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Here, we present a novel network model of the
pulmonary arterial adventitial fibroblast (PAAF) that
represents seven signalling pathways, confirmed to
be important in pulmonary arterial fibrosis, as 92
reactions and 64 state variables. Without optimizing
parameters, the model correctly predicted 80% of 39
results of input–output and inhibition experiments
reported in 20 independent papers not used to
formulate the original network. Parameter uncertainty
quantification (UQ) showed that this measure of
model accuracy is robust to changes in input weights
and half-maximal activation levels (EC50), but is
more affected by uncertainty in the Hill coefficient
(n), which governs the biochemical cooperativity or
steepness of the sigmoidal activation function of
each state variable. Epistemic uncertainty in model
structure, due to the reliance of some network
components and interactions on experiments using
non-PAAF cell types, suggested that this source of
uncertainty had a smaller impact on model accuracy
than the alternative of reducing the network to only
those interactions reported in PAAFs. UQ highlighted
model parameters that can be optimized to improve
prediction accuracy and network modules where
there is the greatest need for new experiments.

This article is part of the theme issue ‘Uncertainty
quantification in cardiac and cardiovascular
modelling and simulation’.
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1. Introduction
Cell signalling networks are cascades of biochemical reactions that regulate cellular responses
to external cues, and their dysregulation is important in the progression of disease. Pulmonary
arterial hypertension (PAH) involves pathological remodelling of the vascular wall mediated
in part by pulmonary arterial adventitial fibroblasts (PAAFs) in response to pathological strain
and stresses such as mechanical overload and hypoxia. PAAFs residing in the adventitial layer
of the arterial wall regulate vascular extracellular matrix (ECM) and mechanical properties [1].
Studying the interplay between the effects of signalling cytokines, hypoxia and the mechanical
stimuli that are activated in PAH will help to elucidate signalling pathway interactions and may
aid in developing novel therapies to reverse vascular fibrosis and disease progression.

Mathematical modelling of cell signalling networks is a useful tool for synthesizing available
experimental data and investigating interactions between pathways that are difficult to study
experimentally. Here, we introduce a new logic-based ordinary differential equation model [2]
of the major biochemical networks known to regulate pro-fibrotic cell responses such as ECM
expression, proliferation and myofibroblast transformation in PAAFs [3]. The network model was
derived from published cell biological experiments and transcriptional measurements in primary
PAAFs supplemented, where necessary, with information on canonical pathway structure from
better studied fibroblast types, mainly cardiac fibroblasts (CFBs). Inputs to the PAAF signalling
network model were based on reported stimuli upregulated in PAH [1].

While the signalling pathways included in this model have been identified in PAAFs, their
interplay is not well understood, and there is a paucity of experimental data in the literature
specific to these fibroblast cells. Therefore, after constructing a PAAF signalling network model,
we carried out a sensitivity analysis to identify the important nodes in the network.

Creating a cell signalling model inherently introduces parameter uncertainty, since
experimental studies rarely report quantitative biochemical reaction properties. There are also
epistemic uncertainties in the structure and logic of the network, which depend on published
experiments from a variety of cell types and conditions that are occasionally inconsistent or
ambiguous [4]. Therefore, to analyse the robustness of the developed model and identify how
small perturbations in the parameters leads to changes in model predictions, we have carried out
uncertainty quantification (UQ) analysis of the model parameters. Using a separate set of data
not used in the model formulation, we determined the prediction capabilities of the model and
its qualitative accuracy. We also used this method to determine if adding pathways from other
fibroblast cell types impacts model accuracy.

Here, we have not attempted to optimize model parameters, so we cannot expect close
quantitative agreement between model predictions and experimental data. Rather, objective
qualitative comparison criteria were used, and we used UQ to assess the robustness of model
prediction accuracy and to identify the modules and parameters that are most affected by
incomplete or noisy data [5]. Analysis of parameter and structural uncertainty showed that the
PAAF model is robust to most parameter uncertainty and identified the new experiments that are
needed the most to improve model confidence and accuracy.

