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This dissertation presents three essays on agricultural productivity and its 

relationship with farm size and poverty. Chapter 1 addresses the relationship between 

farm size and productivity, a recurrent topic in development economics. We clarify the 

common productivity measures used in this literature, their relationships, and their 

advantages and limitations. Second, we argue that total factor productivity, not land 

productivity, is the appropriate indicator for most policy questions. Lastly, using a 

pseudo-panel of Brazilian farms spanning the period 1985-2006, we provide new 

evidence on the inverse relationship between farm size and productivity. The inverse 

relationship between size and land productivity is alive and well. The relationship 

between total factor productivity and size, in contrast, has evolved with modernization 

during this period. An inverse relationship between farm size and land productivity is 
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neither necessary nor sufficient for an inverse relationship between farm size and total 

factor productivity. 

The hypothesis of a dynamic farm size – productivity relationship is extended to 

the context of Mexico in Chapter 2, identifying the relationship in a panel of family 

farms drawn from the Mexican Family Life Survey (MxFLS). We find a time invariant 

inverse relationship between farm size and both land productivity and total factor 

productivity. Stochastic frontier analysis reveals that, while technical change is 

expanding the frontier and technical inefficiency is growing for the entire sample, these 

changes are more pronounced for larger farms. An inverse relationship along the 

productivity frontier is disappearing in the wake of Mexico’s NAFTA-era reforms to 

agricultural policy, yet this change has not affected the farm size – total factor 

productivity relationship due to growing technical inefficiency. 

 Chapter 3 conducts a counterfactual analysis of the contribution of changing 

land productivity to poverty alleviation on the farm. Stochastic frontier analysis enables 

a parametric decomposition of changes to the land productivity distribution in a panel 

of Mexican family farms. Using the decompositions, the contribution of productivity 

channels to poverty alleviation are estimated. The counterfactual analysis suggests that 

raising land productivity through intensification and technical change would be a more 

pro-poor approach than through increases in technical efficiency. 
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CHAPTER 1 
________________________________________________ 

The Inverse Relationship between Farm Size and 

Productivity: Refocusing the Debate1 

________________________________________________ 

 

1.1  Introduction 

The relationship between farm size and productivity is a recurrent topic in 

development economics, almost as old as the discipline itself. John Stuart Mill observed 

an inverse relationship as early as 1848, later positing that this had changed due to 

increasing capital intensity of farming (Lipton, 2009). The issue appeared in the works of 

Marx, resurfaced with Lenin and Chayanov in the early 20th century, and has captivated 

modern agricultural and development economists for over fifty years. Debate around the 

nature and causes of this relationship continues despite a mountain of empirical analysis, 

posing a puzzling question for 21st century researchers (Binswanger et al., 1995; Eastwood 

 
1 We thank the USDA for a grant that assisted with the construction of the database used in the empirical 
portion of the paper (project number 58-6000-5-0059), and the Brazilian Institute of Geography and 
Statistics (IBGE) for access to the Agricultural Census microdata in a secure data processing site in Rio de 
Janeiro. 
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et al., 2010). Conventional economic wisdom expects resources to be allocated such that 

returns to land are equalized across farms; however, the empirical research on developing 

countries contradicts this and frequently identifies an inverse relationship. Policy-makers 

in developing countries have engaged the debate, as an inverse relationship between 

farm size and productivity indicates a role for small farms in development strategies and 

the potential for land reform to simultaneously generate improvements in equity and 

efficiency. 

Harnessing such a relationship to inform policy requires accurate interpretation of 

the empirical evidence as well as an understanding of its causes, the channels through 

which it operates, and the factors that condition its strength. Theoretical explanations 

for2 this phenomenon often result from household heterogeneity and/or (multiple) 

market failures, for example Sen’s (1966) dual labor market hypothesis, Eswaran and 

Kotwal’s (1986) model of household endowments with credit constraints, and Feder’s 

(1985) model of moral hazard and costly monitoring of hired labor. Risk aversion (Barrett, 

1996) and plot-level behavioral and agronomic issues (Bevis and Barrett, 2020) provide 

alternative explanations. Measurement error (Lamb, 2003; Carletto et al., 2013; Carletto 

et al., 2015; Desiere and Jolliffe, 2018; Dillon et al., 2019; Gourlay et al., 2019; Abay et al., 

2019a; Abay et al., 2019b) and omitted variables, such as soil quality (Bhalla and Roy, 

1988; Benjamin 1995; Assunção and Braido, 2007; Barrett et al. 2010), are two empirical 

issues that could lead to a spuriously observed inverse relationship. Attempts to sort out 

the relative importance of these mechanisms have been mixed.  
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Adding to the confusion is the variety of productivity measures and empirical 

approaches that have been used. As with Sen (1962), Deolalikar (1981), Assunção and 

Braido (2007), Barrett et al. (2010), Deininger et al. (2018), Dillon et al. (2019), and Abay 

et al. (2019b), much of the early literature used land productivity—output per unit of 

land—as a measure of performance.2 Conditioning land productivity on input use by 

estimating a production function is a second commonly used approach that generates an 

alternative measure of performance (Bardhan, 1973; Carter, 1984; Barrett et al., 2010; Ali 

and Deininger, 2015; Muyanga and Jayne, 2016). Controlling for a partial set of inputs 

(Bhalla and Roy, 1988; Desiere and Jolliffe, 2018) is distinct from estimating a full 

production function. Still others employ value added per unit of land (Heltberg, 1998; 

Carletto et al., 2013; Henderson, 2015), profit per unit of land (Heltberg, 1998; Foster and 

Rosenzweig, 2017), profit (Benjamin, 1995; Lamb, 2003; Ali and Deininger, 2015), or 

technical efficiency (Helfand and Levine, 2004; Kagin et al., 2016). Despite the recognition 

that partial measures such as land productivity are problematic (Berry and Cline, 1979; 

Binswanger et al., 1995; Muyanga and Jayne, 2016), they continue to be used, often 

alongside alternative productivity measures, and are frequently discussed synonymously 

with a more general notion of productivity. Where multiple productivity measures are 

used, the distinctions between the relationships being estimated are seldom addressed 

directly. As Barrett (1996) notes, this literature “habitually, perhaps cavalierly,” uses 

 
2 The literature often uses the terms yield and land productivity interchangeably. We only use yield when 
talking about a physical measure of productivity for a single product (tons/hectare). Land productivity is 
more appropriate in a multiple-output context, requiring a method for aggregation. 
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physical yields and productivity synonymously. Conceptual clarity is needed on how these 

measures relate to each other and to farm size, and which is most relevant from a policy 

perspective. 

We do not attempt to explain the IR, as do many of the contributions in this field. 

Rather, we seek to clarify the relationships between the various productivity measures 

used in this literature and explore the implications of the choice of measure. We show 

that an inverse relationship between farm size and a partial productivity measure, such 

as land productivity, is neither necessary nor sufficient for an inverse relationship 

between farm size and a comprehensive measure of productivity, such as total factor 

productivity. As such, these measures are not generally comparable. An inverse 

relationship may be observed when using land productivity, but not necessarily when 

using a comprehensive measure of productivity. Where comprehensive measures of 

productivity are more relevant and of interest, a focus on land productivity effectively 

introduces omitted variable bias by not controlling for the intensity with which other 

inputs are used. In fact, Bardhan (1973), Berry and Cline (1979), Carter (1984), and 

Heltberg (1998) are all examples where, in the presence of an inverse relationship 

between farm size and land productivity, the use of more comprehensive productivity 

measures leads to an attenuated, if not direct, farm size – productivity relationship. This 

highlights the importance of how productivity is measured when assessing its relationship 

with farm size, and for drawing policy conclusions and recommendations from these 

relationships.  
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The lack of an explicit focus on total factor productivity is a curious feature of the 

inverse relationship literature, especially given the early and widespread 

acknowledgement of its superiority over partial measures. From a policy perspective, 

total factor productivity is likely the most relevant measure where poverty alleviation, 

equity and the productive use of all resources are pressing concerns. Policy discussions of 

the future of small farms, for example, emphasize the role of small farms in agricultural 

development in part because of their superior efficiency (Hazell, 2005; Hazell et al. 2010). 

This argument leans heavily on the inverse farm size – productivity relationship, but 

requires that small farms be more efficient with their use of all resources and not just 

land. Whereas a farm size – land productivity relationship does not provide clarity on this 

issue, a farm size – total factor productivity relationship does.  

In this light, we argue that the inverse relationship literature needs to shift its 

focus from land productivity to total factor productivity. In fact, empirical studies 

assessing the productivity – farm size relationship in the developed world, such as Garcia 

et al. (1982), Alvarez and Arias (2004), and Rasmussen (2010), almost exclusively use 

measures of technical efficiency or total factor productivity.3 Similarly, the literature 

estimating national level agricultural productivity is clear in its use of total factor 

productivity as a preferred measure (Fuglie, 2008; and Headey et al., 2010).  

 
3 We have chosen not to focus on the literature estimating a stochastic production frontier to explore 
technical efficiency, as it is still an infrequent, albeit important, approach taken in the existing literature 
on developing countries.  
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We illustrate the importance of productivity measures with new empirical 

evidence on the farm size – productivity relationship across regions of Brazil from 1985 

to 2006 . Our evidence is only suggestive because we are unable to correct for potential 

issues of measurement error in farm size, output, and inputs that have been identified in 

recent literature. However, this period in Brazil provides an excellent case study because 

it includes regions with relatively advanced agricultural sectors, those characterized by 

more traditional agricultural production, and others experiencing rapid agricultural 

transformation, allowing us to assess the farm size – productivity relationship and its 

dynamics at different stages of agricultural development. Using a pseudo-panel of farms 

aggregated at the municipality by farm size level, we show that estimating the farm size 

– productivity relationship using land productivity is potentially misleading. While we 

always identify an inverse relationship using land productivity, we find disparate results 

when using total factor productivity. In the modern agricultural regions of Brazil, we find 

a direct relationship between farm size and total factor productivity, and in the rapidly 

transforming region of the Center-West we identify dynamics that suggest the inverse 

relationship is disappearing over time. The analysis highlights that the relationship 

between total factor productivity and farm size has evolved with modernization, shedding 

some light on the issues raised by Mill over 150 years ago.  

The remainder of this paper is organized as follows. In Section 2 we seek to clarify 

the common measures, their relationships, and their advantages and limitations in 

empirical work. Section 3 presents the empirical exercise, generating new evidence on 
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the relationship between size and productivity in several macro regions of Brazil. In 

Section 4 we summarize and conclude with policy implications. 

  

1.2  Measures of Agricultural Productivity 

Farm size may be related to a broad range of economic outcomes, such as 

employment, poverty, inequality, food security, efficiency and growth. While these are 

important issues connected to the role of farm size in development, here, as with most 

of the literature on the inverse relationship (IR), we focus specifically on the concept of 

productivity. The following discussion seeks to clarify the relationships between the 

various productivity measures most commonly used in the literature, allowing us to draw 

conclusions on the impact that choice of measure may have on finding an IR and the 

potential implications for policy. 

1.2.1 The Unconditional Relationship between Land Productivity and Farm Size 

Historically, land productivity is the most commonly used measure in the 

literature on the inverse relationship. Where alternative productivity measures are used, 

the relationship between land productivity and farm size is often a starting point, serving 

as a benchmark for the expansive existing literature. Land productivity, 𝑞𝑞, is a partial 

measure of productivity: 

      𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑄𝑄
𝐴𝐴

= 𝑞𝑞 = 𝜓𝜓𝑢𝑢(𝐴𝐴)           (1.1) 



8 

where 𝐴𝐴 is the area of the farm, 𝑄𝑄 is an index of agricultural output, 𝑞𝑞 is agricultural 

output per unit of land, and 𝜓𝜓𝑢𝑢(𝐴𝐴) connotes that land productivity may be a function of 

farm size. In a world where farm size and land productivity are unrelated we have 

𝜕𝜕𝜓𝜓𝑢𝑢(𝐴𝐴)
𝜕𝜕𝜕𝜕

= 0. However, the regularity with which empirical work finds 𝜕𝜕𝜓𝜓𝑢𝑢(𝐴𝐴)
𝜕𝜕𝜕𝜕

< 0 has led 

to the stylized fact that they are inversely related, generating an abundance of interest in 

the relationship and its potential explanations. Figure 1.1 displays this relationship using 

data from Brazil for the years 1985, 1996, and 2006. While the relationship is potentially 

non-linear and may not be monotonic, for now we focus on the first order approximation. 

The relationship captured by 𝜓𝜓𝑢𝑢(𝐴𝐴) is unconditional (𝑢𝑢) in the sense that it is the 

simple bivariate relationship between land productivity and farm size. Factors that may 

be causing or influencing this relationship have not been controlled for. Using land 

productivity as a measure is inherently limited—as would be any partial measure of 

productivity—whenever there is more than one factor of production. If use of other 

factors vary systematically with farm size, the IR between land productivity and farm size 

may simply reflect more input intensive practices of small farms. Higher land productivity 

may reflect overuse of fertilizer, for example, which would not necessarily reflect any 

underlying productivity advantage of small farms. In such situations, estimates of the farm 

size – land productivity relationship introduces omitted variable bias into estimates of the 

underlying farm size – productivity relationship. From this perspective, a focus on the 

relationship between land productivity and the size of farms may be misplaced.  
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Similarly, analysis using different partial productivity measures may result in 

conflicting policy recommendations. Indeed, Sen’s (1962) seminal contribution revealed 

precisely this type of systematic relationship between the intensity of labor use and farm 

size, leading to his formal exposition of the dual labor market hypothesis (Sen 1966).  

Figure 1.2 illustrates the problem in the case of Brazil. While there is an inverse 

relationship between land productivity and farm size, there is a direct relationship 

between labor productivity and size. Analysis of the farm size and productivity 

relationship using labor productivity suggests that larger farms are more productive than 

are their smaller counterparts. Policy recommendations from the two partial measures of 

productivity would differ, underscoring the need for a comprehensive measure of 

productivity when identifying any relationship with farm size. 

1.2.2 The Conditional Relationship between Land Productivity and Farm Size  

In spite of its limitations, the unconditional relationship between land productivity 

and farm size continues to be used, even if in conjunction with comprehensive measures 

of productivity. A more appropriate approach is to use a conditional relationship, where 

the relationship is conditioned on a vector of controls, 𝑋𝑋(𝐴𝐴), that are potentially 

correlated with both land productivity and farm size:  

       𝑞𝑞 = 𝜓𝜓𝑢𝑢(𝐴𝐴) = 𝑔𝑔�𝑋𝑋(𝐴𝐴),𝜓𝜓𝑐𝑐(𝐴𝐴)�    (1.2) 

The conditional (𝑐𝑐) relationship, 𝜓𝜓𝑐𝑐(𝐴𝐴), should differ from the unconditional relationship 

to the extent that the controls explain the unconditional IR. For example, the impact of 

varying input intensities can be controlled for by including those inputs as controls, 
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household heterogeneity can be controlled for with household fixed effects, market 

failures controlled for with regional fixed effects, and other omitted variables such as soil 

quality can be introduced. This is a useful approach for exploring the theoretical channels 

that explain the IR and is a strategy commonly used by researchers in recent empirical 

studies of the farm size – productivity relationship (Assunção and Braido, 2007; Barrett et 

al., 2010; Desiere and Jolliffe, 2018; Gourlay et al., 2019).   

As discussed above, partial measures such as land productivity are potentially 

misleading when there are other factors of production. At the very least, understanding 

any relationship between productivity and farm size requires empirical analysis that 

controls for the intensity with which other factors of production are used. For exposition, 

assume that land, labor (𝐿𝐿), and capital (𝐾𝐾) are the only factors of production and that 

their intensities, labor per unit of land and capital per unit of land, are given by 𝑙𝑙 and 𝑘𝑘, 

respectively.  Then (1.2) becomes: 

𝑞𝑞 = 𝜓𝜓𝑢𝑢(𝐴𝐴) = 𝑔𝑔�𝑘𝑘(𝐴𝐴), 𝑙𝑙(𝐴𝐴),𝜓𝜓𝑐𝑐(𝐴𝐴)�    (1.3) 

showing that the IR as identified by the unconditional relationship between land 

productivity and farm size, 𝜕𝜕𝜓𝜓𝑢𝑢(𝐴𝐴)
𝜕𝜕𝜕𝜕

, is composed of the relationship between capital 

intensity and farm size, labor intensity and farm size, and any conditional relationship 

between farm size and land productivity, 𝜕𝜕𝜓𝜓𝑐𝑐(𝐴𝐴)
𝜕𝜕𝜕𝜕

. When differences in the use of other 

factors of production are controlled for, the conditional relationship between farm size 

and productivity is revealed, providing a more comprehensive measure of productivity. If 
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the two measures diverge, the unconditional relationship suffers from omitted variable 

bias. 

Exploring (1.3) highlights how omitted variables can lead to ambiguity in how the 

land productivity and farm size relationship, as captured by 𝜓𝜓𝑢𝑢(𝐴𝐴), is related to the more 

general productivity and farm size relationship captured by 𝜓𝜓𝑐𝑐(𝐴𝐴). Differentiating (1.3) 

with respect to farm size shows: 

�𝜕𝜕𝜓𝜓𝑢𝑢
𝜕𝜕𝜕𝜕
� = �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�+ �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�+ � 𝜕𝜕𝜕𝜕

𝜕𝜕𝜓𝜓𝑐𝑐
� �𝜕𝜕𝜓𝜓𝑐𝑐

𝜕𝜕𝜕𝜕
�              (1.4) 

Assuming, quite reasonably, that output per unit of land is increasing in both capital and 

labor per unit of land, it is plausible for the conditional relationship to be positive 

�𝜕𝜕𝜓𝜓𝑐𝑐
𝜕𝜕𝜕𝜕

> 0� even if the unconditional relationship is negative �𝜕𝜕𝜓𝜓𝑢𝑢
𝜕𝜕𝜕𝜕

< 0� if, as is often the 

case, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, or both are negative.4 In short, an unconditional IR is neither a necessary nor 

a sufficient condition for an inverse relationship between the broader measure of 

productivity and farm size captured by 𝜓𝜓𝑐𝑐(𝐴𝐴). 

 When, as in (1.3), the conditional relationship includes all factors of production as 

controls, the approach is equivalent to estimating a production function and the 

conditional relationship can be interpreted as total factor productivity (TFP). Across a host 

of policy objectives – for example, improving the efficiency of resource use in the rural 

economy or alleviating poverty among agricultural households – policymakers are best 

 
4 Abay et al. (2019a) show clear evidence of input intensities declining with farm size in four African 
countries. The same is true in all regions using our Brazil data.  
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informed by comprehensive measures such as TFP that take into account the productivity 

with which all resources are utilized.  

1.2.3 Profitability and Farm Size 

Empirical studies have often looked to the farm size – profitability relationship as 

an alternative to measuring the farm size – productivity relationship. While assessing 

profitability raises its own practical challenges, the use of a profit rate to measure farm 

performance faces the same conceptual issues as does the use of productivity. Partial 

measures of profitability – such as profit (or value added) per unit of land – are potentially 

misleading, and for most policy considerations a comprehensive profit rate is most 

relevant. 

Profit is expressed as:  

𝛱𝛱 = 𝑄𝑄 − 𝑝𝑝𝐿𝐿𝐿𝐿 − 𝑝𝑝𝐾𝐾𝐾𝐾 − 𝑝𝑝𝐴𝐴𝐴𝐴               (1.5) 

where 𝑝𝑝𝐿𝐿 is the price of labor, 𝑝𝑝𝐾𝐾 the price of capital, and 𝑝𝑝𝐴𝐴 the price of land. In 

expression (1.5) if the output quantity index, 𝑄𝑄, is constructed using prices in the 

aggregation process, it can be interpreted as the value of output. The level of profit can 

be expressed as the product of output and profit per unit of output: 𝑄𝑄 𝛱𝛱
𝑄𝑄

. Regardless of 

whether the profit per unit of output rises or falls with size, we would expect the level of 

output to dominate in the determination of the level of profit. A large farm that produces 

a value of output of 1,000, for example, should generate more profit than a small farm 
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that produces 10. The level of profit, then, is not a particularly good measure for 

comparing the productivity of farms of different sizes. 

It is not profit per se that matters but rather profitability, requiring the 

transformation of the profit level into a profit rate. Profit per unit of land, as used by 

Carletto et al. (2013) among others, is one approach: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜋𝜋𝐴𝐴 = 𝛱𝛱
𝐴𝐴

= 𝑞𝑞 − 𝑝𝑝𝐿𝐿𝑙𝑙 − 𝑝𝑝𝐾𝐾𝑘𝑘 − 𝑝𝑝𝐴𝐴 = 𝜙𝜙(𝐴𝐴)    (1.6) 

Profit per unit of land is a measure of farm performance that controls for the levels of 

other inputs additively, providing an improvement over land productivity. Notions of 

value added are similar, however they fall short of profit measures as they control only 

for intermediate inputs and not the complete set of factors of production. Despite being 

an improvement over land productivity and value-added, profit per unit of land is itself 

problematic because it is fundamentally a partial measure. The finding of a systematic 

inverse relationship with farm size, 𝜕𝜕𝜙𝜙(𝐴𝐴)
𝜕𝜕𝜕𝜕

< 0, provides limited information to policy 

makers because, as with productivity measures, it is the profitability of overall resource 

use that matters. 

To highlight this, note that partial profitability measures potentially provide 

conflicting perspectives on the relative profitability of farms:  

 𝜋𝜋𝐴𝐴 = 𝛱𝛱
𝐴𝐴

= 𝛱𝛱
𝐾𝐾
𝐾𝐾
𝐴𝐴

= 𝜋𝜋𝐾𝐾 ∗ 𝑘𝑘       (1.7) 

Here we see that the profit per unit of land is the product of profit per unit of capital, 𝜋𝜋𝐾𝐾, 

and capital intensity. An observed inverse relationship between profit per unit of land and 
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farm size could be associated with declining capital intensity as farm size increases, even 

if profit per unit of capital is increasing. If true, then the use of one partial measure or the 

other would lead to conflicting policy recommendations. Overcoming these limitations 

requires the use of a comprehensive measure of profitability. Indeed, Binswanger et al. 

(1995) advocate normalizing profit by “capital invested” or “assets,” an approach that is 

appropriate as long as the assets included are restricted to those used in agricultural 

production and do not include all of household wealth. In practice, this approach to 

measuring profits has rarely been used, in part due to inexistent or imprecise information 

about the value of assets used in production. Where partial profit rates have been 

employed, bias can arise from incomplete information on input prices as well as 

unobservable inter-farm variation in prices that is potentially correlated with farm size.  

1.2.4 TFP as a Comprehensive Measure 

Comprehensive measures of either productivity or profitability are the 

appropriate means to measure the efficiency of resource use and, in most cases, will 

provide the information necessary for effective policy design.5 Total factor productivity 

can be defined as the ratio of output to all inputs used, where output and input quantity 

indices are typically required to aggregate physical quantities. TFP can be written as:    

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑄𝑄
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

= 𝜑𝜑(𝐴𝐴)      (1.8) 

 
5 Under certain conditions, TFP can be shown to be a monotonic transformation of profitability. 
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TFP effectively captures the productivity with which all inputs are used in the production 

process, and in this sense is a comprehensive measure of productivity. If this measure is 

a function of farm size, i.e. 𝜕𝜕𝜑𝜑(𝐴𝐴)
𝜕𝜕𝐴𝐴

≠ 0, then there is an unambiguous difference in how 

productively farms of different sizes utilize resources in agricultural production. An 

understanding of the determinants of 𝜑𝜑(𝐴𝐴) would support effective policy design, 

whether the objective is poverty reduction or economic growth, because these are 

concerned with the use of all resources available to farms. Although this is widely 

acknowledged, an explicit focus on TFP is seldom the approach of empirical analyses of 

the IR in developing economies. 

 While the difference is rarely noted, empirical analyses of the IR that estimate a 

production function effectively pivot from estimating the farm size – land productivity 

relationship towards estimating the farm size – TFP relationship. To illustrate this point, 

assume a standard Cobb-Douglas production function homogenous of degree 𝑡𝑡, where T 

is the unobserved measure of total factor productivity and production is a function of 

labor, capital, and land: 

𝑓𝑓(𝐿𝐿,𝐾𝐾,𝐴𝐴) = 𝑇𝑇𝐿𝐿𝛼𝛼𝐾𝐾𝛽𝛽𝐴𝐴𝛾𝛾     (1.9) 

If, as has often been confirmed, CRS holds, then farm size disappears from the right hand 

side of (1.9) after dividing through by farm size.6 If not, then the natural log of the 

production function takes the form: 

 
6 To see this, if we assume the production function is homogenous of degree 𝑡𝑡 then 𝑓𝑓(𝜆𝜆𝜆𝜆, 𝜆𝜆𝜆𝜆, 𝜆𝜆𝜆𝜆) =
𝜆𝜆𝑡𝑡𝑓𝑓(𝐿𝐿,𝐾𝐾,𝐴𝐴), with constant returns to scale (CRS) holds if 𝑡𝑡 = 1. Setting 𝜆𝜆 = 1

𝐴𝐴
 implies that 𝑓𝑓(𝑙𝑙, 𝑘𝑘, 1) =
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𝑙𝑙𝑙𝑙𝑙𝑙 = (𝑡𝑡 − 1)𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝑛𝑛𝑘𝑘   (1.10) 

and if, as in (1.8), there exists a relationship between total factor productivity and size, 

𝜑𝜑(𝐴𝐴), we have: 

𝑙𝑙𝑙𝑙𝑙𝑙 = (𝑡𝑡 − 1)𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝜑𝜑(𝐴𝐴)  + 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽       (1.11) 

From (1.11) it is clear that the conditional relationship identified in (1.3), 𝜓𝜓𝑐𝑐(𝐴𝐴), is 

composed of the relationship between TFP and farm size (𝜑𝜑(𝐴𝐴)) as well as any deviations 

from CRS in the production function (as captured by (𝑡𝑡 − 1)𝑙𝑙𝑙𝑙𝑙𝑙).  

 Equation (1.11) highlights two useful features of the production function 

approach. First, if CRS holds then the conditional relationship, 𝜓𝜓𝑐𝑐(𝐴𝐴), captures the 

relationship between TFP and farm size, 𝜑𝜑(𝐴𝐴). Second, if CRS does not hold then it will 

be difficult to empirically differentiate whether a conditional relationship is driven by non-

CRS, a relationship between TFP and farm size, or a combination of the two. One cannot 

have confidence in tests of returns to scale if there is also a relationship between farm 

size and TFP.  This highlights the importance of interpreting any observed conditional 

relationship as including both a relationship between farm size and TFP and any potential 

deviations from CRS.7 

 
𝐴𝐴−𝑡𝑡  𝑓𝑓(𝐿𝐿,𝐾𝐾,𝐴𝐴), implying that when the production function is expressed in intensities we have 𝑞𝑞 =
𝑓𝑓(𝐿𝐿,𝐾𝐾,𝐴𝐴)

𝐴𝐴
= 𝐴𝐴𝑡𝑡−1𝑓𝑓(𝑙𝑙, 𝑘𝑘, 1).       

7 Future research should seek to develop an approach to disentangle the relationship between farm size 
and these two sources of productivity. Aragon et al. (2019) have taken a step in this direction, proposing a 
sequential approach which estimates RTS first and then uses this to correct their estimates of the farm 
size - TFP relationship. While this recognizes the need to account for deviations from CRS, the first stage 
estimates of returns to scale likely suffer from omitted variables bias.  
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Thus, when empirical researchers estimate a production function to explore the 

relationship between farm size and productivity they are, in effect, estimating the 

relationship between farm size and TFP and not farm size and land productivity. All too 

often, empirical work that takes this approach estimates the unconditional relationship 

first (non-parametrically, and parametrically with some controls), followed by the 

estimation of a production function and then interpretation of the two approaches as if 

they were exploring the same relationship. However, the conditional and unconditional 

relationships are by no means the same, can plausibly take different signs, and will almost 

certainly have different magnitudes.  

1.2.5 TFP and Land Productivity Redux 

 The relationship between TFP and output per unit of land can be explored further. 

TFP is a unit-less measure, but multiplying and dividing by 1
𝐴𝐴

 allows the measure to be 

rewritten as: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑞𝑞
𝜏𝜏

= 𝜑𝜑(𝐴𝐴)            (1.12) 

where TFP is expressed as land productivity normalized by inputs per unit of land, 𝜏𝜏.  

