
UC San Diego
Technical Reports

Title
Using Program Phases as Meta-Data for Runtime Energy Optimization

Permalink
https://escholarship.org/uc/item/70c724zg

Authors
Pereira, Cristiano
Gupta, Rajesh

Publication Date
2004-07-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/70c724zg
https://escholarship.org
http://www.cdlib.org/

Using Program Phases as Meta-Data for Runtime Energy

Optimization

Cristiano Pereira

pereira�s.usd.edu

Rajesh Gupta

gupta�s.usd.edu

Department of Computer Siene and Engineering

University of California, San Diego

http://www.s.usd.edu

Abstrat

Power onsumption is a major onern in embedded systems design due to the portability and battery

driven operation of suh systems. The runtime optimization of embedded software appliations for system-

level power / performane tradeo�s requires ability of the runtime system to probe system and appliation

status and utilize proedures that make these tradeo�s e�etive. To ensure eÆieny of deision making, it

is important that suh deisions are made with the least overhead to system power. One way to ahieve this

apability is through systemati de�nition, and update of meta data that an be probed by the runtime

system and given as input to the dynami power management algorithms. In this paper, we use the

onept of appliation reetion, a tehnique in whih a program represents its own struture and behavior

through the use of meta-data. Its use enables the ability of the runtime system to look at the program

representation and make power management related deisions. We present a pro�ling sheme to build a

reexive data struture in whih a program represents its own exeution behavior, and use this information

at run time to guide operating system power management deisions. Our sheme is inspired on Simpoint, a

tool for automati program phase lassi�ation and simulation points seletion. We use main memory bank

shutdown as an example of how our tehnique an be used and we show that we an ahieve energy/delay

savings omparable to the best known hardware based tehnique. We believe that our approah an also

be used for eÆient energy management of other resoures suh as proessor and system peripherals.

1 Introdution

Power onsumption is a major onern on embedded systems design due to the inrease in mobility, omplexity,

and the ever inreasing demand for performane and small form fators. Furthermore, the battery-driven

nature of suh systems requires a areful tradeo� between performane and power in order to maximize their

lifetime and still satisfy the performane requirements.

Optimizations an be performed at various levels of the system, from arhiteture to appliations. These

optimizations an be arried out statially, at design time, or dynamially at run time, where an eÆient

infra-struture to enable the exhanging of information between appliations demand and power manager is

needed. The runtime optimization of embedded software appliations for system-level power / performane

tradeo�s requires ability of the runtime system to probe system and appliation status and utilize proedures

that make these tradeo�s e�etive. Also, to ensure eÆieny of deision making, it is important that suh

deisions are made with the least overhead to system power.

In this paper, we use the onept of appliation reetion, a tehnique in whih a program represents its

struture and dynami behavior through the use of a resoure demand meta-data. Its use enables the ability

of the runtime system to look at the program representation and make power management related deisions.

We present a sheme to build a reexive data struture by using pro�ling. In the sheme proposed, the

program represents its own exeution behavior, and use this information at run time to guide operating system

1

power management deisions. Our program representation exposes dynami resoure demand variation over

time, enabling the runtime system to probe suh information (resoure demand) and manage the resoures to

minimize power without signi�ant performane penalties. We use the onept of program phases of exeution,

whih will be de�ned properly later in the paper. For now, a phase of exeution are intervals of a program

whih behave in a similar fashion and therefore have similar resoure needs. In order to validate our approah,

we use main memory shutdown as an example.

The ontributions of this paper are listed as follows. 1) The use appliation reetion for runtime opti-

mization of power onsumption; 2) The suggestion of a sheme to attah appliation meta-data representing

di�erent resoure needs throughout the dynami exeution of a program. 3) A sheme to identify whih phase

of exeution a program is running and aess the related resoure demand meta data assoiated with it.

The paper is organized as follows. Setion 2 presents the related work. Setion 3 desribes our appliation

reexive approah for power management. In Setion 4 we desribe the experiments realized to validate our

sheme, followed by Setion 5, where we show our results. Finally we point out future researh diretions and

onlude in Setions 6 and 7.

2 Related Work

Reetion is a programming language onept whih allows a program to analyze, reason and modify its

representation. Reetion enables inspetion, in whih either the program or the runtime environment aess

the representation of the program and adapt aordingly in order to optimize some aspet. Reetion is

used in di�erent ontexts. For instane, distributed middleware implementations use reetion so that the

middleware an adapt to appliations/devies behavior. Eah appliation or devie represents its behavior by

means of pro�les (suh as resoure demands, QoS requirements, et...) and the middleware looks for hanges

in the pro�le to adapt its behavior [5℄. We use a similar onept in this paper. Eah appliation arries a

representation of its dynami behavior (the meta-data). The runtime system (either the operating system

or a power manager) monitors the appliation behavior to �nd out the urrent exeution harateristis.

Based on this information, the power manager adapts its behavior to optimize the energy onsumption of the

appliation.

Among the program harateristis that a power manager an use, appliation resoure demand is im-

portant to help deiding the power mode in whih a given resoure should operate. It is therefore desirable

that an appliation is able to identify and represent its resoure demand throughout the exeution. From

this perspetive, the behavior of a program varies signi�antly. In addition, the demand for a resoure is

related to the part of the program being exeuted at a given time. Furthermore, parts of programs that exe-

ute similar ode (whih exeute the same instrutions with approximately the same frequeny) have similar

resoure demands [14℄. Thus, being able to identify whih part of the program is being exeuted and how

muh resoures it requires is important to optimize their use. Sherwood et al [14℄ have devised a tehnique

in whih the dynami exeution of a program is divided in phases of exeution using basi blok frequeny

vetors (vetors representing how many instrutions per basi blok were exeuted). A phase of exeution

is group of program intervals with similar basi blok vetors. The frequeny vetors ontain the number of

times and the number of instrutions eah basi blok of the program was exeuted in an interval. Therefore

similar basi blok vetors mean that two intervals exeuted similar instrutions. The goal of their work is

to �nd phase representative samples in order to speed up program simulation. The authors developed a tool

alled Simpoint [4℄ whih lassi�es a program in phases. In a follow up work [15℄, they devised a tehnique

for �nding and prediting phases of exeution online, and suggested that the proessor an be adapted for

eah phase of exeution to maximize performane and in some ases minimize energy onsumption. Using

very similar tehniques, Lau et al [11℄ showed that not only basi bloks frequeny vetors an be used for

phase lassi�ation, but also loops, proedures, regions of memory aessed and types of instrutions frequeny

vetors. Building upon this onept, we propose a tehnique to attah meta-data to eah phase of exeution,

detet whih phase of the program is exeuting, and utilize the meta-data for energy optimizations.

