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Abstract Many analyses in particle and nuclear physics use
simulations to infer fundamental, effective, or phenomeno-
logical parameters of the underlying physics models. When
the inference is performed with unfolded cross sections, the
observables are designed using physics intuition and heuris-
tics. We propose to design targeted observables with machine
learning. Unfolded, differential cross sections in a neural
network output contain the most information about param-
eters of interest and can be well-measured by construction.
The networks are trained using a custom loss function that
rewards outputs that are sensitive to the parameter(s) of inter-
est while simultaneously penalizing outputs that are differ-
ent between particle-level and detector-level (to minimize
detector distortions). We demonstrate this idea in simulation
using two physics models for inclusive measurements in deep
inelastic scattering. We find that the new approach is more
sensitive than classical observables at distinguishing the two
models and also has a reduced unfolding uncertainty due to
the reduced detector distortions.
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1 Introduction

Simulations are widely used for parameter estimation in par-
ticle and nuclear physics. A typical analysis will follow one
of two paths: forward-folding or unfolding. In the forward-
folding pipeline, the target physics model must be specified at
the time of inference. We focus on unfolding, where detector
distortions are corrected in a first step (unfolding) and then the
resulting cross section can be analyzed in the context of many
models by any end users. In the unfolding pipeline, the first
step is to identify observables sensitive to a given parame-
ter(s). These are typically identified using physical reasoning.
Then, the differential cross sections of these observables are
measured, which includes unfolding with uncertainty quan-
tification. Finally, the measured cross sections are fit to sim-
ulation templates with different values of the target param-
eters. This approach has been deployed to measure funda-
mental parameters like the top quark mass [1] and the strong
coupling constant αs(mZ ) [2,3] as well as parton distribution
functions [4–7] and effective or phenomenological parame-
ters in parton shower Monte Carlo programs [8].

A key drawback of the standard pipeline is that the observ-
ables are constructed manually. There is no guarantee that the
observables are maximally sensitive to the target parameters.
Additionally, the observables are usually chosen based on
particle-level information alone and so detector distortions
may not be small. Such distortions can reduce the sensitiv-
ity to the target parameter once they are corrected for by
unfolding. In some cases, the particle-level observable must
be chosen manually because it must be calculable precisely in
perturbation theory; this is usually not the case when Monte
Carlo simulations are used for the entire statistical analy-
sis. There have been proposals to optimize the detector-level
observable for a given particle-level observable [9] since they
do not need to be the same. Alternatively, one could measure
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the full phase space and project out the desired observable
after the fact [10–29] (see Ref. [30] for an overview).

We propose to use machine learning for designing observ-
ables that are maximally sensitive to a given parameter(s) or
model discrimination while also being minimally sensitive to
detector distortions. Simultaneous optimization ensures that
we only use regions of phase space that are measurable. A tai-
lored loss function is used to train neural networks. We envi-
sion that this approach could be used for any case where sim-
ulations are used for parameter estimation. For concreteness,
we demonstrate the new technique to the case of differentiat-
ing two parton shower Monte Carlo models of deep inelastic
scattering. While neither model is expected to match data
exactly, the availability of many events with corresponding
detailed simulations makes this a useful benchmark problem.
We do not focus on the unfolding or parameter estimation
steps themselves, but there are many proposals for doing
unfolding [10–30] and parameter estimation [31–41] with
machine learning. Instead, our focus is on the construction
of observables that are engineered to be sensitive to target
parameters or to distinguishing models while also insensi-
tive to detector effects. The latter quality ensures that uncer-
tainties arising from the dependence on unfolding ‘priors’ is
small. This is explicitly illustrated using a standard, binned
unfolding method in the deep inelastic scattering demonstra-
tion.

This paper is organized as follows. Section 2 introduces
our approach to observable construction. The datasets used
for demonstrating the new method are introduced in Sect. 3.
Results with these datasets are presented in Sect. 4. The paper
ends with conclusions and outlook in Sect. 5.