Taking a derivative with respect to farm size: 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� �1

𝜏𝜏
� −

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕�𝑞𝑞

𝜏𝜏2
     (1.13) 

Employing a little bit of algebra (see Appendix A.1): 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� �1

 𝜏𝜏
� �𝜀𝜀𝑞𝑞,𝐴𝐴−𝜀𝜀𝜏𝜏,𝐴𝐴

𝜀𝜀𝑞𝑞,𝐴𝐴
�       (1.14) 
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where 𝜀𝜀𝑞𝑞,𝐴𝐴 is the elasticity of land productivity with respect to farm size, and 𝜀𝜀𝜏𝜏,𝐴𝐴 is the 

elasticity of input use per unit of area with respect to farm size. If there is an empirically 

observed inverse relationship between the partial measure and farm size such that 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

<

0, then we know 𝜀𝜀𝑞𝑞,𝐴𝐴 is negative. This implies that one of two possibilities must hold: 

(i) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

< 0 and 𝜀𝜀𝑞𝑞,𝐴𝐴 < 𝜀𝜀𝜏𝜏,𝐴𝐴 

(ii) 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

> 0 and 𝜀𝜀𝑞𝑞,𝐴𝐴 > 𝜀𝜀𝜏𝜏,𝐴𝐴 

If (i) is true then an IR between a partial measure and farm size reflects an IR between 

productivity and farm size as measured by TFP. When this is the case either input use per 

unit of land is increasing in farm size or it is decreasing, but slower than the rate at which 

output per unit of land is decreasing. If (ii) is true then use of a partial measure is 

generating an incorrect indication about the productivity and farm size relationship, and 

TFP is actually directly related to farm size. However, this requires that 0 > 𝜀𝜀𝑞𝑞,𝐴𝐴 > 𝜀𝜀𝜏𝜏,𝐴𝐴. In 

such a case, input use per unit of land is negatively related to farm size and is relatively 

elastic compared to output per unit of land. Use of a partial measure implies policy 

recommendations inconsistent with those that would result if a comprehensive measure 

were used. This discussion highlights the conclusion that an IR between a partial measure 

of productivity and farm size is neither necessary nor sufficient for the existence of an IR 

between farm size and a comprehensive measure of productivity such as TFP.  

The conditions set out in (i) and (ii) provide a framework for considering how a 

modernizing agricultural sector can lead to a changing farm size – productivity 
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relationship. Depending upon the stage of development and the institutional structure, 

partial measures of productivity may fail to capture the dynamics of the farm size – 

productivity relationship. Land productivity may provide an adequate proxy for TFP at an 

early stage of development, even if the magnitudes of the two relationships differ. At an 

intermediate stage of development characterized by mechanization and technical 

improvements, capital and the ability to adopt modern technologies become increasingly 

important. Substitution away from labor may move large farms towards a more efficient 

mix of factors of production. In such a context condition (ii) might hold, with a direct 

relationship between TFP and farm size emerging even as an IR continues to exist for land 

productivity. Further agricultural development could realign the relationships between 

TFP, land productivity, and farm size as institutions improve and distortions in land, labor, 

and capital markets begin to disappear. In such an environment, the inverse relationship 

between land productivity and farm size could disappear, implying 𝜀𝜀𝑞𝑞,𝐴𝐴 ≥ 0 and both land 

productivity and TFP could conceivably exhibit a direct relationship with farm size.8 We 

return to this discussion following the empirical exercise on Brazil.  

 

1.3  Empirical Analysis 

We now provide an example using data on Brazilian agriculture. The intention 

here is not to explain the relationship between farm size and productivity by controlling 

 
8 There is evidence of a direct relationship between land productivity and farm size among grain farmers 
in the U.S. (Key, 2019), and for specific crops in Brazil (Filho and Vian, 2016). 
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for its potential determinants. Rather, we seek to use a regional analysis within Brazil to 

highlight how the choice of measure influences the observed relationship and how these 

patterns can change across stages of agricultural development. Our evidence is only 

suggestive because we are unable to correct for the measurement issues in farm size, 

outputs, and inputs that recent literature has focused on. We discuss this further below. 

The results provide an important counterpoint to much of the literature that has focused 

on countries in Africa and Asia where the overwhelming majority of farms have less than 

2 hectares (Eastwood et al., 2010). Mean and median farm size in Brazil, in contrast, were 

around 65 and 10 hectares in 2006.  

1.3.1 Data and Variables 

The data come from the 1985, 1995/1996, and 2006 rounds of the Brazilian 

agricultural census. For confidentiality reasons, we constructed a pseudo-panel in which 

all farms in the census are aggregated into five farm size classes within each municipality 

of Brazil.9 Aggregation requires that we assume homogeneity within each observation (for 

example, farms with 0–5 ha in the municipality of Cachoeira). We call these 

“representative-farms,” as they reflect the average behavior of a given farm size in a given 

municipality.  The pseudo-panel approach has been used recently to study agricultural 

 
9 The size classes in hectares (ha) are 0-5 ha, 5-20 ha, 20-100 ha, 100-500 ha, and 500+ ha.  To protect the 
confidentiality of the farms, the Brazilian Institute of Geography and Statistics (IBGE) requires that each 
aggregate observation have at least 3 farms. As the aggregation was conducted on site prior to analysis, 
we are not able to expand the number of farm size bins. However, previous work using the underlying 
Brazilian census data found little difference in qualitative results across alternative bin specifications 
(Helfand et al., 2014; Moreira et al., 2007; Helfand and Levine, 2004).  
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productivity growth by Key (2019) and Rada et al. (2019). Antmann and McKenzie (2007) 

demonstrate that, in the context of mobility studies, pseudo-panels can be used to 

consistently estimate parameters of interest. The averaging within cells (representative 

farms) in each period reduces the influence of individual-level measurement error, and 

the fact that it is not a true panel of farms makes it less vulnerable to non-random 

attrition. They show the approach is also robust to some forms of non-classical 

measurement error.   

We begin with 47,365 representative farms for all of Brazil across the three survey 

years. Due to concern about the comparability of a small number (84) of extremely large 

observations, we remove all representative farms in the Northeast and South over 4,000 

ha and all of those over 5,000 ha in the North, Southeast, and Center-West. We then 

identify land productivity outliers taking into account the IR shown in Figure 1.1 and 

potential non-linearities. Thus, rather than trim the tails of the unconditional land 

productivity distribution, we use a quadratic specification to regress land productivity on 

farm size with municipal fixed effects and survey year dummy variables.10 From this 

regression we identify and remove outliers, defined as all representative farms with 

 
10 The changing composition of Brazil’s municipalities—rising from around 4,100 to over 5,500 in the period 
of study—requires the construction of geographic units that are spatially consistent over time. We create 
3,861 consistent geographic units—called minimum comparable areas—and continue to refer to them as 
“municipalities” for simplicity.  
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residuals greater than four standard deviations from their size specific predicted values. 

Together, the data cleaning exercises remove 1.8% of the initial sample.11   

The Census data were gathered by the Brazilian Institute of Geography and 

Statistics (IBGE) through end of season in-person farmer interviews based on recall. 

Output is measured as the real value of total agricultural production, deflated to 2006 

with a price index developed from the data in Gasques et al. (2010). Farm size is measured 

in hectares (ha), and unlike in many African and Asian countries the overwhelming 

majority of farms operate a single plot. Additional factors of production used in the 

production function are family labor, purchased inputs including hired labor, and an index 

of capital. The number of male, female, and child family members working on each farm 

are used to develop a family labor index measured in adult male equivalents. The index 

assigns weights of 1.0 to men, 0.75 to women and 0.5 to children under 14.12 In 2006 

around two thirds of family labor was provided by men, and over 90% of working family 

members were 14 years or older. The real value (R$2006) of purchased inputs, including 

expenditure on fertilizer, seeds, hired labor, fuel, energy, soil amendments, and other 

items, are deflated with the same price index used for output. A proxy for the total capital 

 
11 See Appendix Table A.2.1 for the results of data cleaning from each stage of the process. Sensitivity 
analyses using alternative approaches to trimming the data had no qualitative impact on our results, and 
only a negligible impact on the magnitude of the estimated coefficients. The alternatives included 1) the 
same as in the core approach but using a linear rather than a quadratic specification, 2) only trimming the 
84 extremely large representative farms, 3) trimming the 84 and the top and bottom 1% of the 
unconditional land productivity distribution, 4) trimming the 84, the top and bottom 1%, and using the 
quadratic specification as in the core approach, and 5) the same as the core approach but trimming 
residuals greater than three rather than four standard deviations. 
12 The weights are drawn from Moreira et al. (2007), and reflect average hours worked on-farm according 
to data in the national households survey (PNAD). 
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stock is calculated as a quantity index comprised of machine, animal, and tree capital 

stock sub-indices following Moreira et al. (2007) and Butzer et al. (2012). The machine 

capital stock index values tractors of five horsepower classes, trucks, harvesters and other 

agricultural equipment using a constant set of sale prices drawn from the Instituto de 

Economia Agrícola in São Paulo. The stock of animal capital is measured in cattle 

equivalents of the nine most important animal stocks and aggregated with a set of time-

invariant relative prices (following the approach in Hayami and Ruttan, 1985). The stock 

of tree capital is measured as the present discounted value of expected future profits for 

thirteen different tree crops, using region-specific estimates of expected profits. The sub-

indices are aggregated using region-specific weights estimated by regressing output on 

the three capital stock sub-indices in the base year 1985.13  

Additionally, we control for unexpected shocks in rainfall and temperature to each 

municipality in each survey year utilizing data described in Wilmott and Matsuura (2001). 

These quarterly shocks are measured as standardized deviations from 25-year moving 

averages ending in the year prior to each Census. The data are transformed into 

categorical variables capturing extremely low, below average, average, above average, 

and extremely high values relative to the historical municipal average. Weather shocks 

 
13 While there are many assumptions that go into the construction of the capital stock index, capturing 
the capital invested in perennial crops and animals is an improvement over most of the literature on Brazil 
that often uses tractors as the sole proxy for capital. The Census data used to construct the indices here 
relies on the number of machines, trees, and animals present on farm at the end of the season. Because 
these are stocks and the recall period is shorter, bias should be less of a concern for these variables than 
for inputs that are used irregularly or are more marginal to the production process.    
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between -1 and 1 standard deviations are treated as normal weather years and are the 

reference category, with extremely high and extremely low values occurring at more than 

±1.645 standard deviations.14  

1.3.2 Measurement error 

The data used are drawn from a nation-wide decennial census and are potentially 

subject to multiple sources of measurement error. The literature on measurement error 

and its implications for the IR has grown rapidly in recent years. Of greatest concern are 

non-classical types of measurement error that are correlated with farm size. Carletto et 

al. (2013), Carletto et al. (2015), Abay et al. (2019b) and Dillon et al. (2019) examine 

measurement error in self-reported farm size relative to more accurate approaches to 

measuring land (GPS or compass-and-rope). They demonstrate clearly that farmers report 

area with error, that this error varies systematically with farm size, and that whereas small 

farms tend to overestimate farm size, large farms tend to underestimate their size. The 

implications for the IR literature are mixed, as Carletto et al. (2013) and Abay et al. (2019b) 

find that the IR becomes stronger when measurement error in farm size is the sole 

correction made, but Carletto et al. (2015) and Dillon et al. (2019) both find that correcting 

for such measurement error partially mitigates the IR in some of their data but has no 

statistically significant impact elsewhere.  

Similarly, several recent papers have explored the implications of non-classical 

measurement error in output. Desiere and Jolliffe (2018), Gourlay et al. (2019), and Lobell 

 
14 Further discussion of the entire dataset can be found in Rada et al. (2019). 
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et al. (2020) show non-classical measurement error in self-reported output when 

compared to “crop cuts” as the gold standard measure. Importantly, small farms over-

report output more so than larger farms in their data. Conditional on GPS land 

measurement, the IR disappears in these papers when they utilize the more objective 

measure of output. Abay et al. (2019b) explore measurement error in both farm size and 

output, and concur that in their data the IR disappears when land is measured objectively 

and then crop cuts are used to correct for measurement error in production. However, 

they caution that the IR strengthens when land is self-reported and measurement error 

in output alone is corrected.  

Lastly, measurement error in the use of inputs such as labor is potentially an issue. 

Relative to weekly surveys conducted in-person or by phone, end of season surveys of 

labor usage can contain substantial errors (Arthi et al., 2018; Gaddis et al., 2019). The 

implications for the IR, however, are ambiguous because the degree and direction of 

recall bias depends on a number of factors that can offset each other. Overestimation is 

likely to be greatest when surveys ask about hours worked per person per plot, but can 

be substantially smaller or even underestimated when focusing on total household hours 

per farm. At this level, the authors conclude that labor productivity might be 

underestimated in Tanzania (Arthi et al., 2018) and overestimated in Ghana (Gaddis et al., 

2019).  

How can this brief review of the recent literature on measurement error guide our 

empirical analysis of Brazil? First, we recognize that these are serious concerns. Because 
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we do not have more objective measures that could be used to correct the data, our 

results should only be considered suggestive. Second, the pseudo-panel approach based 

on cohort averages should reduce the influence of classical measurement error, and may 

even help diminish some of the non-classical measurement error. In the case of land 

measurement, for example, the evidence from Africa suggests that the largest errors 

happen for the smallest of farms (under 0.5 acres), with the sign of the bias flipping from 

positive to negative somewhere between 0.75 ha (Abay et al., 2019b) and 2.0 ha (Carletto 

et al., 2015). Since our smallest farm size class is 0-5 ha, over- and under-estimation in 

this group may partially cancel. Third, while the literature suggests that the largest errors 

occur on the smallest of farms, it has little to say about measurement error for the larger 

farms included in our study. In the case of measurement error in output, for example, 

ninety five percent of parcels in the Ethiopian sample used by Desiere and Jolliffe (2018) 

were smaller than 1 ha, and mean plot size in the Ugandan sample used by Gourlay et al. 

(2019) is under 0.18 ha. What happens to measurement error in area and output as we 

move from farms of 10 to 100 to 1000 ha is an open question, and the IR in land 

productivity continues out this far in our data. Fourth, any sources of measurement error 

that are correlated with size, but constant over time, would not explain how the farm size 

– productivity gradient changes over time. This is an important aspect of our empirical 

analysis. Finally, Abay et al. (2019b) provide a unifying framework for thinking about data 

with multiple sources of non-classical measurement error. In this case, they show that the 

“signs and magnitude of resulting biases in estimates of a key parameter are analytically 
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ambiguous.” Thus, any attempt to correct for some, but not all, sources of measurement 

error could “prove inferior to a `second best' approach that uses multiple variables 

measured with error” (p. 183). In light of this discussion, we remain agnostic on 

measurement error and make no attempt to correct for it, reiterating that our results are 

only suggestive.  

1.3.3 Empirical Methodology 

We estimate an average production function assuming a Cobb-Douglas 

technology. Output and inputs for a representative farm in municipality 𝑚𝑚 of size 𝑠𝑠 in year 

𝑡𝑡 are normalized by area 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚. Estimating the model using intensities imposes constant 

returns to scale on the technology coefficients and forces any deviation from CRS into the 

estimated relationship between farm size and productivity. Because of the difficulties 

discussed in Section 1.2 of distinguishing deviations from CRS from other causes of an IR, 

and because our focus here is not on explaining the IR, this approach simplifies the 

interpretation of the results. Survey year specific dummy variables for five farm size 

classes, 𝛿𝛿𝑠𝑠𝑠𝑠, are used to flexibly capture the relationship between farm size and TFP. The 

farm size class 0-5 ha in 1985 is excluded and used as a reference. While this structure 

allows the farm size and productivity relationship to change over time, the technology 

coefficients are assumed to be time invariant. This assumption forces technical change 

into our measure of TFP. The estimated equation takes the form: 

𝑙𝑙𝑙𝑙𝑦𝑦𝑚𝑚𝑠𝑠𝑠𝑠 = 𝛽𝛽0 + 𝜷𝜷𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜶𝜶𝒘𝒘𝑚𝑚𝑚𝑚 + 𝛿𝛿𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑚𝑚 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚   (1.15) 
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where 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 is aggregate output per unit of land, 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 is a vector of logged factors of 

production per unit of land (capital, family labor, and purchased inputs including hired 

labor), 𝒘𝒘𝑚𝑚𝑡𝑡 is a vector of municipality-specific rainfall and temperature shocks in each 

period, and 𝜆𝜆𝑚𝑚 are municipal fixed effects. The relationship between farm size and TFP in 

each year is identified from within-municipality variation. The parameters are estimated 

using ordinary least squares, with standard errors clustered at the municipal level. 

Because the number of farms represented by each representative farm varies, each 

observation is weighted by the number of farms that it represents.  

With the above approach the systematic portion of TFP is a function of 

𝛽𝛽0, 𝛿𝛿𝑠𝑠𝑠𝑠, and 𝜆𝜆𝑚𝑚, but it is only the component that varies by farm size and over time for 

each region that is of interest here. This size-specific component in each period can be 

calculated as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠 = 𝑒𝑒𝛿𝛿𝑠𝑠𝑠𝑠        (1.16) 

A TFP index is then calculated for each size class in each period using the size class 0-5 ha 

in 1985 as a base level set to 100. 

While the use of municipality fixed effects controls for time-invariant differences 

across municipalities, such as soil quality, omitted variables that vary across farm size 

within municipalities remains a concern. Similarly, endogeneity of inputs could lead to 
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bias in our estimated coefficients. This is a limitation of the production function approach 

in the IR literature, and remains a concern here.15  

1.3.4 Empirical Results 

By focusing on a regional analysis we are able to examine the relationship 

between farm size and productivity in light of each region’s characteristics and stage of 

development. The five macro-regions of Brazil differ in both the type of predominant 

agricultural activities and the degree of modernization. They include the Amazon 

rainforest in the North, a large semi-arid region in the Northeast, a highly mechanized and 

commercial agriculture in the Southeast, a predominance of family farms in the South, 

and the Cerrado (savannahs) of the Center-West where grains have rapidly expanded and 

agriculture has modernized in recent decades. We restrict attention to the North, Center-

West, and Southeast, three macro-regions that capture sufficient regional variation in 

Brazilian agriculture to illustrate our argument.16 Descriptive statistics for output and 

input intensities for these regions in 2006 are shown in Table A.2.2 of the appendix. 

Differences in input intensities reflect the heterogeneity in agricultural production across 

regions. The more traditional agricultural region in the North relies more heavily on family 

labor, whereas the mechanized Southeast and Center-West use capital and purchased 

inputs more intensively. We also observe that the intensities of capital and labor decline 

 
15 Estimation of profit or cost functions is a potential solution, but as discussed in Section 1.2 the 
necessary input price data frequently does not exist in developing countries to make this strategy feasible. 
16 The results for the Northeast are similar to those in the North, and the results in the South are most 
similar to those in the Southeast.  



30 

with farm size, whereas the intensity of purchased inputs declines through the first three 

or four size classes, and then inverts. This was not the case in 1985. The use of purchased 

inputs on farms in the 500- ha class has grown more rapidly than in all the other size 

classes during this period.  

Figure 1.3 shows the unconditional relationship between land productivity and 

farm size class for the three regions under study. Despite considerable regional 

heterogeneity in their agricultural activities and agrarian structures, each region mirrors 

the country as a whole in displaying a strong inverse relationship between land 

productivity and farm size. There is no evidence of it disappearing during this period. 

The estimated coefficients from region-specific estimates of equation (1.15) are 

shown in Table A.3.1 of the appendix, which generate the TFP estimates presented in 

Figures 1.4 through 1.6. Recall from Section 1.2 that these relationships potentially 

include the influence of deviations from constant returns to scale.17  In the North (Figure 

1.4), we estimate an inverse relationship between farm size and TFP. It is not, however, a 

linear relationship, but rather an emerging U-shaped inverse relationship with farms over 

500 ha becoming more productive than medium-sized farms. The significance tests in 

Table 1.1 confirm this, showing that while the productivity of farms between 20 ha and 

 
17 Note that the variables are measured per unit of land, and thus the sum of the coefficients in Table 
A.3.1 does not indicate the returns to scale (RTS). We do not investigate RTS because we are unable to 
identify deviations from CRS separately from other causes of a size – productivity relationship. And 
because of potential non-linearities in this relationship, RTS do not have to be constant over all farm sizes, 
as they are with a Cobb-Douglas. Thus, where CRS does not hold this would be captured in our size 
dummies  𝛿𝛿𝑠𝑠𝑠𝑠. 
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500 ha is statistically less than the smallest farms in all periods, the largest farms are not 

statistically different from the smallest farms after the first period. Thus, while a strong 

negative relationship would be found in this region when using land productivity, a U-

shaped relationship begins to emerge when TFP is used and linearity is not imposed.  

The Center-West (Figure 1.5) demonstrates a more dynamic pattern. Table 1.1 

shows that the farm size – TFP relationship in the Center-West in 1985 looked very similar 

to the inverse relationship in the North. However, by 2006 the inverse relationship had 

disappeared in the Center-West, with the TFP of all farm sizes being statistically 

indistinguishable from that of the smallest farms. The point estimates show that the 

largest farms in the Center-West were 46% less productive than the smallest farms in 

1985, yet by 2006 they were 8% more productive, albeit statistically insignificantly so. 

Once again, a U-shape begins to emerge, driven by rapid growth of the productivity of 

larger farms. Increased use of purchased inputs played an important role in this 

transformation, as they grew roughly three to four times as fast on farms over 500 ha 

than on farms in the middle three size classes. This is the clearest case of a strong inverse 

relationship becoming reversed over the 21 year period. Using land productivity to 

measure the farm size – productivity relationship in a rapidly modernizing agricultural 

region such as the Center-West would completely miss this transformation. 

The Southeast, in contrast, shows a positive non-linear relationship between farm 

size and TFP. The relationship was statistically flat in 1985, although the point estimates 

show that even in 1985 the largest farms were 25% more productive than the smallest. 
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Rapidly rising TFP at the upper end of the farm size distribution makes the relationship 

more positive over time, and by 2006 the largest farms were 48% more productive than 

the smallest, and statistically so. Once again, the relationship appears non-linear. This 

contrasts sharply with the persistent IR found in the Southeast when using land 

productivity as a measure.18 

1.3.5 Discussion  

In comparison to much of the development literature surrounding the IR, the 

Brazilian data used here represent a very heterogeneous group of farms and span a much 

greater range of farm sizes. A more accurate comparison group to the international 

literature might be farms less than 100 ha, which indeed make up approximately 90% of 

all Brazilian farms. Even when restricting our analysis to this subset of farms, the use of 

land productivity would still show a marked inverse relationship while the use of TFP 

would reveal a negative relationship that has disappeared in the more modernizing 

regions. Perhaps more importantly, inclusion of the largest farm size class reveals that 

these farms have notably higher productivity in the more modern regions, and it is only 

when TFP is used that this becomes apparent. These are commercial farms that are 

unlikely to be included in most household surveys in developing countries, but they are 

present in the Agricultural Census data used here.   

 
18 The empirical results obtained here are comparable to those reported at the national level by Rada et 
al. (2019) using a similar dataset. One difference is that they find somewhat faster TFP growth for the 
smallest farm size class, resulting in a more pronounced U-shape in 2006. The principal differences in 
empirical methodology are that they estimate TFP growth separately for each farm size class, and do not 
explore regional heterogeneity. 
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The regional analysis of Brazil provides insight into how the farm size – 

productivity relationship that was discussed in Section 1.2 can evolve with the 

modernization of agriculture. In the least developed regions of the country, the North and 

Northeast, the inverse relationship persists through the 100-500 ha size class regardless 

of the productivity measure used, and it is only with TFP that an emerging U-shape begins 

to appear. In the Center-West, where farms over 500 ha operated 80% of the land and 

accounted for around 75% of output in 2006, modernization of agriculture in this period 

converted an initially strong negative TFP relationship into one that was statistically flat 

by the end of the period. And in the Southeast, the most modern region of the country, 

the use of TFP reveals that the largest farms had higher productivity than all other size 

classes as early as 1985, but that this only became statistically significant in 2006. While 

it is beyond the scope of this paper to explain the causes of these changes, we note that 

conditions (i) and (ii) from Section 1.2 provide insight. They suggest that modernization 

has led output per ha to fall more slowly than inputs per ha as farm size rises. The use of 

modern inputs and technology appears to have successfully inverted the size – TFP 

relationship. Future research should seek to address whether these changes are due to 

increasing returns to scale above a certain size, diminishing importance of market failures, 

measurement error or other factors.  
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1.4  Conclusions and Policy Implications  

We have sought to address an important weakness of the development 

economics literature on the inverse relationship between farm size and productivity. We 

argued that a variety of productivity measures are used when estimating this relationship, 

that the choice of measure matters for its identification and interpretation, and that total 

factor productivity is, in most cases, the preferred and most informative measure for 

policy. Furthermore, we argued that a commonly used measure – land productivity – is 

problematic and potentially misleading when used in modernizing agricultural contexts 

or when assessing a full range of farm sizes. Where comprehensive measures of 

productivity are more relevant and of interest, a focus on land productivity introduces 

omitted variable bias by not controlling for the intensity with which other inputs are used. 

Our conceptual discussion provides a framework for assessing the implications of the 

choice of productivity measure. Theoretically, it is clear that an inverse relationship 

between land productivity and farm size is neither necessary nor sufficient for an inverse 

relationship to exist between farm size and TFP.  

How much does this critique matter? We conduct an empirical analysis at the 

regional level in Brazil using a pseudo-panel from 1985 to 2006 to contrast the land 

productivity – farm size relationship with the TFP – farm size relationship. While the 

analysis is only suggestive due to potential bias stemming from non-classical 

measurement error or endogeneity of inputs, the results indicate that the choice of 

productivity measure matters greatly. As in many developing country contexts, there 
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exists an inverse relationship between land productivity and farm size for Brazil, and 

within each of its macro-regions in every period. In contrast, the TFP and farm size 

relationship varies across time and space. The regional analysis of the TFP and farm size 

relationship shows 1) land productivity is not always an appropriate proxy for TFP; 2) the 

relationship is dynamic, changing with agricultural modernization; 3) the relationship is 

non-linear, often characterized by a U-shape; and 4) the very largest farms, such as those 

with more than 500 ha, are important to consider when assessing any relationship 

between farm size and productivity.  

From a policy perspective, our findings have important implications for the debate 

about the future of small farms in developing countries. When using TFP, we see that 

superior productivity of small farms in traditional agricultural contexts is fully consistent 

with emergent productivity advantages for larger commercial farms in modernizing 

agricultural sectors. As economies develop, superior productivity may not continue to 

provide a valid argument for the importance and future of small farms, as we expect 

larger farms to play a more important role in driving national-level agricultural 

productivity growth. As such, it is increasingly unlikely that redistributive land reform 

could positively impact both equity and efficiency. However, this does not imply that 

small farms will, nor should, disappear. We expect them to remain important for 

generating livelihoods for rural households, providing food security, and contributing to 

the development of rural economies. Total factor productivity gains among small farmers 

will also continue to be essential for poverty alleviation. Importantly, rather than resting 
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on an inverse farm size – productivity relationship, policy that seeks to impact both equity 

and efficiency should focus on ensuring that smallholders have access to the productivity 

gains experienced by their larger counterparts. Thus, policies that help build human 

capital, facilitate adoption of new technologies, and enhance access to markets via a 

reduction in transactions costs will continue to be indispensable for reducing rural 

poverty in developing countries. 
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Chapter 1 Tables and Figures 
  
Figure 1.1: Farm Size and Land Productivity, Brazil (2006 R$/ha) 

 
Note: Smoothed as a local polynomial regression with bandwidth of 1.25 and Epanechnikov kernel. 
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  Figure 1.2: Land and Labor Productivity, Brazil 2006 
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Figure 1.3: Land Productivity in Brazil by Region 
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 Figure 1.4: Total Factor Productivity in Brazil’s North 
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 Figure 1.5: Total Factor Productivity in Brazil’s Center-West 
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 Figure 1.6: Total Factor Productivity in Brazil’s Southeast 
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Table 1.1: Percentage Difference in TFP Relative to 0-5 ha Farms 
  North    Center-West    Southeast  
 1985 1996 2006 1985 1996 2006 1985 1996 2006 
5-20 ha -19.71** -14.63* -9.79 -19.22*** -27.49*** -11.65 -3.07 -9.22** -2.25 

 (0.018) (0.068) (0.481) (0.001) (0.002) (0.334) (0.369) (0.011) (0.578) 
20-100 ha -34.69*** -42.11*** -29.85* -41.43*** -39.88*** -13.10 -4.42 -8.94 1.11 
 (0.005) (0.001) (0.070) (0.000) (0.003) (0.283) (0.510) (0.190) (0.870) 
100-500 ha -42. 53*** -52.25*** -45.89** -49.83*** -43.53*** -20.30 5.05 2.59 8.61 
 (0.009) (0.001) (0.027) (0.000) (0.013) (0.286) (0.637) (0.816) (0.441) 
500 + ha -41.97* -41.72 -26.68 -46.01** -24.99 8.37 24.98 27.82 47.66** 
 (0.100) (0.146) (0.453) (0.036) (0.361) (0.795) (0.144) (0.117) (0.013) 
N 1,888 1,888 1,888 3,038 3,038 3,038 17,742 17,742 17,742 

Base farm size bin, 0-5 ha. Tests are conducted by region and year.  P-values from significance tests are in parentheses: * p < 0.10,  
** p < 0.05, *** p < 0.01. 
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CHAPTER 2 
________________________________________________ 

The Farm Size – Productivity Relationship in the 

Wake of Market Reform: An Analysis of Mexican 

Family Farms1  

________________________________________________ 

 

2.1  Introduction 

Beginning with the seminal work of Sen (1962), economists have documented an 

inverse relationship between farm size and land productivity throughout much of the 

developing world (Bardhan, 1973; Berry and Cline, 1979; Deolalikar, 1981; and Barrett et 

al., 2010, among others). This inverse relationship has been found in a broad range of 

geographies, time periods, and crop mixes, and has been featured in discussions of 

development policy, including land reform (Lipton, 2009) and the future of small farms 

(Wiggins et al., 2010).  

