and pressure values throughout the network (Fig. 1-left).138

The imposed pressure gradient is aligned with the x-axis, which is the primary direction139

of flow. These values are used to reconstruct a spatially variable velocity field u(x) at140

every mesh point in the network using the method of Painter et al. (2012) and Makedonska141

et al. (2015). Even though the fracture apertures are uniform within each fracture plane,142

the in-fracture velocity field can be highly non-uniform due to the complex network topol-143

ogy and boundary conditions imposed by the intersections with other fractures (Fig. 1-144

right).145

Transport through the network is simulated using purely advective-particle track-146

ing. We consider two solute plumes collectively consisting of O(106) particles. Plume 1147

consists solely of species A and plume 2 consists solely of species B. The two plumes are148

seeded on different inlet fractures and have approximately equal mass. We consider a149

pulse injection along the inlet plane where the unique initial positions of each particle150
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a is determined using flux-weighting (the concentration is proportional to the velocity151

at fracture-inlet intersections) (J. D. Hyman, Painter, et al., 2015; Kreft & Zuber, 1978).152

The trajectory x(t; a) of a particle starting at a at time t = 0 is given by the advec-153

tion equation154

dx(t; a)

dt
= v(t; a), x(0; a) = a, (1)155

where the Lagrangian velocity v(t; x) is given in terms of the Eulerian velocity u(x). Lo-156

cal complete mixing is assumed to determine what fracture a particle exits onto when157

passing through intersections (Kang, Le Borgne, et al., 2015; Sherman et al., 2019).158

2.2 Reactive Transport159

The solute plumes consist of two species A and B who react to form a new species160

C via an irreversible kinetic reaction with the form A+B
k−→ C. Although highly ideal-161

ized, we choose this simple reaction to elucidate the fundamental processes that influ-162

ence reactive transport in fractured media, which could be overshadowed by more com-163

plex reaction chains.164

Reactive transport is modeled from a Lagrangian perspective using the particle tra-
jectories obtained in the steady-state flow field and chemical reactions are implemented
in a probabilistic framework. The adopted numerical implementation is consistent with
previous studies (Benson & Meerschaert, 2008; Paster et al., 2013, 2014; Bolster et al.,
2016; Benson et al., 2019). In this method, the solute plume is conceptualized as an en-
semble of particles, each with mass mp. In order for two particles to react they must col-
locate due to transport. Recall that each particle trajectory is purely advective and stream-
lines cannot intersect. Therefore, we associate a local diffusion coefficient D with each
particle that enables nearby particles to interact. This framework is acceptable in the
regime of large Péclet numbers where advective effects dominate, which is reasonable in
fractured media settings. Here, we define the Péclet number as

Pe = v̄lc/D (2)

where v̄ is the mean Lagrangian velocity 0.041m/s, lc = 1m the average fracture ra-165

dius, and we set D = 10−3m2/s, the latter of which is not chosen to reflect the prop-166

erties of a specific chemical species but rather to explore a range of characteristic ph-167

syical behaviors via non-dimensional analysis. In these simulations Pe = 41, an advec-168

tion dominated regime.169

In addition to the Péclet number, we also consider the Damköhler number Da de-
fined using the ratio of diffusive and reactive timescales:

Da =
kC0l

2
c

D
(3)

where C0 is the initial concentration of solute. We study transport under a wide range170

of Da by changing the local reaction rate constant k and holding all other parameters171

constant. We consider Damköhler numbers of 102, 103, 104, 105, and 106.172

Benson and Meerschaert (2008) showed that the probability of reaction between173

two particles a distance s apart is174

Preaction = PcollocationPreact|coll =
kmp

8πD
exp (− s2

8D∆t
), (4)

where ∆t is the numerical time step (1 s in this study). For each AB particle pair, a ran-175

dom number η is generated from a uniform distribution U [0, 1] and a reaction occurs when176

