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Abstra
t

Power 
onsumption is a major 
on
ern in embedded systems design due to the portability and battery

driven operation of su
h systems. The runtime optimization of embedded software appli
ations for system-

level power / performan
e tradeo�s requires ability of the runtime system to probe system and appli
ation

status and utilize pro
edures that make these tradeo�s e�e
tive. To ensure eÆ
ien
y of de
ision making, it

is important that su
h de
isions are made with the least overhead to system power. One way to a
hieve this


apability is through systemati
 de�nition, and update of meta data that 
an be probed by the runtime

system and given as input to the dynami
 power management algorithms. In this paper, we use the


on
ept of appli
ation re
e
tion, a te
hnique in whi
h a program represents its own stru
ture and behavior

through the use of meta-data. Its use enables the ability of the runtime system to look at the program

representation and make power management related de
isions. We present a pro�ling s
heme to build a

re
exive data stru
ture in whi
h a program represents its own exe
ution behavior, and use this information

at run time to guide operating system power management de
isions. Our s
heme is inspired on Simpoint, a

tool for automati
 program phase 
lassi�
ation and simulation points sele
tion. We use main memory bank

shutdown as an example of how our te
hnique 
an be used and we show that we 
an a
hieve energy/delay

savings 
omparable to the best known hardware based te
hnique. We believe that our approa
h 
an also

be used for eÆ
ient energy management of other resour
es su
h as pro
essor and system peripherals.

1 Introdu
tion

Power 
onsumption is a major 
on
ern on embedded systems design due to the in
rease in mobility, 
omplexity,

and the ever in
reasing demand for performan
e and small form fa
tors. Furthermore, the battery-driven

nature of su
h systems requires a 
areful tradeo� between performan
e and power in order to maximize their

lifetime and still satisfy the performan
e requirements.

Optimizations 
an be performed at various levels of the system, from ar
hite
ture to appli
ations. These

optimizations 
an be 
arried out stati
ally, at design time, or dynami
ally at run time, where an eÆ
ient

infra-stru
ture to enable the ex
hanging of information between appli
ations demand and power manager is

needed. The runtime optimization of embedded software appli
ations for system-level power / performan
e

tradeo�s requires ability of the runtime system to probe system and appli
ation status and utilize pro
edures

that make these tradeo�s e�e
tive. Also, to ensure eÆ
ien
y of de
ision making, it is important that su
h

de
isions are made with the least overhead to system power.

In this paper, we use the 
on
ept of appli
ation re
e
tion, a te
hnique in whi
h a program represents its

stru
ture and dynami
 behavior through the use of a resour
e demand meta-data. Its use enables the ability

of the runtime system to look at the program representation and make power management related de
isions.

We present a s
heme to build a re
exive data stru
ture by using pro�ling. In the s
heme proposed, the

program represents its own exe
ution behavior, and use this information at run time to guide operating system
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power management de
isions. Our program representation exposes dynami
 resour
e demand variation over

time, enabling the runtime system to probe su
h information (resour
e demand) and manage the resour
es to

minimize power without signi�
ant performan
e penalties. We use the 
on
ept of program phases of exe
ution,

whi
h will be de�ned properly later in the paper. For now, a phase of exe
ution are intervals of a program

whi
h behave in a similar fashion and therefore have similar resour
e needs. In order to validate our approa
h,

we use main memory shutdown as an example.

The 
ontributions of this paper are listed as follows. 1) The use appli
ation re
e
tion for runtime opti-

mization of power 
onsumption; 2) The suggestion of a s
heme to atta
h appli
ation meta-data representing

di�erent resour
e needs throughout the dynami
 exe
ution of a program. 3) A s
heme to identify whi
h phase

of exe
ution a program is running and a

ess the related resour
e demand meta data asso
iated with it.

The paper is organized as follows. Se
tion 2 presents the related work. Se
tion 3 des
ribes our appli
ation

re
exive approa
h for power management. In Se
tion 4 we des
ribe the experiments realized to validate our

s
heme, followed by Se
tion 5, where we show our results. Finally we point out future resear
h dire
tions and


on
lude in Se
tions 6 and 7.

2 Related Work

Re
e
tion is a programming language 
on
ept whi
h allows a program to analyze, reason and modify its

representation. Re
e
tion enables inspe
tion, in whi
h either the program or the runtime environment a

ess

the representation of the program and adapt a

ordingly in order to optimize some aspe
t. Re
e
tion is

used in di�erent 
ontexts. For instan
e, distributed middleware implementations use re
e
tion so that the

middleware 
an adapt to appli
ations/devi
es behavior. Ea
h appli
ation or devi
e represents its behavior by

means of pro�les (su
h as resour
e demands, QoS requirements, et
...) and the middleware looks for 
hanges

in the pro�le to adapt its behavior [5℄. We use a similar 
on
ept in this paper. Ea
h appli
ation 
arries a

representation of its dynami
 behavior (the meta-data). The runtime system (either the operating system

or a power manager) monitors the appli
ation behavior to �nd out the 
urrent exe
ution 
hara
teristi
s.

Based on this information, the power manager adapts its behavior to optimize the energy 
onsumption of the

appli
ation.

Among the program 
hara
teristi
s that a power manager 
an use, appli
ation resour
e demand is im-

portant to help de
iding the power mode in whi
h a given resour
e should operate. It is therefore desirable

that an appli
ation is able to identify and represent its resour
e demand throughout the exe
ution. From

this perspe
tive, the behavior of a program varies signi�
antly. In addition, the demand for a resour
e is

related to the part of the program being exe
uted at a given time. Furthermore, parts of programs that exe-


ute similar 
ode (whi
h exe
ute the same instru
tions with approximately the same frequen
y) have similar

resour
e demands [14℄. Thus, being able to identify whi
h part of the program is being exe
uted and how

mu
h resour
es it requires is important to optimize their use. Sherwood et al [14℄ have devised a te
hnique

in whi
h the dynami
 exe
ution of a program is divided in phases of exe
ution using basi
 blo
k frequen
y

ve
tors (ve
tors representing how many instru
tions per basi
 blo
k were exe
uted). A phase of exe
ution

is group of program intervals with similar basi
 blo
k ve
tors. The frequen
y ve
tors 
ontain the number of

times and the number of instru
tions ea
h basi
 blo
k of the program was exe
uted in an interval. Therefore

similar basi
 blo
k ve
tors mean that two intervals exe
uted similar instru
tions. The goal of their work is

to �nd phase representative samples in order to speed up program simulation. The authors developed a tool


alled Simpoint [4℄ whi
h 
lassi�es a program in phases. In a follow up work [15℄, they devised a te
hnique

for �nding and predi
ting phases of exe
ution online, and suggested that the pro
essor 
an be adapted for

ea
h phase of exe
ution to maximize performan
e and in some 
ases minimize energy 
onsumption. Using

very similar te
hniques, Lau et al [11℄ showed that not only basi
 blo
ks frequen
y ve
tors 
an be used for

phase 
lassi�
ation, but also loops, pro
edures, regions of memory a

essed and types of instru
tions frequen
y

ve
tors. Building upon this 
on
ept, we propose a te
hnique to atta
h meta-data to ea
h phase of exe
ution,

dete
t whi
h phase of the program is exe
uting, and utilize the meta-data for energy optimizations.