 
1 We thank the World Bank for a grant that supported the early stages of this research, and Graciela 
Teruel at the Iberoamerican University in Mexico City for her support and expertise in working with the 
Mexican Family Life Survey. 
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The regularity with which an inverse relationship between farm size and land 

productivity is observed led to many theoretical explanations for the phenomenon. Early 

explanations centered around multiple market failures (Sen, 1966; Eswaran and Kotwal, 

1986), asymmetric information (Feder, 1985), and risk aversion among farmers (Barrett, 

1996). A second set of explanations emphasized empirical issues such as systematic 

measurement error in farm size and/or output (Lamb, 2003; Carletto et al., 2013; Gourlay 

et al., 2019; Desiere and Jolliffe, 2018) and omitted variables (Bhalla and Roy, 1988; 

Benjamin, 1995; Assunção and Braido, 2007). Empirical studies have typically found that 

existing theory fails to fully explain the observed inverse relationship, generating a body 

of mixed and at times contradictory evidence.   

 Chapter 1 illustrates how the choice of productivity measure can alter the 

relationship observed and how it can obscure a changing relationship between farm size 

and total factor productivity, the more relevant productivity measure. A dynamic 

relationship was found between farm size and total factor productivity in the rapidly 

modernizing agricultural regions of Brazil, contributing to an emerging literature that 

documents changing farm size – productivity relationships as agricultural sectors 

modernize and develop (Foster and Rosenzweig, 2017; Deininger et al., 2018; Rada and 

Fuglie, 2019). This is consistent with Helfand et al. (2015), whose findings suggest that 

both the larger commercial farms and smaller family farms in Brazil have advantages in 

harnessing technical change and achieving rapid gains in productivity.  
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In this paper the hypothesis of a dynamic farm size – productivity relationship is 

extended to the context of Mexico, identifying the relationship in a panel of family farms 

from the Mexican Family Life Survey (MxFLS) and testing for changes over the sample 

period of 2002-2009. Mexico is an interesting case for assessing changes in the farm size 

– productivity relationship because of its long history of land reform and the recent 

agricultural policy reform associated with the North American Free Trade Agreement 

(NAFTA) in the 1990s. These policies are a prime example of the Washington Consensus, 

liberalizing markets for land, agricultural inputs, and agricultural output in Mexico with 

the objective of spurning the modernization, competitiveness, and productivity of the 

agricultural sector and the broader economy. An environment with such market reforms, 

if successful, is expected to diminish the multiple market failure explanation of the inverse 

relationship between farm size and productivity, and any observed inverse relationship 

might weaken accordingly.  

We test for changes in the farm size – productivity relationship and, contrary to 

expectations, find that an inverse relationship exists and has remained strong in the wake 

of Mexico’s market reforms. We explore the relationship further by estimating a 

stochastic production frontier, an approach often applied in developed economy 

agriculture but infrequently applied in developing economy contexts. While frontier 

productivity growth has increased rapidly for larger farms, eliminating the inverse 

relationship at the frontier, the average relationship has remained unchanged due to 

more rapidly increasing technical inefficiency amongst the larger farms in the sample. This 
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finding highlights the need for, and echoes calls for, policies that support family farms’ 

transitions towards modern agriculture and adaptation to market liberalization in Mexico.  

The proceeding section discusses agricultural policy in Mexico, providing context 

for the empirical analysis. This is followed by an introduction of the empirical 

methodology, a description of the data, and the presentation of empirical results. Policy 

recommendations for Mexican agriculture and research implications conclude. 

 

2.2  The Mexican Agricultural Experience 

The institutional structure of Mexican agriculture continues to reflect agricultural 

policies implemented after the Mexican Revolution of the early 20th century. Land policy 

of the 1934 Agrarian Code established the ejidos – tracts of communally held land with 

individual plots farmed by designated households – as a principle tool for redistributing 

land and property rights to peasants. Agrarian communities, a distinct form of land tenure 

located predominantly in the South where farmers had  pre-existing claims to agricultural 

land, were similarly formed although to a lesser extent. A dual system of agricultural 

tenure emerged, with ejido farmers on the one hand and private landowners on the 

other. Within both the ejido and private farm sectors there exists both the larger, 

commercially oriented farms and the smaller predominantly subsistence farms. 

It is in this context that Berry and Cline (1979) first studied the farm size – 

productivity relationship in Mexico. Drawing from the Mexican Agricultural Census of 

1940 and of 1960, they compared land productivity of small and large private farms. They 
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found land productivity of small farms to be 6.5 times larger than that of larger farms in 

1940, but just 3.5 times as large by 1960. More importantly, when output per unit of land 

and capital was measured, a more comprehensive measure of productivity, small farms 

were 1.7 times more productive than large farms in 1940 but just 0.8 times as productive 

in 1960. This early evidence illustrates that an inverse relationship between farm size and 

land productivity is neither necessary nor sufficient for an inverse relationship between 

farm size and more comprehensive productivity measures, similar to the findings of 

chapter 1 in the context of Brazil. 

Berry and Cline (1979) hypothesized that the changing productivity ratios 

reflected a shift from livestock to crops on large farms, facilitated by government 

investment in infrastructure, provision of credit, and other supportive policies. As the 

birthplace of the Green Revolution, Mexican agriculture experienced productivity growth 

throughout this period, notably becoming net exporters of important staples such as 

wheat and maize. A weakening of the IR between farm size and land productivity 

accompanied this period of agricultural modernization and development, as did a reversal 

of the IR between farm size and output per unit of capital and labor. 

More recent research using farm-level panel data from the Mexico National Rural 

Household Survey (ENHRUM), a household survey statistically representative of 80% of 

rural Mexico, showed evidence of an inverse relationship between farm size and 

productivity in 2003 and 2008 (Kagin et al., 2016). By estimating an average production 

function and a stochastic production frontier, they find an inverse relationship between 
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farm size and land productivity, farm size and average TFP, and farm size and TFP along 

the production frontier. They conclude that the observed farm size – TFP relationship was 

driven, in part, by larger farms being further from the frontier (i.e. smaller farms being 

more efficient than their larger counterparts). 

Mexican agriculture in the early 20th century is an interesting setting for studying 

the farm size – productivity relationship because of the policy changes and market 

reforms associated with The North American Free Trade Agreement (NAFTA) going into 

effect in 1994.  As part of an economy-wide reduction in tariffs, agricultural tariffs were 

gradually eliminated over a 14-year span ending in 2008. The liberalization of agricultural 

trade exposed the Mexican agricultural sector to increased competition and imports from 

Northern neighbors. As a result, a flood of cheap imports has led to a decline in the price 

of staple crops for many Mexican farmers (Pérez et al., 2008). 

For Mexican agriculture, NAFTA was part of a broader program of reform and 

market liberalization. One important change was the Program for the Certification of Ejido 

Rights and Titling of Urban Plots (Procede), which included reform of the ejido system of 

land tenure.  Following a constitutional amendment, Procede facilitated the new option 

for ejidos to privatize individual parcels that could then be mortgaged, rented, or sold. 

Further, agricultural rights to ejido parcels ceased being contingent upon actual 

agricultural production, strengthening property rights for the ejido sector. Importantly for 

the private sector, the practice of expropriating large private holding for the formation of 

ejidos was ended. By securing property rights and integrating ejidos into the market, 
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these changes were expected to increase opportunities throughout the rural farm sector. 

A World Bank (2001) evaluation of the ejido reforms found that, while Procede had been 

widely successful in securing property rights, often in the form of certificates of 

agricultural rights, the program had not led to widespread land transfers and ejido farms 

remained credit constrained at the turn of the century. 

A second set of policy changes affected the manner in which government 

supported agricultural input and output markets. Policy shifted away from heavily 

subsidizing inputs and providing price supports for output towards a system of direct 

transfers for those impacted by increased international competition. In general, 

producers of staple products have suffered due to increased competition with relatively 

cheap imports whereas exports of high-valued horticultural products have benefited 

(Pérez et al., 2008). The Program for Direct Assistance in Agriculture (Procampo), 

primarily an income support program, offered per hectare payments to any farms with a 

history of producing any of nine key staples prior to 1993 that were actively farming one 

of those crops. An important change to the program in 1995 allowed participation of any 

farm producing any legal crop that had previously qualified for the program. Further 

changes to the program in 2001 included higher per-hectare payments for farms under 5 

hectares and a shift of the timing of payments to the start of the planting season. Upper 

limits on land size included for payments are larger for corporate-run than for family-run 

farms. Alongside Procampo is Alianza para el Campo, a suite of programs designed to 
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increase agricultural productivity primarily through investment in infrastructure and 

extension assistance. 

As government programs withdrew, farms became increasingly reliant upon 

markets for access to key agricultural inputs such as fertilizer, pesticides, and seed and 

for access to credit. Although government credit programs have scaled back, well-

functioning credit markets have not appeared in rural Mexico and access to credit 

markets is not widespread, inhibiting access to key inputs and modern technology. As in 

other developing country contexts, market concentration in both input markets and post-

harvest processing and marketing has hurt the profitability of family farms and generated 

economies of scale in transacting with the agricultural supply chain. 

We hypothesize that the farm size – TFP relationship is likely to be changing over 

time in the wake of Mexico’s NAFTA-era reforms, much as it appears to have done in 

Mexico during the Green Revolution (Berry and Cline, 1979) and in Brazil’s modernizing 

agricultural regions (see chapter 1). This hypothesis rests upon the assumptions that (i) 

market imperfections contribute to any pre-existing IR in Mexican agriculture and (ii) 

Mexico’s NAFTA-era market liberalization has improved the efficiency of agricultural input 

and output markets. Beyond the farm size – productivity relationship, agricultural 

productivity is important to Mexico for both rural economic development and poverty 

reduction. According to data from the World Bank,2 agricultural output made up 3.6% of 

Mexico’s GDP but employed 13-14% of the workforce in 2015. Further, approximately 

 
2 All data taken from the World Bank: http://data.worldbank.org/. 

http://data.worldbank.org/
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62% of Mexico’s rural population is impoverished when using the national poverty line, 

suggesting that agricultural productivity has a potentially important role in Mexico’s rural 

economic development and efforts to reduce poverty. There are similar implications for 

trends in migration, as increasing agricultural productivity on family farms facilitates the 

ability to generate adequate livelihoods and effectively support families, reducing an 

important push factor in migration decisions. 

 

2.3  Empirical Methodology 

As discussed in chapter 1, land productivity is a partial measure of productivity 

and does not account for the use of inputs other than land. Where other inputs are used 

in production, failing to account for the use of those resources potentially introduces bias 

into estimates of the relationship between farm size and productivity if the intensity of 

input use (inputs per hectare) varies with farm size. Controlling for all inputs in agricultural 

production can be accomplished with estimation of a production function, uncovering 

TFP, the comprehensive and preferable measure of productivity. 

We use two complementary approaches to explore the relationship between farm 

size and TFP with a panel of Mexican farms. First, we use an average production function 

to estimate average TFP and its relationship with farm size. Second, we use a stochastic 

production frontier to estimate both TFP along the technological frontier and technical 

inefficiency, identified as deviations from the frontier. The frontier analysis identifies any 

relationship between farm size and frontier TFP and any relationship between farm size 
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and technical inefficiency. As is standard in the literature (Coelli et al., 2005; and 

Kumbhakar et al., 2015), we view TFP change as a combination of changes in the 

technological frontier and changes in the deviations from the frontier. 

We identify TFP by estimating a Cobb-Douglas production function with inputs 

measured per hectare, implicitly imposing constant returns to scale on the production 

technology. In such a setting, the inclusion of a measure of farm size as an explanatory 

variable identifies any relationship between farm size and TFP (see chapter 1 for detail). 

Any deviation from constant returns to scale is effectively forced into the farm size term 

so that the estimated farm size – TFP relationship includes any non-constant returns to 

scale. We estimate the following production function using OLS regression: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜷𝜷𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝝎𝝎𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜽𝜽𝑡𝑡 + 𝜸𝜸𝑐𝑐 + 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜽𝜽𝑡𝑡 × 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖           (2.1) 

where 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 is log of output per ha for farm 𝑖𝑖 in community 𝑐𝑐 in year 𝑡𝑡 and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 is log of 

input per ha for the 𝑘𝑘 = 1, … , 5 non-land inputs: purchased intermediate inputs, physical 

capital, draft animals, family labor, and non-family labor. The variable of interest, 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖), 

is a measure of farm size, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖, taking various functional forms including linear, quadratic, 

cubic, and a flexible dummy variable structure. Community-level fixed effects, 𝜸𝜸𝑐𝑐, allow 

for the inclusion of household-level explanatory variables, 𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖.3 We use survey year 

dummies, 𝜽𝜽𝑡𝑡, and interact survey year with the measurement of farm size to allow the 

farm size – productivity relationship to vary over time. Omitting survey year interactions 

with inputs effectively assumes that the technology is time-invariant, forcing any changes 

 
3 A model with household-level fixed effects is estimated as a robustness check. 
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in technology into the TFP term.  The standard normal error term is given by 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, clustered 

at the community level.  

Additionally, production functions interacting household explanatory variables 

with farm size are estimated. These models explore the potential for heterogeneity in the 

farm size-productivity relationship across important subgroups: 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜷𝜷𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝝎𝝎𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜽𝜽𝑡𝑡 + 𝜸𝜸𝑐𝑐 + 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜽𝜽𝑡𝑡 × 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) + 

𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑓𝑓(𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖) + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖            (2.2) 

The second approach complements the average production function by 

estimating a stochastic production frontier. We take an output-oriented perspective, 

measuring technical inefficiency as the difference between what is actually produced by 

a farm, 𝑌𝑌, and the maximum possible production given the inputs used, 𝑓𝑓(𝑿𝑿):  

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑓𝑓(𝑿𝑿)
𝑌𝑌

    (2.3) 

Rearrangement of the log of technical inefficiency generates the following relationship: 

𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑓𝑓(𝑿𝑿) − ln (𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)        (2.4) 

Stochastic production frontier analysis differs from the estimation of an average 

production function because of the use of a two-part error term – a standard idiosyncratic 

error term, 𝑣𝑣, coupled with a one-sided error term, 𝑢𝑢, that measures inefficiency or 

deviations from the production frontier:  

𝑙𝑙𝑙𝑙𝑌𝑌 = 𝑙𝑙𝑙𝑙𝑓𝑓(𝑿𝑿) + 𝑣𝑣 − 𝑢𝑢        (2.5) 

Econometric estimation requires the assumption of a functional form for the frontier, a 

distributional assumption for 𝑣𝑣, and a distributional assumption for 𝑢𝑢. Functional forms 
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for the frontier are typically Cobb-Douglas or the more general translog functional form, 

and the standard normal distribution is generally assumed for 𝑣𝑣. Common assumptions 

for the distribution of 𝑢𝑢 include the exponential distribution, the half normal distribution, 

and a more general truncated normal distribution.  

Stochastic frontier models allow for the simultaneous estimation of the frontier 

and heterogeneity in the inefficiency as a function of explanatory variables, and are 

estimated with maximum likelihood methods. We employ Greene’s (2005) “true” fixed 

effects model with community-level fixed effects using the sfpanel command in Stata.4 

Working with community level fixed effects has the advantage of allowing the inclusion 

of household-level explanatory variables. A half-normal distribution is used for the 

inefficiency component of the error term, allowing for estimation of the variance of the 

inefficiency term simultaneously with the stochastic frontier.5 A Cobb-Douglas functional 

form is assumed for the production frontier with inputs and output measured in logs per 

unit of land. The idiosyncratic component of the error term is assumed to follow a normal 

distribution and standard errors are clustered at the community level. More formally, the 

model is given by equations (2.6) through (2.9). 

𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜷𝜷𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝝎𝝎𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜽𝜽𝑡𝑡 + 𝛿𝛿𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜸𝜸𝑐𝑐 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖  (2.6) 

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣,𝑐𝑐
2 )     (2.7) 

 
4 See Belotti et al. (2012) for a discussion of sfcross and sfpanel.  
5 We attempted to estimate a frontier with a more flexible truncated normal distribution for the inefficiency 
term, allowing us to estimate its mean and/or variance (Wang, 2002). These models failed to converge with 
the MxFLS data.  
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𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁+(0,𝜎𝜎𝑢𝑢,𝑖𝑖𝑖𝑖𝑖𝑖
2 )     (2.8) 

𝜎𝜎𝑢𝑢,𝑖𝑖𝑖𝑖𝑖𝑖
2 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜽𝜽𝑡𝑡 + 𝝋𝝋𝑽𝑽𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖         (2.9) 

where 𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖 are inputs per ha in logs, 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 is log farm size, 𝒁𝒁𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑽𝑽𝑖𝑖𝑖𝑖𝑖𝑖 are vectors of 

household level controls used in the frontier and inefficiency equations, respectively, 𝜽𝜽𝑡𝑡 

are time dummies, 𝜸𝜸𝑐𝑐 are community dummies, 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 is the standard normal idiosyncratic 

component of the error term, 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖 is the half normal inefficiency component of the error 

term, and 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 is a standard normal error term used in the inefficiency equation. For 

simplicity, we assume farm size (𝐴𝐴𝑖𝑖𝑐𝑐𝑡𝑡) enters linearly in the frontier model.6  

The current analysis of the farm size – productivity relationship in Mexico using 

the MxFLS takes a similar approach to that of Kagin et al. (2016). An important difference 

is that we assess how the relationship may have changed over time as it has done in the 

modernizing agricultural regions of Brazil. This extension is important for the case of 

Mexico in the wake of NAFTA and other significant reforms to Mexican agricultural policy. 

 

2.4  Data 

The Mexican Family Life Survey (MxFLS) is a longitudinal survey of Mexican 

households, representative of the Mexican population at the national, urban, and rural 

levels.7 The MxFLS is a rich source of data for this analysis, as controlling for unobservable 

farm and community level characteristics using fixed effects is potentially important for 

 
6 The results with farm size dummies are largely equivalent. 
7 MxFLS was designed, implemented, and is managed by the Iberoamerican University and the Center for 
Economic Research and Teaching in Mexico, in conjunction with Duke University researchers. 
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determining the farm size – productivity relationship. Further, the decade long span of 

the surveys allows for a careful analysis of how the size-productivity relationship has 

evolved in the wake of NAFTA and contemporaneous reforms affecting the Mexican 

agricultural sector. 

The three survey rounds – 2002, 2005-06, and 2009-128 – tracked a broad range 

of individual, family, and community characteristics for the 8,437 initial households. The 

second (2005) and third (2009) waves of the survey successfully re-interviewed 90% and 

94% of first wave households, respectively. Individuals from the first wave formed new 

households at annual rates of 3.6% and 4.7% between the first and second and the second 

and third waves, with 83% of newly formed households being re-interviewed in the third 

survey wave.  

While not representative of the Mexican agricultural sector per se, the MxFLS is 

representative of both rural and non-rural Mexican households. As such, the use of the 

dataset to study Mexican agriculture has the important caveat that it underrepresents 

the larger, commercial agricultural operations to the degree that they are not family 

farms.9 A comparison with the 2007 Agricultural Census reveals that both the census and 

MxFLS have less than 5% of farms that are greater than 50 ha. However, it is important to 

note that these “large” farms are not necessarily the same as those in the census because 

they are family-run farms and do not include corporate-run, commercial agricultural 

 
8 The vast majority of third wave interviews, 95%, were conducted in 2009 and 2010. 
9 This is similarly true of the Mexico National Rural Household Survey (ENHRUM) used by Kagin et al. 
(2016), which is representative of rural communities in Mexico with between 500 and 2,500 inhabitants. 
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operations. In comparison to the 2007 census, the MxFLS over-represents farms less than 

2 ha and under-represents farms between 20 ha and 50 ha. This is true for each survey 

wave, highlighting that while the MxFLS is not representative of the Mexican agricultural 

sector in its entirety, it is appropriate for studying household farms in Mexico. 

We employ a farm (i.e. household) level analysis using all MxFLS households 

engaged in agricultural production. A plot-level analysis is not feasible because 

agricultural input data is recorded at the household level and is therefore not plot specific. 

However, as we are primarily concerned with documenting the farm size – productivity 

relationship in Mexico and how it has changed over time, and we are less concerned with 

fully explaining its determinants, a farm level analysis will suffice. Households in the 

MxFLS move in and out of agricultural production between survey waves. An unbalanced 

panel is constructed through two stages of restricting the MxFLS data: first, cross-sections 

of households with complete farm data are identified and cleaned to eliminate outliers, 

and second, the unbalanced panel is formed out of all households that appear in two or 

more MxFLS survey waves.10 

Table 2.1 shows all households using plots for agricultural production in a given 

survey wave are referred to as agricultural households, whereas all households with plot 

size and output data for all non-fallow plots are referred to as complete farms. The 

intermediate group, farms with farm size data, includes all farms with complete farm size 

 
10 Some households have incomplete data on plot size or output. After removing such households, we 
eliminate outliers by trimming the extremes of the farm size and land productivity distributions.  
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data but not necessarily complete production data – this less restricted dataset increases 

the sample size at the expense of potentially introducing some measurement error, and 

is an alternative treatment of the data that is pursued below. Lastly, the number of farms 

in the panel includes the number of households with complete farm data in two or more 

of the survey years. These restrictions on the data leave us with a sample of 566 farms 

reappearing in two or more survey years. Table 2.2 describes these farms according to 

the combination of survey years in which they appear.  

2.4.1 Input and Output Variables 

Farms are classified into one of 7 farm size groups, as shown below in Table 2.3. 

The distribution of farms across these bins is roughly constant over time and across 

treatments of the data, although the share of farms between 0 and 0.5 ha is falling over 

time while the share of farms between 0.5 and 1 ha is increasing. Importantly, with the 

exception of the share of farms between 0.5 and 1 ha in 2002, the distribution does not 

change in any notable way as we restrict the cross section to form the panel, an indication 

that use of the panel has not introduced bias along this dimension. There is a considerable 

range in farm sizes in the sample, ranging from less than one hundredth of a hectare to 

45,000 hectares. The median farm size in the panel is 2.5, 2.1, and 3.0 hectares in 2002, 

2005, and 2009, respectively, with mean farm sizes of 101, 232, and 218 hectares. Around 

75 percent of farms utilize only one plot for production in any given year.  

The preferred measure of agricultural output is a Fisher quantity index that 

includes all crop and livestock production for each farm in the MxFLS panel. Crop prices 
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from the Food and Agriculture Organization of the United Nations are used to aggregate 

crop output. Together with a measure of the value of livestock production, an output 

index is constructed as detailed in Appendix B.1.  

The MxFLS offers data on five agricultural inputs other than land: physical capital, 

draft animals, purchased intermediate inputs, family labor, and non-family labor. Physical 

capital is measured as the value of tractors and other machines and equipment owned 

and draft animals is the value of horses, donkeys, and mules owned by each household in 

each survey year, deflated to 2002 values. Purchased intermediate inputs are measured 

using reported expenditures on each of nine agricultural inputs over the course of the 

previous year, again deflated to 2002 values. An index of family labor is constructed using 

household members’ time use and employment data in the MxFLS, and is an estimate of 

annual hours worked on the farm by all household members. In contrast, the non-family 

labor index is a measure of the number of non-household individuals that worked on each 

farm in each year, measured in workers and not labor hours. Appendix B.2 provides a 

detailed discussion of the source and construction of the family labor and non-family 

labor indices, including a set of alternative family labor indices.  

Table 2.4 shows the share of panel households using the different input categories 

in each year, with purchased intermediate inputs shown both collectively and further 

disaggregated into their nine components.11 For all of the inputs there exist at least some, 

 
11 A comparison of input usage and patterns over time between the cross section and the panel shows 
broad consistency across the treatments of the data, again showing that use of the panel does not appear 
to bias the sample along this dimension. 
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if not a majority, of households that have zeros for that input category. This is expected, 

as farms in the sample are expected to span a range from low technology subsistence 

agriculture to more modern and input intensive operations. Furthermore, many inputs 

may be substitutes for each other, and farms can access these inputs by owning them or 

by purchasing them in factor markets. Tractor services, for example, may be substituted 

for with draft animals. Households can either own some combination of these capital 

stocks or purchase their services from the market. We follow Battese (1997) to estimate 

production functions with observations having zero inputs.12  

Of principle importance is any relationship between inputs per hectare and farm 

size, as systematic relationships between input intensity and farm size potentially drive a 

wedge between the farm size – land productivity and farm size – total factor productivity 

relationships (see chapter 1). We calculate the correlation coefficients between logged 

input per hectare and logged farm size for those farms with non-zero values of usage of 

each input. These correlations are shown in Table 2.5. Conditional on using the input, the 

intensity (per hectare) of all inputs used declines with farm size, emphasizing the 

importance of moving from partial measures of productivity to a comprehensive measure 

such as TFP. 

 

 
12 For each input, 𝑘𝑘, for each farm in each survey year, we generate a dummy variable, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖, equaling 1 if 
there is zero input for that farm in that survey year and zero otherwise. We then define a new measure of 
the input, 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∗ , equaling 0 if 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖 = 1 and the log of that input per ha (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖) otherwise.  The inclusion of the 
dummy variables and newly constructed inputs allows for unbiased estimation of the production 
function’s parameters in the presence of zeros while using the full sample. 
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2.4.2 Additional Household Controls 

The vast majority of plots are either privately owned property or are part of an 

ejido – a piece of communally held land where plots are farmed by designated 

households.13 It is commonly accepted that ejidos are less productive than privately held 

farms, although there is little empirical evidence comparing the TFP of these farms using 

micro data. At least 91% of privately held plots in the MxFLS have some form of formal 

documentation in any given year, while just 75-84% of MxFLS ejido properties do. 

Privately held plots primarily have a formal deed or title to the land as documentation, 

whereas ejido plots primarily have a certificate of ejido status or agricultural rights.  

Formal documentation of property rights is important for accessing credit and is expected 

to be positively correlated with TFP. How property rights are formally documented 

matters, however, as a certificate of ejido status is often not acceptable to private 

financial institutions for use as collateral whereas formal deeds are. We control for both 

separately in the core empirical analysis. Because ejidos may function differently than 

privately owned parcels, we control for ejido status. Ejido farms make up 58% of the 

panel, and the ejido status of farms does not change for almost all farms in the panel.   

Panel farms are located in 92 distinct communities and are grouped into five 

regions in Mexico: the North, Center, Pacific, South, and Gulf. In the first survey wave, 

26% of panel farms are in Northern states where agriculture is characterized by having 

larger commercial farms with greater importance of the commercial production of maize. 

 
13 Other ownership categories include rented land, borrowed land, sharecropped land, and other. 
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In comparison, 50% of first wave farms are in Southern and Central states where 

agriculture is characterized by more traditional, smallholder maize producers and the 

commercial production of fruits and edible vegetables (Prina, 2013). The distribution of 

farms in the panel is stable across both states and regions. In tests of heterogeneity, we 

introduce regional interactions with farm size in estimations of equation (2.2), allowing 

the farm size – TFP relationship to vary across agricultural regions. 

Additional household level controls are grouped into two broad categories: 

variables describing agricultural practices that are mostly endogenous, and demographic 

variables that are largely exogenous. Household demographic variables are based on pre-

determined characteristics of the household head. The panel farms predominantly have 

male, married, and Spanish speaking heads of household, with little differences across 

farm sizes or ejido status. Table B.3.5 in Appendix B.3 shows that farms larger than about 

5 ha appear to be less likely to have an indigenous household head and more likely to 

have a literate household head than do smaller farms. Literacy is just one way to measure 

educational attainment of the household head, and it captures a rather low bar. We 

measure the education of household head by creating indicator variables for the highest 

level of formal schooling attended, from no formal education to elementary school, 

secondary school, high school, or college education. With little variation across survey 

years, Table B.3.6 in Appendix B.3 shows educational attainment by farm size for 2002 

only, showing that a majority of farms have household heads with no more than an 
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elementary school education, while almost one quarter of the panel’s household heads 

have no formal education at all. 

The following variables describing agricultural practices of farms are potentially 

endogenous, and for this reason are not included in the base specifications. They are 

introduced to shed light on potential channels affecting TFP and the farm size – TFP 

relationship. Any farm that does not bring any of its crop to market is classified as a 

subsistence farm, identifying farms that may behave differently than those who do. There 

is little difference in the prevalence of subsistence farming between ejido and non-ejido 

farms. As shown in Table B.3.1 in Appendix B.3, subsistence farming decreases with farm 

size, as expected. We calculate the share of each farm’s crop that is marketed – on 

average, those farms in the sample that do participate in the market sell around 75% of 

their production. This appears relatively constant across farm size bins.  