η < Preaction. When a reaction occurs, the A and B particles react to form two C par-177

ticles with mass mp, thereby conserving mass in the system.178
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At each model step, the probability of reaction for all A and B particle pairs must179

be calculated, a potentially expensive numerical process, which is accelerated via a search180

tree algorithm (Paster et al., 2014). An AB particle pair may only react if they are lo-181

cated on the same fracture because impermeable rock separates fractures and so parti-182

cles have effectively zero likelihood of reaction if separated by the rock matrix. Adding183

this constraint to the algorithm is both physically reasonable and more computationally184

efficient than searching all particle pairs. Note that during a given model time step, mul-185

tiple A particles may have sufficient probability to react with the same B particle. In this186

case, we choose the AB pair with the highest Preaction−η value. We acknowledge that187

there may be additional constraints to consider, e.g. effects induced by fracture bound-188

aries and intersections, and these are left for future development.189

2.3 Measurements190

The evolution of solute plume characteristics is tracked by measuring Lagrangian191

statistics at control planes set throughout the domain. Control planes are set perpen-192

dicular to the primary flow direction and are located at an equidistant spacing of ∆ =193

0.05m, 1/100 the length of the domain in x. At each control plane (denoted xj), we mea-194

sure the first arrival time distribution, the transverse breakthrough distribution, and ef-195

fective tortuosity for each particle defined using the equations below. These metrics en-196

able characterization of plumes’ spatio-temporal evolution and are used to quantify the197

influence of chemical reactions on transport behavior.198

First Arrival Time Distribution: Denote the first arrival times of particles at the first
crossing of control plane xj as τxj . We define the the first arrival time distribution at
xj as the cumulative distribution of τxj ,

Ψ(t)xj
= 〈H(t− τxj

)〉, (5)

where H is the Heaviside function, and 〈〉 denotes the arithmetic average over all par-199

ticles.200

Transverse Breakthrough Position Distribution: Denote the transverse positions of par-
ticles at the first crossing of control plane xj as zxj . The transverse breakthrough po-
sition distribution (TBPD) f(z;xj) at control plane xj is defined as:

f(z;xj) = 〈δ(z− zxj
)〉 (6)

where δ(z) is the Dirac delta function. An analogous equation is used to calculate TBPD201

in y.202

Effective Tortuosity: Let `(xj) be the total pathline distance from the network inlet of203

a particle upon its first crossing of a control plane at x = xj . We define effective tor-204

tuosity between two control planes at xi and xj (xj < xi) as the ratio of pathline dis-205

tance traveled by a particle between the control planes ∆`i,j = |`(xi) − `(xj)| to the206

linear distance between those control planes ∆xi,j = |xi − xj |207

χ(xi,j) =
∆`i,j
∆xi,j

. (7)208

Note particles are permitted to cross control plane xj more than once before reaching209

xi.210

Effective tortuosity has been shown to be an important parameter for upscaling211

transport behaviors in recent studies (Sherman, Hyman, et al., 2020; Sherman, Janetti,212

et al., 2020). Here, effective tortuosity as we have defined it is a flow-dependent param-213

eter that naturally aligns with our particle tracking approach; however it must be noted214

that there exist many other definitions for tortuosity in the literature (see for example215

(Ghanbarian et al., 2013)).216
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2.4 Graph-Based DFN Representation217

In additional to the transport observables discussed in the previous section, we also218

consider the network structure. The topology (connectivity) of the network is charac-219

terized using a graph-based method where nodes in the graph correspond to fractures220

in the DFN and an edge between two nodes indicates that the corresponding fractures221

intersect (J. D. Hyman et al., 2017; Huseby et al., 1997; J. D. Hyman et al., 2018). The222

graph-representation of the DFN topology presented in Fig. 2 (left) shows that there are223

multiple paths from the inflow fractures (colored red and blue) and the outflow fractures,224

those connected to the green node. Additionally, there are a few dead-end regions of the225

DFN, which are represented as trees in the sub-graphs; a tree is an undirected graph where226

any two nodes are connected by exactly one path. Note that in three-dimensional DFNs227

there can be flow on dead-end fractures (J. D. Hyman, Jiménez-Mart́ınez, et al., 2019)228

and thus these regions are not removed prior to simulating flow and transport. In the229

right subfigure, edge-sizes in the graph are proportional to the percentage of particles230

that pass between the corresponding intersection in the DFN with thicker lines indicat-231

ing a larger number of particles. This graph representation is referred to as a flow topol-232

ogy graph (FTG) as it embeds the dynamics of the particle transport, which in this case233

represents the pathlines in the flow field, into the graph representation of the DFN (Aldrich234

et al., 2017).235

Figure 2. Topological (graph) representations of the DFN. (Left) Full network topology.