Energy optimizations of a 
omputer system 
an be 
arried out in di�erent ways. A well known method
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is dynami
 power management (DPM) of devi
es. In DPM, devi
es are swit
hed to low power modes for

saving power. However, in order to bring them to a
tive mode, a performan
e and power 
ost is asso
iated.

The de
ision on when and whi
h mode devi
es should be swit
hed to is not a trivial problem. [2℄ and [10℄

present good surveys on the subje
t. Among the various devi
es that support DPM, main memory banks are

important due to their 
ontribution for the overall power 
onsumption of a typi
al 
omputer system. In this


ontext, Delaluz et al [6℄ proposed 
ompiler level te
hniques and also self monitoring hardware based s
hemes

for main memory bank shutdown. In parti
ular he developed an approa
h 
alled History Based Predi
tor

(HBP), whi
h will be explained in more details in Se
tion 4. In a later work [7℄, the same author proposed

an operating system s
heduler driven memory shutdown approa
h, where the operating system periodi
ally


he
ks whi
h memory banks were used in a last interval of exe
ution. In their work, an interval of exe
ution

is the period between two operating system ti
k interrupts. The banks whi
h were not used are swit
hed to

the deepest low power state.

Also related to memory banks shutdown, Lebe
k et al [12℄ proposed a power aware page allo
ation s
heme,

where they suggest a memory allo
ation s
heme that tries to maximize the idle time of memory banks and

hen
e maximize the time these banks are in low power modes.

Finally, Park et al [13℄ proposed a s
heme in whi
h ea
h pro
ess is loaded into 
ontiguous memory spa
e

that is divided in banks or memory modules. Whenever a pro
ess is loaded into memory, its pro
ess 
ontrol

blo
k (PCB) holds the information saying whi
h banks are allo
ated to the pro
ess. Whenever a pro
ess is

preempted, the banks allo
ated to it have a 
han
e to be swit
hed to lower power modes. To �gure out whi
h

states the banks should be swit
hed to they keep a history of the pro
ess waiting time. Depending on the

predi
ted waiting time, the memory banks are swit
hed to the appropriate modes.

3 Using Re
e
tion for Energy Optimization

Runtime optimization of embedded system appli
ations for system-level power / performan
e tradeo�s requires

ability of the runtime system to probe the dynami
 exe
ution environment, appli
ation and system status.

As an example, it is desirable for the system to be able to inspe
t the demand of the appli
ation for 
ertain

resour
es in order to better optimize their use. It has been shown in the literature that the behavior of

programs varies signi�
antly over its exe
ution [14℄. Therefore, being able to exploit spe
i�
 behaviors or

phases of exe
ution enables di�erent types of optimization (ranging from hardware adaptation to better suit

the program demand, to multi-threading s
heduling, whi
h uses phase information to �nd out when the

behavior of a spe
i�
 thread 
hanges). The optimization targets 
an be either performan
e, energy or a

tradeo� between the two.

We adopt the use of re
e
tion, where appli
ations 
arry meta data representing the dynami
s of its phases

of exe
ution in order to optimize the run time energy 
onsumption of the system. A

essing the meta data

of the appli
ation, the runtime system (the operating system power manager) infers resour
e demand needs

and make energy management de
isions. We propose a s
heme through whi
h the run time system probes the

appli
ation to �nd out the phase of the appli
ation being exe
uted, the meta-data asso
iated with it, and how

it should be used to optimize the system energy 
onsumption, the latter depending on whi
h devi
es are the

target of the optimization.

3.1 Phases of exe
ution of a program

As noted before, programs exe
ute di�erent segments of 
ode at di�erent points in time. Looking at a dynami


tra
e of exe
ution, programs have repetitive behavior in whi
h the 
ode exe
uted and the frequen
y at whi
h

it is exe
uted are the same. A phase of the program is de�ned as a group of exe
ution intervals in whi
h

the exe
ution of instru
tions is similar. An exe
ution interval is a �xed number of dynami
ally exe
uted

instru
tions. Ea
h phase needs di�erent resour
es and exe
utes di�erent portion of the 
ode. Sherwood et al

[14℄ showed that intervals of exe
ution whi
h exer
ise similar portions of the appli
ations 
ode tend to have

similar resour
e needs. They used basi
 blo
k frequen
y ve
tors (BBV) to represent the 
ode exe
uted during
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ertain intervals of exe
ution, where two or more intervals, not ne
essarily 
ontiguous but with similar BBVs,

are 
onsidered part of the same phase of exe
ution of the program. To 
lassify BBVs as similar they use o�ine

ma
hine learning 
lustering te
hniques. Based on this prin
iple, Lau et al [11℄ showed that not only BBVs

are a

urate in representing phase behavior, but also loop bran
hes and pro
edure 
alls provide a good degree

of a

ura
y for identifying phases of exe
ution. Both works have as obje
tive to identify simulation points

whi
h represent the program behavior. Instead of exe
uting the whole program to evaluate the pro
essor

performan
e, only representative intervals from ea
h phase are exe
uted, speeding up simulation eÆ
ien
y by

orders of magnitude.

Our approa
h builds upon the prin
iple of program phases of exe
ution. It 
onsists of two stages. An

o�ine stage, where a program binary 
ode is pro�led in order to identify resour
e demands and phases of

exe
ution. From this, we build a re
exive data representation whi
h stores resour
e needs of ea
h phase, and

also a signature whi
h is used by the runtime system to mat
h a program to a phase. We 
all it re
exive

be
ause it represents dynami
 exe
ution information whi
h is inspe
ted by the program itself or by the runtime

system. The se
ond stage is performed online. The runtime system monitors the program exe
ution in order

to identify the phase the program is running, and notify the power manager / operating system about the

resour
e needs for the phase. The power manager makes the appropriate de
isions to optimize the system

power 
onsumption.

Three important issues of the approa
h are: 1) whi
h information is used as meta data; 2) how it is mat
hed

with a
tual program exe
ution so that the right information is used; 3) how it is a

essed. The approa
h we

used is motivated by the approa
h des
ribed by Sherwood et al [15℄, in whi
h the pro
essor tra
ks and predi
ts

program exe
ution phase behavior using BBVs on the 
y.