2. Methods

(a) Computational model of pro-fibrotic pulmonary arterial adventitial fibroblast
cell signalling

The PAAF signalling model was manually constructed with the same default parameters and
model file structures as the one developed by Zeigler et al. for CFBs [6]. Out of the 92
reactions in our model, 52 reactions are unique to PAAFs. The model construction was based
on results reported in 52 published papers describing experimental studies in PAAFs or other
fibroblast types [7–58] when necessary to complete 18 intermediate reactions not described in
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the comparatively sparse literature on PAAF signalling. In addition, 20 independent papers
documenting in vitro or in vivo experiments in rat or human PAAFs and not used in the original
model formulation were set aside to measure the predictive capability of the model.

The resulting PAAF signalling network (figure 1) integrates seven input stimuli that are
implicated in PAH pathogenesis including mechanical loading, transforming growth factor-β
(TGFβ), tumour necrosis factor-α (TNFα), platelet-derived growth factor (PDGF), angiotensin II
(AngII), fibroblast growth factor (FGF) and hypoxia. These activate seven receptors and signalling
modules, namely the phosphoinositide 3-kinase (PI3K), TGFβ, Notch, reactive oxygen species
(ROS), mitogen-activated protein kinase (MAPK), calcineurin and Hippo pathways. Downstream
transcription factors regulate the expression of eight outputs important in the pro-fibrotic cell
phenotype and ECM remodelling [59]. Overall, there are 64 nodes that represent physical stimuli,
ligands, receptors, signalling molecules, transcription factors, messenger RNA (mRNA), proteins
and cell phenotypes interconnected via 92 reactions. The publications used to justify each
individual reaction and interaction are cited in electronic supplementary material, S1.

Using previously described methods [6,60], the PAAF signalling network model was
implemented as a system of logic-based ordinary differential equations that were integrated
numerically using the explicit second- and third-order Runge–Kutta method. Each state variable
is normalized to a value between 0 and 1 and follows a Hill-type activation function [2]. This
approach allows a Boolean system to be translated into a continuous time system with parameters
that are representative of biochemical reactions [2]. Logical operators are used to represent
signalling interactions with ‘NOT’ representing inhibition, ‘OR’ a reaction in which the node can
be activated by multiple inputs, and ‘AND’ representing where the activation requires the activity
of more than one upstream node.

The system of differential equations is formulated for each node yi in the network, i = 1 . . . 64

dyi

dt
= 1

τyi

[
ωyi fjy

max
i − yi

]
, (2.1)

with a general reaction weight ω and Hill function fj, where j can be an activation (act) or inhibition
(inhib) reaction

fact(yi) = Byn
i

Kn + yn
i

and

finhib(yi) = 1 − Byn
i

Kn + yn
i

,

where B is a function of the half-maximal activation EC50 and the Hill coefficient n, which is a
measure of nonlinear cooperative activation [2].

B = ECn
50 − 1

2ECn
50 − 1

and

K = (B − 1)1/n.

In the case where yi is an input, fj = 1 and the input reaction weight is denoted w.
To represent ‘OR’ logic interactions, equation (2.1) is modified to represent the sum of the

reactions with respective weights for each node and subtracting the intersection of fj(yk) and fj(yl)

dyi

dt
= 1

τyi

[
(ωyk fj(yk) + ωyl fj(yl) − ωyk fj(yk)ωyl fj(yl))y

max
i − yi

]
,

where yk and yl are upstream nodes that activate or inhibit yi.
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Figure 1. A schematic of a pro-fibrotic PAAF cell signalling network comprised of 64 nodes with input stimuli (blue ovals),
receptors (triangles), signallingmolecules (hexagons), transcription factors (coloured rectangles), messenger RNA (rectangles)
and phenotypic outputs (grey diamonds). The colours represent the recognized signalling modules including phosphoinositide
3-kinase (PI3K) (red), TGFβ (orange), Notch, reactive oxygen species (ROS, yellow), mitogen-activated protein kinase (MAPK,
green), calcineurin (blue) and Hippo (purple). The arrows indicate the 92 activation or inhibition reactions, with the grey arrows
denoting reactions based only on experiments in non-PA fibroblasts. Converging reactions denoted by & indicate ‘AND’ gate
logic, while other combinations imply ‘OR’ gate logic. (Online version in colour.)