2 Methodology

We begin by constructing new observables that are simulta-
neously sensitive to a parameter while also being minimally
sensitive to detector effects. This is accomplished by training
neural networks f with the following loss function:

L[ f ] = Lclassic[ f (z), μ] + λ Lnew[ f (x), f (z)], (1)

where λ > 0 is a hyperparameter that controls how much
we regularize the network. We have pairs of inputs (Z , X)

where Z represents the particle-level inputs and X repre-
sents the detector-level inputs. Capital letters represent ran-
dom variables while lower-case letter represent realizations
of the corresponding random variables. We consider the case
X and Z have the same structure, i.e. they are both sets of 4-
vectors (so it makes sense to compute f (z) and f (x)). This is
the standard case where X is a set of energy-flow objects that
are meant to correspond to the 4-vectors of particles before

being distorted by the detector. Furthermore, we fix the same
definition of the observable at particle and detector level.

The first term in Eq. 1, Lclassic, governs the sensitivity of
the observable f to the target parameter μ at particle level.
For regression tasks,μwill be a real number, representing e.g.
a (dimensionless) mass or coupling. For two-sample tests,
μ ∈ {0, 1}, where 0 represents the null hypothesis and 1
represents the alternative hypothesis. A classification setup
may also be useful for a regression task, by using two samples
at different values of the target parameter. The second term in
Eq. 1, Lnew, governs how sensitive the new observable is to
detector effects. It has the property that it is small when f (x)
and f (z) are the same and large otherwise. Whenλ → ∞, the
observable is completely insensitive to detector effects. This
means that any uncertainty associated with removing such
effects (including the dependence on unfolding ‘priors’) is
eliminated. The best value of λ will be problem specific and
should ideally be chosen based on one or more downstream
tasks with the unfolded data.

We introduce the method with a toy model for contin-
uous parameter estimation (Sect. 2.1), which demonstrates
the essential ideas in a simplified context. This is followed
by a more complete binary classification example using sim-
ulated deep inelastic scattering events from the H1 experi-
ment at HERA (Sect. 2.2), where the goal is to be maximally
sensitive to distinguishing two datasets.

2.1 Toy example for continuous parameter estimation

The training samples are generated with a uniform distribu-
tion for the parameter of interest μ, so each event is specified
by (μi , zi , xi ). Then, we parameterize the observable f as a
neural network and optimize the following loss function:

L[ f ] =
∑

i

( f (zi ) − μi )
2 + λ

∑

i

( f (xi ) − f (zi ))
2, (2)

where the form of both terms is the usual mean squared error
loss used in regression tasks. The first term trains the regres-
sion to predict the parameter of interest μ while the second
term trains the network to make the predictions given detector
level features x and particle level features z similar. We use
the prediction based on particle-level features zi in the first
term in the loss function. Results for the alternative choice,
using the detector-level features xi are shown in Appendix A.

The loss function in Eq. 2 is similar to the setting of decor-
relation, where a classifier is trained to be independent from
a given feature [42–60]. One could apply decorrelation tech-
niques in this case to ensure the classifier is not able to distin-
guish between features at detector level and at particle level.
However, this will only ensure that the probability density for
f is the same for particle level and detector level. To be well-
measured, we need more than statistical similarity between
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Fig. 1 Input features and resolution model for toy regression example. Two different experimental resolution functions, A and B, are shown

distributions - we need them to be similar event by event. The
final term in Eq. 2 is designed for exactly this purpose.

All deep neural networks are implemented in Keras [61]/
TensorFlow [62] and optimized usingAdam [63]. The net-
work models use two hidden layers with 50 nodes per layer
and Rectified Linear Unit (ReLU) activation functions for
intermediate layers and a linear activation function for the
last layer.

Figure 1 illustrates the input features and resolution model
for the toy study. Two particle-level features z0 and z1 are
modeled as normal distributions: Z0 ∼ N (μ, 0.5) and Z1 ∼
N (μ, 0.1), where feature 1 is significantly more sensitive
to the parameter of interest μ. The experimental resolution
on the features is given by X0 ∼ N (Z0, 0.1) and X1 ∼
N (Z1, 0.5) so that feature 0 is well measured, while feature
1 has a relatively poor resolution. For this model, the net

experimental sensitivity to μ is the same for both features,
but feature 0 is much less sensitive to detector effects. Our
proposed method will take this into account in the training
of the neural network.