BB branch addr Hash
…

Counters
…

ID Signature

=

Figure 1: Phase tra
ker hardware for �nding phases

The stru
ture of the hardware to �nd and mat
h phases used by Sherwood is illustrated in Figure 1. After

the exe
ution of a basi
 blo
k, the basi
 blo
k bran
h instru
tion address is hashed into a bu
ket of 32 
ounters.

The 
ounter is in
remented by the number of instru
tions exe
uted in the basi
 blo
k. After an interval of

exe
ution, the ve
tor of 
ounters represents the signature of the interval, whi
h is 
ompared against a history

of previously 
al
ulated signatures. If there is a mat
h, the interval is 
lassi�ed as part of a phase already

dis
overed previously. Otherwise the interval is 
onsidered a new phase of exe
ution and is inserted in the

history. A mat
h is found if the Manhattan di�eren
e between two ve
tors a and b, represented by Diff(a; b),

is less than a threshold th. Hen
e a mat
h is found if:

Diff(a; b) = (

32

X

i=1

j a

i

� b

i

j) � th

This is similar to the approa
h devised in their previous paper [14℄. However it is exe
uted at runtime and

hen
e has to be simple enough to minimize overhead.

We use a similar approa
h to the one des
ribed, but we use it for o�ine phase 
lassi�
ation as well as for

online mat
hing at run time. They key di�eren
es is that we do not exe
ute the phase mat
hing algorithm

fully in hardware and we also do not use basi
 blo
ks to tra
k phases, but bran
h loops. The reason is that
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basi
 blo
ks are too �ne grain for the type of optimization we intend to perform. Therefore the overhead is

greatly minimized if we keep tra
k of a more 
ourse grain stru
ture su
h as loop bran
hes. Another di�eren
e

is that the approa
h des
ribed in their paper is used for online phase mat
hing whereas we use it for o�ine

phase dis
overy and also for online phase mat
hing. The details will be explained in the next subse
tion.

3.2 Using phases for meta-data representation and a

ess

3.2.1 O�ine stage

In the o�ine stage we use appli
ation pro�ling to 
lassify the program exe
ution in phases. Ea
h phase is


hara
terized by intervals with similar number of loop bran
h exe
utions (all ba
kward bran
hes are 
onsidered

loop bran
hes). We run the program using an instru
tion set simulator and 
olle
t the number of times ea
h

loop bran
h is exe
uted per interval. Ea
h loop bran
h address is mapped into a position in a ve
tor of 
ounters

and the appropriate 
ounter is in
remented ea
h time the loop bran
h gets exe
uted. After a �xed number

of instru
tions ( determined by the interval size) is exe
uted, the loop bran
h ve
tor (LBV) representing su
h

interval is used to determine whi
h phase the interval belongs to, in a similar manner as des
ribed by the

hardware stru
ture in Subse
tion 3.1. As in [15℄, we use ve
tors of 32 
ounters. We 
all the ve
tors of 32


ounters 
ompressed LBVs or CLBVs.

Intervals are 
lassi�ed as part of the same phase if their CLBVs are similar, whi
h is determined by a

mat
h. Again, a mat
h is found if the Manhattan distan
e is less than a threshold th. We show the tradeo�s

of di�erent thresholds in Se
tion 5. The ve
tors are normalized before the 
omparison. The normalization is

ne
essary for the subsequent online phase mat
hing stage be
ause the signatures 
al
ulated at run time are

not 
omplete and therefore only mat
h with the full signatures if the normalized ve
tors are 
ompared.

After the o�ine phase 
lassi�
ation is �nished, a set of phase signatures des
ribe the loop bran
h frequen
ies

for ea
h phase of the program. These ve
tors are used at runtime to enable the program to identify the phase

being exe
uted. Along with the signatures, we also need to asso
iate the resour
e demand data that is used

for power management. This meta data will be used as guidan
e for the power manager in order to make its

de
isions. To be e�e
tive, the program has to dete
t as early as possible the phase in whi
h it is exe
uting.

Another important requirement is that the phase dete
tion along with operating system noti�
ation should

have low overhead in terms of performan
e and energy 
onsumption. Figure 2 represents the meta-data we

asso
iate with the program. This data 
an be added to the binary 
ode using a tool su
h as ATOM [16℄.

…

ID Signature

…

Resource Demand Data

Figure 2: Meta data representation. Contains the phase ID, the phase signature and the resour
e demand

information.

3.2.2 Online stage

During the online stage, the runtime system has to be able to identify whi
h phase it is running at a given

moment. For that we use a mix of hardware and software. We 
olle
t CLBVs dynami
ally using hardware.

We assume that the hardware has a performan
e 
ounter whi
h 
ounts the number of bran
h loops exe
uted.

Su
h performan
e 
ounter 
an be found in modern pro
essors su
h as Intel Xs
ale [9℄. Usually they 
an be

programmed to issue an interrupt on over
ow. After a given number of loop bran
hes exe
uted, the pro
essor


alls an interrupt servi
e routine, (ISR), whi
h exe
utes as software, to 
ompare the CLBV dynami
ally


omputed with the CLBVs atta
hed in the program as meta-data. The dynami
 CLBV for the interval being

exe
uted is also 
omputed in hardware. The hardware ne
essary to do so has to dete
t a loop bran
h, map
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it into one of the 32 ve
tor positions and in
rement the position mapped. The ve
tors are not normalized at

this point.

Algorithm 1 shows the ISR 
ode to 
arry out the 
omparison. After the interrupt is issued, the interrupt

servi
e routine has to read the 
ontent of the ve
tor stored in the pro
essor memory, represented by the

variable part sig, normalize it (lines 1{7) and 
ompare it with the ve
tors found in the appli
ation meta-data

stru
ture (lines 8{20), represented by the variable phase[℄[℄. The mat
hing ISR has time 
omplexity of O(n)

where n is the number of phases. The overhead of the ISR will depend on how often it is issued, how many

phases the program has and how early a phase 
an be dete
ted. For 
omparison purposes, 32 subtra
tions

and additions have to be 
arried out. Part of the overhead will be �xed regardless of how many phase. For

instan
e, for every exe
ution of the ISR, 32 divisions have to be exe
uted for normalizing the CLBV.

Tim
e

…

Phase X

Phase Y

Phase X

Phase Z

Phase X

ISR
OS /

POWER
MANAGER

Application
Meta Data
…

1

2

3

Program execution

…
X

Y …
Signature Resource demand

Figure 3: Phase dete
tion diagram. 1) Every N loops the ISR is 
alled; 2) The ISR tries to mat
h the CLBV


omputed by the hardware with the ones stored along with the appli
ation 
ode; 3) If a mat
h happens the

ISR transfer to the power manager the meta data asso
iated with the phase.