For ‘AND’ logic interactions, equation (2.1) is modified to be the product of the general reaction
weight ω, fj(yk) and fj(yl)

dyi

dt
= 1

τyi

[
ωyk fj(yk)fj(yl)y

max
i − yi

]
.

The baseline model solution was obtained using a default Hill coefficient of n = 1.4 and EC50 of 0.6
for every node. The time constants τ for each different reaction type in the network followed those
used previously [6]: 0.1 h for signalling reactions; 1 h for transcription; and 10 h for translation.
Timepoints chosen were run at steady state. Input weights (w) were initialized to 0.25 to represent
baseline activity. Reaction weights for the rest of the system (ω) were set to a default value of 1.
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The system of ODEs was generated from a tabular representation of the network using custom
software available on Github.1

(b) Model validation
To validate the model, 39 input–output experiments in rat or human PAAF cells (reported in 20
papers [61–80]) were classified as observing a significant increase or decrease, or no significant
change in activity of an output quantity that is a node in the model in response to a stimulus,
that was also an input to the model. The threshold for considering a response in the model to
represent a significant change in output activity was chosen to be 0.05. In vivo data were used
when there were no in vitro data reported in the literature on PAAFs. The time-course of the
model for each comparison was matched to that of the corresponding experimental measurement.
Citations to the publications used for each model comparison experiment are given in electronic
supplementary material, S2.

(c) Sensitivity analysis
A model baseline was calculated by setting all input weights to 0.25 and the initial values of all
state variables to 0. They were then integrated until a steady state was achieved for all nodes at
200 min. One hundred per cent knockdown of each node was simulated by reducing ymax from 1
to 0, and the subsequent effect at every node was calculated as knockdown activity minus baseline
activity. Sensitivity analysis was performed under baseline conditions and under conditions of
high mechanical stretch (mechanical input weight set to 0.9) to represent the effects of mechanical
overload and matrix stiffening associated with PAH.

(d) Uncertainty quantification
The model system of ordinary differential equations (equation (2.1)) can be represented as
ẏ = f (y, θ ), y ∈ R

i, where ẏ is a vector representing the time rate of the change of the nodal network
states y. The index i represents the problem dimension, which in this case is equal to the number
of nodes in the network shown in figure 1. The vector θ contains the parameters that can be
represented as θ ∈ R

k, where k is the number of uncertain model parameters that we intend to
investigate.

To propagate parameter uncertainties in the network, we followed the approach described by
Marino et al. [81], in which each parameter in θ is assumed to be a uniform random variable
from the uniform distribution ∼ U(min, max). Herein, we propagate three uncertain independent
parameters: n, EC50, and w (θ = {n, EC50, w}). These parameters were sampled randomly from
uniform distributions. The ranges chosen for the model parameters vary roughly 30% around
their mean when carrying out UQ analysis. For example, n was chosen to be a uniform random
variable such that n ∼ U(1.36, 2.36). It should be noted that the range of n was set from 1.36 to 2.36
as guided by the equation by Kraeutler et al. [2]: B = (ECn

50 − 1)/(2ECn
50 − 1), since a default value

of EC50 = 0.6 gives a minimum of n to be 1.36 or else B would be negative and thus K = (B − 1)1/n

would not produce a viable value. When n is set to 1.4, the EC50 can only vary slightly around the
default value of 0.6, so the UQ analysis was run with n set to 2, in order to perturb a wider range
of EC50 from 0.4 to 0.7, EC50 ∼ U(0.4, 0.7). Similarly, the input weight w was also run with n set
to 2 to keep the results consistent, and was set to vary from 0.1 to 0.4, around the default value
(0.25), w ∼ U(0.1, 0.4).

The UQ simulations were performed using the package Uncertainpy 1.2.1 in Python [82]. The
package was run in order to quantify the change in model accuracy compared to validation data
when varying the aforementioned three parameters: n, EC50 and w. Since there are only seven
locations in the network that depend on the input weight w, we used the polynomial chaos
expansion approach with fourth-order approximation to non-intrusively propagate uncertainty.

