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THE CARTAN-HADAMARD CONJECTURE AND THE LITTLE PRINCE

BENOÎT R. KLOECKNER AND GREG KUPERBERG

ABSTRACT. The generalized Cartan-Hadamard conjecture says that if Ω is a domain with
fixed volume in a complete, simply connected Riemannian n-manifold M with sectional
curvature K 6 κ 6 0, then ∂Ω has the least possible boundary volume when Ω is a round
n-ball with constant curvature K = κ . The case n = 2 and κ = 0 is an old result of Weil.
We give a unified proof of this conjecture in dimensions n = 2 and n = 4 when κ = 0, and
a special case of the conjecture for κ < 0 and a version for κ > 0. Our argument uses a
new interpretation, based on optical transport, optimal transport, and linear programming,
of Croke’s proof for n = 4 and κ = 0. The generalization to n = 4 and κ 6= 0 is a new
result. As Croke implicitly did, we relax the curvature condition K 6 κ to a weaker candle
condition Candle(κ) or LCD(κ).

We also find counterexamples to a naı̈ve version of the Cartan-Hadamard conjecture:
For every ε > 0, there is a Riemannian Ω ∼= B3 with (1− ε)-pinched negative curvature,
and with |∂Ω| bounded by a function of ε and |Ω| arbitrarily large.

We begin with a pointwise isoperimetric problem called “the problem of the Little
Prince.” Its proof becomes part of the more general method.
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1. INTRODUCTION

In this article, we will prove new, sharp isoperimetric inequalities for a manifold with
boundary Ω, or a domain in a manifold. Before turning to motivation and context, we state
a special case of one of our main results (Theorem 1.4).

Theorem 1.1. Let Ω be a compact Riemannian n-manifold with boundary, with n∈ {2,4}.
Suppose that Ω has unique geodesics, has sectional curvature bounded above by +1, and
that the volume of Ω is at most half the volume of the sphere Sn of constant curvature 1.
Then the volume of ∂Ω is at least the volume of the boundary of a spherical cap in Sn with
the same volume as Ω.

Here and in the sequel, we say that a manifold (possibly with boundary) has unique
geodesics when every pair of points is connected by at most one Riemannian geodesic.
(More precisely, at most one connecting curve γ with ∇γ ′γ

′ = 0. We do not consider
locally shortest curves that hug the boundary to be geodesics.)

1.1. The generalized Cartan-Hadamard conjecture. An isoperimetric inequality has
the form

|∂Ω|> I(|Ω|) (1)
where I is some function. (We use | · | to denote volume and |∂ · | to denote boundary
volume or perimeter; see Section 2.1.) The largest function I = IM such that (1) holds for
all domains of a Riemannian n-manifold M is called the isoperimetric profile of M.

Besides the intrinsic appeal of the isoperimetric profile and isoperimetric inequalities
generally, they imply other important comparisons. For example, they yield estimates on
the first eigenvalue λ1(Ω) of the Laplace operator by the Faber-Krahn argument [Cha84].
As a second example, the first author has shown [Klo15] that they imply a lower bound on
a certain isometric defect of a continuous map φ : M→ N between Riemannian manifolds.
Both of these applications also yield sharp inequalities when the isoperimetric optimum is
a metric ball, which will be the case for the main results in this article.

The isoperimetric profile is unknown for most manifolds. The main case in which it
is known is when M is a complete, simply connected manifold with constant curvature.
Let Xn,κ be this manifold in dimension n with curvature κ , and let In,k be its isoperimetric
profile. In other words, Xn,κ =

√
κSn is a sphere of radius

√
κ when κ > 0; Xn,0 = En is
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a Euclidean space; and Xn,κ =
√
−κHn is a rescaled hyperbolic space when κ < 0. Then

a metric ball Bn,κ(r) has the least boundary volume among domains of a given volume.
Thus the profile is given by

In,κ(|Bn,κ(r)|) = |∂Bn,κ(r)|.

Moreover, the volume |Bn,κ(r)| and its boundary volume |∂Bn,κ(r)| are easily computable.
Instead of calculating the isoperimetric profile of a given manifold, we can look for a

sharp isoperimetric inequality in a class of manifolds. Since In,κ(V ) decreases as a function
of κ for each fixed V , it is natural to consider manifolds whose sectional curvature bounded
above by some κ . This motivates the following well-known conjecture.