Energy optimizations of a omputer system an be arried out in di�erent ways. A well known method

2

is dynami power management (DPM) of devies. In DPM, devies are swithed to low power modes for

saving power. However, in order to bring them to ative mode, a performane and power ost is assoiated.

The deision on when and whih mode devies should be swithed to is not a trivial problem. [2℄ and [10℄

present good surveys on the subjet. Among the various devies that support DPM, main memory banks are

important due to their ontribution for the overall power onsumption of a typial omputer system. In this

ontext, Delaluz et al [6℄ proposed ompiler level tehniques and also self monitoring hardware based shemes

for main memory bank shutdown. In partiular he developed an approah alled History Based Preditor

(HBP), whih will be explained in more details in Setion 4. In a later work [7℄, the same author proposed

an operating system sheduler driven memory shutdown approah, where the operating system periodially

heks whih memory banks were used in a last interval of exeution. In their work, an interval of exeution

is the period between two operating system tik interrupts. The banks whih were not used are swithed to

the deepest low power state.

Also related to memory banks shutdown, Lebek et al [12℄ proposed a power aware page alloation sheme,

where they suggest a memory alloation sheme that tries to maximize the idle time of memory banks and

hene maximize the time these banks are in low power modes.

Finally, Park et al [13℄ proposed a sheme in whih eah proess is loaded into ontiguous memory spae

that is divided in banks or memory modules. Whenever a proess is loaded into memory, its proess ontrol

blok (PCB) holds the information saying whih banks are alloated to the proess. Whenever a proess is

preempted, the banks alloated to it have a hane to be swithed to lower power modes. To �gure out whih

states the banks should be swithed to they keep a history of the proess waiting time. Depending on the

predited waiting time, the memory banks are swithed to the appropriate modes.

3 Using Reetion for Energy Optimization

Runtime optimization of embedded system appliations for system-level power / performane tradeo�s requires

ability of the runtime system to probe the dynami exeution environment, appliation and system status.

As an example, it is desirable for the system to be able to inspet the demand of the appliation for ertain

resoures in order to better optimize their use. It has been shown in the literature that the behavior of

programs varies signi�antly over its exeution [14℄. Therefore, being able to exploit spei� behaviors or

phases of exeution enables di�erent types of optimization (ranging from hardware adaptation to better suit

the program demand, to multi-threading sheduling, whih uses phase information to �nd out when the

behavior of a spei� thread hanges). The optimization targets an be either performane, energy or a

tradeo� between the two.

We adopt the use of reetion, where appliations arry meta data representing the dynamis of its phases

of exeution in order to optimize the run time energy onsumption of the system. Aessing the meta data

of the appliation, the runtime system (the operating system power manager) infers resoure demand needs

and make energy management deisions. We propose a sheme through whih the run time system probes the

appliation to �nd out the phase of the appliation being exeuted, the meta-data assoiated with it, and how

it should be used to optimize the system energy onsumption, the latter depending on whih devies are the

target of the optimization.

3.1 Phases of exeution of a program

As noted before, programs exeute di�erent segments of ode at di�erent points in time. Looking at a dynami

trae of exeution, programs have repetitive behavior in whih the ode exeuted and the frequeny at whih

it is exeuted are the same. A phase of the program is de�ned as a group of exeution intervals in whih

the exeution of instrutions is similar. An exeution interval is a �xed number of dynamially exeuted

instrutions. Eah phase needs di�erent resoures and exeutes di�erent portion of the ode. Sherwood et al

[14℄ showed that intervals of exeution whih exerise similar portions of the appliations ode tend to have

similar resoure needs. They used basi blok frequeny vetors (BBV) to represent the ode exeuted during

3

ertain intervals of exeution, where two or more intervals, not neessarily ontiguous but with similar BBVs,

are onsidered part of the same phase of exeution of the program. To lassify BBVs as similar they use o�ine

mahine learning lustering tehniques. Based on this priniple, Lau et al [11℄ showed that not only BBVs

are aurate in representing phase behavior, but also loop branhes and proedure alls provide a good degree

of auray for identifying phases of exeution. Both works have as objetive to identify simulation points

whih represent the program behavior. Instead of exeuting the whole program to evaluate the proessor

performane, only representative intervals from eah phase are exeuted, speeding up simulation eÆieny by

orders of magnitude.

Our approah builds upon the priniple of program phases of exeution. It onsists of two stages. An

o�ine stage, where a program binary ode is pro�led in order to identify resoure demands and phases of

exeution. From this, we build a reexive data representation whih stores resoure needs of eah phase, and

also a signature whih is used by the runtime system to math a program to a phase. We all it reexive

beause it represents dynami exeution information whih is inspeted by the program itself or by the runtime

system. The seond stage is performed online. The runtime system monitors the program exeution in order

to identify the phase the program is running, and notify the power manager / operating system about the

resoure needs for the phase. The power manager makes the appropriate deisions to optimize the system

power onsumption.

Three important issues of the approah are: 1) whih information is used as meta data; 2) how it is mathed

with atual program exeution so that the right information is used; 3) how it is aessed. The approah we

used is motivated by the approah desribed by Sherwood et al [15℄, in whih the proessor traks and predits

program exeution phase behavior using BBVs on the y.

BB branch addr Hash
…

Counters
…

ID Signature

=

Figure 1: Phase traker hardware for �nding phases

The struture of the hardware to �nd and math phases used by Sherwood is illustrated in Figure 1. After

the exeution of a basi blok, the basi blok branh instrution address is hashed into a buket of 32 ounters.

The ounter is inremented by the number of instrutions exeuted in the basi blok. After an interval of

exeution, the vetor of ounters represents the signature of the interval, whih is ompared against a history

of previously alulated signatures. If there is a math, the interval is lassi�ed as part of a phase already

disovered previously. Otherwise the interval is onsidered a new phase of exeution and is inserted in the

history. A math is found if the Manhattan di�erene between two vetors a and b, represented by Diff(a; b),

is less than a threshold th. Hene a math is found if:

Diff(a; b) = (

32

X

i=1

j a

i

� b

i

j) � th

This is similar to the approah devised in their previous paper [14℄. However it is exeuted at runtime and

hene has to be simple enough to minimize overhead.

We use a similar approah to the one desribed, but we use it for o�ine phase lassi�ation as well as for

online mathing at run time. They key di�erenes is that we do not exeute the phase mathing algorithm

fully in hardware and we also do not use basi bloks to trak phases, but branh loops. The reason is that

4

basi bloks are too �ne grain for the type of optimization we intend to perform. Therefore the overhead is

greatly minimized if we keep trak of a more ourse grain struture suh as loop branhes. Another di�erene

is that the approah desribed in their paper is used for online phase mathing whereas we use it for o�ine

phase disovery and also for online phase mathing. The details will be explained in the next subsetion.