1Netflux codebase: https://github.com/saucermanlab/Netflux

https://github.com/saucermanlab/Netflux
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This is generally less computationally expensive than Monte Carlo simulations; however, for
systems with over 20 uncertain parameters, the required number of model evaluation scales
worse than the Monte Carlo method [82]. Because of this, the (quasi-)Monte Carlo method
was used with 5000 model evaluations for UQ analysis of n and EC50 due to there being 99
reactions each with individual n and EC50 values being perturbed in the network. The ranges of
parameter values that are noted in the UQ results are identified by examining the output file and
sorting by accuracy, then analysing the combinations of parameters that led to notable changes in
accuracy.

Moreover, to compare the baseline model results with a model derived only from experiments
in PAAFs or CFBs, we ran UQ analysis using the (quasi-)Monte Carlo approach varying all
three parameters where n ∼ U(2, 2.4), EC50 ∼ U(0.4, 0.6) and w ∼ U(0.1, 0.4), and with 10 000 model
evaluations. The effects on model accuracy of changing parameters and the network structure
were evaluated by classifying input–output model results as increased, decreased or unchanged
using a threshold change of 0.05 and determining the percentage of model results in agreement
with the published experimental findings.

3. Results and discussion

(a) Model validation
The model accurately predicted 31 out of 39 (80%) of the qualitative experimental validation
results, including 4 out of 5 of the in vivo (bolded) and 27/34 of the in vitro experimental findings
(figure 2a). Model accuracy went down to 35% when not using PAAF-specific pathways and using
only reactions from the CFB model by Zeigler et al. [6] (data not shown).

The model was also able to predict results from in vitro experiments in rat PAAFs in which
TGFβ, TNFα or ROS were inhibited pharmacologically [76,77]. Each node in the model was first
initialized with a default baseline value of 0.25, and the control activity of collagen I, alpha-smooth
muscle actin (α-SMA), fibronectin and interleukin 6 (IL6) were computed. Next, stimulation with
TGFβ and TNFα was simulated by increasing the input weights corresponding to those nodes to
0.475 and 0.375, respectively. These two values were chosen to best match the increase in relative
level of α-SMA as reported by Zhang et al. [76] and IL6 as reported by He et al. [77]. Experiments
using 10 µM ERK inhibitor U0126 (T+U) reduced its activity to 30% [83]. Similarly, 10 µM p38
inhibitor SB203580 (T+SB) reduced p38 activity to 5% [84]; the ROS scavenger N-acetyl-L-cysteine
(NAC) completely blocked ROS activity [77]. Hence, after stimulation of the baseline model with
TGFβ, the effects inhibiting the ERK1/2 and p38 nodes were simulated in the model by reducing
ymax from 1.0 to 0.3 and 0.05, respectively (figure 2b–d). Similarly, the effects of NAC on TNFα

were simulated by reducing the ROS node from 1.0 to 0.0 (figure 2e). Simulations ran for 24 h
[76] and 8 h [77] to match the time-course of the corresponding experimental measurements, as
depicted in figure 2b–e.

Per cent errors between model-predicted and experimental results for collagen I expression
stimulated by TGFβ and with TGFβ in the presence of the ERK1/2 and p38 inhibitors were 109%,
218% and 283%, respectively [76]. Although these errors were high, the model did qualitatively
predict the observed increase in collagen I stimulated by TGFβ but not the observed inhibitory
effects of either inhibitor. This may be because of incomplete or inaccurate interaction logic in
the module of the network regulating collagen I expression. On the other hand, the model did
correctly predict observed trends for fibronectin with % errors of 66%, −95% and −99%, though
predicted inhibition was greater than observed, perhaps because only MAPK signalling regulates
fibronectin in the model. Because the model simulation was matched to the α-SMA experimental
results, the error for TGFβ stimulation was only −0.4%, and there was a good match with the
inhibition results with % errors of 16.7% for T+U (ERK1/2 ymax to 0.3) and 8.4% T+SB (p38 ymax