To demonstrate the sensitivity to uncertainties associated
with detector effects, we make predictions using f trained
with resolution model A on a sample generated with resolu-
tion model B, shown in Fig. 1, where the width is increased
by a factor of 1.4 for both features and a bias of 0.2 is intro-
duced for the x1 feature. Figure 2 shows the results as a func-
tion of the λ hyperparameter. With λ = 0, the network relies
almost entirely on feature 1, which has better particle-level
resolution. As λ increases, more emphasis is placed on fea-
ture 0, which has much better detector-level resolution. The
resolution of the prediction starts at close to

√
0.52 + 0.12

for resolution model A, then reaches a minimum close to
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Fig. 2 Results of toy regression example as a function of the λ hyperparameter

√
0.52 + 0.12/

√
2 near λ = 0.5 where both features have

equal weight in the prediction. The bias in the prediction for
resolution model B is large for λ = 0 but falls significantly
with increasing λ. This validates the key concept of the pro-
posed method.

2.2 Full example for binary classification

In the second example, we wish to design an observable that
will discriminate between two different Monte Carlo parton
shower models, while minimizing uncertainties from detec-
tor effects. The objective will be to use the distribution of the
observable to indicate which model best represents the data.
The discrimination test will be successful if the particle-level
distribution of the observable for only one of the models is
statistically consistent with the unfolded distribution of the
observable from data. Ideally, the difference in the shape of
the particle-level distributions of the observable for the two
models will be large compared to the size of the uncertainty
from detector effects in the unfolding.

To design the observable for this task, we train a binary
classification neural network to distinguish the two parton
shower models, where we minimize detector effects with our
additional term in the loss function. The observable is trained
to classify events, but this is not a case where each event in the
data may be from one of two categories, such as in a neural
network trained to discriminate signal from background. All
of the events in the data are from the same class. The task is
to use the shape of the observable to test which model is more
consistent with the data. The neural network is trained to find
differences in the input features that allow it to distinguish the
two models and this information is reflected in the shape of
the neural network output distribution. This makes the shape
comparison the appropriate statistical test for the observable.

In the binary case, we have two datasets generated from
simulation 1 (sim. 1) and simulation 2 (sim. 2). The loss
function for classification is given by

L[ f ] = −
∑

i∈sim. 1

log( f (zi )) −
∑

i∈sim. 2

log(1 − f (zi )) + λ

×
∑

i∈sim. 1 & 2

( f (xi ) − f (zi ))
2, (3)

where the first two terms represent the usual binary cross
entropy loss function for classification and the third term rep-
resents the usual mean squared error loss term for regression
tasks. The notation i ∈ sim. j means that (zi , xi ) are drawn
from the j th simulation dataset. As in the regression case, the
hyperparameter λ must be tuned and controls the trade off
between sensitivity to the dataset and sensitivity to detector
effects. The network model is the same as in the previous
example except that the final layer uses a sigmoid activation
function. The binary case is a special case of the previous
section where there are only two values of the parameter
of interest. It may also be effective to train the binary case
for a continuous parameter using two extreme values of the
parameter. In this paper, we use high-quality, well-curated
datasets from the binary case because of their availability,
but it would be interesting to explore the continuous case in
the future.

To determine the efficacy of the new observable, we unfold
the pseudodata. Unfolding corrects for detector effects by
performing regularized matrix inversion on the response
matrix. We employ the widely-used TUnfold method [64],
which is a least-squared-based fit with additional regulariza-
tion. We useTUnfoldversion 17.9 [64] through the interface
included in the Root 6.24 [65] distribution. The response
matrix is defined from a 2D binning the NN output, given
detector level and particle level features. The matrix uses
24 and 12 bins for detector and particle inputs, respectively,
which gives reasonable stability and cross-bin correlations
in the unfolding results. The ultimate test is to show that
the difference between sim. 1 at detector-level unfolded with
sim. 2 for the response matrix and the particle level sim. 1
(or vice versa) is smaller than the difference between sim. 1
and sim. 2 at particle level. In other words, this test shows
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Fig. 3 Particle level distributions of the nine NN input features for the Djangoh and Rapgap generators

that the ability to distinguish sim. 1 and sim. 2 significantly
exceeds the modeling uncertainty from the unfolding.

3 Datasets

We use deep inelastic scattering events from high-energy
electron-proton collisions to demonstrate the performance
of the new approach. These simulated data are from the H1
experiment at HERA [66,67] and are used in the same way
as Ref. [68]. They are briefly described in the following.