Figure 3 shows our approa
h for power management using appli
ation re
e
tion. In the �gure, we assume

that the appli
ation has been pro�led and the resour
e demand data along with phase signatures (identi�ed

by the box \Appli
ation Meta Data") are stored at a pre-determined lo
ation in the appli
ation binary 
ode.

At every N loops a mat
h is attempted. If it is found the ISR noti�es the operating system power manager to

use the new resour
e demand estimates. We note that the phase mat
hing 
an also be exe
uted in hardware

as proposed by Sherwood in 
ase of prohibitive overhead for the software implementation. In this 
ase an

interrupt is raised to notify the appli
ation that a phase was dete
ted, then the appli
ation would notify the

power management and pass it the resour
e demand meta-data.

We note again that we 
hose to use loop bran
hes to minimize the overhead of phase dete
tion. For

dete
ting phases using BBVs we would have to keep tra
k of the number of times ea
h basi
 blo
k gets

exe
uted at run time and try a phase mat
h every N BB exe
utions. Su
h operation would be exe
uted more

often than using LBVs. Nevertheless, Lau et al [11℄ showed that the homogeneity of phases 
lassi�ed by using

LBVs is 
omparable to the homogeneity of phases 
lassi�ed by BBVs. A diagram showing the 
ow of our

generi
 pro�ling and meta data gathering pro
ess is shown in Figure 4.

Meta Data
Gathering

Application
Characterization

Energy
Optimization
Simulation

Application
Binary

Figure 4: Generi
 Flow for Meta Data Constru
tion
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Algorithm 1 Mat
h signature ISR

total = 0;

for i = 1 to 32 do

total += part sig[i℄;

end for

5: for i = 1 to 32 do

norm part sig[i℄ = part sig[i℄ = total;

end for

min di� = 2.0;

for i = 1 to numphases do

10: di� = 0;

for j = 1 to 32 do

partial di� = abs(phase[i℄[j℄ - norm part sig[j℄);

di� += partial di�;

end for

15: if (di� < threshold) and (di� < min di�) then

min di� = di�, phase id = i;

end if

end for

if min di� < 2.0 then

20: return phase id;

end if

Given the appli
ation binary 
ode, the stages are as follows:

Appli
ation Chara
terization The appli
ation is pro�led and the phases are identi�ed. Here di�erent

thresholds for phase 
lassi�
ation 
an be tried out.

Meta Data Gathering Based on the phase 
lassi�
ation, the meta data of interest is 
olle
ted.

Energy Optimization Simulation Given the meta-data, whi
h in
ludes the phase signatures and the at-

ta
hed power management information, the energy optimization s
heme is simulated for di�erent phase

mat
hing thresholds, phase intervals and mat
hing attempt frequen
ies.

After the simulation is 
arried out, the best number of phases and frequen
y of phase mat
h attempts

(every how many loop bran
h we try to mat
h a phase) is 
hosen for the appli
ation in question. To validate

our approa
h we used main memory bank shutdown as an example.

3.3 Handling Multiple Data Sets

The des
ription presented so far has no mention to how di�erent data set in
uen
es the phase dete
tion and

therefore the te
hnique. The in
uen
e of the input data on a phase of exe
ution is to 
reate di�erent signatures

and therefore di�erent phases of exe
ution with di�erent 
hara
teristi
s and resour
e demands. We assume

that in general program inputs 
an be 
lassi�ed in di�erent 
ategories whi
h in turn yield di�erent behavior. In

order to handle di�erent inputs, the appli
ations have to be pro�led with one input sample from ea
h 
ategory.

The interval signatures (CLBVs) generated by ea
h run should then be 
lassi�ed in phases altogether so that

ea
h phase will be identi�ed by a \global" signature among all di�erent runs of the same program, one for

ea
h input 
ategory. In this way, di�erent program behaviors along with di�erent resour
e demands (whi
h

are generated by a di�erent inputs) will still be present in the metadata and 
orre
ly identi�ed. We have not

realized experiments to analyze the in
uen
e of di�erent data inputs on the phase 
lassi�
ation but we intend

to do so in future work.
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4 Experiments

In order to show how our approa
h 
an be used, we 
hose main memory banks shutdown as an example.

Typi
ally, the main memory subsystem of a 
omputer system is 
omposed by memory 
hips. These memory


hips are organized into banks in su
h a way that whenever a memory a

ess is requested, the memory


ontroller has to map the address requested to one of the memory banks and read/write the data from/to

it. We assume that the memory 
ontroller does not res
hedule requests 
oming from the pro
essor. It is

responsible for the translation of read and write requests of the CPU into the 
ontrol signals of the DRAM.

We also assume a linear translation of physi
al addressses into the banks. For the sake of simpli
ity we assume

that the requests to memory are also non-overlapping. A summary for di�erent organization of embedded

systems memory 
ontrollers is presented by Gries and Romer [8℄. We assume that the memory is divided in

small modules and ea
h memory 
an operate in di�erent modes with di�erent power 
onsumption and 
osts

asso
iated, in 
onformity to [1℄. In this way, unused modules 
an be swit
hed into di�erent modes of exe
ution

based on how long they are idle, hen
e redu
ing energy 
onsumption. Figure 5 shows the representation of

the memory model assumed. The pro
essor sends 
ommands to the memory 
ontroller to a

ess data as well

as to swit
h memory banks to the desired low power state.

Figure 5: Memory model diagram

4.1 Memory banks shutdown

Memory banks 
an operate in the a
tive mode, where the time to a

ess the information is minimum, or in

low-power modes, where there is a resyn
hronization time to bring the memory ba
k to the a
tive mode and

then serve the request. The deeper the low-power mode, the lesser the power 
onsumption of the memory bank

and the higher the resyn
hronization penalty. In the o�ine stage, we pro�le the demand for ea
h memory

bank on di�erent phases of an appli
ation. In the online stage, the runtime system �nds out whi
h phase

is being exe
uted and tell the operating system power manager the estimated demand for the main memory

banks. The operating system then uses the resour
e demand information to make de
isions of whi
h state

ea
h memory bank should be 
hanged to in order to optimize the energy / performan
e tradeo�.

The low power modes memory model used is the same as used by Delaluz et al [6℄, whi
h is based on

data sheets for RAMBUS [1℄. Table 1 shows the low power modes along with the energy 
onsumed per 
y
le

and the resyn
hronization delays of ea
h mode of a DRAM memory bank. We use normalized values when


al
ulating energy dissipation in our experiments.

We assume that the system does not have virtual memory so we do not have to handle the e�e
ts of paging.