to 0.05) [76]. This shows that the model was able to closely predict the trends in α-SMA and
fibronectin activity. Changes in the model structure may be required before collagen I expression
can be predicted.
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Figure 2. Model prediction of qualitative input–output experiments (a) and inhibition results (b–e). (a) Input–output
validation: model predictions agreed with published experimental observations for 31 out of 39 (80%) of the input–output
responsesmeasured in rat or human PAAFs. Intermediate and phenotypic output results are organized by input stimulus, where
the bolded node names indicate experimental results that were measured in vivo. (b–e) Inhibition validation: results of the
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[83,84]. (Online version in colour.)
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We compared the model with experiments in which TNFα was added to rat PAAFs [77] by
increasing the TNFα node from 0.25 to 0.375. The error in the predicted increase in IL6 expression
was only −1.1%, and the predicted effect of adding the ROS scavenger was qualitatively similar
to observation, with an error of 128% (figure 2e).

All model results were significantly different (p < 0.05) than experimental means except those
for α-SMA (figure 2d. A Student’s heteroscedastic t-test produced p-values of 0.06 for α-SMA
stimulation and ERK inhibitor (T+U) and 0.16 for α-SMA stimulation and p38 inhibitor (T+SB)
given the sample size (n = 3) and standard deviation reported in the original experimental
paper [76].

(b) Sensitivity analysis
A sensitivity analysis was used to identify the nodes that are the most influential determinants of
network state under baseline conditions and conditions of high mechanical stimulation as occurs
in PAH. The change in the steady-state (200 min) response of each node in the network (columns)
to 100% knockout of each node individually (rows) is displayed as a heat map in figure 3. The
analysis shows that mechanical stimulation, hypoxia, angiotensin II and transforming growth
factor β are the most important inputs. Important intermediate regulators include the MAPK
(ERK1/2, JNK1/2 and p38), calcineurin, the Smads 2 and 3, cleaved osteopontin (clOPN), ROS,
notch intracellular domain (NICD), nitric oxide (NO) and NADPH oxidase 4 (Nox4). This
sensitivity analysis has thus revealed the larger influence of hypoxia and FGF in the PAAF model
than in the model of CFBs [6]

Given the importance of mechanical loading and vessel stiffening in the pathogenesis of
pulmonary arterial fibrosis, we repeated the sensitivity analysis in the context of high mechanical
load by increasing the input weight of the mechanical stimulation input node from the baseline
value of 0.25 to a higher value of 0.9 as shown in electronic supplementary material, S3.
Under these conditions, the most influential unique nodes were found to be α-SMA, cyclic
guanosine monophosphate (cGMP), endothelin 1 (ET1), proteins in the Hippo pathway and
syndecan4. These nodes are highly active in mechanotransduction, proliferation, vasoconstriction
and activation of fibroblasts into the myofibroblast phenotype [3]. Knocking out these nodes
generally resulted in a decrease in matrix proteins including collagen III and fibronectin. This
global sensitivity analysis is also a way to elucidate the likely determinants of greatest structural
and parameter uncertainty in the model. In the following sections, we investigated the effects of
parameter and network uncertainty in the model.

(c) Quantification of parameter uncertainty
In order to examine the effect of propagated uncertainty of model parameters on the accuracy
of the model, a validation table of the 39 experimental results was coded to compare results
against. The accuracy was compared with the baseline 80% accuracy achieved with default model
parameters.

Each parameter was varied independently using a uniform distribution n ∼ (1.36–2.36),
EC50 ∼ (0.4–0.7), w ∼ (0.1–0.4). A (quasi-)Monte Carlo method with 5000 model evaluations was
used for UQ analysis of n and EC50 to cover the 99 uncertain reactions, and a fourth-order
polynomial chaos expansion was used for the weight w of the seven model inputs. As seen
in figure 4, the distribution of model accuracy for input weight has a mean of 70.4%, standard
deviation of 5.3%, a minimum accuracy of 66.67% and a maximum accuracy of 79.5%. For EC50,
the mean of the distribution is 65.4% with a standard deviation of 19.2% and a minimum accuracy
of 20.5% and maximum accuracy of 82%. For the Hill coefficient, the mean accuracy of the
distribution was 63.9% with a standard deviation of 13.3%, a minimum accuracy of 20.5%, and a
maximum accuracy of 79.5%. This indicates that network model accuracy was most vulnerable
to uncertainty in n, somewhat vulnerable to uncertainty in EC50 and relatively robust to input
weight uncertainty.
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Figure 3. Heat map of the baseline sensitivity analysis showing changes in activity of all the nodes in the model (columns) in
response to knocking out each node (rows), where red indicates an increase in activity over baseline and blue shades indicate a
decrease in activity in response to the knockout. (Online version in colour.)