Conjecture 1.2 (Generalized Cartan-Hadamard Conjecture). If M is a complete, simply
connected n-manifold with sectional curvature K bounded above by some κ 6 0, then
every domain Ω⊆M satisfies

|∂Ω|> In,κ(|Ω|). (2)

(If M is not simply connected, then there are many counterexamples. For example, we
can let M be a closed, hyperbolic manifold and let Ω ⊆M be the complement of a small
ball.)

The history of Conjecture 1.2 is as follows [Oss78, Dru10, Ber03]. In 1926, Weil
[Wei26] established Conjecture 1.2 when n = 2 and κ = 0 for Riemannian disks Ω, with-
out assuming an ambient manifold M, thus answering a question of Paul Lévy. Weil’s
result was established independently by Beckenbach and Radó [BR33], who are some-
times credited with the result. When n = 2, the case of disks implies the result for other
topologies of Ω in the presence of M. It was first established by Bol [Bol41] when n = 2
and κ 6= 0. Rather later, Conjecture 1.2 was mentioned by Aubin [Aub76] and Burago-
Zalgaller for κ 6 0 [BZ88], and by Gromov [Gro81, Gro99]. The case κ = 0 is called the
Cartan-Hadamard conjecture, because a complete, simply connected manifold with K 6 0
is called a Cartan-Hadamard manifold.

Soon afterward, Croke proved Conjecture 1.2 in dimension n = 4 with κ = 0 [Cro84].
Kleiner [Kle92] proved Conjecture 1.2 in dimension n = 3, for all κ 6 0, by a completely
different method. (See also Ritoré [Rit05].) Morgan and Johnson [MJ00] established
Conjecture 1.2 for small domains (see also Druet [Dru02] where the curvature hypothesis
is on scalar curvature); however their argument does not yield any explicit size condition.

Actually, Croke does not assume an ambient Cartan-Hadamard manifold M, only the
more general hypothesis that Ω has unique geodesics. We believe that the hypotheses of
Conjecture 1.2 are negotiable, and it has some generalization to κ > 0. But the conjecture
is not as flexible as one might think; in particular, Conjecture 1.2 is false for Riemannian 3-
balls. (See Theorem 1.9 below and Section 4.) With this in mind, we propose the following.

Conjecture 1.3. If Ω is a manifold with boundary with unique geodesics, if its sectional
curvature is bounded above by some κ > 0, and if |Ω|6 |Xn,κ |/2, then |∂Ω|> In,κ(|Ω|).

The volume restriction in Conjecture 1.3 is justified for two reasons. First, the compar-
ison ball in Xn,κ only has unique geodesics when |Ω| < |Xn,κ |/2. Second, Croke [Cro80]
proved a curvature-free inequality, using only the condition of unique geodesics, that im-
plies a sharp extension of Conjecture 1.3 when |Ω|> |Xn,κ |/2 (Theorem 1.15).

Of course, one can extend Conjecture 1.3 to negative curvature bounds (and then the
volume condition is vacuous). The resulting statement is strictly stronger than Conjec-
ture 1.2, since every domain in a Cartan-Hadamard manifold has unique geodesics, but
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there are unique-geodesic manifolds that cannot embed in a Cartan-Hadamard manifold of
the same dimension (Figure 3).

Another type of generalization of Conjecture 1.2 is one that assumes a bound on some
other type of curvature. For example, Gromov [Gro81, Rem. 6.28 1

2 ] suggests that Conjec-
ture 1.2 still holds when K 6 κ is replaced by

K 6 0, Ric6 (n−1)2
κg. (3)

In fact, Gromov’s formulation is ambiguous: He considers κ = −1 and writes Ricci 6
−(n− 1), which could mean either Ric 6 −(n− 1)2g or Ric 6 −(n− 1)g. The latter
inequality is false for complex hyperbolic spaces CHn. The former is similar to our root-
Ricci curvature condition; see below.

Meanwhile Croke [Cro84] only uses a non-local condition that we call Candle(0) rather
than the curvature condition K 6 0; we state this as Theorem 1.13.