During the exe
ution of a program the demand for main memory 
hanges over time. Being able to tra
k the

phases of high main memory demand and whi
h banks are mostly used as early as possible is vital for eÆ
ient

energy management unless spe
ialized hardware is provided. If the latter is true, the task of shutting down

memory banks 
an be delegated to the hardware. For shutting down memory banks, the operating system

power manager has to be able to send a 
ommand to the memory banks requesting a transition to a low power

mode. We assume that the operating system 
an interfa
e with the memory 
ontroller in order to send su
h
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Low Power Mode Energy per 
y
le Resyn
hronization delay (
y
les)

A
tive 3.570nJ 0

Standby 0.830nJ 2

Napping 0.320nJ 30

Power-Down 0.005nJ 9,000

Table 1: Energy 
onsumption per low power state and resyn
hronization delays


ommands. In the next subse
tion we explain the experimentation pro
ess used for memory bank shutdown,

as well as show the meta-data used.

4.2 Memory bank shutdown resour
e demand pro�ling

Given the appli
ation binary 
ode, we used Simples
alar [3℄ for CLBV (i.e., intervals signatures) 
olle
tion.

Next we 
lassify the appli
ation in phases using di�erent thresholds th. Sin
e ea
h CLBV is normalized, after


omputing the di�eren
e between two ve
tors, the maximum di�eren
e is less or equal to 2. We use thresholds

of 1:5, 1:0 and 0:5. If the threshold is set to 0:5, this means that as long as at least 75% of the CLBVs are the

same, the two intervals will be 
lassi�ed as in the same phase. Due to loop bran
h address aliasing, it does

not mean that 75% of the loops are the same.

During the exe
ution of Simples
alar for CLBV 
olle
tion, we also 
olle
t a tra
e of main memory a

esses

and store it in a separate �le. After the appli
ation intervals are 
lassi�ed in phases, we build the resour
e

demand meta-data that will be used to guide the power manager de
isions. In the 
ase of memory banks,

we 
hose the average inter arrival time for memory a

ess requests for ea
h memory bank. We 
ompute

the average inter arrival time per bank per phase as the number of instru
tions in the interval divided by

the average number of memory a

esses to ea
h of the banks added to the standard deviation. We add the

standard deviation so that we have a 
onservative estimate when the varian
e is too high. The following

formula shows the inter-arrival time estimate used for ea
h memory bank:

IA

pred

=

IntervalSize� CPI

avg

(average+ stddev)� CpuMemClkRatio

where IntervalSize is the number of instru
tion in a interval, CPI

avg

is the average number of 
y
les per

instru
tions for the phase in whi
h the parti
ular interval was 
lassi�ed. The terms average and stddev are

the average number of main memory a

esses and standard deviation for the interval in question, and �nally

CpuMemClkRatio is the ratio between the CPU 
lo
k period and the memory 
lo
k period.

The power management poli
y uses the resour
e demand per phase for guiding the shutdown of memory

banks. The model we assumed for memory banks shutdown 
onsiders the energy 
ost of resyn
hronization to

be a fra
tion F

a

, where 0 � F

a

� 1, of the energy 
ost of being a
tive per 
y
le. The resyn
hronization energy


ost per 
y
le is denoted as E

r

(E

r

= F

a

� 3:57nJ). Depending on the number of main memory a

esses per

interval, a given bank will be swit
hed to one of the low power states previously des
ribed.

Given the estimated number of memory a

esses N for an interval of size I , the energy dissipation of

operating on state i is given by:

(N �E

r

� T

r

i

) + (NumMemCy
les�E

i

)

E

i

is the energy per 
y
le for the low power state i, where 0 � i < M and M is the number of low power

states. T

r

i

is the resyn
hronization time for low power state i, and NumMemCy
les = (IntervalSize �

CPI)=CpuMemClkRatio the number of memory 
y
les for the given interval. E

0

and T

r

0

denote the energy


onsumption and resyn
hronization delay for the a
tive state.

Given a number of memory a

esses N for a given memory bank b, we want to swit
h the bank to the

power state whi
h minimizes energy. We �rst 
onsider the number of memory a

esses N

i+1

, whi
h makes the
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energy 
onsumption of staying in state i the same as staying in state i + 1 where E

i

> E

i+1

. Su
h value is

found in the following equation:

(N

i+1

�E

r

� T

r

i

) + (NumMemCy
les�E

i

) = (N

i+1

�E

r

� T

r

i+1

) + (NumMemCy
les�E

i+1

)

From the equation above we �nd that:

N

i+1

= NumMemCy
les�

1

E

r

�

E

i+1

�E

i

T

r

i

� T

r

i+1

Let the number of estimated memory a

esses for a given interval be N

pred

, and let N

0

= 1. If N

i+1

�

N

pred

< N

i

the memory bank in question is swit
hed to the low power state i.

We 
an also 
al
ulate the inter arrival time values and use them to de
ide whi
h low power state to swit
h

to. The inter arrival time is given by:

IA

i+1

=

NumMemCy
les

N

i+1

= E

r

�

T

r

i

� T

r

i+1

E

i+1

�E

i

Similarly, we set IA

0

= 0. Let IAPred

ID

b

be the estimated inter arrival request time for bank b in a given

set of intervals 
lassi�ed as in phase ID. If IA

i

< IAPred

ID

b

� IA

i+1

the memory bank b is swit
hed to the

low power state i when exe
uting an interval in phase ID. We note that this 
onditions to swit
h to a lower

power state i are the same as in the Lower Envelope Algorithm (LEA) presented in [10℄.

Putting everything together, all intervals within a given phase will have a estimated memory a

ess inter

arrival time per bank denoted as IAPred

b

. Whenever an interval belonging to a phase starts exe
uting the

banks are set to the appropriate low power states. Figure 6 represents the resour
e demand meta-data as a

2 dimensional array of appli
ation phases and memory banks estimated inter arrival time. The meta data

represents the demand for ea
h memory bank per phase.

…

… …

ID Signature IAPred1 IAPred2 IAPredn

B
a

n
k 1

B
a

n
k 2

B
a

n
k n

ID IDID

Figure 6: Memory bank meta-data asso
iated with phase signatures

Figure 7 summarizes the simulation 
ow for our memory bank shutdown s
heme using appli
ation re
e
tion.

The same 
ow as illustrated in Figure 4 is present. First we perform appli
ation 
hara
terization, followed by

meta data gathering and simulation of the memory bank shutdown poli
y. The results are presented in the

next se
tion.

Note that the te
hnique presented 
an be used for other purposes other than shutting down memory banks.

It 
an be used for shutting down any devi
e in the system as well as to s
ale pro
essor frequen
y and voltage

using pro
essor IPC and other relevant parameters.