A subset of specific combinations of input weights over the range of 0.1–0.4 did result
in a decrease in accuracy including a combination of low mechanical and low hypoxia or a
combination of low AngII, TGFβ and FGF, but these did not decrease the model accuracy more
than 13% (figure 4a).

There was a wide range of changes in model accuracy as shown in figure 4b, over the relatively
large range of n of 1.36–2.36, showing increased uncertainty propagation. Lower model accuracy
(less than 40%) was observed when more than 30% of the 99 reactions had Hill coefficients n
exceeding 2.2. In order to allow EC50 to vary, n was set to 2 as stated in §2 to avoid numerical
errors [2].

Model accuracy was generally high and robust to varying EC50 from 0.4 to 0.7, but there was a
secondary peak at 20% as seen in figure 4c. The low peak occurred when the reactions of MST1/2
activating LATS1/2 and miR130/301 inhibiting LRP8 both had EC50 values greater than 0.68. Both
reactions are involved in the Hippo pathway, which is activated by mechanical stimulus. Finally,
there was a set of EC50 values that led to an increased model accuracy of 82%. When compared
with thousands of combinations that produced an 80% accuracy. This result is unique in that all
of the inputs and hypoxia → Nox4 were not extreme values (0.42 < EC50 < 0.68) combined with a
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Figure 4. Quantification of the effects of model parameter uncertainty on the probability of qualitative model prediction
accuracy assuming uniform random distributions of input weights w (a), Hill coefficients n (b), and half-maximal activations
EC50 (c). Accuracy with using default parameters is annotated. Varying input weightw randomly between 0.1 and 0.4 for seven
inputs using polynomial chaos expansion with a fourth order produced accuracies between 70% and 80%, whereas varying
the Hill coefficient n from 1.36 to 2.36 for all 99 reactions using the (quasi-)Monte Carlo method resulted in a much wider
distribution of model accuracies ranging from 20% to 80%. Varying EC50 randomly between 0.4 and 0.7 for all 99 reactions
using the (quasi-)Monte Carlo method resulted in peaks in accuracy at around 20% and at 70–80%.

high EC50 (greater than 0.68) for the reaction: MMP9 and latent TGFβ activating TGFβ and a low
EC50 (less than 0.42) for the reaction: proMMP9 activating MMP9 and TIMP1 inhibiting MMP9.
This finding demonstrates how further tuning can be done by optimizing model parameters.

The 11 inhibition results seen in figure 2b–e (activation by TGFβ and TNFα then inhibition of
p38, ERK1/2 or ROS) were coded with a threshold of 0.05, and UQ was repeated using polynomial
chaos expansion with a fourth order varying the seven input weights from 0.1 to 0.4. Electronic
supplementary material, S5 shows that the predicted results of inhibition experiments were
relatively robust to this change, accurately predicting 9/11 (82%) or 8/11 (73%) of the activation
by TGFβ and TNFα and inhibition of p38, ERK1/2 and ROS. However, the model was not able to
capture the inhibition of collagen I by p38 or ERK1/2.