Two parton shower Monte Carlo programs provide the
particle-level simulation: Rapgap 3.1 [69] or Djangoh 1.4
[70]. The energies of the incoming beams are Ee = 27.6
GeV and Ep = 920 GeV, for the lepton and proton, respec-
tively, matching the running conditions of HERA II. Radi-

ation from Quantum Electrodynamic processes is simulated
by Heracles routines [71–73] in both cases. The outgoing
particles from these two datasets are then fed into a Geant

3 [74]-based detector simulation.
Following the detector simulation, events are recon-

structed with an energy-flow algorithm [75–77] and the
scattered electron is reconstructed using the default H1
approach [23,78,79]. Mis-measured backgrounds are sup-
pressed with standard selections [78,79]. This whole process
makes use of the modernized H1 computing environment at
DESY [80]. Each dataset is comprised of approximately 10
million events.

Figure 3 shows histograms of the nine features used
as input for the neural network training. These features
include the energy E , longitudinal momentum pz , transverse
momentum pT , and pseudorapidity η of the scattered elec-
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tron and the total Hadronic Final State (HFS), as well as the
difference in azimuthal angle between the two �φ(e, HFS).
The HFS is quite sensitive to the η acceptance of the detec-
tor. In order to have HFS features that are comparable for
the particle and detector definitions, we only use generated
final state particles with |η| < 3.8 in the definition of the
particle-level HFS 4-vector. Both simulations provide event
weights that must be used for physics analysis. In our study,
we do not weight the simulated events in order to maximize
the effective statistics of the samples in the neural network
training. This has a small effect on the spectra, but has a large
impact on the number of effective events available for train-
ing. The electron feature distributions agree very well for the
two simulations, while there are some visible differences in
the HFS features.

4 Results

We now apply the method introduced in Sect. 2.2 to the DIS
dataset described in Sect. 3. Figure 4 shows the results of four
neural network trainings with different values of λ, which
sets the relative weight of the MSE term in the loss func-
tion (Eq. 3) that controls the sensitivity to detector effects.
With λ = 0, the classification performance for particle-level
inputs is strong, while there are significant disagreements
between the particle and detector level neural network out-
puts. As λ increases, the particle and detector level agreement
improves at the cost of weaker classification performance. In
what follows, we will use the network trained with λ = 100.
For a parameter estimation task, the entire distribution will
be used for inference and therefore excellent event-by-event
classification is not required.

Next, we investigate how these spectra are preserved after
unfolding. Figure 5 shows the results of unfolding the neu-
ral network output, given detector-level features, to give the
neural network output distribution for particle-level features.
The input distribution for the unfolding is 105 events ran-
domly chosen from a histogram of the neural network output
for detector-level inputs from the simulation. The unfold-
ing response matrices for the two simulations agree fairly
well and are concentrated along the diagonal. The output of
the unfolding shows very good agreement with the true dis-
tribution of the neural network output given particle-level
inputs, demonstrating acceptable closure for the unfolding.
The correlations in the unfolding result are mostly between
neighboring bins of the distribution.

One of the biggest challenges for the λ = 0 case is that
it is highly sensitive to regions of phase space that are not
well-constrained by the detector. As a result, the output of
the unfolding is highly dependent on the simulation used

in the unfolding (prior). The left side of Fig. 6 shows the
model dependence of the unfolding and the ability of the
neural network to perform the model classification task. The
unfolding model dependence is estimated from a comparison
with using the response matrix from the other simulation.
We test the model discrimination sensitivity by dividing the
unfolded distribution by the particle-level distribution from
the other simulation. The degree to which this ratio deviates
from unity is a measure of the model discrimination power of
the method. For the neural network, the model dependence of
the unfolding is small and generally less than 10%. The size
of the deviation from unity for the neural network is large
compared to the size of the uncertainty, which is dominated
by the model dependence, indicating that the neural network
can distinguish the two simulations.

Figure 3 shows that some of the HFS variables in the
input features may be able to distinguish the two models
directly. The right side of Fig. 6 shows the results of run-
ning the unfolding procedure using the HFS η distribution
for model discrimination, where the model dependence is
significantly larger, compared to the neural network output.
The shape is distorted, including deviations up to 20%, when
the response matrix from the other simulation was used in
the unfolding. Since the modeling uncertainty is compara-
ble to or larger than the size of the effect we are trying to
probe, such observables are much less useful than the neural
network output for the inference task.