The next se
tion presents the results for the experiments using the formulation developed in this se
tion.

5 Results

For evaluating the performan
e of the approa
h, we 
hose 5 ben
hmark appli
ations: bzip, gzip, ghosts
ript,

adp
m and mpegde
ode. The �rst two are from SPEC2000 ben
hmarks, the next two from mediaben
h ben
h-

marks and the last one the Berkeley MPEG-2 de
oder. We 
hose pairs appli
ation/input with at least 1
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Figure 7: Memory bank shutdown for meta data 
onstru
tion

billion instru
tions of exe
ution. For the SPEC2000 ben
hmarks appli
ations, we only exe
ute the �rst 5

billion instru
tions due to the long time to exe
ute the experiments had we done otherwise. Note that we have

to exe
ute the ben
hmarks to 
olle
t the memory a

esses tra
e in order to simulate the memory shutdown

algorithms later on. For the phase 
lassi�
ation we used intervals of 5 and 10 million instru
tions.

5.1 Phase dete
tion a

ura
y

In order to be more e�e
tive when using the appli
ation meta-data, the earlier the runtime system dete
ts

whi
h phase the program is running, the better. We try to dete
t the program phase every N loop bran
h

instru
tions exe
uted. How frequent it happens will depend on how many loop bran
h instru
tions are exe
uted


ompared to the total number of instru
tions exe
uted in the program. For every mat
h attempt, an interrupt

will be served. Therefore, we need to �nd a tradeo� between how often it is issue and how early the phase

will be a

urately dete
ted. We run a set of experiments where we analyze those fa
tors. Table 2 shows the

number of phases identi�ed a

ording to the thresholds used. The higher the threshold the fewer phases are

identi�ed.

Program (input) 5 million 10 million

Threshold Threshold

0.5 1.0 1.5 0.5 1.0 1.5

gzip (input.graphi
) 9 6 4 5 3 3

bzip (input.graphi
) 31 16 10 23 12 7

mpegde
ode (lion) 3 2 1 3 1 1

ghosts
ript (tiger) 8 4 1 6 4 1

adp
m (
linton) 1 1 1 1 1 1

Table 2: Number of phases for di�erent thresholds for ea
h ben
hmark with interval size of 5 and 10 million

instru
tions

Figure 8-(a) shows the average number of instru
tions exe
uted per interval before a phase is mat
hed as

a fun
tion of how many sets S of N loops are exe
uted. N is set to 10,000 in these experiments. S varies

as 1; 2; 3; 4; 5; 10; 20 and 30. The more sets S the higher the number of instru
tions exe
uted before the �rst

mat
h. Note that for every 50,000 loops, a bit more than 2 million instru
tions are exe
uted in the average for

intervals of 10 million and approximately 1 milion instru
tions for intervals of 5 millions. Se
tion 5.2 shows

what is the impa
t in terms of energy savings of re
ognizing the phase every 50,000 loop bran
h instru
tions.

S determines how early the power manager 
an start using the resour
e demand meta-data. Before a phase of

exe
ution is re
ognized the power manager 
an either use the resour
e demand meta-data from the previous

phase or do not use any information until a phase is dete
ted. Figure 8-(b) shows the a

ura
y of phase

dete
tions as a fun
tion of S. Every time the Algorithm 1 runs, if a phase is dete
ted, we verify whether the
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phase dete
ted is 
orre
t. If no phase is dete
ted (the Manhatan di�eren
e is not smaller than the threshold)

or if the wrong phase is dete
ted we have a mismat
h. The bigger the S the more a

urate be
ause more

instru
tions are gathered and the 
han
es of a 
orre
t mat
h are higher. Also, the higher the threshold the

higher the a

ura
y be
ause less information is needed for a phase mat
h.
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Figure 8: (a) - Average number of instru
tions exe
uted per interval before a phase mat
h is dete
ted for 5

and 10 million instru
tions and di�erent thresholds; (b) - Phase mat
hing a

ura
y - per
entage of time the

phase dete
ted was 
orre
t for 5 and 10 million instru
tions and di�erent thresholds. Ben
hmark adp
m is not

used in this average be
ause it has only one phase of exe
ution.

5.2 Memory banks shutdown energy/delay results

For 
olle
ting the memory tra
es and loop bran
hes data we used Simples
alar 
on�gured as an inorder

StrongARM pro
essor with 32Kb of instru
tion and data L1 
a
he and no L2 
a
he. Sin
e the delays o

urred

by the resyn
hronization of memory banks before a

esses 
an 
ause other 
omponents other than the memory

itself to spend energy due to the waiting, we set F

a

= 1. We also ran experiments with F

a

= 0:4 to evaluate

the e�e
ts of 
hanging the energy 
ost of resyn
hronization. The CpuMemClkRatio is set to 2 so the pro
essor


lo
k is twi
e as fast as the memory 
lo
k. The number of phases per appli
ation depends on the size of the

intervals, the thresholds and obviously on the appli
ation behavior 
hara
teristi
s.

In order to evaluate the bene�ts of using phase analysis to perform memory bank shutdown, we 
ompare

our re
exive approa
h with a stati
 poli
y where all the memory banks are kept in the same low power state
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throughout the whole program exe
ution, with only pro�ling of memory banks, where a single pro�le for the

whole program is used to shutdown the banks, and with a self-monitored hardware based approa
h, developed

by Delaluz et al [6℄, 
alled HBP (Hardware Based Predi
tor). The poli
ies 
ompared are desribed as follows:

stati
 NAP This is the most energy*delay eÆ
ient stati
 poli
y. The memory is kept in the NAP low power

state for the entire program exe
ution.

only pro�ling A pro�le of memory bank demand for the entire program is 
olle
ted and used to 
hoose

whi
h low power states ea
h memory bank will be swit
hed too. This 
orresponds to setting th = 2:0

when using the phase 
lassi�
ation.

HBP A hardware based self-monitored approa
h to shutdown the banks. Dedi
ated hardware for ea
h bank

is used to predi
t and keep tra
k of idle time and shutdown the banks a

ordingly. Using the last

idle time as the next, an idle time predi
tion is 
al
ulated and the memory banks are set to the low

power state in whi
h the idle time predi
tion is higher than the syn
hronization delay. Also a pre-

wakeup time is s
hedule so that the memory banks is ready for use when the request arrives and no

resyn
hronization penalty is paid. When the memory bank is woken up too early, a 
onstant threshold

s
heme is implemented whi
h shuts down the memory banks based on LEA [10℄. If the idle time is higher

than thresholds for low power state i, the memory is swit
hed to that state.

phase The phase poli
y is the poli
y proposed in this paper. We 
lassify program intervals into phases o�ine

and use the resour
e demand information from ea
h phase online to guide swit
hing the memory banks

the appropriate power state.