Alongside subsistence farming practices, Table B.3.1 in Appendix B.3 shows the 

share of farms engaged in monocropping. The farms in the sample that monocrop do so 

on the vast majority of their farm, not just on specific plots. In each survey year over half 

of the plots being monocropped are growing maize, with approximately 10% each 

growing beans and coffee. As shown in Table B.3.1 of Appendix B.3, there is no discernible 

difference in monocropping across farm sizes, although ejido farms are marginally more 

likely to employ monocropping than non-ejido farms. The MxFLS asks households about 

crop and livestock loss in recent years. To account for potentially persistent negative 
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productivity shocks we generate a dummy variables for whether the household suffered 

crop or livestock loss in either of the previous two years.  

The MxFLS asks households about their participation in a variety of government 

programs. The two most important programs are Progresa/Oportunidades and 

Procampo. Procampo is an income transfer program designed to support agricultural 

producers of staple crops. Progresa, later renamed Oportunidades, is a conditional cash 

transfer program designed to combat poverty and incentivize investments in children. 

Data limitations do not allow us complete information on participation in Progresa14 so 

we focus exclusively on participation in Procampo. Table B.3.1 in Appendix B.3 shows the 

share of farms participating in Procampo by year and farm size. With the exception of the 

largest farms, participation increases with farm size. In addition, we consider participation 

in Alianza, a government-run program designed to aid farmers’ transition into crops for 

export. While less than 3% of the sample participated in this program in any survey round, 

we consider participation in this program for its potentially important impact on farmers. 

Having access to credit is an important determinant of agricultural productivity, 

and the existence of credit constraints and differential access to credit is one theoretical 

source of a relationship between farm size and productivity. Table B.3.3 in Appendix B.3 

shows “access to credit” by farm size, where a household is considered to have access if 

the household head knows where they can go to borrow or ask for a loan. This is a crude 

measure as it does not account for credit rationing and the likelihood that a household 

 
14 In the MxFLS, data is available for participation in 2005 only. 
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could succeed in obtaining a loan. A follow up question regarding the source of that credit 

allows us to identify if access is through a formal or an informal financial institution.15 

There are no clear relationships between farm size and this measure of access to credit. 

We introduce an indicator variable to control for access to formal lines of credit. 

 

2.5  Empirical Results 

As with much of the literature, we begin the discussion of the farm size – 

productivity relationship using land productivity, measured as output per hectare. Figure 

2.1 shows the non-parametric relationship between the log of farm size and the log of 

output per hectare in 2002, where output is measured using the Fisher quantity index.16 

There is a clear inverse relationship between farm size and land productivity over the 

entire range of farm sizes, and while not shown here this relationship is strikingly 

consistent across the three survey waves. Land productivity falls rapidly up to 

approximately 1 ha, at which point the relationship levels before resuming a dramatic 

decline in land productivity after approximately 20 ha.  

2.5.1 Production Function Analysis 

As shown in chapter 1, an inverse relationship between farm size and land 

productivity is neither necessary nor sufficient for the existence of an inverse relationship 

between farm size and total factor productivity. For reference, the linear relationship 

 
15 Formal sources of credit include banks, cooperative savings funds, and government credit programs. 
16 Estimated using the default local polynomial regression in Stata. 
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between land productivity and farm size is estimated. Farm size is inversely related to 

land productivity at the 1% level of significance, as shown in column 1 of Table 2.6, where 

we estimate the elasticity of land productivity with respect to farm size to be -0.82. We 

then estimate the average production function identified by equation (2.1) assuming four 

alternate specifications of the farm size – productivity relationship that vary in their 

flexibility. These regressions measure output using the quantity index, weight 

observations by the expansion factors provided by MxFLS, use the preferred measure of 

the family labor index, employ community fixed effects, and cluster standard errors at the 

community level. Coefficients for the farm size variables, the primary variables of interest, 

are displayed in Table 2.6. Table 2.7 displays the coefficients for additional household 

controls, and technology coefficients are included as Table B.4.1 of Appendix B.4. 

The results indicate an inverse relationship between farm size and TFP, as shown 

by the negative and statistically significant coefficient on the linear Farm Size variable in 

model 2. In the sample, a 1% increase in farms size is associated with a 0.81% decrease in 

output per hectare, ceteris paribus. The farm size coefficient is slightly less negative than 

in model 1, but not statistically different, indicating that the relationships between farm 

size and land productivity and farm size and TFP are almost identical in this sample.  

Models 3 and 4 allow for a quadratic and cubic relationship between farm size and 

TFP, but the coefficients on the higher ordered terms are either not statistically significant 

or do not have a noticeable impact on the linear model. Model 5 captures some non-

linearity in the farm size – TFP relationship by using dummy variables for 7 farm size bins. 
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The smallest of farms, those less than one half of a hectare, are significantly more 

productive than all other farms, while the largest, those greater than 20 hectares, are 

significantly less productive than all smaller farms. Productivity between these two 

extremes, however, appears relatively stable. This closely mirrors the non-parametric 

relationships between farm size and land productivity shown in Figure 2.1, highlighting 

the need to assume a flexible functional form to fully understand the farm size – 

productivity relationship. The linear relationships identified in the parametric 

specifications 2 through 4 do not capture these subtleties.  

We see little change in the inverse relationship over time across all models, as 

none of the farm size and survey year interaction terms are statistically significant. The 

finding of a time invariant inverse relationship between farm size and productivity – when 

using both land productivity and TFP – suggests that the IR is alive and well in Mexico. 

There is, however, evidence for a decline in average productivity over time in this sample, 

as the 2009 dummy variable is negative and statistically significant.  

 Results for the household explanatory variables, displayed in Table 2.7, show that 

monocropping and operating as a subsistence farm have a consistently negatively 

relationship with TFP. In contrast, participating in Procampo is positively associated with 

productivity (as is participation in Alianza, although the relationship is not statistically 

significant). It is important to reiterate that these are potentially endogenous explanatory 

variables, and we should not interpret the coefficients as identifying causal relationships. 
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Having more education is positively related to TFP, but with the exception of a college 

education these results are not consistently statistically significant at standard levels.  

Estimates of equation (2.2) explore heterogeneity in the farm size – productivity 

relationship across different groups of Mexican family farms by interacting indicator 

variables for those groups with farm size. For simplicity, we assume the farm size – TFP 

relationship to be linear and time invariant.17 Table 2.8 displays the results from 

interacting farm size with being located in the more commercially oriented agricultural 

region of Northern Mexico, participation in Procampo, practicing monocropping, 

operating as a subsistence farm, and whether or not the household head has any 

education beyond secondary school. Overall, the farm size – TFP relationship remains 

stable, as none of these additional interactions contribute to explaining the farm size – 

TFP relationship that we have identified. 18 

In addition, we interact controls for farms having ejido status, various forms of 

property rights, and access to credit in Table 2.9. These are of special interest given the 

reforms of the ejido system and rural credit markets. Again, the IR is unaltered across 

these subgroups as these interactions are not statistically significant. The relationship 

between farm size and TFP is the same for ejido farms as for non-ejido farms, is the same 

regardless of how property rights are documented, and is the same whether or not farms 

have access to formal credit markets.  

 
17 Relaxing the assumption of a linear relationship does not qualitatively alter the results presented here. 
18 In addition, we estimate separate regional models using household fixed effects, resulting in the same 
conclusion of a homogenous farm size – TFP relationship across regions. 
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2.5.2 Robustness Tests 

The farm-size – TFP relationship is subjected to a series of robustness tests. We 

assume the farm size – TFP relationship is best captured by the linear and dummy variable 

models used above, as the quadratic and cubic models provide little additional 

information. Table 2.10 contains the results from the linear models and Table 2.11 from 

the dummy variable specification. 

First, model 1 introduces household-level fixed effects to control for time-

invariant, unobserved, household heterogeneity. The model omits time-invariant 

household controls, clusters standard errors at the household level, and provides a 

superior approach to addressing potential omitted variable bias relative to the model with 

community level fixed effects. Second, model 2 tests the sensitivity of the relationship to 

decisions regarding the construction of the family labor index by using an alternative 

index of family labor described in Appendix B.2. Third, we test the impact of choice  of 

weighting of the observations. Whereas the core results apply the MxFLS weights 

designed to make the sample statistically representative of Mexican households in each 

survey year, model 3 shows results when we apply no weighting at all. We explore 

sensitivity to the use of weights because (a) we are interested in Mexican agriculture, not 

rural Mexican households, and (b) the treatment of the data reduces the sample size; 

therefore, it is not clear that these weights remain appropriate. Fourth, model 4 uses an 

alternative measure of the dependent variable – farm output. Whereas the core results 

uses the preferred approach of calculating a quantity index for each household (see 
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Appendix B.1 for more detail), model 4 deflates the nominal value of production in each 

year for each household and uses the real value of output (in 2002 Mexican pesos). Lastly, 

model 5 uses the real value of output as in model 4, but estimates the relationship over 

the repeated cross-sections. This final robustness check speaks to the potential for 

households to be selecting into or out of the unbalanced panel. 

Overall, these alternative treatments of the data generate qualitatively similar 

results to the core regressions in Table 2.6 for our primary variables of interest. This is 

true in terms of the coefficient signs and orders of magnitude. The exception is model 2 

using the alternative index of family labor, for which the farm size coefficients are 

diminished in magnitude although negative and still statistically significant. The 

consistency across models is reassuring that treatment of the data is not driving the core 

results regarding the farm size – TFP relationship. In similar fashion, estimated 

coefficients on household explanatory variables are quite robust. The coefficients 

identifying farms engaged in monocropping and operating as subsistence farms remain 

negative and statistically significant in almost all of the robustness exercises, while the 

coefficients for participation in Procampo and college education remain positive and 

statistically significant. In results not shown here, we estimate the core models using crop 

production only in measuring output and the conclusions regarding the farm size – 

productivity relationship are robust to this dimension as well. 
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2.5.3 Frontier Analysis 

Estimating a stochastic frontier complements analysis of the average production 

function by identifying productivity at the frontier and production inefficiencies. 

Together, these components determine average TFP identified with the average 

production function. In similar fashion, whereas the estimation of the average production 

function allows us to assess the relationship between farm size and average productivity, 

stochastic frontier analysis allows us to assess any relationships between farm size and 

productivity at the technical frontier and between farm size and technical inefficiency.  

The results of five specifications of the stochastic production frontier are shown 

in Table 2.12, with the top and bottom panels displaying the results from the frontier and 

variance of inefficiency equations, respectively. Model 1, the baseline model, has no 

additional household controls in either the frontier (Z) or the inefficiency equations (W). 

Model 2 includes dummy variables for the household head’s level of education in the 

frontier equation and includes a dummy variable for the household head being of 

indigenous ethnicity in the inefficiency equation. Model 3 alternatively assumes that 

education of the household head should be included as a control in the inefficiency 

equation but not the frontier equation. Model 4 assumes that education belongs in both 

equations. Model 5 includes education in the frontier equation only, adding interaction 

terms between farm size and the survey year dummies in both the frontier and the 

inefficiency equations. The models all use community fixed effects and, for simplicity, 

have farm size entering linearly. 
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The estimated coefficients from models 1 – 5 are largely consistent. They indicate 

a strong inverse relationship between farm size and frontier TFP and that the frontier is 

increasing over time, reflecting positive technical change. The coefficients on inputs are 

positive and stable across specifications, with family labor and purchased intermediate 

inputs being significant. The variance of the inefficiency term 𝜎𝜎𝑢𝑢2 is roughly double the size 

of the variance of the noise 𝜎𝜎𝑣𝑣2 in all models, and lambda – the ratio of the two variances 

– indicates that estimation of a stochastic frontier is appropriate with the MxFLS data.19 

The models indicate an inverse relationship between farm size and productivity at 

the technological frontier of the same order of magnitude as the farm size-TFP 

relationship estimated in the preceding analysis of the average production function. The 

coefficients on survey year dummies in Table 2.12 are all positive and significant, 

indicating that the frontier is increasing over time. Thus, in contrast to the results from 

the average production function analysis where evidence of declining average TFP over 

time was found, here we find evidence of positive technical change at the frontier. The 

interaction between farm size and the survey year dummies in model 5 identifies a 

positive and significant relationship between farm size and technical change, suggesting 

that technical change has been biased towards larger farms and that the inverse 

relationship along the frontier became less steep over time. 

 
19 In models estimated with a constant variance of the inefficiency distribution (𝜎𝜎𝑢𝑢2), and thus no 
explanatory variables, Stata provides a p-value for the test of lambda equal to zero.  This hypothesis is 
rejected at greater than the 1% level of significance, providing evidence in support of the stochastic 
frontier model.  
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Models 1 through 4 show that, while the variance of the inefficiency distribution 

increased over time, there is no relationship between farm size and inefficiency. The 

inclusion of interactions between farm size and survey year dummy variables in model 5, 

however, reveals a more nuanced dynamic relationship between farm size and technical 

inefficiency. Larger farms were indeed more efficient than smaller farms in 2002 (i.e. they 

operated closer to the frontier) but inefficiency is increasing faster for larger farms. These 

differential changes in inefficiency across the farm size distribution have caused the farm 

size - inefficiency relationship to disappear in the latter waves of the MxFLS.20 Model 5 

reveals that rising technical inefficiency has accompanied technological change, 

suggesting that the majority of farms have been unable to keep up with the TFP growth 

of the most productive farms. This is particularly true for larger farms, who have 

experienced faster growth in both frontier productivity and technical inefficiency.  

Having secondary or college education reduces the variance of the one-sided 

inefficiency term when education is included in the inefficiency equation. When 

education of the household head is included in the frontier specifications but not in the 

explanation of inefficiency (models 2 and 5), having secondary education or a college 

education is positively associated with higher levels of productivity among frontier 

producers. When education is included in both the frontier and inefficiency equations 

(model 4), almost none of the education dummies are significant as the model appears to 

 
20 This can be seen by adding the farm size coefficient (-0.32) in model 5 with the year*size interaction 
from 2005 (0.37) or 2009 (0.42).  In either case, the sum of the two coefficients is not statistically 
significantly different from zero. 



75 

struggle to identify the separate relationships with education. In models not shown here, 

we estimate a stochastic frontier including the household controls from Table 2.8 as 

explanatory variables of the inefficiency term. In addition to educational attainment of 

the household head, technical inefficiency is lower among Procampo participants and 

higher among farms practicing monocropping. When interacted with farm size, none of 

the interaction terms are statistically significant, suggesting that they do not 

fundamentally change the relationships observed in Table 2.12.  

2.5.4 Discussion 

The analysis of Mexican data reveals an inverse and time-invariant relationship 

between farm size and TFP. Underlying this IR is a negative relationship between farm 

size and frontier productivity that has diminished over time and a positive relationship 

between farm size and technical efficiency that disappeared over the sample period. This 

evidence suggests that, in the wake of NAFTA era reforms, the IR is weakening for the 

most productive farms along the production frontier but that this change is not 

widespread. Although frontier productivity is increasing most rapidly for larger farms, the 

higher growth of inefficiency for large farms leaves the farm size – TFP relationship 

unchanged over the period. The evolving relationships between farm size and frontier 

productivity and technical efficiency cast doubt on the ability to exploit the existing 

inverse relationship between farm size and TFP to generate productivity gains. 

 These results are complemented by previous work on the farm size – productivity 

relationship in Brazil. Whereas the Brazilian experience suggests a dynamic farm size – 
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TFP relationship, with an inverse relationship in traditional agriculture becoming flat and 

potentially positive with modernization, we observe no such dynamics in the Mexican 

sample. The relationship observed in the MxFLS is time invariant and persistently 

negative, contrasting with the emerging U-shaped relationship observed in the 

modernizing regions of Brazil. It is quite similar, however, to the more traditional 

agricultural regions in Brazil that display a persistent inverse relationship between farm 

size and TFP. The lack of corporate-run commercial farms is one limitation of using the 

MxFLS data, inhibiting analysis of the farm size-productivity relationship across all sectors 

of Mexican agriculture. This is especially true in light of findings that, in Brazil, larger 

commercial farms (along with the smallest of family farms) exhibit distinct advantages in 

achieving productivity growth (Rada et al., 2019). 

The frontier analysis using MxFLS data finds that technical change has been biased 

towards larger farms, weakening the farm size – productivity relationship at the frontier. 

This indicates that if inefficiency had not increased, the average inverse relationship 

between farm size and productivity would have weakened with modernization of the 

agricultural sector. This analysis indicates the potential for larger farms to be the key 

drivers of future productivity growth in Mexico. Policies geared towards smaller family 

farms may not have large returns in terms of increasing overall agricultural productivity, 

but they are likely very important for poverty reduction. Even if small farms generate an 

increasingly smaller share of agricultural output, they are likely here to stay because of 
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their roles in generating livelihoods for rural households. Increasing their productivity 

remains an important component of facilitating poverty reduction in rural areas.  

These findings are largely consistent with earlier empirical work by Kagin et al. 

(2016), who estimate both an average production function and a stochastic production 

frontier using a different panel of Mexican family farms. They find that both technical 

change and technical inefficiency increased over time and, as with the current analysis, 

their fixed effects estimates show inverse relationships between farm size and both TFP 

and frontier productivity. Similarly, they find that smaller farms are more efficient than 

larger farms. In addition to highlighting the non-linearity in the farm size – TFP 

relationship, we provide evidence of a more nuanced and dynamic relationship between 

farm size and technical inefficiency and between farm size and productivity at the 

frontier. Larger farms have both more rapidly growing frontier productivity and technical 

inefficiency than their smaller counterparts, and these considerations are important for 

effective policy. 

We find evidence of declining average TFP over the period of analysis for the 

MxFLS sample of family farms. This appears to be driven by increasing average technical 

inefficiency offsetting the positive technical change and expansion of the productivity 

frontier. The largest farms in the sample and their relatively rapidly growing technical 

inefficiency are an important factor here,  indicating a growing advantage for some large 

farms in harnessing more modern agricultural practices that has not been widespread 

enough to translate into sector-wide average TFP growth. Policies enabling broader 
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inclusion in the benefits from technical change would both increase average TFP and likely 

further diminish the IR. Whereas policies promoting technical change are more relevant 

for smaller farms, policies improving technical efficiency, such as extension services, are 

exceptionally important for larger farms. The growing technical inefficiency observed in 

Mexico indicates the potential for policies designed to promote and support the adoption 

and efficient use of best practices to achieve gains in agricultural productivity.  

 The finding of declining average TFP over time is a curious result, running counter 

to both the body of long-run country-level analyses and the micro-level analysis of Kagin 

et al. (2016) over similar time periods. One important caveat is the MxFLS sample does 

not include corporate run commercial farms as do national-level studies such as an 

agricultural census. To the extent that such farms have more effectively harnessed the 

gains from technological change, as with larger family farms on the frontier, the 

potentially heightened productivity of such large farms is not included in the current 

evaluation of the farm size – TFP relationship in Mexican agriculture or growth in average 

TFP over time. This has important policy implications for the development impacts of 

agriculture productivity gains – if these gains are experienced primarily by corporate-run 

commercial farms and not by family-run farms, the potential impacts on poverty and 

broader rural economic development will not be fully realized. Productivity gains for 

smaller family farms not only reduce poverty directly but are also likely to contribute 

more to local development because of how they interact with the local economy. To be 
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most effective, policy directed at spurring development and poverty reduction through 

agricultural productivity gains should be inclusive of smaller family farms. 

The lack of commercial farms does not, however, reconcile this finding with that 

of Kagin et al. (2016), who find rising average TFP over a similar period in a different 

sample of rural households. One difference is the MxFLS includes more larger family 

farms, and these farms are experiencing the most rapid increase in technical inefficiency. 

The inclusion of more large family farms may be the source of this result. One possible 

explanation of the finding of declining average TFP over the first decade of the 21st 

century is that the productivity of Mexican family farms has declined in the wake of the 

NAFTA era reforms. This interpretation is consistent with claims that NAFTA era reforms 

were insufficient for generating positive change in Mexico’s agricultural sector, and that 

these reforms may have been detrimental to some segments of Mexican agriculture.  

Participation in Procampo and increased education are found to be positively 

correlated with the agricultural productivity of Mexican family farms, whereas the 

practices of monocropping and operating as a subsistence farm are found to be negatively 

correlated with TFP. We are tentative in drawing stronger conclusions about the causal 

impact of these variables, as they are likely endogenous. However, the frontier analysis 

suggests how these controls relate to productivity. Education appears to increase the 

efficiency with which inputs are used on family farms, and monocropping is found to be 

an inefficient use of inputs. In this light, farmer education – particularly in methods such 

as intercropping – is expected to increase technical efficiency on family farms. Procampo 
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is primarily an income support program it is unclear how participation would affect 

agricultural productivity. On the one hand, participation may relax income constraints 

and allow for adopting more productive methods because payments are distributed prior 

to planting season. This would suggest an emphasis on improving access to credit to 

improve the efficiency of Mexico’s family farms. On the other hand, the historical 

production requirements of Procampo participation may mean that participants are 

simply more experienced producers.  

A significant share of farms do not have formal documentation of property rights. 

Policies to ensure that farms have the necessary documentation could potentially help 

provide farms with the opportunity to keep abreast of technical change, as documented 

property rights are an important condition for accessing credit and thus facilitating 

adoption. This is especially true for ejido farms transitioning into participation with 

private credit and land markets. Nevertheless, we find no correlation here between 

agricultural TFP and property right documentation, access to credit, or ejido status, as we 

would have expected.   

   

2.6  Conclusions 

Working with a sample of family farms from the Mexican Family Life Survey 

(MxFLS), we document a persistent inverse relationship between farm size and land 

productivity over the period 2002 to 2009. Similarly, when estimating an average 

production function we find a time-invariant inverse relationship between farm size and 
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TFP, driven by the relatively high productivity of the smallest farms relative to those in 

the middle, and relatively low productivity of the largest farms. This is complemented by 

a stochastic frontier analysis, allowing for estimation of the relationship between farm 

size and frontier productivity and between farm size and technical inefficiency. Analysis 

of the production frontier reveals a dynamic inverse relationship between farm size and 

frontier productivity, where technical change has increased the frontier for larger farms 

at a faster rate than for smaller farms, weakening the inverse relationship along the 

frontier of productivity. Despite these changes at the frontier, the farm size – average TFP 

relationship has remained constant due to technical inefficiencies growing faster for 

larger rather than smaller farms. In essence, many of the larger farms were not able to 

keep up with technical change at the frontier, suggesting that successfully reducing 

technical inefficiency for this group could mediate, if not reverse, the farm size - 

productivity relationship. 

To the extent that the inverse relationship between farm size and TFP has 

flattened along the frontier for Mexican family farms, it suggests that size may fade as 

one of the key determinants of productivity differences as agricultural sectors modernize. 

Policies that help family farms keep abreast of improvements in agricultural technology, 

such as farmer education, will be needed to reduce growing technical inefficiency. These 

findings support the claim that family farms have struggled in the wake of NAFTA era 

market liberalization, and we echo the calls of Pérez et al. (2008) that investment in rural 
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infrastructure and assistance for smallholder transition into niche markets would support 

productivity growth for family farms.  

Robust agricultural TFP growth is also important for poverty reduction. By growing 

the food supply more rapidly than demand, falling prices benefit poor consumers 

wherever they may live.  And for the small farms that continue to exist, either because 

they are competitive or because they have few other opportunities, TFP growth helps to 

boost income.  Where farms are too small, as in many parts of Mexico, increased 

productivity may still be insufficient to lift households out of poverty.  Households in 

regions with access to non-agricultural employment may persist, and some will escape 

poverty, but migration is likely to continue. An important extension of this work would 

assess the potential impact of productivity growth on rural economic development and 

poverty alleviation.  

An important limitation of analysis conducted here is the absence of non-family 

commercial farms in the Mexican sample. Future research should extend this analysis to 

a nationally representative sample of farms, such as the 2007 Mexican Agricultural 

Census, which would include family and non-family agricultural operations. Extending the 

analysis to the entire range of farm sizes and farm types would allow for a more complete 

analysis of the farm size – productivity relationship. Together with a theoretical analysis 

of a dynamic farm size – TFP relationship, such extensions would inform policy efforts to 

increase agricultural productivity. 
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Chapter 2 Tables and Figures 
 
 
Table 2.1: Agricultural Households and Complete Farms by Survey Year 

 2002 2005 2009 
N Households 8,440 8,437 10,119 
N Agricultural Households 1,586 1,303 1,410 
N with Farm Size Data        1,042 713 696 
N Complete Farms 887 626 596 
N Farms in Panel 483 412 359 

*Note that N Complete Farms and N Farms in Panel are after respective rounds of cleaning for 
outliers. 
 