We perform a quantitative evaluation of the model dis-
crimination power for this example using a χ2 computed
from the difference between the unfolded distribution and
the particle-level distribution for a given model. The uncer-
tainties in the χ2 are from a combination of the unfolding
covariance matrix and a covariance matrix for model depen-
dence uncertainty from the unfolding response matrix. The
distribution of the χ2 from a set of toy Monte Carlo experi-
ments with 2000 events per experiment is close to that from a
χ2 PDF with 12 degrees of freedom when the model for the
comparison in the χ2 is the same as the model used to gener-
ate the toy samples (Djangoh), which validates the unfold-
ing statistical uncertainty in the covariance matrix and the χ2

calculation. We use this distribution to define a χ2 threshold
for the critical region corresponding to a frequency of 1% for
the correct model hypothesis to have a χ2 greater than the
threshold. When the toy samples are drawn from the alterna-
tive model (Rapgap), we find that the frequency for the χ2 to
be above the threshold is 98.6% for the designer neural net-
work observable, but only 63.0% for the HFS η observable.
This shows that the designer neural network observable has
superior discrimination power.

123



Eur. Phys. J. C           (2024) 84:776 Page 7 of 14   776 

Fig. 4 Neural network output distributions for four values of the λ

hyperparameter, which sets the scale for the Detector - Particle dis-
agreement penalty in the loss function. The top row shows the results

for λ = 0, where there is no penalty if the NN predictions for Detector-
level input features and Particle-level input features disagree. The bot-
tom three rows show increasing values of λ: 1, 20, and 100
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Fig. 5 Results of unfolding the NN output. The top (bottom) row shows
the unfolding for the Rapgap (Djangoh) generator. The left column
shows the response matrix for the unfolding, where the distribution
of the NN output given the Detector-based input features (horizontal

axis) is normalized to unit area for each bin of the NN output given the
Particle-based input features (vertical axis). The center column shows
the unfolded distribution compared to the true distribution. The right
column shows the matrix of correlation coefficients from the unfolding
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Fig. 6 Model discrimination sensitivity and uncertainty for the neural
network output distribution (left) and the hadronic final state η distri-
bution (right). The uncertainty, shown by the shaded red distribution,
is the model dependence of the unfolding added in quadrature with
the statistical error from the unfolding (error bars on the black points).

The black points show the ratio of the unfolded distribution from the
Rapgap simulation divided by the particle-level distribution from the
Djangoh simulation. The significance of the deviation from unity is
a measure of the model discrimination sensitivity. Additional distribu-
tions and comparisons are given in Appendix B
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5 Conclusions and outlook

Unfolded differential cross section measurements are a stan-
dard approach to making data available for downstream infer-
ence tasks. While some measurements can be used for a vari-
ety of tasks, often, there is a single goal that motivates the
result. In these cases, we advocate to design observables that
are tailored to the physics goal using machine learning. The
output of a neural network trained specifically for the down-
stream task is an observable and its differential cross section
likely contains more information than classical observables.
We have proposed a new loss function for training the net-
work so that the resulting observable can be well measured.
The neural network observable is thus trained using a loss
function composed of two parts: one part that regresses the
inputs onto a parameter of interest and a second part that
penalizes the network for producing different answers at par-
ticle level and detector level. A tunable, and problem-specific
hyperparameter determines the tradeoff between these two
goals. We have demonstrated this approach with both a toy
and physics example. For the deep inelastic scattering exam-
ple, the new approach is shown to be much more sensitive
than classical observables while also having a reduced depen-
dence on the starting simulation used in the unfolding. We
anticipate that our new approach could be useful for a variety
of scientific goals, including measurements of fundamental
parameters like the top quark mass and tuning Monte Carlo
event generators.