3.2 Using phases for meta-data representation and aess

3.2.1 O�ine stage

In the o�ine stage we use appliation pro�ling to lassify the program exeution in phases. Eah phase is

haraterized by intervals with similar number of loop branh exeutions (all bakward branhes are onsidered

loop branhes). We run the program using an instrution set simulator and ollet the number of times eah

loop branh is exeuted per interval. Eah loop branh address is mapped into a position in a vetor of ounters

and the appropriate ounter is inremented eah time the loop branh gets exeuted. After a �xed number

of instrutions (determined by the interval size) is exeuted, the loop branh vetor (LBV) representing suh

interval is used to determine whih phase the interval belongs to, in a similar manner as desribed by the

hardware struture in Subsetion 3.1. As in [15℄, we use vetors of 32 ounters. We all the vetors of 32

ounters ompressed LBVs or CLBVs.

Intervals are lassi�ed as part of the same phase if their CLBVs are similar, whih is determined by a

math. Again, a math is found if the Manhattan distane is less than a threshold th. We show the tradeo�s

of di�erent thresholds in Setion 5. The vetors are normalized before the omparison. The normalization is

neessary for the subsequent online phase mathing stage beause the signatures alulated at run time are

not omplete and therefore only math with the full signatures if the normalized vetors are ompared.

After the o�ine phase lassi�ation is �nished, a set of phase signatures desribe the loop branh frequenies

for eah phase of the program. These vetors are used at runtime to enable the program to identify the phase

being exeuted. Along with the signatures, we also need to assoiate the resoure demand data that is used

for power management. This meta data will be used as guidane for the power manager in order to make its

deisions. To be e�etive, the program has to detet as early as possible the phase in whih it is exeuting.

Another important requirement is that the phase detetion along with operating system noti�ation should

have low overhead in terms of performane and energy onsumption. Figure 2 represents the meta-data we

assoiate with the program. This data an be added to the binary ode using a tool suh as ATOM [16℄.

…

ID Signature

…

Resource Demand Data

Figure 2: Meta data representation. Contains the phase ID, the phase signature and the resoure demand

information.

3.2.2 Online stage

During the online stage, the runtime system has to be able to identify whih phase it is running at a given

moment. For that we use a mix of hardware and software. We ollet CLBVs dynamially using hardware.

We assume that the hardware has a performane ounter whih ounts the number of branh loops exeuted.

Suh performane ounter an be found in modern proessors suh as Intel Xsale [9℄. Usually they an be

programmed to issue an interrupt on overow. After a given number of loop branhes exeuted, the proessor

alls an interrupt servie routine, (ISR), whih exeutes as software, to ompare the CLBV dynamially

omputed with the CLBVs attahed in the program as meta-data. The dynami CLBV for the interval being

exeuted is also omputed in hardware. The hardware neessary to do so has to detet a loop branh, map

5

it into one of the 32 vetor positions and inrement the position mapped. The vetors are not normalized at

this point.

Algorithm 1 shows the ISR ode to arry out the omparison. After the interrupt is issued, the interrupt

servie routine has to read the ontent of the vetor stored in the proessor memory, represented by the

variable part sig, normalize it (lines 1{7) and ompare it with the vetors found in the appliation meta-data

struture (lines 8{20), represented by the variable phase[℄[℄. The mathing ISR has time omplexity of O(n)

where n is the number of phases. The overhead of the ISR will depend on how often it is issued, how many

phases the program has and how early a phase an be deteted. For omparison purposes, 32 subtrations

and additions have to be arried out. Part of the overhead will be �xed regardless of how many phase. For

instane, for every exeution of the ISR, 32 divisions have to be exeuted for normalizing the CLBV.

Tim
e

…

Phase X

Phase Y

Phase X

Phase Z

Phase X

ISR
OS /

POWER
MANAGER

Application
Meta Data
…

1

2

3

Program execution

…
X

Y …
Signature Resource demand

Figure 3: Phase detetion diagram. 1) Every N loops the ISR is alled; 2) The ISR tries to math the CLBV

omputed by the hardware with the ones stored along with the appliation ode; 3) If a math happens the

ISR transfer to the power manager the meta data assoiated with the phase.

Figure 3 shows our approah for power management using appliation reetion. In the �gure, we assume

that the appliation has been pro�led and the resoure demand data along with phase signatures (identi�ed

by the box \Appliation Meta Data") are stored at a pre-determined loation in the appliation binary ode.

At every N loops a math is attempted. If it is found the ISR noti�es the operating system power manager to

use the new resoure demand estimates. We note that the phase mathing an also be exeuted in hardware

as proposed by Sherwood in ase of prohibitive overhead for the software implementation. In this ase an

interrupt is raised to notify the appliation that a phase was deteted, then the appliation would notify the

power management and pass it the resoure demand meta-data.

We note again that we hose to use loop branhes to minimize the overhead of phase detetion. For

deteting phases using BBVs we would have to keep trak of the number of times eah basi blok gets

exeuted at run time and try a phase math every N BB exeutions. Suh operation would be exeuted more

often than using LBVs. Nevertheless, Lau et al [11℄ showed that the homogeneity of phases lassi�ed by using

LBVs is omparable to the homogeneity of phases lassi�ed by BBVs. A diagram showing the ow of our

generi pro�ling and meta data gathering proess is shown in Figure 4.

Meta Data
Gathering

Application
Characterization

Energy
Optimization
Simulation

Application
Binary

Figure 4: Generi Flow for Meta Data Constrution

6

Algorithm 1 Math signature ISR

total = 0;

for i = 1 to 32 do

total += part sig[i℄;

end for

5: for i = 1 to 32 do

norm part sig[i℄ = part sig[i℄ = total;

end for

min di� = 2.0;

for i = 1 to numphases do

10: di� = 0;

for j = 1 to 32 do

partial di� = abs(phase[i℄[j℄ - norm part sig[j℄);

di� += partial di�;

end for

15: if (di� < threshold) and (di� < min di�) then

min di� = di�, phase id = i;

end if

end for

if min di� < 2.0 then

20: return phase id;

end if

Given the appliation binary ode, the stages are as follows:

Appliation Charaterization The appliation is pro�led and the phases are identi�ed. Here di�erent

thresholds for phase lassi�ation an be tried out.

Meta Data Gathering Based on the phase lassi�ation, the meta data of interest is olleted.

Energy Optimization Simulation Given the meta-data, whih inludes the phase signatures and the at-

tahed power management information, the energy optimization sheme is simulated for di�erent phase

mathing thresholds, phase intervals and mathing attempt frequenies.

After the simulation is arried out, the best number of phases and frequeny of phase math attempts

(every how many loop branh we try to math a phase) is hosen for the appliation in question. To validate

our approah we used main memory bank shutdown as an example.