 
 
Table 2.2: Panel Sample Size for Complete Farms 

 N 
All Survey Years 122 
First and Second Surveys Only 207 
First and Third Surveys Only 154 
Second and Third Surveys Only 83 
Total 566 

 
 
 
Table 2.3: Sample Size by Farm Size Group for Complete Farms  

 Cross Sections  Panel 
Farm Size Group 2002 2005 2009  2002 2005 2009 
0 to 0.5 ha 199 (22%) 116 (19%) 110 (18%)  103 (21%) 66 (16%) 55 (15%) 
0.5 to 1 ha 108 (12%) 102 (16%) 101 (17%)  45 (9%) 60 (15%) 57 (16%) 
1 to 2 ha 141 (16%) 109 (17%) 96 (16%)  83 (17%) 75 (18%) 58 (16%) 
2 to 5 ha 182 (21%) 133 (21%) 122 (20%)  108 (22%) 88 (21%) 75 (21%) 
5 to 10 ha 143 (16%) 93 (15%) 91 (15%)  79 (16%) 76 (18%) 65 (18%) 
10 to 20 ha 65 (7%) 34 (5%) 40 (7%)  39 (8%) 23 (6%) 27 (8%) 
> 20 ha 49 (6%) 39 (6%) 36 (6%)  26 (5%) 24 (6%) 22 (6%) 
Total 887 626 596  483 412 359 
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Table 2.4: Percent of Households Using Selected Intermediate Inputs  

Input Category 
 Panel 
 2002 2005 2009 

Family Labor  94% 94% 91% 
Non-family Labor  52% 49% 39% 
Physical Capital  13% 12% 14% 
Draft Animals  35% 30% 27% 
Purchased Intermediate Inputs  70% 70% 71% 
     Fertilizer  51% 48% 46% 
     Manure  17% 17% 18% 
     Pesticides  33% 26% 27% 
     Seeds  24% 23% 25% 
     Tractor Services  32% 25% 36% 
     Animal Power  3% 10% 11% 
     Labor  5% 25% 27% 
     Water  3% 16% 20% 
     Fuel  2% 10% 15% 

 
 
 
Table 2.5: Correlation Coefficients between Logged Farm Size and Logged Inputs per ha 

Input Category 
Farms with Non-zero Values 

2002 2005 2009 
Family Labor -0.93* -0.90* -0.89* 
Non-family Labor -0.90* -0.91* -0.89* 
Physical Capital -0.34* -0.20 -0.28* 
Draft Animals -0.84* -0.84* -0.62* 
Purchased Intermediates -0.69* -0.65* -0.68* 

Note: * indicates statistical significance at the 10% level 
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Figure 2.1: Non-parametric Relationship between Farm Size and Productivity, 2002 
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Table 2.6: Farm Size Coefficients, Community Fixed Effects with Household Controls 
 (1) (2) (3) (4) (5) 
 Linear w/o 

Inputs 
Linear Quadratic Cubic Dummies 

Farm Size -0.822*** -0.814*** -0.795*** -0.773***  
 (0.039) (0.068) (0.060) (0.073)  
0.5 to 1 ha     -1.583*** 
     (0.265) 
1 to 2 ha     -2.185*** 
     (0.226) 
2 to 5 ha     -2.150*** 
     (0.269) 
5 to 10 ha     -2.542*** 
     (0.402) 
10 to 20 ha     -2.387*** 
     (0.539) 
20+ ha     -5.264*** 
     (0.950) 
      
2005 Dummy -0.298* -0.208 -0.264 -0.289 -0.192 
 (0.168) (0.158) (0.190) (0.220) (0.209) 
2009 Dummy -0.677*** -0.551*** -0.639*** -0.672*** 0.199 
 (0.130) (0.121) (0.155) (0.190) (0.517) 
2005*Farm Size 0.018 0.031 0.014 0.049  
 (0.043) (0.050) (0.046) (0.084)  
2009*Farm Size -0.073 -0.069 -0.093 -0.067  
 (0.070) (0.074) (0.072) (0.109)  
Farm Size2   -0.018* -0.015  
   (0.009) (0.013)  
2005*Farm Size2   0.013 0.016  
   (0.012) (0.017)  
2009*Farm Size2   0.020 0.024  
   (0.013) (0.020)  
Farm Size3    -0.001  
    (0.002)  
2005*Farm Size3    -0.001  
    (0.003)  
2009*Farm Size3    -0.001  
    (0.003)  
2005*Bin 2     -0.224 
     (0.566) 
2005*Bin 3     0.564 
     (0.484) 
2005*Bin 4     -0.402 
     (0.302) 
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2005*Bin 5     0.137 
     (0.268) 
2005*Bin 6     0.083 
     (0.593) 
2005*Bin 7     -0.424 
     (0.841) 
2009*Bin 2     -0.855 
     (0.667) 
2009*Bin 3     -0.921 
     (0.729) 
2009*Bin 4     -0.854 
     (0.622) 
2009*Bin 5     -1.053 
     (0.779) 
2009*Bin 6     -1.286 
     (0.797) 
2009*Bin 7     -1.554 
     (1.353) 
Constant 8.004*** 9.289*** 10.000*** 10.494*** 6.309*** 
 (0.466) (1.067) (1.287) (1.473) (1.193) 
Community FE  Yes Yes Yes Yes Yes 
R2 0.69 0.72 0.72 0.72 0.68 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 2.7: Coefficients on Household Controls 
 (1) (2) (3) (4) (5) 
 None Linear Quadratic Cubic Dummies 
Monocrop -0.397** -0.386** -0.381** -0.368** -0.451*** 
 (0.155) (0.159) (0.156) (0.160) (0.146) 
Subsistence -0.562*** -0.439*** -0.435*** -0.431*** -0.279 
 (0.182) (0.156) (0.157) (0.161) (0.183) 
Crop Loss 0.032 0.031 0.024 0.021 -0.041 
 (0.243) (0.206) (0.200) (0.203) (0.200) 
Procampo 0.478*** 0.397** 0.384** 0.378** 0.283* 
 (0.147) (0.158) (0.159) (0.159) (0.163) 
Alianza 0.544 0.328 0.377 0.383 0.307 
 (0.339) (0.325) (0.334) (0.331) (0.330) 
Formal Credit 0.100 0.054 0.045 0.039 0.125 
 (0.264) (0.252) (0.259) (0.257) (0.239) 
Ejido 0.047 0.039 0.003 0.009 -0.103 
 (0.163) (0.162) (0.155) (0.157) (0.169) 
Documentation -0.084 -0.041 -0.038 -0.052 -0.065 
 (0.270) (0.222) (0.219) (0.223) (0.227) 
Age 0.001 -0.002 -0.002 -0.002 -0.001 
 (0.005) (0.005) (0.004) (0.005) (0.006) 
Male 0.043 0.016 0.027 0.029 -0.003 
 (0.245) (0.209) (0.213) (0.215) (0.203) 
Married 0.236 0.174 0.171 0.159 0.170 
 (0.210) (0.185) (0.185) (0.187) (0.189) 
Indigenous -0.082 -0.099 -0.106 -0.125 -0.169 
 (0.199) (0.211) (0.209) (0.212) (0.233) 
Elementary School 0.097 0.018 -0.001 0.005 0.034 
 (0.175) (0.168) (0.167) (0.167) (0.182) 
Secondary School 0.632* 0.404 0.361 0.379 0.181 
 (0.355) (0.413) (0.415) (0.412) (0.479) 
High School 0.383 0.314 0.331 0.367 0.079 
 (0.336) (0.334) (0.347) (0.342) (0.404) 
College 1.359** 1.348** 1.329** 1.374** 0.833 
 (0.533) (0.548) (0.561) (0.556) (0.517) 
Community FE  Yes Yes Yes Yes Yes 
R2 0.69 0.72 0.72 0.72 0.68 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
 
 
  



89 

Table 2.8: Community Fixed Effects with Household Control Interactions 
 (1) (2) (3) (4) (5) 
 North Procampo Monocrop Subsistence Higher 

Education 
Farm Size -0.813*** -0.841*** -0.819*** -0.816*** -0.812*** 
 (0.067) (0.076) (0.090) (0.081) (0.069) 
Farm Size*North -0.013     
 (0.196)     
Farm Size*Procampo  0.090    
  (0.068)    
Farm Size*Monocrop   0.009   
   (0.074)   
Farm Size*Subsistence    0.004  
    (0.057)  
Farm Size *Education     -0.038 
     (0.083) 
2005 Dummy -0.208 -0.214 -0.208 -0.209 -0.209 
 (0.158) (0.157) (0.160) (0.157) (0.158) 
2009 Dummy -0.550*** -0.575*** -0.553*** -0.551*** -0.555*** 
 (0.121) (0.125) (0.115) (0.121) (0.121) 
Community FE  Yes Yes Yes Yes Yes 
R2 0.72 0.72 0.72 0.72 0.72 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 2.9: Community Fixed Effects with Credit/Property Rights Interactions 
 (1) (2) (3) (4) (5) 
 Ejido Deed or 

Title 
Ag. Rights 
Certificate 

Any 
Document 

Access to 
Credit 

Farm Size -0.820*** -0.805*** -0.815*** -0.799*** -
0.814*** 

 (0.076) (0.073) (0.076) (0.115) (0.069) 
Farm Size*Ejido 0.025     
 (0.069)     
Farm Size*Deed  -0.016    
  (0.047)    
Farm Size*Certificate   0.004   
   (0.055)   
Farm Size*Documentation    -0.018  
    (0.079)  
Farm Size*Credit     0.016 
     (0.078) 
2005 Dummy -0.199 -0.203 -0.207 -0.208 -0.208 
 (0.166) (0.157) (0.163) (0.157) (0.158) 
2009 Dummy -0.548*** -0.548*** -0.550*** -0.554*** -

0.550*** 
 (0.121) (0.120) (0.125) (0.126) (0.122) 
Community FE  Yes Yes Yes Yes Yes 
R2 0.72 0.72 0.72 0.72 0.72 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 2.10: Farm Size Coefficients, Linear Robustness Checks 
 (1) (2) (3) (4) (5) 
 Household 

FE 
Alt. Labor 

Index 
No Weights Alt. Output Alt. Output 

Cross Section 
Farm Size -0.825*** -0.602*** -0.732*** -0.814*** -0.668*** 
 (0.103) (0.085) (0.054) (0.069) (0.060) 
2005 Dummy -0.241 -0.135 -0.130 -0.290* -0.313** 
 (0.175) (0.096) (0.095) (0.160) (0.126) 
2009 Dummy -0.388* -0.328*** -0.318*** -0.324** -0.380*** 
 (0.213) (0.112) (0.110) (0.126) (0.126) 
2005* Farm Size 0.089 0.041 0.038 0.035 -0.030 
 (0.089) (0.043) (0.043) (0.050) (0.037) 
2009* Farm Size -0.110 0.012 0.007 -0.069 -0.084 
 (0.118) (0.052) (0.053) (0.074) (0.052) 
Constant 11.437*** 6.507*** 7.062*** 9.385*** 7.042*** 
 (2.010) (1.090) (1.136) (1.064) (1.160) 
Household FE  Yes No No No No 
Community FE  No Yes Yes Yes Yes 
R2 0.86 0.67 0.67 0.71 0.68 
N 1235 1235 1235 1235 2090 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 2.11: Farm Size Coefficients, Dummy Variable Robustness Checks 
 (1) (2) (3) (4) (5) 
 Household 

FE 
Alt. Labor 

Index 
No Weights Alt. Output Alt. Output 

Cross Section 
0.5 to 1 ha -1.801*** -0.653** -1.433*** -1.598*** -1.329*** 
 (0.648) (0.262) (0.248) (0.268) (0.178) 
1 to 2 ha -2.405*** -0.860*** -1.895*** -2.192*** -1.863*** 
 (0.582) (0.225) (0.195) (0.224) (0.220) 
2 to 5 ha -2.126*** -0.801*** -1.954*** -2.139*** -1.746*** 
 (0.591) (0.232) (0.236) (0.266) (0.199) 
5 to 10 ha -2.869*** -0.974*** -2.403*** -2.547*** -2.326*** 
 (0.745) (0.299) (0.305) (0.403) (0.216) 
10 to 20 ha -2.295** -0.722** -2.401*** -2.383*** -2.593*** 
 (1.056) (0.305) (0.337) (0.553) (0.344) 
20+ ha -6.191*** -1.842*** -4.230*** -5.270*** -5.568*** 
 (1.356) (0.546) (0.648) (0.961) (0.638) 
2005 Dummy -0.184 -0.296 -0.112 -0.287 -0.082 
 (0.448) (0.253) (0.263) (0.206) (0.194) 
2009 Dummy 0.080 -0.093 0.295 0.418 0.120 
 (0.635) (0.314) (0.402) (0.504) (0.299) 
2005*Bin 2 -0.178 0.025 -0.147 -0.199 -0.490 
 (0.704) (0.376) (0.381) (0.571) (0.386) 
2005*Bin 3 0.646 0.265 0.156 0.589 -0.057 
 (0.671) (0.390) (0.411) (0.492) (0.468) 
2005*Bin 4 -0.453 0.117 -0.119 -0.401 -0.657** 
 (0.608) (0.329) (0.329) (0.294) (0.285) 
2005*Bin 5 0.406 0.496 0.252 0.161 -0.079 
 (0.591) (0.316) (0.316) (0.274) (0.233) 
2005*Bin 6 -0.536 0.505 0.296 0.148 0.118 
 (0.853) (0.358) (0.399) (0.591) (0.514) 
2005*Bin 7 0.186 -0.016 -0.697 -0.407 0.002 
 (1.059) (0.623) (0.722) (0.842) (0.773) 
2009*Bin 2 -0.629 -0.717 -1.073** -0.891 -0.656 
 (0.867) (0.449) (0.532) (0.687) (0.424) 
2009*Bin 3 -0.510 -0.341 -0.754 -0.884 -0.625 
 (0.796) (0.451) (0.522) (0.724) (0.543) 
2009*Bin 4 -0.675 0.004 -0.460 -0.866 -0.632 
 (0.886) (0.426) (0.505) (0.607) (0.472) 
2009*Bin 5 -0.785 -0.160 -0.651 -1.031 -0.926* 
 (0.851) (0.439) (0.488) (0.774) (0.525) 
2009*Bin 6 -0.847 -0.099 -0.470 -1.227 -0.543 
 (1.069) (0.463) (0.560) (0.795) (0.566) 
2009*Bin 7 -1.756 -0.433 -0.972 -1.596 -1.072 
 (1.689) (0.684) (0.900) (1.359) (1.003) 
Constant 11.031*** 4.359*** 4.720*** 6.427*** 7.549*** 
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 (2.662) (1.089) (1.288) (1.170) (0.833) 
Household FE  Yes No No No No 
Community FE  No Yes Yes Yes Yes 
R2 0.85 0.66 0.63 0.68 0.67 
N 1235 1235 1235 1235 2090 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Table 2.12: Stochastic Frontier Production Function Results 
 Model  

(1) 
Model  

(2) 
Model  

(3) 
Model  

(4) 
Model 

(5)  
Frontier Equation      
Farm Size -0.642*** -0.653*** -0.638*** -0.646*** -

0.805*** 
 (0.051) (0.050) (0.052) (0.053) (0.062) 
2005 Dummy 0.477** 0.475** 0.458** 0.446** 0.400** 
 (0.186) (0.177) (0.186) (0.174) (0.201) 
2009 Dummy 0.790*** 0.799*** 0.765*** 0.769*** 0.711*** 
 (0.212) (0.207) (0.210) (0.201) (0.223) 
2005*Farm Size     0.192*** 
     (0.064) 
2009*Farm Size     0.204* 
     (0.108) 
Family Labor 0.077** 0.077** 0.074** 0.072** 0.068** 
 (0.032) (0.033) (0.034) (0.034) (0.033) 
Physical Capital 0.008 0.012 0.019 0.016 0.037 
 (0.047) (0.042) (0.045) (0.044) (0.046) 
Draft Animals 0.028 0.026 0.023 0.022 0.006 
 (0.034) (0.032) (0.033) (0.032) (0.030) 
Purchased Intermediates 0.148*** 0.139*** 0.148*** 0.146*** 0.145*** 
 (0.038) (0.038) (0.039) (0.040) (0.041) 
Non-family Labor 0.045 0.041 0.053 0.051 0.024 
 (0.034) (0.034) (0.034) (0.034) (0.033) 
Elementary School  0.044  -0.048 0.057 
  (0.090)  (0.142) (0.094) 
Secondary School  0.517**  0.293 0.531** 
  (0.205)  (0.332) (0.209) 
High School  0.008  -0.069 0.083 
  (0.204)  (0.344) (0.207) 
College  0.703**  -0.334 0.699** 
  (0.307)  (0.494) (0.302) 
      
Inefficiency Equation      
Farm Size 0.037 0.031 0.040 0.035 -

0.317*** 
 (0.062) (0.060) (0.061) (0.060) (0.119) 
2005 Dummy 1.152*** 1.163*** 1.146*** 1.112*** 1.198*** 
 (0.377) (0.361) (0.403) (0.359) (0.430) 
2009 Dummy 1.838*** 1.878*** 1.871*** 1.840*** 1.870*** 
 (0.407) (0.387) (0.431) (0.379) (0.401) 
2005*Farm Size     0.368** 
     (0.149) 
2009*Farm Size     0.417** 
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     (0.167) 
Indigenous  0.001 -0.046 -0.038 0.001 
  (0.230) (0.245) (0.238) (0.233) 
Elementary School   -0.142 -0.193  
   (0.193) (0.271)  
Secondary School   -0.882** -0.499  
   (0.411) (0.549)  
High School   -0.118 -0.190  
   (0.579) (0.819)  
College   -1.603*** -1.680*  
   (0.480) (0.451)  
𝐸𝐸(𝜎𝜎𝑢𝑢2) 1.679 1.666 1.641 1.661 1.620 
𝜎𝜎𝑢𝑢2 0.846 0.840 0.852 0.838 0.853 
𝜆𝜆 1.985 1.983 1.926 1.982 1.899 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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CHAPTER 3 
________________________________________________ 

Agricultural Productivity and Poverty: A 

Counterfactual Analysis of Mexican Family Farms 

________________________________________________ 

 

3.1  Introduction 

Poverty in Mexico has proven stubborn and, as in many developing countries, 

poverty alleviation remains an important policy objective. Indeed, combatting poverty 

was a central tenet of the policy platform sweeping Andrés Manuel López Obrador to 

victory in the 2018 presidential elections. With over 52 million Mexicans impoverished, 

or almost 42% of the Mexican population (World Bank, 2020), poverty is most prevalent 

in rural Mexico where, as in many developing countries, poverty rates are significantly 

higher than in urban areas. 

The work of Iniguez-Montiel (2014) exemplifies these conditions, assessing 

Mexican poverty over the period 1992-2008. Using the official income-based poverty 

thresholds, Iniguez-Montiel finds that overall poverty rates are consistently 20 
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percentage points higher in rural than in urban communities, driven largely by differences 

in the prevalence of extreme poverty. While poverty rates fell over the period of study, 

over 66% of rural Mexicans lived in poverty in 2008, with roughly half of those living in 

extreme poverty. With the exception of the share living in extreme poverty, this picture 

mirrors what is found when using Mexico’s official multidimensional measure of poverty 

(Ornelas, 2019).  

Agricultural workers are disproportionately poor, emphasizing the need for pro-

poor growth strategies in Mexico and an emphasis on the agricultural sector. The case for 

poverty alleviation through agricultural policy is reflected in the World Bank’s World 

Development Report for 2008 (World Bank, 2007), and this perspective partly explains a 

resurgent emphasis on the role of agriculture in economic development (Wiggins et al., 

2010). In fact, recent studies have identified growth in agriculture as being uniquely suited 

for achieving rural economic development goals, including economic growth and poverty 

alleviation. Cross-country macroeconomic studies such as Valdés and Foster (2010), for 

example, estimate that agriculture is 2.5 times as effective than other sectors in improving 

incomes of the poor. Christiaensen et al. (2011) find that agricultural growth is 3.2 times 

more effective, and Diao et al. (2010) draw similar conclusions.  

Improving agricultural productivity is one source of growth for the agricultural 

sector, and a large literature documents the links between agricultural productivity and 

poverty reduction (for example, see de Janvry and Sadoulet (2010) or Schneider and 

Gugerty (2011) for thorough reviews and discussions). Productivity gains affect poverty 
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through multiple channels, including by reducing food prices, increasing demand in the 

non-agricultural rural economy, and expanding employment opportunities in the rural 

economy. Most directly, improved productivity on farms has the potential to reduce on-

farm poverty of agricultural households themselves. A limitation of much of the literature, 

however, is that it relies on macroeconomic or cross-country empirical evidence.  

The microeconomic empirical investigations that do assess the poverty reduction 

potential of agricultural productivity are largely in the context of Asia. Datt and Ravallion 

(1998) estimate short-run and long run rural poverty – land productivity elasticities in 

India, finding that whereas the direct effects of agricultural productivity gains dominate 

in the short run, the indirect effects dominate in the long run, where the relationship is 

stronger. Foster and Rosenzweig (2004) add nuance to this discussion, finding that while 

land productivity positively increased rural incomes, per capita incomes of the poorest 

were increased most importantly by the non-agricultural rural sector and that, in India, 

this sector grew faster where agricultural productivity did not. Christiaensen et al. (2013) 

find evidence in China that improved labor productivity in the agricultural sector has 

greater poverty reducing effects than other pathways out of poverty. Dzanku (2015) 

draws similar conclusions in Ghana, where on-farm labor productivity is found to be more 

important than off-farm labor productivity for poverty alleviation when using a 

multidimensional measure of poverty.  

Using a 2002-2009 panel of family farms in Mexico drawn from the Mexican Family 

Life Survey, this paper contributes to understanding these linkages by estimating the 
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direct contribution of changing agricultural productivity to changes in the distribution of 

income, and their impact on on-farm poverty. Further, by decomposing changing 

agricultural productivity into five sources – technical change, the farm size-frontier 

productivity relationship, technical efficiency, input intensification, and farm size   – the 

analysis seeks to inform policy on the potential contribution of these productivity sources 

to poverty alleviation. In short, this study addresses the following research questions: (i) 

what direct contribution did agricultural productivity make towards poverty alleviation in 

Mexico in the early 21st century; and (ii) what were the relative contributions of the 

constituent sources of productivity?  

This paper does not evaluate any particular policy, nor does it identify causal 

determinants of agricultural productivity and poverty alleviation. Rather, this paper relies 

on decomposition methods pioneered in labor economics to construct counterfactual 

distributions of agricultural productivity, assessing the potential contributions of changing 

agricultural productivity to the alleviation of poverty. Estimating a stochastic production 

frontier generates estimates of technical change and technical (in)efficiency change, 

enabling parametric decompositions of land productivity. Counterfactual productivity 

distributions are generated from these decompositions, and the contribution of changing 

sources of agricultural productivity to poverty alleviation are estimated.  

The study finds evidence of a decline in land productivity over the study period, 

driven primarily by decreasing technical efficiency and changes to the farm size 

distribution. Whereas poverty rates among family farms increased over the period, the 
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severity of poverty saw a decline. Further, the counterfactual analysis suggests that 

raising land productivity through intensification and technical change would be a more 

pro-poor approach to improving productivity in the agricultural sector than would 

increasing technical efficiency, as those sources of land productivity have more 

pronounced contributions to the direct alleviation of on-farm poverty. The remainder of 

the paper is organized as follows. Section 2 provides context for understanding 

agricultural policy and poverty in Mexico. Section 3 lays out the empirical methodology 

for the decomposition and counterfactual analysis. This is followed by a description of the 

data source and key descriptive statistics in section 4. Section 5 presents the empirical 

results, and section 6 concludes. 

 

3.2  The Context of Mexico 

Mexico is an interesting case study for this exercise, in part because of the 

persistence of rural poverty and the importance of agriculture in the rural economy, but 

also because of its rich and active history of agricultural policy and efforts to alleviate 

poverty. Land reform and the establishment of ejido communities under the Cárdenas 

presidency in the 1930s is a hallmark of the agricultural sector in Mexico. As ejidos have 

long been characterized by high poverty rates and relatively low agricultural productivity, 

the reform of property rights and land markets in the 1990s aimed, in part, to increase 

productivity of the ejido sector (World Bank, 2001). Mexico was also the birthplace of the 

Green Revolution when the Mexican Agricultural Program, funded by the Rockefeller 
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Foundation in the 1940s, introduced improved seed varieties, input intensification, 

mechanization, and advanced cultivation practices, transforming and modernizing 

segments of Mexican agriculture (Sanderson, 1986).  

A competitive, commercial agricultural sector exists alongside the ejido sector, 

historically enjoying government subsidization of key agricultural inputs. This includes the 

national water system and irrigation districts established in the mid-1950s, federally 

controlled agricultural credit programs and the rural credit bank (BAN-RURAL), low fuel 

prices maintained by a national petroleum pricing system (PEMEX), and the subsidization 

of fertilizers through the national fertilizer company (FERTIMEX). These support programs 

were rolled back considerably as part of liberalization efforts in the early 1990s (UNCTAD, 

2014), but price support, agricultural credit, and fertilizer subsidization programs have 

recently resurfaced as part of the López Obrador administration’s efforts to increase 

productivity and reduce poverty among Mexico’s poor and marginalized farmers  (USDA, 

2019).  

Mexico has a long history of extension services, including the continuation of the 

Mexican Agricultural Program that launched the Green Revolution and the National 

Institute for the Development of the Rural Sector, a federal institution established in the 

1970s. The liberalization efforts of the 1990s under the North American Free Trade 

Agreement (NAFTA), and the recent update under the United States-Mexico-Canada 

Agreement (USMCA) significantly altered the competitive landscape for Mexican farmers, 

liberalizing agricultural input and output markets. Mexico’s anti-poverty efforts are 
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perhaps best exemplified by Oportunidades (formerly Progresa), the widely celebrated 

conditional-cash-transfer program that targeted poverty through cash transfers while 

incentivizing educational attainment, medical care, and nutrition for impoverished 

children. 

Despite this history, and in contrast to Southeast Asia’s experience with the Green 

Revolution, poverty reduction through agriculture led growth has not been widely 

successful in Mexico (de Janvry and Sadoulet, 2010; Dzanku, 2015). This echoes 

Sanderson (1986), who noted that by the late 20th century the transformed agricultural 

sector of Mexico was failing to generate livelihoods for many in rural communities, where 

poverty and malnutrition were common and migration out of rural Mexico was necessary 

to generate an economic livelihood. Shedding light on the direct link between agricultural 

productivity and on-farm poverty is one step towards improving policy effectiveness. 

 

3.3  Empirical Methodology 

3.3.1 Poverty Analysis 

Adopting an income-based measure of poverty, income of household 𝑖𝑖 in period 

𝑡𝑡, 𝑌𝑌𝑖𝑖𝑖𝑖, is the sum of agricultural income, 𝑌𝑌𝑖𝑖𝑖𝑖𝐴𝐴, and non-agricultural income, 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁: 

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖𝐴𝐴 + 𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁        (3.1) 

Comprehensive assessment of household income includes both the monetary income 

derived by the household and the flow of non-monetary goods and services received by 

the household. As such, agricultural income is measured as the value of total farm output, 
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which includes output reserved for household use along with output sold to market. 

Monetary non-agricultural income includes labor income – from wage labor and/or self-

employment – and non-labor income, including sources such as profits from business 

operations, government transfers, remittances, and pensions. Normalizing household 

income by household size, 𝐻𝐻𝑖𝑖𝑖𝑖, income-per-capita, 𝑦𝑦𝑖𝑖𝑖𝑖, is given by: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑌𝑌𝑖𝑖𝑖𝑖
𝐻𝐻𝑖𝑖𝑖𝑖

     (3.2) 

Following Foster, Greer, and Thorbecke (1984), poverty of a given household in a 

given period, 𝑃𝑃𝑖𝑖𝑖𝑖𝛼𝛼, is measured as: 

𝑃𝑃𝑖𝑖𝑖𝑖𝛼𝛼 = 𝐼𝐼(𝑦𝑦𝑖𝑖𝑖𝑖 < 𝑧𝑧𝑡𝑡) �
𝑧𝑧𝑡𝑡−𝑦𝑦𝑖𝑖𝑖𝑖
𝑧𝑧𝑡𝑡

�
𝛼𝛼

    (3.3) 

where 𝑧𝑧𝑡𝑡 is the poverty line in period 𝑡𝑡, 𝐼𝐼(𝑦𝑦𝑖𝑖𝑖𝑖 < 𝑧𝑧𝑡𝑡) is an indicator taking the value of 1 if 

income-per-capita is below the poverty line and 0 otherwise, and 𝛼𝛼 is a parameter 

governing how poverty is measured. Three poverty measures are calculated: poverty 

incidence, or the headcount ratio, corresponding to 𝛼𝛼 = 0; poverty depth, or the poverty 

gap, corresponding to 𝛼𝛼 = 1; and poverty severity, or the squared poverty gap, 

corresponding to 𝛼𝛼 = 2. The associated poverty rates for the sample, 𝑝𝑝𝑡𝑡𝛼𝛼, are then given 

by: 

𝑝𝑝𝑡𝑡𝛼𝛼 =
∑ 𝑃𝑃𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1
𝑁𝑁𝑡𝑡

         (3.4) 

 where 𝑁𝑁𝑡𝑡 is the number of individuals in the sample in period 𝑡𝑡. 

3.3.2 Agricultural Productivity  
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Agricultural productivity affects poverty through agricultural income. Agricultural 

output, 𝑄𝑄, is the product of farm size, 𝐴𝐴, and land productivity, 𝑞𝑞, defined as output per 

unit of land: 

𝑄𝑄 = 𝐴𝐴𝐴𝐴     (3.5) 

Improving livelihoods through agriculture can potentially be achieved on the extensive 

margin by expanding and increasing scale (through 𝐴𝐴), or on the intensive margin by 

enhancing the productivity with which existing land holdings are used (through 𝑞𝑞). While 

providing opportunities on the extensive margin is much of the logic behind land reform 

and efforts to improve the functioning of land markets, much of agricultural policy targets 

productivity. 

For a given farm, land productivity is a function of the intensity with which other 

agricultural inputs are used in production, 𝒙𝒙, the technology characterized by the 

production function parameters, 𝜷𝜷, the (in)efficiency with which the farm utilizes the 

agricultural technology, 𝑣𝑣, and random productivity shocks, 𝑢𝑢. In addition, the literature 

on the relationship between farm size and productivity has consistently shown an inverse 

farm size-productivity relationship. Changes in farm size, 𝐴𝐴, or a changing farm size – 

productivity relationship, 𝛿𝛿, also influence land productivity: 

𝑞𝑞 = 𝑓𝑓(𝒙𝒙,𝜷𝜷, 𝑣𝑣,𝑢𝑢,𝐴𝐴, 𝛿𝛿)    (3.6) 

Changes in these determinants affect land productivity, agricultural output, and the 

livelihoods of farming households, and with the exception of random productivity shocks, 

these determinants are potential policy targets. For example, input subsidization and 
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market reform affect access to inputs and the intensity with which inputs are used, 𝒙𝒙. 

Research and development and the adoption of modern technology affect agricultural 

production through 𝜷𝜷, while extension services and farmer education influence technical 

(in)efficiency, 𝑢𝑢, and land reform, property rights, and market reform affect 𝐴𝐴 and 𝛿𝛿. 

Decomposing land productivity into these sources using farm-level data enables a 

counterfactual analysis of their contributions to changes in the land productivity 

distribution and poverty alleviation. 

3.3.3 Stochastic Frontier Analysis 

Estimation of a stochastic production frontier provides the foundation for the 

decomposition, generating an estimate of the frontier technology, a measure of technical 

change, and technical (in)efficiency scores. Closely following the stochastic frontier 

analysis in chapter 2, an output-oriented approach is taken for measuring technical 

inefficiency.  Defining 𝑓𝑓(𝑿𝑿) as the maximum that can potentially be produced with input 

levels, 𝑿𝑿, technical inefficiency is the ratio of potential production and actual production, 

𝑄𝑄:  

𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑓𝑓(𝑿𝑿)
𝑄𝑄

= 𝑓𝑓(𝒙𝒙)
𝑞𝑞

   (3.7) 

where 𝑓𝑓(𝒙𝒙) is the maximum output per unit of land. As shown in chapter 1, normalization 

of the production frontier by farm size is expressed as: 

𝑓𝑓(𝒙𝒙) = 𝑓𝑓(𝑿𝑿)
𝐴𝐴

= 𝐴𝐴1−𝜏𝜏𝑓𝑓 �𝑿𝑿
𝐴𝐴
�    (3.8) 
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where 𝜏𝜏 captures returns to scale along the frontier, and the normalized production 

frontier is expressed as the product of two terms: (i) the frontier expressed as a function 

of input intensities, 𝑓𝑓 �𝑿𝑿
𝐴𝐴
�, and (ii) any deviation from constant returns to scale (CRS) along 

the frontier, 𝐴𝐴1−𝜏𝜏. 