Every node in the graph corresponds to a fracture in the DFN and an edge between two nodes

indicates that the corresponding fractures intersect. The inflow fractures are colored blue and red

and the outflow fracture is green. (Right) Flow topology graph with edge thickness proportional

to the volumetric discharge.

3 Results236

We begin the presentation of the results by considering a single Damköhler num-237

ber (106) and then present the influence of Da on reactive transport behavior. Figure238

3 displays the temporal evolution of the reactive solute plume for Da = 106: A par-239

ticles are red, B particles are blue, and C particles are green. At early times, the par-240

ticle A and B plumes have yet to converge and so no reactions occur; A and B plume241

dispersion is induced by local topology, which drives the heterogeneity in the velocity242

–7–
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field. By t = 50s (bottom left subfigure), the fastest A and B particles reach the frac-243

tures where the flow field converges and react to produce C particles. After particles chan-244

nelize through the fractures where the flow field converges, the network topology expands245

and branches, creating many possible pathways from the convergence fracture to net-246

work outlet. Both A and B particles traverse these pathways, enabling reactions to oc-247

cur across the transverse spatial domain at later times.248

Figure 3. Snapshots of the solute plume at times 1, 10, 25, 50, 100, 250s for the Da = 106

case. A (red) and B (blue) particles react to form C (green) particles. At early times, no reac-

tions have occurred because the A and B plumes have yet to converge. After sufficient time, the

network topology channels particles to fractures where the flow field converges and reactions

occur. In the above figure, particles are injected via a flux-weighted injection.

The influence of network topology on particle channelization and reactive trans-249

port becomes more clear via topological representations of the network. Figure 4 displays250

the possible paths for A (left), B (middle), and C (right) particles. Observe there exists251

a few primary pathways, depicted by thick lines, which control the majority of particle252

plume transport. Plumes A and B have separate primary pathways. However, when the253

A and B pathways converge, reactions become more probable, shown by green lines in254

the right subfigure. Reactions are limited to regions of the network where both A and255

B particles visit, e.g. reactions are not permitted in the far upper right of the network256

(Figure 4) because only A particles visit this network section.257

The TBPD further demonstrates particle channelization. The top row of Figure258

5 displays the TBPD for the y and z directions, i.e. we set control planes perpendicu-259

lar to x and measure the transverse position of particle breakthrough at the first cross-260

ing of each control plane. Bright colors, corresponding to higher probability values, in-261

dicate regions of greater particle channelization. The bottom row displays the log prob-262

ability of reaction for x−y (left) and x−z (right). Note that reactions only occur for263

x > −0.5 because the network topology does allow for the A and B solute plumes to264
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Figure 4. Topological representations of where particles pass through the DFN. Every node

is a fracture and edges indicate particles pass between the two corresponding fractures. (left) A

particles: Nodes and edges are colored red to show the paths of A particles. (middle) B particles:

Nodes and edges are colored blue to show the paths of B particles. (right) Nodes and edges are

colored green if both A and B particles pass through those fractures and intersections.

mix for x values closer to the inlet. Observe that the network regions with the highest265

reaction probability are also regions with high TBPD values, further demonstrating that266

reactions preferentially occur in primary pathways, where particles are channelized. Re-267

actions become less likely near the network outlet. There is a reduced number of A and268

B particles that reach the outlet because many particles react earlier in the domain, thereby269

reducing the probability of reaction near the network outlet, i.e. particle reaction prob-270

ability decreases as there are less particles available for reaction.271

3.1 Influence of Damköhler Number272

Table 1. The influence of Da on total number of reactions, the mean breakthrough time of C

particles, the mean instantaneous particle velocity at the time of reaction, and mean topological

distance for reactions, and mean network scale tortuosity for C particles.