3.3 Handling Multiple Data Sets

The desription presented so far has no mention to how di�erent data set inuenes the phase detetion and

therefore the tehnique. The inuene of the input data on a phase of exeution is to reate di�erent signatures

and therefore di�erent phases of exeution with di�erent harateristis and resoure demands. We assume

that in general program inputs an be lassi�ed in di�erent ategories whih in turn yield di�erent behavior. In

order to handle di�erent inputs, the appliations have to be pro�led with one input sample from eah ategory.

The interval signatures (CLBVs) generated by eah run should then be lassi�ed in phases altogether so that

eah phase will be identi�ed by a \global" signature among all di�erent runs of the same program, one for

eah input ategory. In this way, di�erent program behaviors along with di�erent resoure demands (whih

are generated by a di�erent inputs) will still be present in the metadata and orrely identi�ed. We have not

realized experiments to analyze the inuene of di�erent data inputs on the phase lassi�ation but we intend

to do so in future work.

7

4 Experiments

In order to show how our approah an be used, we hose main memory banks shutdown as an example.

Typially, the main memory subsystem of a omputer system is omposed by memory hips. These memory

hips are organized into banks in suh a way that whenever a memory aess is requested, the memory

ontroller has to map the address requested to one of the memory banks and read/write the data from/to

it. We assume that the memory ontroller does not reshedule requests oming from the proessor. It is

responsible for the translation of read and write requests of the CPU into the ontrol signals of the DRAM.

We also assume a linear translation of physial addressses into the banks. For the sake of simpliity we assume

that the requests to memory are also non-overlapping. A summary for di�erent organization of embedded

systems memory ontrollers is presented by Gries and Romer [8℄. We assume that the memory is divided in

small modules and eah memory an operate in di�erent modes with di�erent power onsumption and osts

assoiated, in onformity to [1℄. In this way, unused modules an be swithed into di�erent modes of exeution

based on how long they are idle, hene reduing energy onsumption. Figure 5 shows the representation of

the memory model assumed. The proessor sends ommands to the memory ontroller to aess data as well

as to swith memory banks to the desired low power state.

Figure 5: Memory model diagram

4.1 Memory banks shutdown

Memory banks an operate in the ative mode, where the time to aess the information is minimum, or in

low-power modes, where there is a resynhronization time to bring the memory bak to the ative mode and

then serve the request. The deeper the low-power mode, the lesser the power onsumption of the memory bank

and the higher the resynhronization penalty. In the o�ine stage, we pro�le the demand for eah memory

bank on di�erent phases of an appliation. In the online stage, the runtime system �nds out whih phase

is being exeuted and tell the operating system power manager the estimated demand for the main memory

banks. The operating system then uses the resoure demand information to make deisions of whih state

eah memory bank should be hanged to in order to optimize the energy / performane tradeo�.

The low power modes memory model used is the same as used by Delaluz et al [6℄, whih is based on

data sheets for RAMBUS [1℄. Table 1 shows the low power modes along with the energy onsumed per yle

and the resynhronization delays of eah mode of a DRAM memory bank. We use normalized values when

alulating energy dissipation in our experiments.

We assume that the system does not have virtual memory so we do not have to handle the e�ets of paging.

During the exeution of a program the demand for main memory hanges over time. Being able to trak the

phases of high main memory demand and whih banks are mostly used as early as possible is vital for eÆient

energy management unless speialized hardware is provided. If the latter is true, the task of shutting down

memory banks an be delegated to the hardware. For shutting down memory banks, the operating system

power manager has to be able to send a ommand to the memory banks requesting a transition to a low power

mode. We assume that the operating system an interfae with the memory ontroller in order to send suh

8

Low Power Mode Energy per yle Resynhronization delay (yles)

Ative 3.570nJ 0

Standby 0.830nJ 2

Napping 0.320nJ 30

Power-Down 0.005nJ 9,000

Table 1: Energy onsumption per low power state and resynhronization delays

ommands. In the next subsetion we explain the experimentation proess used for memory bank shutdown,

as well as show the meta-data used.

4.2 Memory bank shutdown resoure demand pro�ling

Given the appliation binary ode, we used Simplesalar [3℄ for CLBV (i.e., intervals signatures) olletion.

Next we lassify the appliation in phases using di�erent thresholds th. Sine eah CLBV is normalized, after

omputing the di�erene between two vetors, the maximum di�erene is less or equal to 2. We use thresholds

of 1:5, 1:0 and 0:5. If the threshold is set to 0:5, this means that as long as at least 75% of the CLBVs are the

same, the two intervals will be lassi�ed as in the same phase. Due to loop branh address aliasing, it does

not mean that 75% of the loops are the same.

During the exeution of Simplesalar for CLBV olletion, we also ollet a trae of main memory aesses

and store it in a separate �le. After the appliation intervals are lassi�ed in phases, we build the resoure

demand meta-data that will be used to guide the power manager deisions. In the ase of memory banks,

we hose the average inter arrival time for memory aess requests for eah memory bank. We ompute

the average inter arrival time per bank per phase as the number of instrutions in the interval divided by

the average number of memory aesses to eah of the banks added to the standard deviation. We add the

standard deviation so that we have a onservative estimate when the variane is too high. The following

formula shows the inter-arrival time estimate used for eah memory bank:

IA

pred

=

IntervalSize� CPI

avg

(average+ stddev)� CpuMemClkRatio

where IntervalSize is the number of instrution in a interval, CPI

avg

is the average number of yles per

instrutions for the phase in whih the partiular interval was lassi�ed. The terms average and stddev are

the average number of main memory aesses and standard deviation for the interval in question, and �nally

CpuMemClkRatio is the ratio between the CPU lok period and the memory lok period.

The power management poliy uses the resoure demand per phase for guiding the shutdown of memory

banks. The model we assumed for memory banks shutdown onsiders the energy ost of resynhronization to

be a fration F

a

, where 0 � F

a

� 1, of the energy ost of being ative per yle. The resynhronization energy

ost per yle is denoted as E

r

(E

r

= F

a

� 3:57nJ). Depending on the number of main memory aesses per

interval, a given bank will be swithed to one of the low power states previously desribed.

Given the estimated number of memory aesses N for an interval of size I , the energy dissipation of

operating on state i is given by:

(N �E

r

� T

r

i

) + (NumMemCyles�E

i

)

E

i

is the energy per yle for the low power state i, where 0 � i < M and M is the number of low power

states. T

r

i

is the resynhronization time for low power state i, and NumMemCyles = (IntervalSize �

CPI)=CpuMemClkRatio the number of memory yles for the given interval. E

0

and T

r

0

denote the energy

onsumption and resynhronization delay for the ative state.