(d) Quantification of epistemic uncertainty of network structure
To use UQ to evaluate the level of uncertainty associated with the cell type used in the model
construction, a reduced version of the model was created with only experimental data reported
for fibroblast cells from the cardiovascular system, specifically PAAFs and CFBs. This new
criterion led to a reduced model with 82 reactions and 62 nodes, due to the removal of ET1 and
latent TGFβ, versus the 92 reactions and 64 nodes in the original model (electronic supplementary
material, S4). The reduced model was qualitatively validated against the same independent set of
data as the full model. Here, the accuracy went down to 24/38 (63%) compared to 31/39 (80%)
for the original model. The number of experiments compared against drops down from 39 to 38
as a result of ET1 being a node in the input–output comparison.
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Figure 5. Results of a 10 000 model evaluation run using the (quasi-)Monte Carlo simulation where the Hill coefficient n was
a uniform random variate between 2 and 2.4, EC50 was given a uniform distribution of 0.4 to 0.6, and w was varied according
to a uniform random distribution of 0.1 to 0.4. The two models being compared are the UQ results for the full model (a) versus
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parameters annotated. Inhibition results for α-SMA using the reduced model were run under the same conditions used to
produce figure 2d (c). Results remained unchanged for the other outputs (collagen I, fibronectin, IL6) as seen in electronic
supplementary material, S5.

We ran a (quasi-)Monte Carlo simulation with 10 000 model evaluations where n was given a
uniform distribution from 2 to 2.4, EC50 was given a uniform distribution of 0.4 to 0.7 (default
value of 0.6), and the input weight w was given a uniform distribution of 0.1 to 0.4 (default value
of 0.25) as depicted in figure 5a.

We further compared the two models by varying all three parameters at once: n ∼ U(2, 2.4),
EC50 ∼ U(0.4, 0.6) and w ∼ U(0.1, 0.4) (figure 5). The mean accuracy of the baseline model
(figure 5a) was 35.7% with a standard deviation of 18% and reaches a maximum accuracy of
80%, while the mean accuracy of the reduced model (figure 5b) was 38.4% with a standard
deviation of 12% and a maximum accuracy of 63%. Overall, this result suggests that while using
data from non-cardiovascular cell types is a source of epistemic uncertainty, the additional model
components and reactions deduced from these other cell types can improve prediction accuracy
without significantly compromising robustness. These results may help to prioritize new in vitro
experiments in PAAFs that are not available in the literature but are important to the accuracy
of the model. This includes experiments on the feedback from and activation of latent TGFβ,
activation of TIMP1 and ET1 by AP1, activation of elastin mRNA by PKCα, activation of HIF1α

by ROS and activation of α-SMAmRNA by p38.
To examine the effects of only including cardiovascular fibroblast data (PAAFs and CFBs)

on the inhibition results, simulations were rerun with the same conditions as in figure 2b–e.
Briefly, input TGFβ = 0.475, and TNFα = 0.375, ERK1/2 ymax = 0.3, p38 ymax = 0.05, ROS ymax = 0,
and at 24 h and 8 h, respectively. While other trends remained the same as shown in electronic
supplementary material, S5, the reduced model resulted in a qualitative reversal of the accuracy
for α-SMA predicted by the full PAAF model. As shown in figure 5c, there was no longer
a decrease in activity in α-SMA due to ERK and p38 inhibitors as originally observed. The
reduced form of the model only agrees with the increase in α-SMA due to TGFβ stimulation.
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The results also no longer match the experiment, producing p values that were less than 0.05
with a heteroscedastic Student’s t-test, rejecting the null hypothesis that the model results lie
in the same distribution as the experimental ones [76]. Thus, the full model, despite including
some information from non-cardiovascular fibroblasts, better captures the complex regulation of
α-SMA expression.

4. Conclusion
We created a novel network model of cell signalling in PAAFs that integrates seven signalling
modules known to be involved in pulmonary arterial fibrosis. This model was qualitatively
consistent with experimentally measured input–output relationships and the results from
inhibition experiments all from independent papers not used to formulate the model originally.
To determine the specificity of the model to fibroblasts from the pulmonary arterial adventitia,
we ran a simulation using only nodes also included in the CFB model developed by Zeigler
et al. Here, the CFB model with 40 reactions significantly underpredicted by almost threefold
the PAAF input–output experiments. This indicates the important role played by the 52 added
reactions in our fibroblast model to describe the signalling pathway representing PAAF properties
in PAH. Sensitivity analysis showed that model-predicted PAAF network state was most sensitive
to TGFβ, MAPK and hypoxia signalling pathways. The sensitivity analysis for the CFB model
showed similar importance of TGFβ pathways and MAPK pathways, but mechanical stimulus
had a higher impact. By using UQ, we determined the robustness of the model with respect
to input weight and EC50, but found that parameter uncertainty propagation was increased
significantly with increased n.