Da Total Reactions C̄ Breakthrough Time v̄react d̄topo χ̄C

[-] [-] [s] [m/s] [-] [-]

102 326 303 0.05 5.6 1.23
103 2966 255 0.07 5.5 1.20
104 14688 213 .09 5.3 1.17
105 32416 192 .11 4.9 1.15
106 43834 190 .15 4.6 1.15

273

Reactive transport behavior is quantified for a range of Da spanning several orders274

of magnitude. Table 3.1 demonstrates the influence of Da on network scale transport275

metrics. Some general behavioral trends emerge: 1) as Da increases more reactions oc-276

cur. 2) as Da increases, particles tend to react in high velocity channels; A and B par-277

ticles with higher velocities are more likely to react, manifesting as faster C outlet break-278

through times for higher Da. 3) as Da increases, reactions tend to occur closer to the279

network inlet, as quantified with topological distance. The remainder of this section will280

explore these trends in more detail.281

The total number of reactions that occur in the network increases with rising val-282

ues of Da. In total there are 21 fractures where reactions occur in the studied network.283
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Figure 5. TBPD and Reaction location for Da = 106 and flux weighted boundary condition.

Colors correspond to log probabilities.

But where those reactions occur depends on Da. Figure 6(left) shows the reactions per284

fracture number, where each fracture number is an identifier corresponding to a unique285

fracture. The fracture number is assigned from most to least reactions for the Da = 106286

case, e.g., the most (least) reactions occur on fracture number 1 (21); note the fracture287

number mapping is defined uniquely based on the Da = 106 case and used for all other288

Da cases. The majority of reactions are confined to approximately 5 fractures, suggest-289

ing that a small portion of the network topology controls reactive transport processes.290

For example, in the Da = 106 case, more reactions occur on fracture 1 than the com-291

bined total number of reactions observed for fractures 7-21. These local reactive “hot292

spots”arise because the network topology and heterogeneity of the fluid velocity field leads293

to channelization of particles. Reactions only occur if the velocity field drives A and B294

particles together and so it is expected that fractures of high channelization are the most295

reactive spots in the network.296

Additionally, the location of reactions is influenced by Da. As per our definition,297

the number of reactions as a function of fracture number must monotonically decrease298

for the Da = 106 case (as observed in Figure 6). However, for other Da cases, the num-299

ber of reactions as a function of fracture number does not monotonically decrease, which300

demonstrates that the spatial distribution of reactions changes with Da.301

The graph representation of the network topology enables us to calculate the min-302

imum topological distance of each fracture, defined as the minimum number of edges con-303

necting the graph inlet to a specific node/fracture. Figure 6(right) displays the histogram304

of reactions plotted as a function of topological distance. For the Da = 106 case, the305

number of reactions are maximized at a lower topological distance of 3, corresponding306

to the topological distance where the A and B particle paths first converge. For the other307

Da cases considered, the maximum number of reactions occur at a larger topological dis-308
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Figure 6. (Left) The number of reactions (normalized by the total number of particles N)

at each fracture. Fracture number is ordered from most reactions to least in the Da = 106 case.

Increasing the Da increases the total number of reactions that occur. Changing Da influences the

location of reactions in the network. (Right) A histogram of reactions by minimum topological

distance for different Da. Minimum distance for each reaction corresponds to the fracture where

the reaction occurred. Da influences the location of reactions in the network.

tance of 5. This observation is copacetic with the previous observations that reactions309

occur further downstream with lower values of Da, because reactions kinetics are slower310

relative to transport time scales. In all Da cases, reactions are most likely near the frac-311

tures where the A and B plumes first converge. Hence, these reactions diminish the con-312

centration of A and B particles at early topological distances, making less solute avail-313

able for reactions at fractures later in the network. Such behavior manifests as a decrease314

in reactions for fractures with higher topological distances.315
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Figure 7. CDFs of particle outlet breakthrough times for A,B, and C species under a wide

range of Da. CDFs weights are proportional to the total number of particles of each species. As

Da increases, total particle C production increases.