Given a number of memory aesses N for a given memory bank b, we want to swith the bank to the

power state whih minimizes energy. We �rst onsider the number of memory aesses N

i+1

, whih makes the

9

energy onsumption of staying in state i the same as staying in state i + 1 where E

i

> E

i+1

. Suh value is

found in the following equation:

(N

i+1

�E

r

� T

r

i

) + (NumMemCyles�E

i

) = (N

i+1

�E

r

� T

r

i+1

) + (NumMemCyles�E

i+1

)

From the equation above we �nd that:

N

i+1

= NumMemCyles�

1

E

r

�

E

i+1

�E

i

T

r

i

� T

r

i+1

Let the number of estimated memory aesses for a given interval be N

pred

, and let N

0

= 1. If N

i+1

�

N

pred

< N

i

the memory bank in question is swithed to the low power state i.

We an also alulate the inter arrival time values and use them to deide whih low power state to swith

to. The inter arrival time is given by:

IA

i+1

=

NumMemCyles

N

i+1

= E

r

�

T

r

i

� T

r

i+1

E

i+1

�E

i

Similarly, we set IA

0

= 0. Let IAPred

ID

b

be the estimated inter arrival request time for bank b in a given

set of intervals lassi�ed as in phase ID. If IA

i

< IAPred

ID

b

� IA

i+1

the memory bank b is swithed to the

low power state i when exeuting an interval in phase ID. We note that this onditions to swith to a lower

power state i are the same as in the Lower Envelope Algorithm (LEA) presented in [10℄.

Putting everything together, all intervals within a given phase will have a estimated memory aess inter

arrival time per bank denoted as IAPred

b

. Whenever an interval belonging to a phase starts exeuting the

banks are set to the appropriate low power states. Figure 6 represents the resoure demand meta-data as a

2 dimensional array of appliation phases and memory banks estimated inter arrival time. The meta data

represents the demand for eah memory bank per phase.

…

… …

ID Signature IAPred1 IAPred2 IAPredn

B
a

n
k 1

B
a

n
k 2

B
a

n
k n

ID IDID

Figure 6: Memory bank meta-data assoiated with phase signatures

Figure 7 summarizes the simulation ow for our memory bank shutdown sheme using appliation reetion.

The same ow as illustrated in Figure 4 is present. First we perform appliation haraterization, followed by

meta data gathering and simulation of the memory bank shutdown poliy. The results are presented in the

next setion.

Note that the tehnique presented an be used for other purposes other than shutting down memory banks.

It an be used for shutting down any devie in the system as well as to sale proessor frequeny and voltage

using proessor IPC and other relevant parameters.

The next setion presents the results for the experiments using the formulation developed in this setion.

5 Results

For evaluating the performane of the approah, we hose 5 benhmark appliations: bzip, gzip, ghostsript,

adpm and mpegdeode. The �rst two are from SPEC2000 benhmarks, the next two from mediabenh benh-

marks and the last one the Berkeley MPEG-2 deoder. We hose pairs appliation/input with at least 1

10

Branch Loop
Frequency

Vector
Collection

Phase
Classification

Memory
Trace

Collection
Memory Bank

Shutdown
Simulation

Memory
Bank Demand

per PhaseMapping
to Memory

Banks

Application
Binary

Application Characterization Meta Data Gathering

Figure 7: Memory bank shutdown for meta data onstrution

billion instrutions of exeution. For the SPEC2000 benhmarks appliations, we only exeute the �rst 5

billion instrutions due to the long time to exeute the experiments had we done otherwise. Note that we have

to exeute the benhmarks to ollet the memory aesses trae in order to simulate the memory shutdown

algorithms later on. For the phase lassi�ation we used intervals of 5 and 10 million instrutions.

5.1 Phase detetion auray

In order to be more e�etive when using the appliation meta-data, the earlier the runtime system detets

whih phase the program is running, the better. We try to detet the program phase every N loop branh

instrutions exeuted. How frequent it happens will depend on how many loop branh instrutions are exeuted

ompared to the total number of instrutions exeuted in the program. For every math attempt, an interrupt

will be served. Therefore, we need to �nd a tradeo� between how often it is issue and how early the phase

will be aurately deteted. We run a set of experiments where we analyze those fators. Table 2 shows the

number of phases identi�ed aording to the thresholds used. The higher the threshold the fewer phases are

identi�ed.

Program (input) 5 million 10 million

Threshold Threshold

0.5 1.0 1.5 0.5 1.0 1.5

gzip (input.graphi) 9 6 4 5 3 3

bzip (input.graphi) 31 16 10 23 12 7

mpegdeode (lion) 3 2 1 3 1 1

ghostsript (tiger) 8 4 1 6 4 1

adpm (linton) 1 1 1 1 1 1

Table 2: Number of phases for di�erent thresholds for eah benhmark with interval size of 5 and 10 million

instrutions

Figure 8-(a) shows the average number of instrutions exeuted per interval before a phase is mathed as

a funtion of how many sets S of N loops are exeuted. N is set to 10,000 in these experiments. S varies

as 1; 2; 3; 4; 5; 10; 20 and 30. The more sets S the higher the number of instrutions exeuted before the �rst

math. Note that for every 50,000 loops, a bit more than 2 million instrutions are exeuted in the average for

intervals of 10 million and approximately 1 milion instrutions for intervals of 5 millions. Setion 5.2 shows

what is the impat in terms of energy savings of reognizing the phase every 50,000 loop branh instrutions.

S determines how early the power manager an start using the resoure demand meta-data. Before a phase of

exeution is reognized the power manager an either use the resoure demand meta-data from the previous

phase or do not use any information until a phase is deteted. Figure 8-(b) shows the auray of phase

detetions as a funtion of S. Every time the Algorithm 1 runs, if a phase is deteted, we verify whether the

11

phase deteted is orret. If no phase is deteted (the Manhatan di�erene is not smaller than the threshold)

or if the wrong phase is deteted we have a mismath. The bigger the S the more aurate beause more

instrutions are gathered and the hanes of a orret math are higher. Also, the higher the threshold the

higher the auray beause less information is needed for a phase math.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 0 5 10 15 20 25 30

N
um

be
r

of
 in

st
. b

ef
or

e
m

at
ch

in
g

Number of loop intervals

Number of instructions executed before phase matching

5M th=0.500
5M th=1.000
5M th=1.500

10M th=0.500
10M th=1.000
10M th=1.500

(a)

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30

P
er

ce
nt

ag
e

of
 c

or
re

ct
 m

at
ch

es

Number of loop intervals

Matches Accuracy

5M th=0.500
5M th=1.000
5M th=1.500

10M th=0.500
10M th=1.000
10M th=1.500

(b)

Figure 8: (a) - Average number of instrutions exeuted per interval before a phase math is deteted for 5

and 10 million instrutions and di�erent thresholds; (b) - Phase mathing auray - perentage of time the

phase deteted was orret for 5 and 10 million instrutions and di�erent thresholds. Benhmark adpm is not

used in this average beause it has only one phase of exeution.