This paper takes similar approaches to those previously undertaken in other logic-based
network models including those done by Zeigler et al. [6] and Kraeutler et al. [2]. The Zeigler
model has been shown to be similarly robust to this PAAF model, with an accuracy of 80% and
similarly predicts a strong influence of TGFβ [6]. Our model uses the same default parameters
and also includes analysis of variation in baseline input. This is in contrast to the Kraeutler model,
where the model is fully parameterized and the authors carried out a sensitivity analysis on the
Hill coefficient, EC50, and ymax [2]. We have further varied the Hill coefficient and EC50 using a
uniform distribution via UQ.

We also identified the areas of epistemic uncertainty inherent in network construction that will
need further confirmation, revision and comparison with future experiments done specifically in
PAAFs by running a three parameter UQ analysis on the model with and without the pathways
derived from non-cardiovascular fibroblasts. In some cases, information from non-cardiovascular
cell types were shown not to highly affect input–output prediction accuracy but did improve
the accuracy of predictions on the effects of inhibitors as seen in the predictions of how α-SMA
responds to TGFβ when ERK or ROS were inhibited. Thus, the full model, despite including some
information from non-cardiovascular fibroblasts, better recapitulated the regulation of α-SMA
expression. In this way, UQ was able to capture the levels to which the output of model accuracy
could vary given changes in large ranges of parameters and in the absence of pathways elucidated
by non-cardiovascular fibroblasts. This analysis was crucial to a system that has so little certainty
in model construction and literature data such as in PAAFs. With directions for optimization given
by UQ, this model can be improved to help the scientific community understand the complex
interplay of pathways in pulmonary arterial remodelling in order to identify treatments that can
better target adventitial fibrosis.

5. Limitations and future directions
There is very little literature from which to determine specific model parameters, so we have
not attempted to identify individual parameters and instead used constant values for every
node and explored parameter uncertainty over a wide range. For example, all reactions are at
a default weight of 1; however, the literature data could suggest that some reactions are more
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important than others in determining fibrosis. These findings are consistent with the conclusion
that capturing the molecular interactions within the network topology is more important for
reproducing the qualitative features revealed by typical cell biological experiments than the
particular choice of parameters. This property explains why this class of network model is
often preferred to more biochemically detailed models with fewer interacting pathways for
interpreting the frequently more qualitative conclusions of many cell biological studies. The
analyses suggested that the model is quite robust to parameter uncertainty at least when using
qualitative experimental criteria. When varying input weight (w) the model accuracy ranged from
67% to 80%, when varying half-maximal effective concentration (EC50) the accuracy generally
ranged from 60% to 80% though the model accuracy was highly affected by changes in the Hill
coefficient (n). Given that the UQ results depend on the ranges chosen for the model parameters,
in this case n, EC50 and w, caution should be taken in making too many biological conclusions
based on this analysis.

A critical next step identified by UQ is to fill in the areas where there are no in vitro experiments
in PAAFs both to refine the model and acquire more validation data so one can be more confident
in the results. For example, there are no literature data on how stimulation of PAAFs with TNFα

affect phenotypic outputs, only on intermediates in the model. There is some data uncertainty in
the literature, as a low sample size and power in typical cell biology experiments means there is
less confidence in experimental findings concluding no significant change versus those reporting
significant changes.

The model is currently only shown to be qualitatively consistent with input–output
experiments and normalized from 0 to 1 as the range is unknown and many reported
experimental results are not quantitative. In the future, we can implement mass-action equations
with kinetic rates to create a more quantitative and realistic measure of matrix remodelling that we
can validate through experimentation. We can also integrate paracrine signalling with other cell
types, as PAAFs are known to activate macrophages and smooth muscle cells surrounding them
in the pulmonary arterial wall [59] Another future direction is to reformulate the model by adding
exogenous stimulation for ET1 and IL6 and feedback, which could increase model accuracy.
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