There are a number of ways this approach could be
extended in the future. We require that the observable have
the same definition at particle level and detector level, while
additional information at detector-level like resolutions may
be useful to improve precision. A complementary strategy
would be to use all the available information to unfold the
full phase space [30]. Such techniques may improve the pre-
cision by integrating all of the relevant information at detec-
tor level, but they may compromise specific sensitivity by
being broad and have no direct constraints on measurability.
It would be interesting to compare our tailored approach to
full phase space methods in the future.
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Appendix A: Alternative loss function for the regression
example

An alternative approach in the regression example is to use
the detector-level features instead of the particle-level fea-
tures in the first term of the loss function. Figure 7 shows the
results of using Eq. A.1 instead of Eq. 2 in the training.

L[ f ] =
∑

i

( f (xi ) − μi )
2 + λ

∑

i

( f (xi ) − f (zi ))
2, (A.1)

With λ = 0, which corresponds to the usual approach for this
type of regression task, the correlation between each of the
detector level features x0 and x1 and the network prediction
f is the same, reflecting the fact that x0 and x1 have the same
sensitivity to μ. As λ increases, more emphasis is placed
on feature x0, which is well measured. The resolution of
the regression, given by the RMS of f , starts at the expected
value of about

√
0.52 + 0.12/

√
2 for resolution model A and

λ = 0 and increases with λ as the network relies more on x0

for the prediction.
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Fig. 7 Results of toy regression example as a function of the λ hyperparameter, using Eq. A.1 for the loss function in the training

Appendix B: Additional distributions for the model
dependence and discrimination tests

Figures 8 and 9 show the model dependence of the unfolding
and model discrimination sensitivity for the neural network

and the HFS η distributions, respectively. The top row of each
figure shows the results of the closure tests compared with a
measure of the unfolding model dependence, where we per-
form the unfolding with the response matrix from the other
simulation. The unfolded distributions have been normalized

0.48 0.5 0.52 0.54

NN output, Particle inputs

0

0.5

1

1.5

2

2.5

(u
nf

ol
de

d 
R

ap
ga

p)
 / 

(tr
ue

 R
ap

ga
p)

Rapgap unfolded with Rapgap

Rapgap unfolded with Djangoh

0.48 0.5 0.52 0.54

NN output, Particle inputs

0

0.5

1

1.5

2

2.5

(u
nf

ol
de

d 
D

ja
ng

oh
) /

 (t
ru

e 
D

ja
ng

oh
)

Djangoh unfolded with Djangoh

Djangoh unfolded with Rapgap

0.48 0.5 0.52 0.54

NN output, Particle inputs

0

0.5

1

1.5

2

2.5

(u
nf

ol
de

d 
R

ap
ga

p)
 / 

(tr
ue

 D
ja

ng
oh

)

Rapgap unfolded with Rapgap

Rapgap unfolded with Djangoh

0.48 0.5 0.52 0.54

NN output, Particle inputs

0

0.5

1

1.5

2

2.5

(u
nf

ol
de

d 
D

ja
ng

oh
) /

 (t
ru

e 
R

ap
ga

p)

Djangoh unfolded with Djangoh

Djangoh unfolded with Rapgap

Fig. 8 Results of testing the model dependence of the unfolding the
neural network output distribution by varying the response matrix
used in the unfolding. The top row normalizes the unfolded distribution
with the true distribution from the same simulation, testing the unfold-

ing closure (points) and unfolding model dependence (red histogram).
The bottom row normalizes the unfolded distribution with the true dis-
tribution from the other simulation, showing the ability to distinguish
the models
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Fig. 9 Results of testing the model dependence of the unfolding the
HFSη distribution by varying the response matrix used in the unfolding.
The top row normalizes the unfolded distribution with the true distribu-
tion from the same simulation, testing the unfolding closure (points) and

unfolding model dependence (red histogram). The bottom row normal-
izes the unfolded distribution with the true distribution from the other
simulation, showing the ability to distinguish the models

using the true distribution from the same simulation, giving
an expected flat distribution consistent with 1. The bottom
row shows the unfolded distributions instead normalized by
the true distribution from the other simulation. The degree
to which the ratio deviates from unity is a measure of the
model discrimination power of the network. Figure 6 in the
main text uses the lower-left distribution from Figs. 8 and 9
to display the results.

The unfolding shows good closure for both the neural net-
work and the HFS η distributions in both simulations. The
model dependence of the unfolding for the HFS η distribution
is significantly larger than for the neural network distribution.
The size of the deviation from unity in the discrimination test
for the neural network is large compared to the size of the
unfolding model dependence.
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