5.2 Memory banks shutdown energy/delay results

For olleting the memory traes and loop branhes data we used Simplesalar on�gured as an inorder

StrongARM proessor with 32Kb of instrution and data L1 ahe and no L2 ahe. Sine the delays ourred

by the resynhronization of memory banks before aesses an ause other omponents other than the memory

itself to spend energy due to the waiting, we set F

a

= 1. We also ran experiments with F

a

= 0:4 to evaluate

the e�ets of hanging the energy ost of resynhronization. The CpuMemClkRatio is set to 2 so the proessor

lok is twie as fast as the memory lok. The number of phases per appliation depends on the size of the

intervals, the thresholds and obviously on the appliation behavior harateristis.

In order to evaluate the bene�ts of using phase analysis to perform memory bank shutdown, we ompare

our reexive approah with a stati poliy where all the memory banks are kept in the same low power state

12

throughout the whole program exeution, with only pro�ling of memory banks, where a single pro�le for the

whole program is used to shutdown the banks, and with a self-monitored hardware based approah, developed

by Delaluz et al [6℄, alled HBP (Hardware Based Preditor). The poliies ompared are desribed as follows:

stati NAP This is the most energy*delay eÆient stati poliy. The memory is kept in the NAP low power

state for the entire program exeution.

only pro�ling A pro�le of memory bank demand for the entire program is olleted and used to hoose

whih low power states eah memory bank will be swithed too. This orresponds to setting th = 2:0

when using the phase lassi�ation.

HBP A hardware based self-monitored approah to shutdown the banks. Dediated hardware for eah bank

is used to predit and keep trak of idle time and shutdown the banks aordingly. Using the last

idle time as the next, an idle time predition is alulated and the memory banks are set to the low

power state in whih the idle time predition is higher than the synhronization delay. Also a pre-

wakeup time is shedule so that the memory banks is ready for use when the request arrives and no

resynhronization penalty is paid. When the memory bank is woken up too early, a onstant threshold

sheme is implemented whih shuts down the memory banks based on LEA [10℄. If the idle time is higher

than thresholds for low power state i, the memory is swithed to that state.

phase The phase poliy is the poliy proposed in this paper. We lassify program intervals into phases o�ine

and use the resoure demand information from eah phase online to guide swithing the memory banks

the appropriate power state.

Figure 9 shows the average energy (a) and energy*delay savings (b) for the six benhmarks exeuted

normalized to stati NAP poliy and for F

a

= 1:0 and F

a

= 0:4. We used intervals of exeution of 5 and

10 million instrutions and varied the threshold as 0:5, 1:0 and 1:5. When S = perfet, at the beginning of

eah phase the orret pro�le information related to the phase is used, resulting in maximum bene�t in terms

of using the meta-data for deiding the best memory bank low power transition. The Figure also shows the

energy onsumption of HBP when also normalized to stati NAP. The goal of this experiment is to shows

the energy gains as well as the energy*delay gains when using the phase information throughout the program

exeution. We use energy*delay to evaluate whih shemees yields the best tradeo� performane /energy. By

using it, memory banks whih are rarely used in some intervals an be put in the deepest sleep state with little

energy and delay penalties. Stati NAP annot take advantadge of it beause there is no notion of intervals

and phases. HBP tries to keep trak of this information by predition the next arrival time based on the last.

The extra savings in terms of energy*delay are in the average 65%, 77%, 85% and 90% for 2, 4, 8 and 16

banks respetively when omparing to stati NAP. Considering only the energy, the savings follow the same

trend with a little bit less savings. The more memory banks the more hanes to turn them o� and therefore

the higher the gains when ompared to a stati poliy. When omparing with HBP, phase performs better for

all memory bank on�gurations by saving about 55%, 22%, 25% and 13% more for 2, 4, 8 and 16 memory

banks respetively and F

a

= 1. The gains derease beause the savings when using HBP also inrease with the

number of memory banks. For F

a

= 0:4, in omparison with HBP the savings are redued beause the penalty

paid by HBP redues as well. The other important point about the �gure is to show that for thresholds 0:5

and 1:0 the savings are very similar. However, when using the threshold as 1:5 there is a derease in the

gains, speially for the 2 and 4 bank on�gurations. Figure 10 will point out more learly the reasons for this

behavior.

The harts in Figure 10 presents the results of the phase poliy normalized to the only pro�ling. The goal

of this experiment is to show that if the threshold for phase lassi�ation is too high the similarity of the

intervals lassi�ed as in the same phase is poor and as a onsequene the resoure demand for eah interval is

not aurately represented by the average among all intervals of the phase. Therefore less hanes to swith

memory banks to lower power states are disovered. This one more proves that splitting the program into

phases is bene�ial beause it unover portions of the ode whih do not use ertain memory banks at all or

whih use them very rarely. This allows extra energy savings by being able to put these banks in low power

13

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

hbp
phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

hbp
phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

(a) (b)

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

hbp
phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

hbp
phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

() (d)

Figure 9: Normalized Energy (a), () and Energy*delay (b), (d) w.r.t. stati NAP poliy for F

a

= 1:0 (a), (b)

and F

a

= 0:4 (), (d).

modes. The hart shows that in the average using thresholds of 0:5 and 1:0 present extra savings of 16% for 2

and 4 banks when ompared to only pro�ling and 10% for 8 and 16 banks. Another point is that the savings

are very similar for 0:5 and 1:0 and for intervals of 5 and 10 million instrutions, indiating that using th = 1:0

and intervals of instrutions as 10 million instrutions is a better hoie sine it redues the number of phases

and hene the overhead.

All the experiments presented so far assume a perfet mathing when using the phases of exeution in-

formation during runtime. In reality though, it is hard to detet the orret phase right in the beginning

of eah interval. Figure 11 shows the impat of online phase detetion on the energy delay savings. When

S = perfet at the beginning of eah phase the orret pro�le information related to the phase is used, re-

sulting in maximum bene�t. For S varying as 1 and 5, a phase math is tried every 10,000 and 50,000 branh

loops respetively. Only after the math the orret meta-data is used for memory bank low power transition.

Note that for all phases deteted exept the �rst, the meta data used in the previous phase is used until the

new phase is deteted by our tehnique. This means that the wrong pro�le information might be used until

the orret phase is deteted. This experiment shows the e�ets of mathing the phases online in the energy

savings. For intervals of exeution of 10 million instrutions the e�et of mathing is negligible regardless of

the thresholds used. The same is not true for intervals of 5 million instrutions. Figure 8 shows that the

14

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

(a) (b)

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

phase 5M th=0.500 S = perfect
phase 5M th=1.000 S = perfect
phase 5M th=1.500 S = perfect
phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

() (d)

Figure 10: Normalized Energy (a), () and Energy*delay (b), (d) w.r.t. only pro�ling poliy for F

a

= 1:0 (a),

(b) and F

a

= 0:4 (), (d).

average number of instrutions exeuted before a math for S = 1 and S = 5 is 0.5 million and a little over

1 million respetively, whih in a 5 million instrutions interval represents 10% to 20% perent of the whole

interval. Besides, the auray for th = 0:500 and th = 1:000 is under 80% and 85% respetively. Note that

the e�et of using S = 1 when th = 0:5 for intervals of 5 million instrutions is not very signi�ant though,

indiating that if neessary this on�guration is an attrative option.