Next, we investigate the influence of Da on outlet breakthrough time CDFs for A,316

B, and C particles over a wide range of Da (Figure 7). CDFs are normalized by the to-317

tal number of particles, meaning after the last particle breakthrough, the summation of318

A, B, and C CDFs equals unity. As Da increases, the number of reactions increases and319
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subsequently the total number of C particles that exit the domain increases. When Da320

is small O(100), reactions have negligible effect on solute breakthrough, illustrated by321

a nearly identical CDF with the conservative case. Da significantly influences C break-322

through curve behavior. There is inherently more particles in fast velocity channels and323

so when Da increases, A and B particles traversing these channels are the most likely324

to react; slow flow zones have lower particle concentrations and so slow particles are less325

likely to react. This creates a bias, where fast particles are more likely to react than slower326

ones. Various studies have demonstrated that fast channels persist at the network scale327

(Kang, Le Borgne, et al., 2015; Kang et al., 2016; J. Hyman et al., 2019; J. D. Hyman,328

2020), meaning particles are likely to react in these channels and then persist at a high329

velocity until the network outlet; as Da increases, fast A and B particles preferentially330

react and slow ones do not. This bias manifests as a decrease in mean particle C plume331

breakthrough time with increasing Da; the mean (median) C plume arrival time is 189332

(157), 192 (157), 213 (162), 255 (175), 303 (187) s for the Da = 106, 105, 104, 103, 102333

cases. Consequently, the slowest particles in the network are less likely to react and so334

the A and B particle plumes have slower mean breakthrough times as Da increases.335
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Figure 8. The left subfigure shows a histogram of reaction for different velocities for a range

of Da. Reactions preferentially occur in high velocity regimes. The right figure displays reaction

histograms for different effective tortuosities. Reactions are more likely in low tortuosity zones,

which correspond to network primary pathways.

Particle channelization is closely related to high velocity regions of the network.336

High velocity regions directly translate to larger discharge rates (recall apertures are uni-337

form), and subsequently more particles enter these high velocity regions. Hence, reac-338

tions can preferentially occur in these faster moving waters. Figure 8 (left) shows the339

instantaneous velocity of particles at the time of reaction via a histogram. The Lagrangian340

velocities at which reactions take place spans approximately 3 orders of magnitude, and341

the number of reactions in each velocity class spans several orders of magnitude. The342

most reactions occur at relatively fast velocities O(10−1) m/s (recall, the mean veloc-343

ity is 0.04m/s), further suggesting that high velocity fractures channelize particles and344

are locations of enhanced reactive behavior. As Da increases, the reaction distribution345

shifts to faster velocities; the peak reaction (90% CDF values) are 0.3 (.10), 0.5 (.14),346

.13 (.17), .13 (.22), and .18 (.26) m/s for Da = 102, 103, 104, 105, 106, respectively. This347

further demonstrates that the spatio-temporal reaction distribution is sensitive to Da.348
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Effective tortuosity quantifies the distance a particle travels in the transverse di-349

rections, meaning a particle’s effective tortuosity tends to increase when its current frac-350

ture’s orientation angle increases relative to the primary direction of flow or the flow field351

streamlines meander, such as in recirculation zones. Recall, particles traversing primary352

channels display lower tortuosity values on average than other fractures in the network,353

as these channels typically algin with the primary flow direction and can span the net-354

work scale (Sherman, Hyman, et al., 2020). Figure 8 (right) shows a histogram of reac-355

tions for different effective tortuosities. As the effective tortuosity increases, reactions356

become less likely for all Da. This suggests that reactions preferentially occur in the pri-357

mary pathways of fracture networks, as those fractures are aligned with the primary pres-358

sure gradient and form the fastest velocity fractures, which is copacetic with the previ-359

ous observations. The trend of increased reactions at fast velocities - low tortuosities pro-360

vides further evidence that reactions preferentially occur in the primary channels of the361

network’s backbone. These results demonstrate that Lagrangian tortuosity statistics are362

linked to reactions, which may be important for developing upscaled reactive transport363

models (more details to follow in discussion).364

4 Discussion365

The results of the simulations demonstrate that reactive transport is controlled by366

both the topology of the network and local chemistry within the fracture planes. Reac-367

tions can only occur if the solute A and B plumes are driven together, which depends368

on the network structure. Once the A and B solute plumes sufficiently mix, the spatio-369

temporal distribution of reactions is dictated by local diffusion and the chemical reac-370

tion rate. Such findings improve current characterization of reactive transport processes371

in subsurface fractured media and provide important implications for developing the next372

generation of upscaled reactive transport models.373

4.1 Network Topology374

The network topology plays an important role in reactive transport in two ways:375