Taking the log of (3.7), defining 𝑢𝑢 as the log of technical inefficiency, and 

redefining 𝑞𝑞 and 𝑓𝑓(𝒙𝒙) as the log of land productivity and logged frontier production per 

unit of area, respectively, the stochastic production frontier can be expressed as:  

𝑞𝑞 = 𝑓𝑓(𝒙𝒙) − 𝑢𝑢        (3.9) 

Estimating (3.9) econometrically requires assumptions on the frontier’s functional form, 

the distribution of the technical inefficiency term, and the distribution of a standard 

idiosyncratic error term. A Cobb-Douglas functional form is assumed for the frontier.1 

Substituting the natural log of (3.8) into (3.9) generates an expression for the stochastic 

production frontier in period 𝑡𝑡: 

𝑞𝑞𝑡𝑡 = 𝛽𝛽0𝑡𝑡 + 𝛿𝛿𝑡𝑡𝐴𝐴𝑡𝑡 + 𝜷𝜷𝒕𝒕𝒙𝒙𝑡𝑡 + 𝑣𝑣𝑡𝑡 − 𝑢𝑢𝑡𝑡   (3.10) 

where 𝛿𝛿𝑡𝑡 = 1 − 𝜏𝜏 captures the farm size – frontier productivity relationship.  

Standard distributional assumptions are adopted for the two-part error term, with 

a normally distributed idiosyncratic error term, 𝑣𝑣𝑡𝑡, and an exponential distribution for the 

one-sided inefficiency term, 𝑢𝑢𝑡𝑡.2 The assumption of an exponential distribution for the 

 
1 While a more general functional form such as a translog would be preferable, attempts to estimate such 
a model failed to converge with the present data. 
2 Alternative assumptions of an exponential or truncated normal distribution are also common in the 
literature. Attempts to estimate a model assuming the more general truncated normal distribution failed 
to converge. 
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inefficiency term allows for simultaneous estimation of the stochastic frontier and 

determinants of the variation of 𝑢𝑢𝑡𝑡. Community-level fixed effects, 𝜸𝜸𝑐𝑐, are included in the 

final model estimated and, because this study is interested in technical change along the 

frontier and a (possibly) changing farm size – frontier productivity relationships, the 

frontier technology coefficients, 𝜷𝜷, and coefficient on farm size, 𝛿𝛿, are allowed to vary 

over time through interactions with a time dummy, 𝜃𝜃𝑡𝑡. The complete model for farm 𝑖𝑖 in 

community 𝑐𝑐 in period 𝑡𝑡, estimated with maximum likelihood estimation and standard 

errors clustered at the community level, is: 

𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝜃𝜃𝑡𝑡 + 𝛿𝛿𝑡𝑡𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜷𝜷𝒕𝒕𝒙𝒙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜸𝜸𝑐𝑐 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖          (3.11) 

𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣,𝑐𝑐
2 )    (3.12) 

𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖~𝑒𝑒𝑒𝑒𝑒𝑒(𝜎𝜎𝑢𝑢,𝑖𝑖𝑖𝑖𝑖𝑖
2 )                  (3.13) 

𝜎𝜎𝑢𝑢,𝑖𝑖𝑖𝑖𝑖𝑖
2 = 𝛼𝛼0 + 𝜃𝜃𝑡𝑡 + 𝝋𝝋𝑽𝑽𝑖𝑖𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖   (3.14) 

where 𝑽𝑽𝑖𝑖𝑖𝑖𝑖𝑖 is a vector of exogenous controls explaining the variance of technical 

inefficiency and 𝜖𝜖𝑖𝑖𝑖𝑖𝑖𝑖 is a standard normal error term.  

3.3.4 Counterfactuals and Decompositions 

A decomposition similar to that of Oaxaca (1973) and Blinder (1973) illustrates the 

usefulness of the stochastic frontier to conduct a parametric decomposition of changing 

land productivity, providing the basis for generating counterfactual land productivity 

distributions. Denoting subscript 0 to refer to the base year and subscript 1 to denote the 

later survey year, the change in average land productivity between the two periods,  

∆𝐸𝐸(𝑞𝑞) = 𝐸𝐸(𝑞𝑞1) − 𝐸𝐸(𝑞𝑞0), can be decomposed as follows: 
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∆𝐸𝐸(𝑞𝑞) = ∆𝛿𝛿𝛿𝛿(𝐴𝐴0) + 𝛿𝛿1∆𝐸𝐸(𝐴𝐴) + 𝜃𝜃1 + ∆𝜷𝜷𝐸𝐸(𝒙𝒙0) + 𝜷𝜷𝟏𝟏∆𝐸𝐸(𝒙𝒙) − ∆𝐸𝐸(𝑢𝑢)  (3.15) 

This approach to a parametric decomposition of productivity growth closely resembles 

that of Chatzimichael and Liasidou (2018), who decompose total factor productivity 

growth for the hotel sector in Europe. (See Appendix C.1 for more detail on the 

decomposition). Interpreting expression (3.15), the first term on the right-hand side, 

∆𝛿𝛿𝛿𝛿(𝐴𝐴0), captures the contribution to the observed change in average land productivity 

of a changing farm size – frontier productivity relationship, including changes to the 

returns to scale along the frontier. Similarly, the second term, 𝛿𝛿1∆𝐸𝐸(𝐴𝐴), captures the 

contribution of changing farm size, while the third and fourth term, 𝜃𝜃1 + ∆𝜷𝜷𝐸𝐸(𝒙𝒙0), 

capture the contribution of technical change. The fifth term, 𝜷𝜷𝟏𝟏∆𝐸𝐸(𝒙𝒙), captures the 

contribution of changing average input intensities of family farms, and the final term, 

∆𝐸𝐸(𝑢𝑢) = 𝐸𝐸(𝑢𝑢1) − 𝐸𝐸(𝑢𝑢0), is the change in average technical inefficiency between 

periods. In expression (3.15) above, the second, fifth, and sixth terms are equivalent to 

the “explained” portion of an Oaxaca-Blinder decomposition, whereas the remaining 

terms containing changes in parameters are equivalent to the “unexplained” portion of 

the difference.  

While (3.15) provides the foundation for a counterfactual analysis of the average 

contributions of these channels to observed changes in average land productivity, it is 

often the case that the incidence of these contributions along the entire distribution of 

farms is of policy interest. The objective of poverty alleviation is one such case, where 

changes in average productivity are neither necessary nor sufficient for poverty 
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alleviation – for average productivity changes to affect poverty, they must affect the poor 

or cause families to fall into poverty. One possible extension of (3.15) conducts the 

decomposition by decile, 𝑑𝑑, illuminating differences in changing productivity and the 

contribution of its constituent channels along the land productivity distribution in an 

interpretable albeit crude manner: 

∆𝐸𝐸(𝑞𝑞𝑑𝑑) = ∆𝛿𝛿𝛿𝛿(𝐴𝐴𝑑𝑑0) + 𝛿𝛿1∆𝐸𝐸(𝐴𝐴𝑑𝑑) + 𝜃𝜃1 + ∆𝜷𝜷𝐸𝐸(𝒙𝒙𝑑𝑑0) + 𝜷𝜷𝟏𝟏∆𝐸𝐸(𝒙𝒙𝒅𝒅) − ∆𝐸𝐸(𝑢𝑢𝑑𝑑)      (3.16) 

To estimate the potential contribution of these productivity channels towards 

alleviating poverty, however, counterfactual simulations of the entire land productivity 

distribution are required. These counterfactual distributions can be derived 

parametrically using estimates from the stochastic frontier analysis and replacing values 

from the later survey wave for values from the base year survey for each observation. For 

example, to generate a counterfactual distribution of land productivity if inefficiency had 

not changed during the sample period, land productivity is estimated for each farm in 

2009 using observed inputs and farm size from 2009, the estimated technology 

parameters for 2009, but the technical inefficiency scores from 2002. This provides one 

counterfactual estimate of the land productivity distribution that would have prevailed if 

technical efficiency had not changed. 

This approach is akin to the counterfactual analysis on income and poverty of 

Azevedo et al. (2012) and Brito and Kerstenetzky (2019), and can be used to decompose 

the observed change in productivity distributions into its constituent parts. Let the land 



110 

productivity distribution in the base period be given by 𝑔𝑔(𝑞𝑞0) and its distribution in the 

later survey wave be given by 𝑔𝑔(𝑞𝑞1): 

∆𝑔𝑔(𝑞𝑞) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔(𝑞𝑞0) = [𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0)] + [𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔(𝑞𝑞0)]    (3.17) 

In (3.17), the first bracketed term on the right-hand side, [𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0)], provides a 

counterfactual estimate of the marginal contribution of changing technical inefficiency 

to changing land productivity, whereas the second bracketed term, [𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔(𝑞𝑞0)], 

is the portion of the observed change in the distribution attributable to other factors. 

This can be further decomposed by sequentially changing to base year input levels and 

parameter estimates: 

∆𝑔𝑔(𝑞𝑞) = ∆𝑔𝑔(𝑞𝑞|𝑢𝑢) + ∆𝑔𝑔(𝑞𝑞|𝜷𝜷,𝜃𝜃) + ∆𝑔𝑔(𝑞𝑞|𝒙𝒙) + ∆𝑔𝑔(𝑞𝑞|𝐴𝐴) + ∆𝑔𝑔(𝑞𝑞|𝛿𝛿) (3.18) 

where  

∆𝑔𝑔(𝑞𝑞|𝑢𝑢) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0)      (3.19) 

     ∆𝑔𝑔(𝑞𝑞|𝜷𝜷,𝜃𝜃) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃)     (3.20) 

     ∆𝑔𝑔(𝑞𝑞|𝒙𝒙) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0)    (3.21) 

     ∆𝑔𝑔(𝑞𝑞|𝐴𝐴) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0,𝐴𝐴0)   (3.22) 

     ∆𝑔𝑔(𝑞𝑞|𝛿𝛿) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0,𝐴𝐴0) − 𝑔𝑔(𝑞𝑞0)     (3.23) 

Expressions (3.19) – (3.23) are counterfactual estimates of the contribution of 

changing technical inefficiency, technical change, input intensification, changing farm 

size, and a changing farm size – frontier productivity relationship to changes in the land 

productivity distribution over time.  This parametric decomposition of observed land 

productivity changes provides the basis for counterfactual analysis of functions of land 
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productivity, such as agricultural output or poverty. The change in poverty measures 

defined in (3.4) are decomposed using these counterfactual estimates of land 

productivity, illuminating the contribution of each component to changes in poverty in 

farm households.  

It is important to note that the decomposition in (3.18) is path dependent – the 

order of decomposition matters. For example, changing technical inefficiency first, 

𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) is the counterfactual contribution of changing technical inefficiency 

given the changes in the other determinants of land productivity. In contrast, changing 

technical inefficiency last, 𝑔𝑔�(𝑞𝑞1|𝜷𝜷0,𝒙𝒙0,𝐴𝐴0, 𝛿𝛿0 ) − 𝑔𝑔(𝑦𝑦0), would provide the 

counterfactual contribution of changing technical inefficiency given that none of the 

other determinants had changed. These counterfactuals are not the same. With no priors 

regarding what order ought to be used in this decomposition, all possible decomposition 

paths are conducted and then summarized with three measures. As the literature 

suggests that the counterfactual contribution of any channel increases with the position 

in the decomposition, the marginal impact of the first and last are considered as bounds. 

The preferable approach, suggested by Shorrocks (2013), is akin to a Shapley 

decomposition, averaging over the marginal contribution of each component from all 

possible decomposition paths.  With five channels of interest, each channel potentially 

follows any of 16 unique decomposition paths. These counterfactual contributions – first, 

last, and mean of all 16 possible paths – are calculated for the changing land productivity 

distribution and for changes in poverty measures. 
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3.4  The Data 

The panel of family farms is drawn from the Mexican Family Life Survey (MxFLS), 

a nationally representative sample of Mexican households asking detailed information on 

households’ assets, incomes, consumption patterns, and well-being with survey waves in 

2002, 2005-2006, and 2009-2012. For those households engaging in agriculture, MxFLS 

gathers plot level information on plot size and the most important crops produced and 

household information on asset ownership, on farm labor, and expenditures on other 

inputs. These farming households are the focus of the analysis, and the nature of the 

survey make it a rich source of data for analyzing the relationships between agricultural 

productivity and poverty. 

3.4.1 Agricultural Variables 

Drawing from the MxFLS sample of family farms identified in chapter 2 as having 

complete data on their agricultural operations, this study uses farms engaging in 

agricultural production in both the 2002 and 2009 survey waves.3 Due to concern over 

measurement error in the income measure, the top and bottom 5% of the income per-

capita distribution were dropped from the sample, resulting in a final sample of 224 

farms. The sample contains a broad range of family farms: while the median and mean 

farm sizes in 2002 were 2.45 ha and 113.0 ha, respectively, the largest farms are over 

1,000 ha. Median farm size fell to 2.1 ha and mean farm size grew to 179.3 ha by 2009, 

 
3 See chapter 2 for a more complete discussion of the agricultural data in the MxFLS.  
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suggesting that while small farms are getting smaller, large farms are growing in size. 

Figure 3.1 below displays kernel density estimates of the distribution of farm size (in logs) 

for 2002 and 2009.  

Construction of the measure of agricultural output closely follows that of chapter 

2, with the exception that the current analysis does not construct an output quantity 

index. Rather, the current analysis uses the real value of output, valued in 2002 Mexican 

pesos. Although an output quantity index is often preferable for productivity analysis, the 

use of an output variable measured in value terms provides a direct link between land 

productivity and household income, facilitating the current analysis. Average land 

productivity fell over time, with the mean logged land productivity falling from 7.71 in 

2002 to 7.56 in 2009. Figure 3.2 shows the kernel density estimates of the land 

productivity distributions (in logs) for 2002 and 2009, revealing that most of this decline 

occurred in the bottom half of the land productivity distribution. Given the inverse 

relationship found between farm size and productivity, this increase in average farm size 

is likely contributing to the observed decline in land productivity. 

 Factors of production other than land include measures of physical capital, draft 

animals, purchased inputs, family labor, and non-family labor. Physical capital is 

measured as the real value of tractors and other machinery owned, and draft animals is 

similarly measured as the real value of horses, donkeys, and mules owned by the 

household. Purchased inputs are the real value of aggregate reported expenditures on 

nine inputs, including fertilizer, manure, pesticides, seeds, tractor services, animal power, 
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wage labor, water, and fuel. As with output, these inputs are measured in 2002 prices. 

Non-family labor is measured as the number of non-family workers working on the farm 

over the course of the year, and family labor is an index of the hours worked on the farm 

by household members during the year. Figures 3.3 and 3.4 show the distributions of 

family labor per ha and purchased inputs per ha in each period, as these are the most 

commonly used agricultural inputs in the sample, and were found to be the two most 

significant inputs in chapter 2. While the intensity with which family labor is used falls 

during the sample period, the share of farms using purchased inputs is increasing. As with 

changes in farm size, these changing input intensities are potentially contributing to the 

changing land productivity distribution. 

3.4.2 Income, Livelihoods, and Poverty 

No complete measure of household income is included by MxFLS, but detailed 

questions on income sources and economic livelihoods throughout the individual and 

household level components of the survey are used to construct a measure of total 

household income. As introduced in section 3.3 above, income is comprised of 

agricultural income and non-agricultural income. Whereas agricultural income is 

measured as the value of agricultural output, whether brought to market or used on the 

farm, non-agricultural income includes both labor and non-labor components. Labor 

income includes that derived from wage labor and/or self-employment, whereas non-

labor income includes profits from businesses, government transfers, rental income, non-
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agricultural household production, remittances, and pensions, among other sources. See 

Appendix C.2 for a detailed discussion of the construction of total household income. 

Where possible, labor income is grouped into non-agricultural and agricultural 

related activities. Table 3.1 shows the share of households deriving income from each 

income source by year, alongside the average share of total household income derived 

by that source (excluding households that do not derive any income from that particular 

source).  The first group of income sources includes labor income derived from 

participation in labor markets. Agricultural households increasingly have adult household 

members participating in wage labor, in both agricultural and non-agricultural 

occupations, while the participation of household children in wage labor is on the decline. 

For those family farms with adult household members engaging in wage labor, such 

wages are important components of total household income – income from non-

agricultural wage labor, for example, makes up half of the household incomes of 

participating households.  

The second group includes income from entrepreneurial activities, including 

agricultural production and non-agricultural businesses, self-employment in agricultural 

and non-agricultural industries, and home production. On average, agricultural income 

accounts for 26-29% of total household income for this sample of Mexican family farms – 

the economic livelihoods of these family farms are diverse, with the majority of household 

incomes being generated by activities other than agricultural production. Further, 

whereas fewer households are participating in agriculture related entrepreneurial 
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activities, households are increasingly participating in non-agricultural activities. The non-

agricultural sector of the rural economy appears to be increasingly prevalent in the 

livelihood strategies of Mexico’s family farms.  

The third and final group include non-labor sources of income, where participation 

in Oportunidades and other government programs are increasingly prevalent. On 

average, these programs are important for family farms – households receiving payments 

through Oportunidades, for example, receive a fifth of their household income from the 

program. Overall, the livelihood strategies of this sample of family farms are consistent 

with previous findings from Mexico. In their study of ejido households in 1997, de Janvry 

and Sadoulet (2001) found that off-farm income generated half to three-fourths of ejido 

household incomes, that self-employment activities and non-agricultural wage labor 

were more common than agricultural labor for households participating in off-farm 

employment, highlighting the importance of the rural non-agricultural sector for the 

economic livelihoods of Mexican family farms. 

Real monthly income per-capita fell in the sample, from a mean of 1,147 to 1,016 

Mexican pesos over the span of the panel. Despite this, income per-capita grew for the 

poorest quartile of the income distribution. These changes had heterogenous impacts on 

the income-based poverty measures used in this study. For reference, Table 3.2 displays 

the urban and rural overall and extreme poverty lines for 2002 and 2009, adopted from 

Mexico’s National Council for the Evaluation of Social Development Policy (CONEVAL). 

Table 3.3 shows the poverty measures introduced in (3.4) using the rural poverty and rural 
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extreme poverty lines, for both survey years. The final two columns calculate the 

percentage change. As both mean and median incomes fell over this period, the poverty 

rate increased. While this change in overall poverty incidence was marginal, increasing by 

just 0.8%, the extreme poverty rate saw a notably large 6 percentage-point increase, 

equivalent to a 15% increase in the prevalence of extreme poverty for this sample of 

family farms.  

 A more complex picture unfolds in light of poverty depth and poverty severity, 

measured by the poverty gap and the poverty gap squared, respectively. The overall 

poverty gap index experienced a 1.2% increase as farmers slipped into extreme poverty. 

However, the extreme poverty gap index fell by 1.0% and the squared poverty gap index 

declined by 2.2% when using the overall poverty line and by 1.7% when using the extreme 

poverty line. To summarize, although the incidence of overall poverty increased 

marginally and the overall poverty gap increased, poverty severity showed declined. 

Movement in these poverty measures is primarily driven by changes to the extremely 

poor – as poverty deepened for some, as reflected in the 15% increase in the incidence 

of extreme poverty.  Rising incomes in the bottom quartile of the income distribution 

meant that the extreme poverty of the poorest of the poor was partially mediated, 

leading to a reduction in overall poverty severity. 
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3.5  Empirical Results 

 As a starting point for unpacking the direct poverty reduction potential of 

agricultural productivity, Table 3.4 displays the counterfactual poverty measures that 

would have prevailed if land productivity had not changed over time, alongside the 

observed poverty measures in 2009 and the percentage difference. In short, the 

counterfactual poverty measures answer the question, what would have been the change 

in poverty if farm income generating activities had evolved as observed, but agricultural 

productivity had remained at observed 2002 levels? Similarly, the percentage difference 

provides an estimate of the reduction in poverty that would have been achieved if base 

year land productivity had been maintained. Results from the poverty rate suggest that if 

land productivity had been held at 2002 levels, poverty incidence on family farms would 

have been more than 4% lower. This would amount to a 4.1-4.6% reduction in poverty 

given a 16% increase in land productivity, for a point elasticity of approximately -0.26 to -

0.29. Irz et al. (2001), in comparison, find that poverty falls by 5-7% given a 10% increase 

in land productivity, for a point elasticity of -0.5 to -0.7. This is reasonable, given that the 

current approach assesses only the direct links between land productivity and poverty, 

whereas Irz et al. (2001) assess the linkages more comprehensively. 

 While maintaining base year land productivity would have reduced the number of 

people in both poverty and extreme poverty, the depth and severity of poverty relative 

to the extreme poverty line would have increased. The counterfactual increase in poverty 

severity indicates that observed changes in land productivity over the period of study 
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were beneficial for the poorest of the poor. More generally, the impacts of changing land 

productivity on poverty are heterogeneous, affecting the moderate and extremely poor 

in distinct ways. 

3.5.1 Technical Efficiency Estimates 

 Estimating a stochastic production frontier according to (3.11) through (3.14) 

forms the basis for the decomposition of land productivity. The model is estimated using 

the sfcross command in Stata, with community-level fixed effects and standard errors 

clustered at the community level. The lambda, or the ratio of the variance of the 

inefficiency term to the variance of the error term, is 1.52, indicating that a stochastic 

frontier model is appropriate. The model is consistent with that of chapter 2, in that it 

finds evidence of positive technical change in the frontier and increasing technical 

inefficiency over time. See Appendix C.3 for further details of the model results. Figure 

3.5 shows kernel density estimates for the technical inefficiency scores for each year, 

showing the growth of technical inefficiency over time.  

3.5.2 Counterfactual Land Productivity Analysis 

Table 3.5 begins to unpack the change in land productivity into its constituent 

sources by displaying the results of the decomposition described in (3.15). Again, this 

decomposition is akin to that of Oaxaca and Blinder, expressing changes in average land 

productivity as changes in average observable characteristics and differences in model 
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parameters.4 When evaluated at the mean, technical change had a positive contribution 

to changes in land productivity during the period. Growing average technical inefficiency 

and the growth in average farm size largely offset that contribution, contributing most to 

the decline in land productivity. In comparison, changing average input intensities and a 

changing farm size – frontier productivity relationship contributed relatively little to the 

observed decline in average land productivity.  From a productivity perspective, this 

suggests that policy helping family farms with the adoption of new technologies and the 

efficient use of existing resources poses a significant opportunity. 

The average decompositions, however, do not speak to the heterogeneity with 

which these productivity sources influence the productivity of family farms. Table 3.6 

displays the average change in land productivity attributable to each source, by decile of 

land productivity in the base year. The changes in land productivity are based upon the 

counterfactual land productivity distributions generated according to (3.18), and follow 

Shorrocks (2013) in using the average change across all possible orders of decomposition. 

These average changes for each farm from each productivity source are then averaged 

over deciles. The corresponding counterfactual land productivity distributions associated 

with each productivity component can be seen in Appendix C.4.  

 An immediate implication of this approach is that the observed change in land 

productivity exhibits considerable heterogeneity across deciles. As shown in the final 

 
4 As the frontiers for each period are estimated in a single model, the expected error terms will not cancel 
and the decomposition will not be exact 
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column of Table 3.6, those farms with the lowest land productivity in 2002 realized 

notable gains in land productivity on average, whereas the most productive deciles 

averaged pronounced losses in productivity. Whereas changes in farm size and 

inefficiency were contributing to productivity losses for the most productive farms, they 

contributed to productivity gains among the least productive farms. Technical change, in 

contrast, had a relatively homogenous and positive relationship with land productivity. It 

is clear that going beyond the mean is necessary to assess the links between agricultural 

productivity and on-farm poverty, and that the channel for productivity gains will likely 

matter. 

3.5.3 Counterfactual Poverty Analysis  

Tables 3.7 and 3.8 display the counterfactual estimates of the contribution of 

productivity sources to poverty, in terms of percentage and percentage point changes, 

respectively. These counterfactual estimates are the average changes to poverty if the 

productivity source maintained their 2002 levels, averaged over all possible paths of 

decomposition. For example, the results for technical change are interpreted as the 

counterfactual estimates of the difference in poverty that would have been realized if 

there were no technical change during the period – regardless of poverty measure or 

poverty line used, poverty would have been 4-16% higher absent technical change, 

depending upon the measure. The changes to the farm size distribution, i.e. the fall in 

small farm size and the rise in large farm size, contributed to increasing poverty. Absent 

these changes, poverty would have been 5-9% lower. In conclusion, whereas technical 
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change contributed positively to growth in land productivity and poverty alleviation, 

changes to the farm size distribution detracted from average land productivity and 

contributed to an increase in poverty. 

 The relationship between changing technical inefficiency, land productivity, and 

poverty, appears more nuanced. Yes, productivity would have been higher, on average, 

and poverty lower in the absence of growing technical inefficiency, but the contribution 

to changes in poverty is both mixed and relatively muted. The incidence of changing 

efficiency clearly matters for its contribution to on-farm poverty. Whereas poverty rates 

would have fallen absent changes to the technical inefficiency distribution, poverty depth 

and poverty severity relative to the extreme poverty line would have increased. Changes 

to input intensity on farms made a notably smaller contribution to the decline in average 

land productivity than did changes to technical inefficiency, but the direct effect on 

poverty among family farms was more pronounced. This points towards agricultural 

productivity growth through intensification and technical change being notably more pro-

poor than technical efficiency in terms of the direct contribution to on-farm poverty 

alleviation.  

 

3.6  Discussion and Concluding Remarks 

Using a 2002-2009 panel of family farms in Mexico drawn from the Mexican Family 

Life Survey, this paper contributes to understanding the linkages between productivity 

and poverty by estimating the direct contribution of changing agricultural productivity to 
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changes in on-farm poverty. The study finds declining average land productivity over the 

sample period, and while poverty rates increased among family farms, poverty severity 

declined. Decomposing changing agricultural productivity into five sources – changes in 

technical efficiency, technical change, input intensification, farm size, and the farm size-

frontier productivity relationship – the analysis finds increasing inefficiency and changes 

to the farm size distribution were driving the decline in land productivity in spite of 

notable technical change. The counterfactual analysis finds evidence of a land 

productivity – poverty point elasticity of approximately -0.26 to -0.29; poverty would have 

been approximately 4% lower if land productivity had not changed. Further, the 

counterfactual analysis suggests that raising land productivity through intensification and 

technical change would have a larger direct contribution to alleviating on-farm poverty 

than would increasing technical efficiency.  

 This study can be refined and extended in several ways. First, the counterfactual 

estimates could be improved with further refinement of the sample’s income variable. 

There appear to be several areas where marginal components may not have been 

included, such as on remittances data and profits from non-agricultural businesses. There 

are other areas where some double-counting of income may be occurring. Similarly, the 

prices used to value agricultural output are common, taken from the FAO. Whereas a 

common set of prices was a boon to productivity analysis, where common prices aid 

comparability, heterogeneous output prices are likely important when assessing incomes, 

poverty and livelihoods on family farms.  
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 There are several important extensions of this line of work. First, a third wave of 

the survey, conducted in 2005, has not been utilized in this study. Leveraging this third 

survey year may prove interesting, as the literature has shown evidence of a decline in 

poverty between 2002 and 2005, with an increase in poverty in the following years. 