5.3 Phase detetion threshold and energy savings orrelation

The results presented in the subsetion 5.2 show that there is a orrelation between the phase detetion

threshold and the energy savings when using phases to guide memory banks shutdown. In this subsetion we

explain this relation in more details. The higher the thresholds, the less phases will be deteted beause smaller

is the homogeneity among the intervals in the same phase. Therefore the variane in the predited number of

memory aesses should also be higher. We de�ne two metris to show how the variane and the predition for

memory aesses hange with the threshold. We all them metri1 and metri2. Let Intervals

phase

denote

the number of intervals lassi�ed as in the same phase, TotalIntervals the total number of intervals for the

program, avg

bank

phase

and stddev

bank

phase

the average number or memory aesses and the standard deviation for a

15

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

hbp
phase 5M th=0.500 S = perfect
phase 5M th=0.500 S = 1
phase 5M th=0.500 S = 5
phase 5M th=1.000 S = perfect
phase 5M th=1.000 S = 1
phase 5M th=1.000 S = 5
phase 10M th=0.500 S = perfect
phase 10M th=0.500 S = 1
phase 10M th=0.500 S = 5
phase 10M th=1.000 S = perfect
phase 10M th=1.000 S = 1
phase 10M th=1.000 S = 5

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

hbp
phase 5M th=0.500 S = perfect
phase 5M th=0.500 S = 1
phase 5M th=0.500 S = 5
phase 5M th=1.000 S = perfect
phase 5M th=1.000 S = 1
phase 5M th=1.000 S = 5
phase 10M th=0.500 S = perfect
phase 10M th=0.500 S = 1
phase 10M th=0.500 S = 5
phase 10M th=1.000 S = perfect
phase 10M th=1.000 S = 1
phase 10M th=1.000 S = 5

(a) (b)

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average Normalized Energy

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

hbp
phase 5M th=0.500 S = perfect
phase 5M th=0.500 S = 1
phase 5M th=0.500 S = 5
phase 5M th=1.000 S = perfect
phase 5M th=1.000 S = 1
phase 5M th=1.000 S = 5
phase 10M th=0.500 S = perfect
phase 10M th=0.500 S = 1
phase 10M th=0.500 S = 5
phase 10M th=1.000 S = perfect
phase 10M th=1.000 S = 1
phase 10M th=1.000 S = 5

2 4 8 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Average Normalized Energy Delay

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

hbp
phase 5M th=0.500 S = perfect
phase 5M th=0.500 S = 1
phase 5M th=0.500 S = 5
phase 5M th=1.000 S = perfect
phase 5M th=1.000 S = 1
phase 5M th=1.000 S = 5
phase 10M th=0.500 S = perfect
phase 10M th=0.500 S = 1
phase 10M th=0.500 S = 5
phase 10M th=1.000 S = perfect
phase 10M th=1.000 S = 1
phase 10M th=1.000 S = 5

() (d)

Figure 11: Normalized Energy (a), () and Energy*delay (b), (d) w.r.t stati NAP poliy and using online

phase mathing with S = 1 and S = 5 for F

a

= 1:0 (a), (b) and F

a

= 0:4 (), (d).

given phase and memory bank ombination respetively.

metri1 =

X

8phases

X

8banks

Intervals

phase

TotalIntervals

� (avg

bank

phase

+ stddev

bank

phase

) (1)

metri2 =

X

8phases

X

8banks

Intervals

phase

TotalIntervals

�

stddev

bank

phase

avg

bank

phase

(2)

metri1 (equation 1) summarizes the estimation for the number of memory aesses hanges as the thresh-

old varies by giving the sum of the estimations for all memory banks and phases. metri2 (equation 2) shows

how the variane hanges as the phase detetion threshold varies. The seond term of equation 2 is known as

the oeÆient of variane. It gives the perentage of the average the standard deviation represents. The �rst

term of both equations represent the weight of a phase in the whole program exeution. In equation 1 smaller

values indiate that smaller number of memory aess preditions are alulated. In equation 2 smaller values

indiate the less variation is present in the estimations. Both metris with low values indiate that the variane

is low and the number of memory aesses estimates are also smaller, an ideal situation for minimizing energy

onsumption in the memory banks.

16

2 4 8 16
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5 metric1

Number of banks

M
et

ric

th=0.500
th=1.000
th=1.500
th=2.000

2 4 8 16
0

50

100

150

200

250
metric2

Number of banks

M
et

ric

th=0.500
th=1.000
th=1.500
th=2.000

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Normalized Energy Delay for bzip
i
nputgraphic

Number of banks

N
or

m
al

iz
ed

 E
ne

rg
y

D
el

ay

phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

(a) (b) ()

Figure 12: metri1 (a), metri2 (b) and energy*delay () for bzip with intervals of 10 million instrutions and

varying the phase detetion threshold

2 4 8 16
0

1

2

3

4

5

6
x 10

4 metric1

Number of banks

M
et

ric

th=0.500
th=1.000
th=1.500
th=2.000

2 4 8 16
0

2

4

6

8

10

12
metric2

Number of banks

M
et

ric

th=0.500
th=1.000
th=1.500
th=2.000

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

Normalized Energy Delay for gs
t
iger

Number of banks
N

or
m

al
iz

ed
 E

ne
rg

y
D

el
ay

phase 10M th=0.500 S = perfect
phase 10M th=1.000 S = perfect
phase 10M th=1.500 S = perfect

(a) (b) ()

Figure 13: metri1 (a),metri2 (b) and energy*delay () for ghostsript with intervals of 10 million instrutions

and varying the phase detetion threshold

Figures 12 and 13 shows both metris (a,b) and the energy*delay () for bzip and gs with intervals of 10

million instrutions and thresholds 0:500; 1:000; 1:500 and 2:000. The energy*delay hart () is normalized to

the energy onsumption for th = 2:000. In Figure 12 we see that the both metris inrease as the threshold

inreases, showing a diret orrelation between the variane and the number of memory aesses estimates

as the threshold inreases. Similarly, the energy*delay also inreases with the threshold sine there is more

variations and therefore more more penalties are paid for wrong estimates. In Figure 12-(b) we see a sharp

inrease for th = 2:0. This means that the variane is very high. The energy*delay doest not su�er the same

sharp inrease beause the estimates values do not su�er suh inrease inrease as seen in Figure 12-(b). In

Figure 13 the opposite happens. The variane does not inrease very muh, but the estimates do, resulting

on a more notieable inrease in the energy*delay produt. This happens beause the benhmark has a few

intervals with lots of memory aesses and lots of intervals with few memory aesses. With low thresholds

these intervals are lassi�ed as in the same phase ramping up the estimates and therefore avoiding greater

energy*delay savings. This indiates that metri1 is a better gauge to predit the energy savings.