1) dissolved solute species can only react if the network topology enables the A and B376

solute plumes to collocate and 2) the heterogeneity of the fluid velocity field channelizes377

particles, thereby creating regions of enhanced mixing and reactions. Reactive transport378

behavior is therefore a function of network connectivity and particle channelization. While379

the second of these points has been investigated in numerous studies in heterogeneous380

porous media, the first point is unique to fracture networks.381

In this study, the A and B solute plumes originate at separate inlet fractures. The382

two plumes can only interact if the network topology connects the inlet fractures to a383

common fracture, i.e. the possible A and B paths from network inlet to outlet must over-384

lap for reactions between A and B species to occur. Therefore, the network connectiv-385

ity is a principal control for the occurrence of reactions. The network considered here386

contains a fracture of convergence, where the network constricts to a single fracture that387

all particles must traverse. This fracture of convergence was demonstrated to be a re-388

gion of enhanced reactions (Figure 4), as both A and B plumes are channelized here. If389

the network connectivity increased, we would expect reactions to occur earlier in the net-390

work, e.g. the first reactions would occur at a lower minimum topological distance.391

Additionally, it has been well studied that large, high velocity fractures form pri-392

mary pathways which serve as a network’s backbone and control conservative transport393

behavior at the network scale (Kang, Dentz, et al., 2015; J. D. Hyman et al., 2017; Viswanathan394

et al., 2018; Kang et al., 2019; Sweeney & Hyman, 2020). However, study of the network395

backbone’s role in reactive transport behavior has been limited. In this study, we ob-396

serve that the primary pathways that comprise the network backbone are regions of high397

particle channelization; in these channels, reactive species are driven together and reac-398

–13–



manuscript submitted to Transport in Porous Media

tions become increasingly likely. Intuitively, reaction probability increases when the con-399

centration of A and B increases, which is exactly what happens in primary pathways.400

The channelization phenomena is visually apparent in Figure 5, where areas displaying401

a large number of reactions are highly correlated with areas of high TBPD values. Ev-402

idence for the correlation between channelization and reactions is further shown by re-403

actions preferentially occurring in high velocity, low tortuosity regions of the network.404

Consequently, the spatial distribution of reactions is highly heterogeneous and focused405

where high particle channelization is prevalent. Hence, reactive transport processes are406

enhanced when the network topology both connects the A and B solute plumes, as well407

as concentrates the plumes at local in-fracture scales via flow channelization.408

4.2 Particle Chemical Properties409

While the network topology brings dissolved species together, reactions only oc-410

cur if the chemical properties of those species are conducive for reactions. Diffusion is411

the mechanism by which nearby particles can collocate. In this study, we quantify dif-412

fusive and reactive timescales with Da, where the probability of reaction increases with413

increasing Da. Reaction probability goes to zero when Da = 0 (and Pe → ∞), re-414

gardless of the network topological characteristics, because reactive transport behavior415

ultimately depends on the chemical properties of the solute species considered.416

In this study, we observe that the spatial distribution of reactions is sensitive to417