Figure 9 shows the average energy (a) and energy*delay savings (b) for the six ben
hmarks exe
uted

normalized to stati
 NAP poli
y and for F

a

= 1:0 and F

a

= 0:4. We used intervals of exe
ution of 5 and

10 million instru
tions and varied the threshold as 0:5, 1:0 and 1:5. When S = perfe
t, at the beginning of

ea
h phase the 
orre
t pro�le information related to the phase is used, resulting in maximum bene�t in terms

of using the meta-data for de
iding the best memory bank low power transition. The Figure also shows the

energy 
onsumption of HBP when also normalized to stati
 NAP. The goal of this experiment is to shows

the energy gains as well as the energy*delay gains when using the phase information throughout the program

exe
ution. We use energy*delay to evaluate whi
h s
hemees yields the best tradeo� performan
e /energy. By

using it, memory banks whi
h are rarely used in some intervals 
an be put in the deepest sleep state with little

energy and delay penalties. Stati
 NAP 
annot take advantadge of it be
ause there is no notion of intervals

and phases. HBP tries to keep tra
k of this information by predi
tion the next arrival time based on the last.

The extra savings in terms of energy*delay are in the average 65%, 77%, 85% and 90% for 2, 4, 8 and 16

banks respe
tively when 
omparing to stati
 NAP. Considering only the energy, the savings follow the same

trend with a little bit less savings. The more memory banks the more 
han
es to turn them o� and therefore

the higher the gains when 
ompared to a stati
 poli
y. When 
omparing with HBP, phase performs better for

all memory bank 
on�gurations by saving about 55%, 22%, 25% and 13% more for 2, 4, 8 and 16 memory

banks respe
tively and F

a

= 1. The gains de
rease be
ause the savings when using HBP also in
rease with the

number of memory banks. For F

a

= 0:4, in 
omparison with HBP the savings are redu
ed be
ause the penalty

paid by HBP redu
es as well. The other important point about the �gure is to show that for thresholds 0:5

and 1:0 the savings are very similar. However, when using the threshold as 1:5 there is a de
rease in the

gains, spe
ially for the 2 and 4 bank 
on�gurations. Figure 10 will point out more 
learly the reasons for this

behavior.

The 
harts in Figure 10 presents the results of the phase poli
y normalized to the only pro�ling. The goal

of this experiment is to show that if the threshold for phase 
lassi�
ation is too high the similarity of the

intervals 
lassi�ed as in the same phase is poor and as a 
onsequen
e the resour
e demand for ea
h interval is

not a

urately represented by the average among all intervals of the phase. Therefore less 
han
es to swit
h

memory banks to lower power states are dis
overed. This on
e more proves that splitting the program into

phases is bene�
ial be
ause it un
over portions of the 
ode whi
h do not use 
ertain memory banks at all or

whi
h use them very rarely. This allows extra energy savings by being able to put these banks in low power
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Figure 9: Normalized Energy (a), (
) and Energy*delay (b), (d) w.r.t. stati
 NAP poli
y for F

a

= 1:0 (a), (b)

and F

a

= 0:4 (
), (d).

modes. The 
hart shows that in the average using thresholds of 0:5 and 1:0 present extra savings of 16% for 2

and 4 banks when 
ompared to only pro�ling and 10% for 8 and 16 banks. Another point is that the savings

are very similar for 0:5 and 1:0 and for intervals of 5 and 10 million instru
tions, indi
ating that using th = 1:0

and intervals of instru
tions as 10 million instru
tions is a better 
hoi
e sin
e it redu
es the number of phases

and hen
e the overhead.

All the experiments presented so far assume a perfe
t mat
hing when using the phases of exe
ution in-

formation during runtime. In reality though, it is hard to dete
t the 
orre
t phase right in the beginning

of ea
h interval. Figure 11 shows the impa
t of online phase dete
tion on the energy delay savings. When

S = perfe
t at the beginning of ea
h phase the 
orre
t pro�le information related to the phase is used, re-

sulting in maximum bene�t. For S varying as 1 and 5, a phase mat
h is tried every 10,000 and 50,000 bran
h

loops respe
tively. Only after the mat
h the 
orre
t meta-data is used for memory bank low power transition.

Note that for all phases dete
ted ex
ept the �rst, the meta data used in the previous phase is used until the

new phase is dete
ted by our te
hnique. This means that the wrong pro�le information might be used until

the 
orre
t phase is dete
ted. This experiment shows the e�e
ts of mat
hing the phases online in the energy

savings. For intervals of exe
ution of 10 million instru
tions the e�e
t of mat
hing is negligible regardless of

the thresholds used. The same is not true for intervals of 5 million instru
tions. Figure 8 shows that the
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Figure 10: Normalized Energy (a), (
) and Energy*delay (b), (d) w.r.t. only pro�ling poli
y for F

a

= 1:0 (a),

(b) and F

a

= 0:4 (
), (d).

average number of instru
tions exe
uted before a mat
h for S = 1 and S = 5 is 0.5 million and a little over

1 million respe
tively, whi
h in a 5 million instru
tions interval represents 10% to 20% per
ent of the whole

interval. Besides, the a

ura
y for th = 0:500 and th = 1:000 is under 80% and 85% respe
tively. Note that

the e�e
t of using S = 1 when th = 0:5 for intervals of 5 million instru
tions is not very signi�
ant though,

indi
ating that if ne
essary this 
on�guration is an attra
tive option.

5.3 Phase dete
tion threshold and energy savings 
orrelation

The results presented in the subse
tion 5.2 show that there is a 
orrelation between the phase dete
tion

threshold and the energy savings when using phases to guide memory banks shutdown. In this subse
tion we

explain this relation in more details. The higher the thresholds, the less phases will be dete
ted be
ause smaller

is the homogeneity among the intervals in the same phase. Therefore the varian
e in the predi
ted number of

memory a

esses should also be higher. We de�ne two metri
s to show how the varian
e and the predi
tion for

memory a

esses 
hange with the threshold. We 
all them metri
1 and metri
2. Let Intervals

phase

denote

the number of intervals 
lassi�ed as in the same phase, TotalIntervals the total number of intervals for the

program, avg

bank

phase

and stddev

bank

phase

the average number or memory a

esses and the standard deviation for a
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Figure 11: Normalized Energy (a), (
) and Energy*delay (b), (d) w.r.t stati
 NAP poli
y and using online

phase mat
hing with S = 1 and S = 5 for F

a

= 1:0 (a), (b) and F

a

= 0:4 (
), (d).

given phase and memory bank 
ombination respe
tively.