5.4 Overheads

For assessing the exeution overhead of our approah, we run all the benhmarks and alulated the average

number of instrutions between every 10,000 loop branh instrutions to be about 350,000 instrutions. We

17

also exeuted the routine to math the phase signatures at run time on simplesalar and alulated the number

of instrutions exeuted by the math algorithm at every 10,000 loop branhes to math a partial signatures.

Table 3 summarizes these results. The routing exeutes the algorithm presented in Algorithm 1.

of phases # of instrutions overhead

5 2,580 0.7%

10 4,500 1%

20 8,280 2%

30 12,060 3%

Table 3: Exeution time overhead of online phase mathing

The overead for 10 phases is about 1% of the number of instrutions exeuted. For 30 phases this overhead

is about 3%. For a full haraterization overhead it remains to alulate the energy overhead for either the

fully hardware based approah or for the mixed hardware and software approah. This will be done in future

work.

Another overhead that has to be taken into aount is the size of the meta-data. For inter arrival time

estimate, we assume that 4 bytes per bank / phase are used. Assuming 16 banks and 10 phases of exeution,

16 � 10 � 4 = 640 bytes are needed. For the signatures, we also assume 4 bytes per buket. Sine we use

32 bukets, 128 bytes multiplied by the number of phases are needed. Therefore, assuming 16 banks and 10

phases, a total of 1920 bytes of meta data is attahed to the binary ode. Note that we do not really need to

store the inter arrival time estimate in the meta-data if the memory energy onsumption harateristis are

�xed. In this ase, we only need 4 bits per memory bank / phase to denote whih state the bank should be

swithed to, reduing the size of the inter arrival data from 640 to 80 bytes and the total size of the meta-data

from 1920 to 1360 bytes. Another possible optimization to redue the overhead is to only onsider phases

with intervals whih represent only a signi�ant perentage of the program exeution therefore reduing the

number of phases. The signature and resoure demand of the eliminated phases ould then be removed from

meta data. An analysis of whih phases are not signi�ant has not been arried out in this paper though.

6 Future Work

We believe that the use of appliation reetion is useful for helping minimizing energy onsumption of

appliations. To fully validate our memory shutdown example we need to haraterize the energy overhead

of olleting the phase signatures and mathing them online. We believe the overhead is not signi�ant due

to the simpliity of the operations. Furthermore, we also believe that the reetion approah an be used

to minimize energy of other omponents suh as the proessor itself, by the use of dynami voltage saling

(DVS), and other proessor peripherals suh as o-proessors, network interfaes, ash memory and others.

7 Conlusions

In this paper we presented a sheme in whih an appliation is lassi�ed in phases, meta-data representing the

phases of the appliation along with resoure demands is attahed to the ode, and during the exeution either

the run time system or the appliation probes the appliation to �nd out whih phase is being exeuted. We

all this approah an appliation reetion beause the appliation arries a representation of its own dynami

behavior along with resoure demand meta-data and uses this information to guide the power manager on

deision making.

We used main memory bank shutdown as an example of how the tehnique an be used. The results

showed signi�ant energy�delay gains are obtained when omparing the sheme with a stati poliy, with

only pro�ling (without using phase information th=2.0) and with the best known hardware based sheme.

18

The average savings are 80%, 13% and 28% respetively. We believe that the same sheme an be used for

optimizing other resoures. One example is performing proessor frequeny and voltage saling using IPC

estimations from the appliation phases and integrating suh sheme with memory shutdown.

Referenes

[1℄ Rambus in. http://www.rambus.om.

[2℄ L. Benini and G. De Miheli. Dynami Power Management: Design Tehniques and CAD Tools. Kluwer

Aademi Publishers, 1997.

[3℄ D. C. Burger and T. M. Austin. The simplesalar tool set, version 2.0. tehnial report s-tr-97-1342,

university of wisonsin, madison, june 1997.

[4℄ B. Calder, T. Sherwood, E. Perelman, and G. Hamerly. Simpoint web page,

http://www.s.usd.edu/users/alder/simpoint.

[5℄ L. Capra, W. Emmerih, and C. Masolo. Reetive middleware solutions for ontext-aware applia-

tions. In Proeedings of the Third International Conferene on Metalevel Arhitetures and Separation of

Crossutting Conerns, pages 126{133. Springer-Verlag, 2001.

[6℄ V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, and M. J. Irwin. Hardware and software

tehniques for ontrolling dram power modes. IEEE Transations on Computers, 50(11):1154{1173, 2001.

[7℄ V. Delaluz, A. Sivasubramaniam, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. Sheduler-based

dram energy management. In Proeedings of the 39th onferene on Design automation, pages 697{702.

ACM Press, 2002.

[8℄ M. Gries and A. Romer. Performane evaluation of reent dram arhitetures for embedded systems,

TIK-Report No. 82, Computer Engineering and Networks Laboratory (TIK), ETH Zurih, Switzerland,

1999.

[9℄ Intel. Intel 80200 proessor based on intel xsale miroarhiteture developers manual, 2000.

[10℄ S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proeedings of the 14th Symposium

on Disrete Algorithms, 2003.

[11℄ J. Lau, S. Shoenmakers, and B. Calder. Strutures for phase lassi�ation. In IEEE International

Symposium on Performane Analysis of Systems and Software, Marh 2004.

[12℄ A. R. Lebek, X. Fan, H. Zeng, and C. S. Ellis. Power aware page alloation. In Arhitetural Support

for Programming Languages and Operating Systems, pages 105{116, 2000.

[13℄ J. H. Park, S. Wu, and B. A. Izadi. Coarse-grained dram power management. In Embedded Systems and

Appliations, pages 248{254, 2003.

[14℄ T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatially haraterizing large sale program

behavior. In Tenth International Conferene on Arhitetural Support for Programming Languages and

Operating Systems, Otober 2002.

[15℄ T. Sherwood, S. Sair, and B. Calder. Phase traking and predition. In 30th International Symposium

on Computer Arhiteture, June 2003.

[16℄ A. Srivastava and A. Eustae. Atom: a system for building ustomized program analysis tools. In

Proeedings of the ACM SIGPLAN 1994 onferene on Programming language design and implementation,

pages 196{205. ACM Press, 1994.

19