Da. In the most reactive Da = 106 case, nearby particles have a relatively high prob-418

ability to react and so a significant number of reactions occur when the A and B primary419

pathways first converge. This immediately diminishes the supply of available reactive420

species. As Da decreases, less reactions occur when the two plumes initially converge,421

leaving more reactive material at subsequent downstream fractures. This therefore shifts422

the locations of reactions to positions farther from the inlet (as shown by an increase in423

mean minimum topological distance for reactions). Evidence for this change in fracture424

location is also shown by a shift in the reaction-velocity distributions, where the mean425

velocity during the time of reactions increases with Da, suggesting reactions are occur-426

ring at different locations within the network.427

The change in spatial reaction patterns with varying Da is important for larger scale428

reactive behavior. Faster particles react under increasing Da, meaning the A and B par-429

ticles that do not react and reach the network outlet are slower on average than in the430

conservative case. This is clear in Figure 7, where mean C (A and B) breakthrough time431

decreases (increases) as Da increases. These results demonstrate that species’ chemistry432

at the in-fracture scale propagates to the larger network scale and can influence the spatial-433

temporal distribution of reactions. Note, the results presented here consider a fixed Pe434

and future studies must address the influence of Pe on reactions before generalizing trends.435

4.3 Implications for Upscaled Reactive Transport Models436

Running reactive transport simulations with the DFN framework demands large437

computational resources. The benefit of such high-fidelity simulations is that reactive438

transport behavior can be described in great detail. However, ideally the transport be-439

haviors observed in this and similar studies will be used to inform effective upscaled re-440

active transport models, which can be run with significantly reduced computational costs.441

Although we do not develop any upscaled models explicitly in this study, we provide some442

possible paths forward for developing the next generation of upscaled reactive transport443

models.444

One key finding is that the majority of reactions are confined to a small percent-445

age (< 10%) of the fractures in the network and these key fractures help make up the446

network backbone. Previous studies have demonstrated that a graphical representation,447

–14–



manuscript submitted to Transport in Porous Media

where each fracture is represented with an edge and corresponding mean velocity, may448

be sufficient to predict the bulk conservative transport behavior (Karra et al., 2018; Valera449

et al., 2018; Srinivasan et al., 2019). This graph theory upscaling method has not yet450

considered reactive transport. However, given that the majority of reactions are located451

in the network backbone where the graphical representation provides an accurate model,452

there will be exciting opportunities to extend reactive transport to graphical represen-453

tations in future work. The missing component of including reactive transport in graph-454

ical representations is the probability that two particles react when traversing the same455

network edge. We envision this can be accomplished with a method similar to the one456

presented in this paper, where particles have a probability (based on separation distance)457

of reacting if traversing a fracture at the same time.458

Additionally, we observe that reactions preferentially occur in the high velocities459

fractures that form the network’s backbone; the corresponding particle trajectories travers-460

ing the backbone typically display local low tortuosity values of O(1). Recently, stud-461

ies have shown continous time random walk models that consider the the Lagrangian velocity-462

tortuosity correlation structure can accurately predict transport in fractured media (Kang463

et al., 2019; Sherman, Hyman, et al., 2020) and porous media with adsoprtion-desoprtion464

processes (Sherman, Janetti, et al., 2020). A natural extension of the correlated random465

walk framework is to use this same velocity-tortuosity correlation structure to data mine466

reaction probabilities, and upscale reactive transport in fractured media. Such an ap-467

proach would leverage the fact that high velocity – low tortuosity particles are more likely468

to react than slow velocity – high tortuosity particles. The exact details regarding this469

implementation are saved for later work.470

5 Remarks471

This study provides a first investigation into how an irreversible kinetic reaction472

influences the migration of a solute plume in a discrete fracture network framework. We473

observed that the interplay of network topology and solute chemical properties are prin-474

cipal controls of reactive transport behavior in fracture networks. Specifically, reactions475

are most probable in high velocity pathways, where particles are channelized and there-476

fore more likely to interact with other chemical species; then once species are brought477

together by the topology, the local chemical properties dictate whether a reaction will478

occur. The results and findings from this study, however, must not be generalized, as we479

only considered one network structure and one type of initial condition. To character-480

ize the influence of network structural properties on reactive transport behavior, future481

studies must consider the range of network properties, e.g. fracture density, connectiv-482

ity, permeability, etc. Likewise a variety of initial and boundary conditions should be ex-483

plored. Additionally, we only consider an idealized chemical reaction. Fortunately this484

idealized reaction takes a general form that can be easily adapted to consider reactions485

between a wide variety of species observed in field-scale measurements. This work pro-486

vides validation of a foundational methodology that can be extended to explore reactive487

transport behavior in many future DFN studies.488
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