metri
1 =

X

8phases

X

8banks

Intervals

phase

TotalIntervals

� (avg

bank

phase

+ stddev

bank

phase

) (1)

metri
2 =

X

8phases

X

8banks

Intervals

phase

TotalIntervals

�

stddev

bank

phase

avg

bank

phase

(2)

metri
1 (equation 1) summarizes the estimation for the number of memory a

esses 
hanges as the thresh-

old varies by giving the sum of the estimations for all memory banks and phases. metri
2 (equation 2) shows

how the varian
e 
hanges as the phase dete
tion threshold varies. The se
ond term of equation 2 is known as

the 
oeÆ
ient of varian
e. It gives the per
entage of the average the standard deviation represents. The �rst

term of both equations represent the weight of a phase in the whole program exe
ution. In equation 1 smaller

values indi
ate that smaller number of memory a

ess predi
tions are 
al
ulated. In equation 2 smaller values

indi
ate the less variation is present in the estimations. Both metri
s with low values indi
ate that the varian
e

is low and the number of memory a

esses estimates are also smaller, an ideal situation for minimizing energy


onsumption in the memory banks.
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Figure 12: metri
1 (a), metri
2 (b) and energy*delay (
) for bzip with intervals of 10 million instru
tions and

varying the phase dete
tion threshold
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Figure 13: metri
1 (a),metri
2 (b) and energy*delay (
) for ghosts
ript with intervals of 10 million instru
tions

and varying the phase dete
tion threshold

Figures 12 and 13 shows both metri
s (a,b) and the energy*delay (
) for bzip and gs with intervals of 10

million instru
tions and thresholds 0:500; 1:000; 1:500 and 2:000. The energy*delay 
hart (
) is normalized to

the energy 
onsumption for th = 2:000. In Figure 12 we see that the both metri
s in
rease as the threshold

in
reases, showing a dire
t 
orrelation between the varian
e and the number of memory a

esses estimates

as the threshold in
reases. Similarly, the energy*delay also in
reases with the threshold sin
e there is more

variations and therefore more more penalties are paid for wrong estimates. In Figure 12-(b) we see a sharp

in
rease for th = 2:0. This means that the varian
e is very high. The energy*delay doest not su�er the same

sharp in
rease be
ause the estimates values do not su�er su
h in
rease in
rease as seen in Figure 12-(b). In

Figure 13 the opposite happens. The varian
e does not in
rease very mu
h, but the estimates do, resulting

on a more noti
eable in
rease in the energy*delay produ
t. This happens be
ause the ben
hmark has a few

intervals with lots of memory a

esses and lots of intervals with few memory a

esses. With low thresholds

these intervals are 
lassi�ed as in the same phase ramping up the estimates and therefore avoiding greater

energy*delay savings. This indi
ates that metri
1 is a better gauge to predi
t the energy savings.

5.4 Overheads

For assessing the exe
ution overhead of our approa
h, we run all the ben
hmarks and 
al
ulated the average

number of instru
tions between every 10,000 loop bran
h instru
tions to be about 350,000 instru
tions. We
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also exe
uted the routine to mat
h the phase signatures at run time on simples
alar and 
al
ulated the number

of instru
tions exe
uted by the mat
h algorithm at every 10,000 loop bran
hes to mat
h a partial signatures.

Table 3 summarizes these results. The routing exe
utes the algorithm presented in Algorithm 1.

# of phases # of instru
tions overhead

5 2,580 0.7%

10 4,500 1%

20 8,280 2%

30 12,060 3%

Table 3: Exe
ution time overhead of online phase mat
hing

The overead for 10 phases is about 1% of the number of instru
tions exe
uted. For 30 phases this overhead

is about 3%. For a full 
hara
terization overhead it remains to 
al
ulate the energy overhead for either the

fully hardware based approa
h or for the mixed hardware and software approa
h. This will be done in future

work.

Another overhead that has to be taken into a

ount is the size of the meta-data. For inter arrival time

estimate, we assume that 4 bytes per bank / phase are used. Assuming 16 banks and 10 phases of exe
ution,

16 � 10 � 4 = 640 bytes are needed. For the signatures, we also assume 4 bytes per bu
ket. Sin
e we use

32 bu
kets, 128 bytes multiplied by the number of phases are needed. Therefore, assuming 16 banks and 10

phases, a total of 1920 bytes of meta data is atta
hed to the binary 
ode. Note that we do not really need to

store the inter arrival time estimate in the meta-data if the memory energy 
onsumption 
hara
teristi
s are

�xed. In this 
ase, we only need 4 bits per memory bank / phase to denote whi
h state the bank should be

swit
hed to, redu
ing the size of the inter arrival data from 640 to 80 bytes and the total size of the meta-data

from 1920 to 1360 bytes. Another possible optimization to redu
e the overhead is to only 
onsider phases

with intervals whi
h represent only a signi�
ant per
entage of the program exe
ution therefore redu
ing the

number of phases. The signature and resour
e demand of the eliminated phases 
ould then be removed from

meta data. An analysis of whi
h phases are not signi�
ant has not been 
arried out in this paper though.

6 Future Work

We believe that the use of appli
ation re
e
tion is useful for helping minimizing energy 
onsumption of

appli
ations. To fully validate our memory shutdown example we need to 
haraterize the energy overhead

of 
olle
ting the phase signatures and mat
hing them online. We believe the overhead is not signi�
ant due

to the simpli
ity of the operations. Furthermore, we also believe that the re
e
tion approa
h 
an be used

to minimize energy of other 
omponents su
h as the pro
essor itself, by the use of dynami
 voltage s
aling

(DVS), and other pro
essor peripherals su
h as 
o-pro
essors, network interfa
es, 
ash memory and others.

7 Con
lusions

In this paper we presented a s
heme in whi
h an appli
ation is 
lassi�ed in phases, meta-data representing the

phases of the appli
ation along with resour
e demands is atta
hed to the 
ode, and during the exe
ution either

the run time system or the appli
ation probes the appli
ation to �nd out whi
h phase is being exe
uted. We


all this approa
h an appli
ation re
e
tion be
ause the appli
ation 
arries a representation of its own dynami


behavior along with resour
e demand meta-data and uses this information to guide the power manager on

de
ision making.

We used main memory bank shutdown as an example of how the te
hnique 
an be used. The results

showed signi�
ant energy�delay gains are obtained when 
omparing the s
heme with a stati
 poli
y, with

only pro�ling (without using phase information th=2.0) and with the best known hardware based s
heme.
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The average savings are 80%, 13% and 28% respe
tively. We believe that the same s
heme 
an be used for

optimizing other resour
es. One example is performing pro
essor frequen
y and voltage s
aling using IPC

estimations from the appli
ation phases and integrating su
h s
heme with memory shutdown.
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