Second, the richness and breadth of the survey make it possible to extend the analysis 

into alternative measures of poverty. An analysis and comparison of consumption-based 

poverty, nutrition-based poverty, child poverty, and multidimensional poverty are all 

possible. Third, a methodological extension may involve utilizing the non-parametric 

decomposition techniques pioneered in labor economics to complement the parametric 

decomposition presented here. Lastly, this study should be extended to a more general 

decomposition of poverty into its constituent components. 
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Chapter 3 Tables and Figures 

 

Figure 3.1: Farm Size Kernel Densities for Each Year 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Figure 3.2: Land Productivity Kernel Densities for Each Year 

 
Note: Estimated with the default kernel density  command in Stata, using an Epanechnikov kernel 

 

  

0
.0

5
.1

.1
5

.2
.2

5

-5 0 5 10 15
Land Productivity, Output per ha (logs)

2002 2009

Land Productivity Distributions



127 

Figure 3.3: Family Labor per ha Kernel Densities for Each Year 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Figure 3.4: Purchased Inputs per ha Kernel Densities for Each Year 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Table 3.1: Prevalence and Average Share of Income Sources 

Income Category 
Share of Households 

with Income 
Average Share 

of Total Income 
2002 2009 2002 2009 

Participation in 
Labor Markets 

Ag Labor Income  15% 20% 46% 33% 
Non-Ag Labor Income 25% 33% 55% 52% 
Child Labor Income 4% 1% 34% 37% 
Other Labor Income 3% 2% 41% 39% 

Entrepreneurial 
Activities 

Agricultural Production 100% 100% 26% 29% 
Non-Ag Business 6% 10% 21% 2% 
Farmer Self-Employment 45% 31% 22% 22% 
Ag Self-Employment 50% 36% 23% 24% 
Non-Ag Self-Employment 20% 24% 32% 29% 

Other Income 
Generating 
Activities 

Rental Income 3% 2% 13% 5% 
Household Production 5% 8% 11% 12% 
Oportunidades 37% 45% 21% 20% 
Other Government 
Transfers 

62% 67% 12% 18% 

Other Non-labor Income 19% 12% 26% 16% 
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Table 3.2: Poverty Lines, Nominal Monthly Mexican Pesos per capita 

 2002 2009 
Overall 
Poverty 

Extreme 
Poverty 

Overall 
Poverty 

Extreme 
Poverty 

Urban 1,468.31 618.94 2,045.82 952.09 
Rural 898.99 427.67 1,292.10 673.63 

 

 

Table 3.3: Observed Poverty Measures 

 2002 2009 Percentage Change 
Overall 
Poverty 

Extreme 
Poverty 

Overall 
Poverty 

Extreme 
Poverty 

Overall 
Poverty 

Extreme 
Poverty 

Poverty Rate 0.715 0.407 0.721 0.469 0.8 15.2 
Poverty Gap Index 0.406 0.196 0.411 0.194 1.2 -1.0 
Squared Poverty Gap Index 0.276 0.116 0.270 0.114 -2.2 -1.7 

 

 

Table 3.4: Counterfactual Changes in Poverty Measures, Land Productivity Held Constant 

 
2009 

2009 
Counterfactual 

Percentage 
Difference 

Overall 
Poverty 

Extreme 
Poverty 

Overall 
Poverty 

Extreme 
Poverty 

Overall 
Poverty 

Extreme 
Poverty 

Poverty Rate 0.721 0.469 0.688 0.450 -4.6 -4.1 
Poverty Gap Index 0.411 0.194 0.389 0.199 -5.4 2.6 
Squared Poverty Gap Index 0.270 0.114 0.261 0.120 -3.3 5.3 
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Figure 3.5: Technical Efficiency Kernel Densities for Each Year 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Table 3.5: Oaxaca Blinder Decomposition of Land Productivity 

 Change % of Total 
Total -0.132 100 

Technical Change 0.395 -298 
Input Intensities -0.012 9 
Technical Inefficiency 0.335 253 
Farm Size -0.098 74 
Farm Size – Frontier Productivity -0.011 8 
Unexplained Residuals 0.014 -46 
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   Table 3.6: Counterfactual Land Productivity Changes, by Decile 

 Inefficiency Input In Tech FS IR Actual 
 Mean 

Change 
% of 
Total 

Mean 
Change  

% of 
Total 

Mean 
Change 

% of 
Total 

Mean 
Change  

% of 
Total 

Mean  
Change 

% of 
Total 

 

Average -0.361 273 -0.067 51 0.404 -306 -0.090 68 -0.012 9 -0.132 
Decile            

1st  0.315 12 0.235 9 0.418 16 1.515 56 -0.025 -1 2.687 
2nd  0.330 23 -0.038 -3 0.392 27 0.314 21 -0.014 -1 1.463 
3rd  -0.157 -1,570 -0.034 -340 0.397 3,970 -0.186 -1,860 -0.016 -160 0.010 
4th  -0.504 -438 0.025 22 0.411 357 0.284 247 -0.014 -12 0.115 
5th  -0.729 98 -0.197 26 0.491 -66 -0.177 24 -0.018 2 -0.745 
6th  -0.104 -18 -0.073 -13 0.422 74 0.178 31 -0.012 -2 0.568 
7th  -0.318 -558 -0.079 -139 0.419 735 -0.144 -253 -0.018 -32 0.057 
8th  -0.288 90 0.063 -20 0.391 -123 -0.224 70 -0.007 2 -0.319 
9th  -0.790 65 -0.177 15 0.359 -30 -0.595 49 -0.009 1 -1.207 

10th  -1.467 36 -0.434 11 0.332 -8 -2.018 50 0.016 0 -4.052 
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Table 3.7: Counterfactual Changes in Poverty Measures, Percentage Changes 

  Counterfactual Reductions in Poverty 
 Poverty 

Line 
Poverty 

Rate 
Poverty 

Gap 
Poverty Gap 

Squared 

Inefficiency Overall -0.4 -1.4 -1.0 
Extreme -0.7 0.4 1.6 

Input Intensity Overall -0.4 -2.0 -2.8 
Extreme 0.8 -4.4 -5.7 

Technical Change Overall 3.9 6.2 8.9 
Extreme 6.8 13.2 15.5 

Farm Size Overall -5.3 -7.2 -7.7 
Extreme -6.7 -8.2 -9.0 

Farm Size – Frontier Productivity Overall -0.3 0.1 0.2 
Extreme -0.4 0.2 0.5 

 

Table 3.8: Counterfactual Changes in Poverty Measures, Percentage Point Changes 

  Counterfactual Reductions in Poverty 
 Poverty 

Line 
Poverty 

Rate 
Poverty 

Gap 
Poverty Gap 

Squared 

Inefficiency Overall -0.3 -0.5 -0.3 
Extreme -0.4 0.1 0.2 

Input Intensity Overall -0.3 -0.8 -0.8 
Extreme 0.4 -0.9 -0.7 

Technical Change Overall 2.7 2.4 2.3 
Extreme 3.1 2.4 1.7 

Farm Size Overall -3.8 -3.0 -2.2 
Extreme -3.3 -1.7 -1.1 

Farm Size – Frontier Productivity Overall -0.2 0.1 0.1 
Extreme -0.2 0.1 0.1 
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Proof of expression (1.14): 
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Appendix A.2 

Table A.2.1: Data Cleaning and Sample Size, by Region and Farm Size Class 

 Farm Size 
Class (ha) 

Observations 
(N)  

Less Farm 
Size Outliers 

Less Land 
Productivity 

Outliers 

Percent 
Dropped from 

Cleaning 

North 

 0-5 315 315 310 1.6 
 5-20 420 420 403 4.0 
 20-100 459 459 437 4.8 
 100-500 443 443 433 2.3 
 500 + 323 315 305 5.6 

      

Center-West 

 0-5 537 537 520 3.2 
 5-20 619 619 605 2.3 
 20-100 681 681 673 1.2 
 100-500 672 672 659 1.9 

  500 + 613 595 581 5.2 
      

Southeast 

 0-5 3,850 3,850 3,805 1.2 
 5-20 3,991 3,991 3,927 1.6 
 20-100 4,024 4,024 3,944 2.0 
 100-500 3,896 3,896 3,871 0.6 
 500 + 2,235 2,215 2,195 1.8 

      
Brazil1   47,365 47,281 46,515 1.8 

1The sample size in Brazil includes data from the Northeastern and Southern regions. 
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      Table A.2.2: Descriptive Statistics, 2006 
 Farm Size 

Class (ha) 
Output 

(R$ 2006/ha) 
Capital 

(Index/ha) 
Family Labor 
(Adult Male 

Equivalents/ha) 

Purchased 
Inputs 

(R$ 2006 per ha) 

Share of 
Farms 

(%) 

Share of 
Area 
(%) 

Share of 
Output 

(%) 

North 

0-5  4,185.02 965.03 1.75 862.4 19.4% 0.3 6.9 
5-20  1,110.46 333.92 0.24 214.4 17.4 1.6 12.0 
20-100  282.24 129.06 0.05 73.5 43.0 17.4 32.2 
100-500  120.65 88.47 0.01 58.2 16.9 26.4 20.9 
500 +  78.98 54.90 0.01 73.0 3.3 54.3 28.0 

         

Center-West 

0-5  3,265.49 2,628.76 0.72 1,971.5 8.5 0.1 0.8 
5-20  902.03 851.41 0.16 507.0 20.2 0.7 2.4 
20-100  444.53 378.38 0.04 231.9 37.8 5.0 8.3 
100-500  276.48 279.76 0.01 210.4 21.2 13.8 14.3 
500 + 247.08 127.28 0.01 246.5 12.3 80.4 74.2 

         

Southeast 

0-5  4,152.85 3,903.90 0.85 1,892.5 28.8 1.1 5.5 
5-20  1,611.97 1,797.21 0.18 1,061.6 32.1 6.2 11.7 
20-100  923.89 906.85 0.04 554.7 28.5 21.8 23.5 
100-500  711.38 555.44 0.01 556.7 9.1 32.9 27.2 
500 +  726.50 276.13 0.01 715.4 1.5 37.9 32.1 
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Appendix A.3 
 
Table A.3.1: Estimated Technology Coefficients 

 North Center-West Southeast 
Capital per ha 0.201*** 0.171*** 0.121*** 
 (0.033) (0.035) (0.014) 
    
Family Labor per ha 0.267*** 

(0.056) 
0.142*** 
(0.039) 

0.191*** 
(0.026) 

    
Purchased Inputs per ha 0.315*** 

(0.035) 
0.430*** 
(0.042) 

0.510*** 
(0.019) 

    
Constant 3.862*** 3.667*** 3.309*** 
 (0.225) (0.290) (0.019) 
    
Weather Shocks Yes Yes Yes 
AMC FE  Yes Yes Yes 
Time-varying Size Dummies  Yes Yes Yes 
R-squared 0.96 0.90 0.91 
N 1,888 3,038 17,742 

Dependent variable is logged output; all independent variables are logged; all variables normalized by 
farm size. 
Standard errors in parentheses: * p<0.10, ** p<0.05, *** p<0.01. 
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Appendix B.1 

Construction of the Output Index 

There are three components to the construction of the output index. First, the 

valuation of crop production for each farm. Second, the valuation of livestock production. 

Third, the construction of the quantity index. 

Valuing Crop Production 

The three most important crops produced on each parcel used in production were 

aggregated into 90 groups, with a residual group for a set of relatively minor products. 

The construction of the quantity index requires a price from each of the three periods for 

each product produced, regardless of whether or not it was produced in all periods. 

Whereas there was quite good coverage of prices for MxFLS crops produced within any 

given year, many crops did not have prices in all three years. More importantly, marked 

fluctuations in the crop prices generated across years raised concerns about using MxFLS 

generated prices for generating consistent crop valuations. In their place, we use price 

data from the Food and Agriculture Organization of the United Nations (FAO)1 which 

provides Mexican producer prices over the relevant time period for approximately 110 

crops, resulting in a near one to one mapping to the MxFLS crop grouping. The FAO prices 

are a vetted and defensible data series of average Mexican crop prices in each period, 

allowing for consistent valuation of MxFLS crop production.2 

 
1 See http://www.fao.org/faostat/en/#data/PP. 
2 For the “Blackberries” and “Nuts” crop groupings the FAO price data is supplemented using prices 
generated by the Mexican government, found at http://www.economia-

http://www.fao.org/faostat/en/#data/PP
http://www.economia-sniim.gob.mx/2010prueba/Agricolas.asp
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The value of production of each crop on each parcel for each farm is valued using 

each of the three periods’ prices. Value of production is then aggregate across crops for 

each parcel using each year’s prices, and then aggregated across parcels for each farm for 

each set of prices. The result is three valuations for the crop production of each farm in 

each year, one using the price from each of the three survey years, providing the basis for 

construction of quantity indices. 

 Valuing Livestock Production 

The MxFLS records the existence and value of the stock of many household assets. 

These asset categories include horses, cows and bulls, pigs and goats, and chickens. 

Whereas horses are most likely an input in the agricultural production process, the latter 

three categories constitute the production of livestock and their related goods. For the 

20% - 25% of households owning cows and/or bulls in any period, the 23% - 28% owning 

pigs and goats, and the 37% - 46% of households owning chickens, the MxFLS provides a 

valuation of those asset stocks and some measures of the product of those asset stocks. 

A final value of nominal livestock production is calculated by summing the value of 

livestock sales with the value of livestock consumption. Nominal values are deflated to 

2002 values, generating the value of livestock production to be used in the calculation of 

the quantity index. 

 
sniim.gob.mx/2010prueba/Agricolas.asp. For the “Herbs” crop grouping we generate average prices from 
the MxFLS data itself. The “Pasture” grouping is not valued, and the “Other” and “Flowers” groupings are 
not valued either.  

http://www.economia-sniim.gob.mx/2010prueba/Agricolas.asp
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The value of product sold is measured as the previous year’s sales of dairy 

products, meat products, and fattened animals. The value of product consumed is 

calculated as the value of meat, dairy, and other animal products received as gift, as 

payment, or obtained from crops and animals over the previous week. Aggregating across 

these categories for each household in each year and then multiplying by 52 generates 

the value of livestock production consumed. Treating this summation as the annual value 

of livestock production consumed implicitly assumes that (i) all, or nearly all, of these 

consumption values come from home production and not gifts or as payment, and (ii) the 

previous week’s consumption patterns are representative of consumption patterns over 

the course of the year.  

Construction of the Quantity Index 

In each period, we begin by aggregating the total value of production for each 

farm in each survey year. For those households that have complete farm data in two or 

more years (i.e. complete farm size data on all parcels and valuation data of all crops on 

all parcels) we then construct a Fisher quantity index. Having identified “complete farms” 

in the panel, we then generate the following Panel IDs: 

• 1 if the farm is in the panel in 2002 and 2005 only 

• 2 if the farm is in the panel in 2002, 2005, and 2009 

• 3 if the farm is in the panel in 2005 and 2009 only 

• 4 if the farm is in the panel in 2002 and 2009 only 

• 0 otherwise 
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We generate the quantity index for farm, 𝑓𝑓, producing crop, 𝑖𝑖, by first calculating 

changes in the Fisher quantity index over all relevant pairs of periods.  These changes are 

then applied to base year values.  The changes in the Fisher quantity index are calculated 

as follows: 

• 𝑄𝑄02,05
𝑓𝑓 = ��

∑ 𝑝𝑝𝑖𝑖,2002𝑞𝑞𝑓𝑓𝑓𝑓,2005𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2002𝑞𝑞𝑓𝑓𝑓𝑓,2002𝑖𝑖
� �

∑ 𝑝𝑝𝑖𝑖,2005𝑞𝑞𝑓𝑓𝑓𝑓,2005𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2005𝑞𝑞𝑓𝑓𝑓𝑓,2002𝑖𝑖
�    … if Panel = 1 or 2 

 

• 𝑄𝑄02,09
𝑓𝑓 = ��

∑ 𝑝𝑝𝑖𝑖,2002𝑞𝑞𝑓𝑓𝑓𝑓,2009𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2002𝑞𝑞𝑓𝑓𝑓𝑓,2002𝑖𝑖
� �

∑ 𝑝𝑝𝑖𝑖,2009𝑞𝑞𝑓𝑓𝑓𝑓,2009𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2009𝑞𝑞𝑓𝑓𝑓𝑓,2002𝑖𝑖
�    … if Panel =2 or 4 

 

• 𝑄𝑄05,09
𝑓𝑓 = ��∑ 𝑝𝑝𝑖𝑖,2005𝑞𝑞𝑖𝑖,2009𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2005𝑞𝑞𝑖𝑖,2005𝑖𝑖
� �∑ 𝑝𝑝𝑖𝑖,2009𝑞𝑞𝑖𝑖,2009𝑖𝑖

∑ 𝑝𝑝𝑖𝑖,2009𝑞𝑞𝑖𝑖,2005𝑖𝑖
�     … if Panel=2 or 3 

With changes in the quantity index in hand we then generate the level of the 

quantity index for each year as follows. Here 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
𝑓𝑓  is the value of output in a given 

year using nominal prices for farm 𝑓𝑓: 

• 𝑄𝑄𝑄𝑄2002
𝑓𝑓 = 𝑉𝑉𝑉𝑉𝑙𝑙𝑢𝑢𝑢𝑢2002

𝑓𝑓       … if Panel = 1, 2, or 4 

 

•  𝑄𝑄𝑄𝑄2005
𝑓𝑓 = �

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2002
𝑓𝑓 ∗ 𝑄𝑄02,05

𝑓𝑓   𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 𝑜𝑜𝑜𝑜 2

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2005
𝑓𝑓 /𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷   𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3

 

 

• 𝑄𝑄𝑄𝑄2009
𝑓𝑓 =

⎩
⎨

⎧𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2002
𝑓𝑓 ∗ 𝑄𝑄02,09

𝑓𝑓   𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 4

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉2005
𝑓𝑓 ∗ 𝑄𝑄05,09

𝑓𝑓   𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3

𝑄𝑄𝑄𝑄2005
𝑓𝑓 ∗ 𝑄𝑄05,09

𝑓𝑓    𝑖𝑖𝑖𝑖 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 2
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Appendix B.2 

Construction of Inputs 

Family Labor Index 

Two approaches are used to generate a measure of family labor as an input to the 

production process. The first uses categorical variables for whether or not household 

members helped farm each plot. These measures are plot specific providing a measure of 

household labor on the extensive margin, but do not include any intensive measure of 

labor use. The second approach uses time-use data for each household member. While 

this approach has advantages on the intensive margin, it is less comprehensive and less 

complete on the extensive margin.  

We develop a set of three indicators. The first uses time-use data and is the 

preferred approach, whereas the second and third use the binary yes/no data regarding 

family members’ participation on each plot. The construction of Family Labor Index 1 is 

as follows estimates annual hours worked on the farm by each household member. If a 

core household member indicates that agricultural work on the family farm was either 

their primary or secondary job then average hours worked per week is the basis for that 

individual’s annual agricultural labor.3 If not, then hours spent on household agricultural 

activities in the previous week provides the basis for the individual’s annual agricultural 

 
3 This includes not only those who claim that their job is as a “peasant on your own plot”, but also those who work in 
agriculture as a “family worker in a household owned business, without remuneration” or a “boss, employer, or 
business proprietor.”  
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labor.4 For non-core family members the most comprehensive data comes at the plot 

level - annual hours worked for these family members are estimated using group averages 

of time spent on household agricultural activities and the number of family members in 

each group, by type of family member.5  

Summing hours worked by the core family members and the non-core family 

members generates Family Labor Index 1. This approach prioritizes employment data 

over the time use data, avoids double-counting of those two measures, and uses as much 

of the data as possible. Equation (1) summarizes this preferred Family Labor Index: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 1𝑖𝑖 = 𝐻𝐻𝑖𝑖ℎ ∗ 52 + 𝐻𝐻𝑖𝑖𝑠𝑠 ∗ 52 + �𝐻𝐻𝑖𝑖𝑖𝑖𝑐𝑐 ∗ 52
𝑘𝑘

+ �𝑁𝑁𝑖𝑖𝑗𝑗 ∗
10

𝑗𝑗=1

𝐻𝐻�𝑗𝑗 ∗ 52 

where 𝐻𝐻𝑖𝑖ℎ, 𝐻𝐻𝑖𝑖𝑠𝑠, and 𝐻𝐻𝑖𝑖𝑖𝑖𝑐𝑐  are the weekly hours worked of household 𝑖𝑖’s household head, 

household head’s spouse, and household head’s kth children as described above, 𝐻𝐻�𝑗𝑗 is the 

average weekly hours worked of non-core family member type j (unique for each of the 

10 possible categories)6, and 𝑁𝑁𝑖𝑖𝑖𝑖 is the number of non-core family members in group 𝑗𝑗 of 

household 𝑖𝑖. 

The construction of indices two and three creates an indicator for the involvement 

of family members in household production followed by aggregation across family 

member types for each household in each year. These measures calculate an indicator for 

 
4 Individuals are asked about the use of their time on different activities over the previous week, one of which is 
“make any agricultural activity like weeding hoe[ing], cleaning, sowing, [etc.].” 
5The average number of hours spent engaged in agriculture in the past week is 18.99 hours for non-core family 
members. 
6 These family member types are: parents, parents in law, siblings, siblings in law, grandchildren, grandparents, aunts 
and uncles, nephews and nieces, cousins, and ex-spouses. 
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each of the 𝑗𝑗 = 1 … 14 types of family members (identified in relation to the household 

head).7 In recognition that for multi-parcel farms a given family member type may not 

help on all plots, we weight each family member type’s indicator by the share of the farm 

they participated on (measured as the size of the parcels that they participated on divided 

by the size of the total farm). For family member type 𝑗𝑗 of farm 𝑖𝑖, the indicator 𝐼𝐼𝑖𝑖𝑖𝑖 is given 

by: 

𝐼𝐼𝑖𝑖𝑖𝑖 =
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖′𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑗𝑗 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖
 

When aggregating, we then have the option of summing the indicator functions 

for each family member type or summing with weights that reflect the number of 

individuals in each family member type in each household in each survey year. The second 

index uses the former aggregation procedure, with no weights for the number of 

members of each family member type. The third index uses the latter aggregation 

procedure, applying weights that reflect the number of individuals in each family member 

type, 𝑁𝑁𝑖𝑖𝑖𝑖: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2𝑖𝑖 = �𝐼𝐼𝑖𝑖𝑖𝑖2
14

𝑗𝑗=1

 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 3𝑖𝑖 = �𝐼𝐼𝑖𝑖𝑖𝑖3 ∗ 𝑁𝑁𝑖𝑖𝑖𝑖

14

𝑗𝑗=1

 

 
7 These family member types are: spouse, children, step children, children in law, parents, parents in law, 
siblings, siblings in law, grandchildren, grandparents, aunts and uncles, nephews and nieces, cousins, and 
ex-spouses. 
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Family Labor Indices 1, 2, and 3 are positively correlated with each other. The 

correlation coefficients between index 2 and 3 range from 0.68 in 2002 to 0.71 in 2005. 

Family Labor Index 1 is less highly correlated with 2 and 3 than they are with each other, 

but this is reasonable given that it is based upon time use and is fundamentally different 

than the other two. Family Labor Index 1 is a measure of annual hours of agricultural labor 

from family members, capturing the intensity of agricultural labor of those family 

members included in the individual Adult and Child surveys, whereas indices 2 and 3 

measured the extent of family participation in the agricultural process. Family Labor Index 

1 is the preferred measure because it is less crude and takes advantage of as much of the 

data as possible, and it is used in the core regression analysis. Family Labor Indices 2 and 

3 provide alternative measures and are used for sensitivity analysis.   

Non-Family Labor 

The MxFLS records the number of non-household members that worked on each 

parcel used in agricultural production. This forms the basis of the index of non-family 

labor. For each parcel, we weight this number of individuals by that parcel’s share of the 

farm. These parcel level indicators are then aggregated across parcels for each household 

in each survey year to form a final measure. 

A second measure of non-family labor is recorded in the household’s expenditure 

on agricultural inputs, one of which is expenditure on laborers. These two measures are 

potentially very different, the former being unpaid non-family labor and the latter being 

paid labor. This might be especially true for ejido farms. Prior to including both measures 
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we check for correlation between having both expenditures on laborers and non-family 

laborers helping out on a farm. For those farms with non-family labor, 92%, 54%, and 39% 

of farms with such workers recorded no expenditure on labor in 2002, 2005, and 2009, 

respectively. There is a negative correlation coefficient of -0.39 between having non-

household members help with agricultural production and having paid for laborers, 

suggesting that these are distinct measures of labor and are not redundant. There 

appears to be no substantive difference between the use of these types of labor across 

ejido and non-ejido farms. 
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Appendix B.3 

Additional Descriptive Statistics for Household Controls 

Table B.3.1: Prevalence of Subsistence Farming, Monocropping, and Procampo 
Participation, by Farm Size and Survey Year 

 Subsistence Farming Monocropping Participation in 
Procampo 

Farm Size 2002 2005 2009 2002 2005 2009 2002 2005 2009 
0 to 0.5 ha 70% 53% 73% 76% 89% 75% 39% 38% 25% 
0.5 to 1 ha 58% 50% 54% 82% 77% 68% 42% 40% 37% 
1 to 2 ha 54% 36% 38% 73% 72% 83% 67% 47% 67% 
2 to 5 ha 27% 37% 30% 71% 63% 62% 56% 51% 46% 
5 to 10 ha 28% 21% 23% 58% 71% 69% 82% 74% 60% 
10 to 20 ha 21% 8% 44% 72% 67% 67% 85% 79% 78% 
> 20 ha 24% 25% 18% 72% 67% 82% 44% 42% 68% 
Total 43% 36% 41% 71% 73% 71% 45% 42% 39% 

 

 

Table B.3.2: Share of Farms Suffering Crop and Livestock Loss 
 2002 2005 2009 
Crop Loss 9% 7% 15% 
Livestock Loss 5% 2% 3% 

 

 

Table B.3.3: Share of Farms with Access to Credit, by Farm Size 

 2002 2005 2009 
Farm Size Credit Formal Credit Formal Credit Formal 
0 to 0.5 ha 31% 8% 24% 5% 95% 13% 
0.5 to 1 ha 36% 7% 33% 12% 93% 7% 
1 to 2 ha 27% 6% 39% 20% 90% 14% 
2 to 5 ha 47% 22% 34% 19% 92% 23% 
5 to 10 ha 47% 20% 26% 11% 91% 23% 
10 to 20 ha 46% 21% 33% 21% 89% 15% 
> 20 ha 40% 24% 29% 17% 95% 14% 
Total 39% 14% 32% 14% 92% 16% 
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Table B.3.4: Savings and Credit of Panel Households, by Farm Size 

 Has Savings Used Credit 
Farm Size 2002 2005 2009 2002 2005 2009 
0 to 0.5 ha 5% 6% 2% 21% 26% 22% 
0.5 to 1 ha 4% 8% 5% 13% 22% 14% 
1 to 2 ha 7% 7% 7% 17% 26% 26% 
2 to 5 ha 3% 5% 12% 27% 23% 26% 
5 to 10 ha 15% 9% 11% 39% 22% 23% 
10 to 20 ha 18% 13% 22% 23% 21% 30% 
> 20 ha 20% 13% 14% 40% 17% 18% 
Total 8% 8% 9% 25% 23% 23% 

 

 

Table B.3.5: Share of Farms with Indigenous and Literate Household Head, by Farm Size 

 Indigenous Ethnicity Literate 
Farm Size 2002 2005 2009 2002 2005 2009 
0 to 0.5 ha 28% 29% 29% 75% 76% 76% 
0.5 to 1 ha 38% 32% 28% 71% 77% 72% 
1 to 2 ha 38% 39% 36% 77% 76% 78% 
2 to 5 ha 27% 34% 26% 77% 78% 78% 
5 to 10 ha 20% 12% 11% 90% 93% 83% 
10 to 20 ha 13% 8% 19% 79% 92% 89% 
> 20 ha 24% 13% 32% 80% 79% 91% 
Total 28% 27% 25% 79% 81% 79% 

 

 

Table B.3.6: Share of Last Level of Education Attended, by Farm Size, 2002 

Farm Size 
None Elementary 

or Less 
Secondary 

School 
High 

School 
College 

0 to 0.5 ha 24% 60% 8% 7% 1% 
0.5 to 1 ha 18% 71% 9% 0% 0% 
1 to 2 ha 26% 60% 12% 1% 1% 
2 to 5 ha 24% 63% 7% 1% 5% 
5 to 10 ha 18% 67% 9% 5% 1% 
10 to 20 ha 18% 64% 13% 2% 3% 
> 20 ha 28% 52% 12% 4% 4% 
Total 23% 62% 10% 3% 2% 
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Appendix B.4 

Technology Coefficients Accompanying Tables 2.6 and 2.7 

Table B.4.1: Community Fixed Effects with Household Controls 

 (1) (2) (3) (4) (5) 
 Linear w/o 

Inputs 
Linear Quadratic Cubic Dummies 

Family Labor  -0.026 -0.040 -0.038 0.112** 
  (0.044) (0.047) (0.047) (0.051) 
Physical Capital  -0.041 -0.044 -0.043 0.078 
  (0.079) (0.080) (0.082) (0.070) 
Draft Animals  0.034 0.025 0.024 0.065 
  (0.040) (0.044) (0.048) (0.046) 
Purchased Intermediates  0.071 0.072 0.070 0.194*** 
  (0.051) (0.051) (0.051) (0.073) 
Non-family Labor  0.010 0.016 0.011 0.121** 
  (0.045) (0.054) (0.052) (0.046) 
Constant 8.004*** 9.289*** 10.000*** 10.427*** 6.309*** 
 (0.466) (1.067) (1.287) (1.505) (1.193) 
Community FE  Yes Yes Yes Yes Yes 
R2 0.69 0.72 0.72 0.72 0.68 
N 1235 1235 1235 1235 1235 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Appendix C.1 

Detailed Derivation of Decompositions 

Beginning with stochastic production frontiers estimated for both a base period 

(subscripted by 0) and a later period (subscripted by 1), the expected land productivity in 

each period is given by: 

𝐸𝐸(𝑞𝑞0) = 𝛽𝛽0 + 𝛿𝛿0𝐸𝐸(𝐴𝐴0) + 𝜷𝜷𝟎𝟎𝐸𝐸(𝒙𝒙0) + 𝐸𝐸(𝜸𝜸𝑐𝑐) + 𝐸𝐸(𝑣𝑣0) − 𝐸𝐸(𝑢𝑢0) 

and 

𝐸𝐸(𝑞𝑞1) = 𝛽𝛽0 + 𝜃𝜃1 + 𝛿𝛿1𝐸𝐸(𝐴𝐴1) + 𝜷𝜷𝟏𝟏𝐸𝐸(𝒙𝒙1) + 𝐸𝐸(𝜸𝜸𝑐𝑐) + 𝐸𝐸(𝑣𝑣1) − 𝐸𝐸(𝑢𝑢1) 

where 𝐸𝐸(𝑣𝑣𝑡𝑡) = 0 in each period by assumption if estimated using cross-sections, but may 

remain if estimated jointly with longitudinal data. The change in average land productivity 

between the two periods, ∆𝐸𝐸(𝑞𝑞), is given by 𝐸𝐸(𝑞𝑞1) − 𝐸𝐸(𝑞𝑞0): 

∆𝐸𝐸(𝑞𝑞) = 𝜃𝜃1 + 𝛿𝛿1𝐸𝐸(𝐴𝐴1) − 𝛿𝛿0𝐸𝐸(𝐴𝐴0) + 𝜷𝜷𝟏𝟏𝐸𝐸(𝒙𝒙1) − 𝜷𝜷𝟎𝟎𝐸𝐸(𝒙𝒙0) − ∆𝐸𝐸(𝑢𝑢) + ∆𝐸𝐸(𝑣𝑣) 

where ∆𝐸𝐸(𝑢𝑢) = 𝐸𝐸(𝑢𝑢1) − 𝐸𝐸(𝑢𝑢0) is the change in average technical efficiency between 

periods. Using period 𝑡𝑡 = 0 as a reference period, this change in average land productivity 

can be decomposed as follows by adding and subtracting both 𝛿𝛿1𝐸𝐸(𝐴𝐴0) and 𝜷𝜷𝟏𝟏𝐸𝐸(𝒙𝒙𝟎𝟎): 

∆𝐸𝐸(𝑞𝑞) = (𝛿𝛿1 − 𝛿𝛿0)𝐸𝐸(𝐴𝐴0) + 𝛿𝛿1[𝐸𝐸(𝐴𝐴1) − 𝐸𝐸(𝐴𝐴0)] + 𝜃𝜃1 + (𝜷𝜷𝟏𝟏 − 𝜷𝜷𝟎𝟎)𝐸𝐸(𝒙𝒙0) + 𝜷𝜷𝟏𝟏[𝐸𝐸(𝒙𝒙1)

− 𝐸𝐸(𝒙𝒙0)]− ∆𝐸𝐸(𝑢𝑢) 

or  

∆𝐸𝐸(𝑞𝑞) = ∆𝛿𝛿𝛿𝛿(𝐴𝐴0) + 𝛿𝛿1∆𝐸𝐸(𝐴𝐴) + 𝜃𝜃1 + ∆𝜷𝜷𝐸𝐸(𝒙𝒙0) + 𝜷𝜷𝟏𝟏∆𝐸𝐸(𝒙𝒙) − ∆𝐸𝐸(𝑢𝑢) 



162 

Note that, as with Oaxaca-Blinder decompositions, the results are sensitive to choice of 

reference group and a similar analysis could be conducted using 𝑡𝑡 = 1 as a reference 

period. 

Counterfactual productivity distributions are derived by iteratively replacing 

household attributes and estimated parameters from the later survey wave with values 

from the base year for each observation, uncovering the contribution of those changing 

factors to the changing land productivity distribution. This approach can be used to 

decompose the observed change in productivity distributions into its constituent parts. 

Let the land productivity distribution in the base period (2002) be given by 𝑔𝑔(𝑞𝑞0) and its 

distribution in the later survey wave (2009) be given by 𝑔𝑔(𝑞𝑞1): 

∆𝑔𝑔(𝑞𝑞) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔(𝑞𝑞0) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) + 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔(𝑞𝑞0) 

The first term on the right-hand side, 𝑔𝑔(𝑦𝑦1) − 𝑔𝑔�(𝑦𝑦1|𝑢𝑢0), provides a counterfactual 

estimate of the marginal contribution of changing technical efficiency to changing land 

productivity, whereas the second term, 𝑔𝑔�(𝑦𝑦1|𝑢𝑢0) − 𝑔𝑔(𝑦𝑦0), is the portion of the observed 

change in the distribution attributable to other factors. This can be further decomposed 

by allowing another determinant of 𝑔𝑔(𝑦𝑦1) to reflect 2002 values: 

𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔(𝑞𝑞0) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔�(𝑞𝑞1|𝜷𝜷0,𝑢𝑢0) + 𝑔𝑔�(𝑞𝑞1|𝜷𝜷0,𝑢𝑢0) − 𝑔𝑔(𝑞𝑞0) 

where the first difference is a measure of the marginal contribution of technical change 

to the changing land productivity distribution, and the latter difference is now the portion 

of the observed change in the land productivity distribution attributable to factors other 

than changing technical inefficiency and technical change. Following this logic for each of 
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the other sources of productivity gains – changing input intensities, farm size, and 

relationship between farm size and frontier productivity – we have: 

∆𝑔𝑔(𝑞𝑞) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔(𝑞𝑞0) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) + 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0) + ⋯ 

𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝒙𝒙0) + 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝒙𝒙0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝒙𝒙0,𝐴𝐴0) + ⋯ 

𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝒙𝒙0,𝐴𝐴0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝒙𝒙0,𝐴𝐴0, 𝛿𝛿0) 

or 

∆𝑔𝑔(𝑞𝑞) = ∆𝑔𝑔(𝑞𝑞|𝑢𝑢) + ∆𝑔𝑔(𝑞𝑞|𝜷𝜷,𝜃𝜃) + ∆𝑔𝑔(𝑞𝑞|𝒙𝒙) + ∆𝑔𝑔(𝑞𝑞|𝐴𝐴) + ∆𝑔𝑔(𝑞𝑞|𝛿𝛿)  

where  

∆𝑔𝑔(𝑞𝑞|𝑢𝑢) = 𝑔𝑔(𝑞𝑞1) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0)       

     ∆𝑔𝑔(𝑞𝑞|𝜷𝜷,𝜃𝜃) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃)    

     ∆𝑔𝑔(𝑞𝑞|𝒙𝒙) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0)     

     ∆𝑔𝑔(𝑞𝑞|𝐴𝐴) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0) − 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0,𝐴𝐴0)  

     ∆𝑔𝑔(𝑞𝑞|𝛿𝛿) = 𝑔𝑔�(𝑞𝑞1|𝑢𝑢0,𝜷𝜷0,𝜃𝜃,𝒙𝒙0,𝐴𝐴0) − 𝑔𝑔(𝑞𝑞0)      
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Appendix C.2  

Construction of Income Measure 

The Mexican Family Life Survey (MxFLS) does not provide a total income measure 

for households, so an income measure is aggregated from the individual and household-

level components of the survey. Income derived from agricultural versus non-agricultural 

activities are distinguished wherever possible to better understand the role of agriculture 

and agricultural policy in providing livelihoods and alleviating poverty in Mexico. The 

construction of a total household income measure in MxFLS is complicated by the facts 

that (a) the related income information is solicited in a disaggregated fashion, (b) this 

information comes from both the household-level survey and the individual-level surveys 

(separate for children and adults), and (c) there are considerable redundancies built into 

the survey, both within and between the household and individual survey components. 

Construction of Household Income in MxFLS 

Labor income is taken from the individual-level component of the survey, where 

income earned by individual household members is recorded in several different places 

of the survey and in several different ways. Individuals identifying as workers are asked 

different questions than those identifying as entrepreneurs, business-owners, or 

otherwise self-employed. A decision-making process is necessary to ensure that this 

component of income is comprehensive and complete while avoiding any double 

counting. See Technical Note 1 for details on the construction of wage labor income, and 

Technical Note 2 for details on the construction of self-employment labor income. In 
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contrast, non-labor income, government transfers, profits from non-agricultural 

businesses, agricultural production, non-agricultural home production, and rents derived 

from household assets are taken from the household-level component of the survey.  

Non-labor income includes the following forms of income, collected at the 

household level. All are included in the household income measure: 

• Scholarship or donations to support schooling other than through Oportunidades,  
• Severance Pay (and payments for labor risk and worker compensation),  
• Remittances (money, aid, donations, or gifts to the household by any other 

relative or friend, living in Mexico or abroad),  
• Pension and Retirement Funds,  
• Life Insurance Payments,  
• and Other non-labor income. 

 

Government transfers includes payments received through participation in 

Oportunidades as well as with a host of other government programs. See Technical Note 

3 for details. Profits from non-agricultural businesses are solicited in multiple forms, 

including “gross” profits, “net” profits, and “revenue.” As most businesses include one 

but not all measures, a consistent measure of “net” profits was constructed. See Technical 

Note 4 for details. Agricultural production is valued according to chapter 2. The MxFLS 

provides neither crop prices nor estimates of the value of agricultural output, requiring 

an alternative means of valuing output. Output is currently grouped by crop type and 

valued using Mexican producer prices for these crop groupings from FAO. See Appendix 

B.1 for more detail. The non-agriculture rural income section of the MxFLS household 

survey records income derived from different home production activities, including the 
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production of canned goods, clothes, craft production, furniture, medical plants, honey, 

and other. This income is included in total household income. See Technical Note 5 for 

more details on the prevalence of these activities. 

The household component of MxFLS asks households the value of different asset 

holdings, whether or not rent was derived from those different assets, and the value of 

the rents received. Incomplete data on valuations of the rents received required 

imputation, as these rents should be included in household income if they were received. 

Further, the second and third waves of the survey recorded value of rents for a much 

more limited set of assets than in the first. For consistency, (a) calculations are restricted 

to rents generated from the family’s home, other real estate, and financial assets, and (b) 

rents are imputed using asset and survey wave specific median rental rates for those 

households that record the value of those asset categories, claimed to have generated 

rents from those assets, but have missing values for the value of rents received. See 

Technical Note 6 for more details. 

Technical Note 1: Construction of Wage Labor Income 

Income earned by individual household members is recorded in three distinct 

places: first, the primary household respondent estimates the incomes earned by each 

household member; second, adult household members are directly asked a suite of 

detailed employment questions; and third, for those adults not directly interviewed a set 

of proxy questions is asked of a household representative. Income derived by the labor 

of children (those under the age of 15) is recorded separately. There is considerable 
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overlap between the estimated incomes provided by the primary household respondent 

and the employment data collected through direct or proxy adult interviews. As such, I 

include the estimates of household members’ incomes only in the case where there is no 

income data from direct or proxied interviews for those household members. 

Respondents in the Adult Survey of MxFLS are asked to characterize their 

employment over the previous year, whether they are: 

(i) a “[p]easant on your plot,” 
(ii) a “[f]amily worker in a household owned business, without remuneration,”  
(iii) a [n]on-agricultural worker or employee,”  
(iv) a “[r]ural laborer, or land peon (agricultural worker),”  
(v) a “[b]oss, employer or business proprietor,”  
(vi) a “[s]elf-employed worker (with or without non-remunerated worker),”  
(vii) or a “[w]orker without remuneration from a business or company that is not 

owned by the hhold.”  
 

Individuals who are non-agricultural or agricultural workers ((iii) or (iv) above) are then 

asked detailed wage information. Individuals who are peasants on their own plot (i), 

bosses, employers, or business proprietors (v), or self-employed (vi) are then typically 

asked a separate set of questions that are detailed in Technical Appendix 2.  

Workers’ incomes are separated into income derived from agricultural labor and 

from non-agricultural labor to facilitate the study of agriculture, rural livelihoods, and 

poverty in Mexico. This is done using industry classifications or whether the worker 

identifies as an “agricultural worker,” information solicited separately for each 

individual’s primary and secondary job. I categorize a job as agricultural if: 
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(i) The Mexican Classification of Occupations (MCO) was 41, “Agricultural, cattle 
activities, foresting, hunting and fishing wokers,” or 

(ii) The North American Industrial Classification System (NAICS) was 11, 
“Agriculture, cattle ranch, forest advantage, fish and hunt” or 

(iii) The individual identified as a “[r]ural laborer, or land peon (agricultural 
worker).” 

 

Note that the NAICS classification is not generated in the final wave of MxFLS, so in that 

year I rely solely on the MCO classification. 

Wage labor income earned in the Adult survey and Proxy survey asks for annual 

income, monthly income, a decomposed measure of annual income, and a decomposed 

measure of monthly income from each individual’s primary job along with the annual and 

monthly income for the secondary job. The decompositions break down wages into 

salary, piece-rate, profit-sharing, bonus, and benefits components, amongst others. Most 

individuals have multiple but not all measures, so decisions on treatment of the data have 

to be made. I derive two different measures of monthly income: 

• Monthly Income Measure 1 = stated total monthly income from primary job 
• Monthly Income Measure 2 = sum of monthly income decomposition from 

primary job 
 

From this I derive four different measures of annual income from workers’ primary job: 

• Annual Income Measure 1 = total annual income from primary job 
• Annual Income Measure 2 = sum of annual income decomposition from 

primary job 
• Annual Income Measure 3 = 12 * Monthly Income Measure 1 
• Annual Income Measure 4 = 12 * Monthly Income Measure 2 
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As shown in tables C.2.1 through C.2.3 below, in each survey wave most respondents with 

Measure 1 also have Measure 3. Similarly, most respondents with Measure 2 also have 

data for calculating Measure 4. In short, respondents typically either state a total income 

or provide detailed decomposition of their income, but not both.  

Table C.2.1: Share of Adults with Different Annual Income Measures, 2002 
Has Measure (N) Measure 1 Measure 2 Measure 3 Measure 4 
Measure 1 (2,656) -- <1% 93% 5% 
Measure 2 (2,982) <1% -- 16% 63% 
Measure 3 (3,135) 79% 15% -- <1% 
Measure 4 (2,114) 6% 89% 1% -- 

 
Table C.2.2: Share of Adults with Different Annual Income Measures, 2005 

Has Measure (N) Measure 1 Measure 2 Measure 3 Measure 4 
Measure 1 (5,339) -- 0% 97% 3% 
Measure 2 (924) 0% -- 38% 61% 
Measure 3 (5,823) 90% 6% -- 0% 
Measure 4 (753) 20% 75% 0% -- 

 
Table C.2.3: Share of Adults with Different Annual Income Measures, 2009 

Has Measure (N) Measure 1 Measure 2 Measure 3 Measure 4 
Measure 1 (6,180) -- 0% 96% 3% 
Measure 2 (1,013) 0% -- 22% 77% 
Measure 3 (6,569) 91% 3% -- 0% 
Measure 4 (1,018) 19% 77% 0% -- 

 

Where observations have multiple measures of wage income, they are consistent 

on average, but there are some wildly different income measures. It appears to matter 

which annual income measures is used. Without any priors on which measure is expected 

to be most accurate, I base my preferences over the four annual wage labor income 

measures first on which measures are most common and second which minimize 
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assumptions. I assign annual income from the primary job, for both ag and non-ag work, 

as follows: 

• Use the total annual income datapoint if available (Annual 1) 
• Use the annualization of total monthly income if needed (Annual 3) 
• Use the decomposed/detailed annual income measure if needed (Annual 2) 
• Use the annualization of decomposed/detailed monthly income measure if 

none of the above are available (Annual 4) 
 

To derive annual income from workers’ potential secondary jobs, for both ag and 

non-ag work, I prefer the annual datapoint over the annualized monthly datapoint, but 

use the annualized monthly datapoint in the few cases where it exists but an annual 

datapoint does not. For each individual in each household I calculate their total annual 

agricultural income (annual ag income from primary job plus annual ag income from 

secondary job) and total annual non-agricultural income (annual non-ag income from 

primary job plus annual non-ag income from secondary job) in each period. 

For those adults where detailed income data from the Adult or Proxy survey does 

not exist but income estimates are provided by the primary household respondent, that 

estimated income is used. Because the household respondent is not asked about the 

nature of other household members’ work, that income cannot be binned into 

agricultural or non-agricultural. As such, there are three potential forms of wage labor 

income: agricultural, non-agricultural, and other (estimated). 

Household members under the age of 15 are not asked detailed employment 

questions. Rather, they are simply asked how much they earned per week, month, or year 
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over the previous year. These answers are annualized and summed over all children of 

each household, generating a measure of wage labor earned by children. 

Technical Note 2: Construction of Self-Employment Labor Income  

According to the survey questionnaire, Self-Employment Income is solicited from 

those who identify as peasants on their own plot, bosses, employers, or business 

proprietors, or self-employed, as discussed in Technical Note 1 above. As with wage labor 

income, the self-employment income of adults’ primary and secondary income sources 

are binned as agricultural or non-agricultural based upon MCO and NAICS industrial 

classifications. In addition, any income derived from work as a “peasant on your own plot” 

is automatically binned as being derived from agriculture.  

I am concerned that counting income of “peasants” here may double count with 

the value of production from the household-level agricultural analysis, as some 

agricultural production is brought to market for many farming households in MxFLS. So, I 

break self-employment labor income into three categories: farmer self-employment 

income, agricultural self-employment income, and non-agricultural self-employment 

income.  

Self-employment income from the adult survey asks for gross and net values of 

profits from these activities from the previous month and from the previous year, and 

from these a consistent measure of self-employment income for each individual is 

derived. As with wage labor income, annual measures are prioritized over monthly 

measures of income. A consistent measure of net profits from self-employment activities 
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is constructed by generating ratios of net to gross profits for those respondents that have 

both net and gross measures of profits from self-employment activities. I calculate these 

separately for reported annual income and reported income from the previous month. 

Theoretically these ratios should all be less than or equal to 1, although in practice they 

all are not. For all observations with ratios less than or equal to 1, the mean net/gross 

ratio for each year are shown in TablesC.2.4 and C.2.5.  

Table C.2.4: Mean Net/Gross Profit Rates, Annual Income 
Survey Round Mean Net/Gross Profit Rate 
2002 78.4% 
2005 84.1% 
2009 74.5% 

Note: calculated using observations with Net/Gross Profit Rates less than or equal to one. 
 
Table C.2.5: Mean Net/Gross Profit Rates, Monthly Income 

Survey Round Mean Net/Gross Profit Rate 
2002 80.1% 
2005 82.1% 
2009 66.8% 

Note: calculated using observations with Net/Gross Profit Rates less than or equal to one. 
 

Those individuals with an annual measure of net income from these activities use 

that measure (Self-Employment Income Measure 1). For those with annual gross income 

but not net income, net income is estimated using the mean net/gross income ratio for 

the appropriate year, as shown in Table B4 (Self-Employment Income Measure 2). For 

those individuals with net monthly income, this measure is annualizee by multiplying by 

12 (Self-Employment Income Measure 3). For those individuals with gross monthly 

income measures, this data is first adjusted to net monthly income using the mean 
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net/gross income ratios of the appropriate year, as seen in Table A2-2, and then 

annualized (Self-Employment Income Measure 4). 

This potentially generates four sets of income measurements from each self-

employment activity from each adult. To construct a comparable and consistent measure 

of self-employment income I use annual net profits data over monthly data if available. I 

then prefer net data over estimated net data when possible. In short, I use Self-

Employment Measure 1 where possible, Measure 2 if needed, followed by Measure 3 and 

then Measure 4. 

Technical Note 3: Payments from Government Programs 

Payments through Oportunidades are separated from payments through other 

government programs. These other government programs include: 

• PROCAMPO 
• VIVAH Program (Savings and Subsidies Program for Progressive Homes) 
• Word (oral) Credit Program 
• Social Conversion Program 
• PET (Temporary Job Program) 
• Alianza Para El Campo (Agricultural Aid) 
• Funds for Micro, Small, and Medium Enterprises 
• FONAES (National Support Fund for the Solidarity Enterprises) 
• Other. While I do not have data on what “Other” programs include, but I do have 

values of any income received from them. 
 

Note that in 2009 there is no Micro or Word, and VIVAH turned into TU CASA Y 

VIVIENDA RURAL. The following government programs were added: 

• 70 Y Mas (70 and Older)  
• Apoyo Alimentario (Food Support) 
• and Opciones Productivas (Productive Options)  
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As shown in Table C.2.6, participation in Oportunidades is most common, followed 

by Procampo, a program meant to support farmers and help them to remain competitive 

in the wake of NAFTA-era reforms.  

Table C.2.6: Participation in Government Programs 

Program 
2002 2005 2009 

N % of Sample N % of Sample N % of Sample 
Oportunidades 1,177 14.0% 1,496 17.7% 1,662 16.4% 
Procampo 692 8.2% 491 5.8% 532 5.3% 
Vivah 14 0.2% 2 <0.1% 12 0.1% 
Word 57 0.7% 6 0.1% -- -- 
Social Conversion 0 0.0% 1 <0.1% 0 0.0% 
PET 15 0.2% 1 <0.1% 7 0.1% 
Alianza Para El Campo 26 0.3% 15 0.2% 14 0.1% 
Funds for Enterprises 6 0.1% 7 0.1% -- -- 
FONAES 0 0.0% 7 0.1% 3 <0.1% 
70 y Mas -- -- -- -- 584 5.8% 
Apoyo Alimentario -- -- -- -- 134 1.3% 
Opciones Productivas -- -- -- -- 8 0.1% 
Other 99 1.2% 115 1.4% 223 2.2% 

 

Technical Note 4: Profits from Non-Agricultural Businesses 

The MxFLS has data on non-agricultural businesses owned by households, 

including 4 measures of annual “income” from each business: revenue, gross profit, net 

profit, and loss. No businesses in any period has both of the profit measures, and some 

contain none, and not all businesses record revenues/losses. In each period, for example, 

less than 10% of businesses with a measure of profits does not have revenues. In each 

period, 12-20% of businesses with revenues don’t have any measure of profits. 

Construction of a consistent and comparable income measure from these non-

agricultural businesses is needed, and as with self-employment income the notion of net 
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profits is used, in part for consistency, because it is most commonly recorded, and 

because it is likely the correct conceptual measure for the contribution of the business to 

household income. Note that in any period, 21-32% of non-agricultural businesses don’t 

have any revenue or any profit data, so no income from these businesses is included.  

Mean net profit rates and net profit/gross profit ratios are used to impute net 

profits for those businesses that do not provide that data. Ideally these rates would vary 

by type of business, but this data is not currently available. Table C.2.7 shows average 

gross and net profit rates (as a percentage of total revenues) in each survey year for those 

businesses recording both profits and revenues. The table includes profit/revenue rates 

for each measure of profit in each year that are less than or equal to 100% of the listed 

revenues because some observations show profits higher than revenues - there must be 

some measurement error in either revenue and/or profits). 

Table C.2.7: Mean (Median) Profit/Revenue Rates, by Survey Year 
Year Gross Profit Rate Net Profit Rate 
2002 85% (100%) 71% (84%) 
2005 80% (100%) 64% (63%) 
2009 13% (10%) 11% (10%) 

 

Net profits for each are calculated as follows: 

• If a business records net profits it is kept. 
• If a business has revenues but no measure of profits, the survey year-specific 

mean net profit rate is used to impute net profits. 
• If a business has gross profits but no revenue recorded and no net profit, I 

impute net profits using the appropriate mean net profit/gross profit ratio for 
that survey wave. 
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The mean net profit rates and net profit/gross profit ratios used are shown in Table C.2.8. 

A small number of businesses record losses from the previous year. While I do not include 

business losses in the primary measure of income, an alternative measure that accounts 

for these business losses is generated.  

Table C.2.8: Mean Net Profit Rates and Net/Gross Profit Ratios Used for Imputation 

Year Net Profit Rate Net/Gross Ratio 
2002 0.710 0.832 
2005 0.641 0.799 
2009 0.110 0.863 

 

Technical Note 5: Rural Non-Agricultural Income 

The rural non-agricultural income component of MxFLS is conducted at the 

household-level, soliciting data on income derived from a number of home production 

activities. Those production activities that have been counted as livestock production 

(sale of eggs, meat products, dairy products, and fattened animals) and excluded to avoid 

double-counting, and the rest are aggregated. Table C.2.9 lists the N’s and share of 

households claiming they sold such products that have valuations of sales from the 

previous year, for each survey year. Note that, for those households that claimed they 

have sold such products but have no data on the values of annual production, some have 

values for sales from the previous month. In such cases the monthly data has been 

annualized. 
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Table C.2.9: Number of Households with Rural Non-Ag Production and Share with Sales 
 2002 2005 2009 
 N Share with 

Value 
N Share with 

Value 
N Share with 

Value 
Canned Goods 4 100% 8 100% 11 100% 
Clothes 81 93% 78 94% 88 98% 
Craft Production 110 86% 135 96% 104 99% 
Furniture 17 88% 20 90% 8 100% 
Medical Plants 8 88% 19 95% 13 100% 
Honey 13 85% 10 100% 6 100% 
Other 167 90% 144 90% 210 90% 

 

Technical Note 6: Rents Earned from Household Assets 

The household component of MxFLS asks about the ownership of different asset 

categories, the valuation of those assets, whether or not those assets were rented out for 

income, and the value of the rents received over the previous year. There is a considerable 

amount of missing data for these valuations. Table C.2.10 shows the number of 

households claiming to have assets and to have rented them (in parentheses), and the 

share of those households that actually have valuations. For those households that claim 

to have rented assets for income but do not have data on the value of incomes received, 

those valuations need to be imputed. Note that in 2005 and 2009, the latter two survey 

waves of MxFLS, rental of assets is asked for a much smaller set of asset categories. While 

all asset categories are shown here, for consistency the only rents included in household 

income in any year are those derived from renting the “Home,” “Real Estate,” and 

“Financial” assets. 
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Table C.2.10: Number of Households with Assets and Rents, the Share with Valuations, 
and the Share of Rentals with Valuations, by Survey Year and Asset  

 2002 2005 2009 
 Value Rent N Value Rent N Value Rent N 
Home 82.9% 90.0% 6197 

(30) 
81.7% 73.3% 6409 

(30) 
73.3% 79.2% 7088 

(24) 
Real Estate 84.2% 91.2% 1982 

(159) 
81.7% 85.3% 1463 

(102) 
74.7% 82.3% 1804 

(62) 
Financial 72.9% 47.6% 1330 

(208) 
65.2% 35.2% 1117 

(142) 
56.5% 23.9% 1136 

(46) 
 

Average rental rates for each asset category recorded in MxFLS are generated for 

each survey year using observations that have both valuations of asset holdings and 

values of rents received from their being rented out. These average values, both mean 

and median, are shown in Table C.2.11 below. As there appear to be significant outliers 

skewing the mean, I use median rental rates in each year to impute the rents received 

from “Home,” “Real Estate,” and “Financial” assets owned for those households that have 

valuations of these assets, claimed to have rented them, but provided no values for the 

rents received. This brings up the broader question of whether or not we should be 

imputing the flow of services from all of these household assets. The rental rates from 

2002 could potentially be used to do this, but are not at this point. Note that, to the 

degree that some of these assets are already counted (for example the services generated 

by assets used in agricultural production are already counted) we would have to be 

careful about double-counting.  
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Table C.2.11: Mean and Median Rental Rates, by Survey Year and Asset  

 2002 2005 2009 
 Mean Med  N   Mean Med  N  Mean Med  N  
Home 3.9% 3.6% 24 6.0% 0.9% 14 15.8% 4.0% 17 
Real Estate 777.0% 6.0% 137 192.1% 4.0% 67 549.7% 3.8% 41 
Financial 6,387.5% 2.93% 98 21.4% 4.2% 50 3.7% 1.0% 9 
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Appendix C.3  

Results from Stochastic Frontier Analysis 

Table C.3.1: Stochastic Production Frontier Results 

Frontier Equation 
Farm Size -0.650*** 
 (0.063) 
2009 Dummy 0.237 
 (0.271) 
2009*Farm Size -0.016 
 (0.083) 
Family Labor 0.134*** 
 (0.046) 
Physical Capital -0.047 
 (0.066) 
Draft Animals 0.086 
 (0.054) 
Purchased Intermediates 0.073 
 (0.057) 
Non-family Labor 0.016 
 (0.084) 
2009*Family Labor 0.028 
 (0.030) 
2009*Physical Capital -0.009 
 (0.034) 
2009*Draft Animals -0.010 
 (0.039) 
2009*Purchased Intermediates 0.016 
 (0.023) 
2009*Non-family Labor -0.102 
 (0.104) 
  

Inefficiency Equation 
Farm Size -0.040 
 (0.126) 
2009 Dummy 0.650 
 (0.477) 
2009*Farm Size 0.140 
 (0.149) 
Procampo Participation -0.958*** 
 (0.325) 
Access to Formal Credit -0.381 
 (0.412) 
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High School 0.338 
 (0.686) 
College -6.799 
 (0.073) 
𝐸𝐸(𝜎𝜎𝑢𝑢2) 0.945 
𝜎𝜎𝑢𝑢2 0.621 
𝜆𝜆 1.522 
N 448 

Standard errors in parentheses 
* p<0.10, ** p<0.05, *** p<0.01 
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Appendix C.4  

Counterfactual Land Productivity Distributions 

 

Figure C.4.1: Counterfactual Distribution, Changing Technical Inefficiency 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Figure C.4.2: Counterfactual Distribution, Changing Input Intensities 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Figure C.4.3: Counterfactual Distribution, Changing Technology 

 
Note: Estimated with the default kernel density  command in Stata, using an Epanechnikov kernel 
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Figure C.4.4: Counterfactual Distribution, Changing Farm Size 

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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Figure C.4.5: Counterfactual Distribution, Changing Farm Size – Frontier Relationship  

 
Note: Estimated with the default kernel density command in Stata, using an Epanechnikov kernel 
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