Our previous work [KK15] subsumes both of these two generalizations. More precisely,
most of our results will be stated in terms of two volume comparison conditions, Candle(κ)
and LCD(κ); see Section 2.2 for their definitions. One can interpret our two main results
below (in weakened form) without referring to Section 2.2 by replacing Candle(κ) and
LCD(κ) by K 6 κ , since K 6 κ =⇒ LCD(κ) is Günther’s inequality [Gün60, BC64],
while LCD(κ) =⇒ Candle(κ) is elementary. When κ 6 0, one can also replace the
Candle(κ) and LCD(κ) hypotheses by the mixed curvature bounds (3). In [KK15] we
introduced a general curvature bound on what we call the root-Ricci curvature

√
Ric, which

is more general than both K 6 κ and (3), and we proved that this bound implies LCD(κ)
and Candle(κ).

1.2. Main results. For simplicity, we will consider isoperimetric inequalities only for
compact, smooth Riemannian manifolds Ω with smooth boundary ∂Ω; or for compact,
smooth domains Ω in Riemannian manifolds M. Our constructions will directly establish
inequalities for all such Ω. We therefore don’t have to assume a minimizer or prove that
one exists. Our results automatically extend to any limit of smooth objects in a topology
in which volume and boundary volume vary continuously, e.g., to domains with piecewise
smooth boundary. Note that our uniqueness result, Theorem 1.7, does not automatically
generalize to a limit of smooth objects; but its proof might well generalize to some limits
of this type.

Our two strongest results are in the next two subsections. They both include Croke’s
theorem in dimension n = 4 as a special case. Each theorem has a volume restriction that
we can take to be vacuous when κ = 0.

1.2.1. The positive case.

Theorem 1.4. Let Ω be a compact Riemannian manifold with boundary, of dimension
n∈ {2,4}. Suppose that Ω has unique geodesics and is Candle(κ) with κ > 0 (e.g., K6 κ),
and that |Ω|6 |Xn,κ |/2. Then |∂Ω|> In,κ(|Ω|).

This is our fully general version of Theorem 1.1. As mentioned, Theorem 1.15 provides
an optimal extension of Theorem 1.4 to the case |Ω| > |Xn,κ |/2. Observe that the volume
condition is vacuous when κ = 0, so that Theorem 1.4 implies Croke’s theorem 1.13.

1.2.2. The negative case. When κ is negative and n = 4, we only get a partial result. (But
see Section 9.) To state it, we let rn,κ(V ) be the radius of a ball of volume V in Xn,κ . We
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define chord(Ω) to be the length of the longest geodesic in Ω; we have the elementary
inequality

chord(Ω)6 diam(Ω).

Theorem 1.5. Let M be a Cartan-Hadamard manifold of dimension n ∈ {2,4} which is
LCD(κ) with κ 6 0 (e.g., K 6 κ). Let Ω be a domain in M, and if n = 4, suppose that

tanh(chord(Ω)
√
−κ) tanh(rn,κ(|Ω|)

√
−κ)6

1
2
. (4)

Then |∂Ω|> In,κ(|Ω|).

Actually, Theorem 1.5 only needs M to be convex with unique geodesics rather than
Cartan-Hadamard. However, we do not know whether that is a more general hypothesis
for Ω. (See Section 4.) Observe that (4) is vacuous when κ = 0, and thus Theorem 1.5 also
implies Croke’s theorem 1.13.

The smallness condition (4) means that Theorem 1.5 is only a partial solution to Con-
jecture 1.2 when n = 4. Note that since tanh(x)< 1 for all x, it suffices that either the chord
length or the volume of Ω is small. I.e., it suffices that

√
−κ min(chord(Ω),rn,κ(|Ω|))6 arctanh(

1
2
) =

log(3)
2

.

If we think of Conjecture 1.2 as parametrized by dimension, volume, and the curvature
bound κ , then Theorem 1.5 is a complete solution for a range of values of the parameters.

1.2.3. Pointwise illumination. We prove a pointwise inequality which, in dimension 2,
generalizes Weil’s isoperimetric inequality [Wei26]. We state it in terms of illumination of
the boundary of a domain Ω by light sources lying in Ω, defined rigorously in Section 3.

Theorem 1.6. Let Ω be a compact Riemannian n-manifold with boundary, with unique
geodesics, and which is Candle(0); and let p ∈ ∂Ω. If we fix the volume |Ω|, then the
illumination of p by a uniform light source in Ω is maximized when Ω is Euclidean and is
given by the polar relation

r 6 k cos(θ)1/(n−1) (5)
for some constant k, with p at the origin. In particular, in dimension n = 2, the optimum Ω

is a round disk.

Theorem 1.6 generalizes the elementary Proposition 3.1, the problem of the Little Prince,
which was part of the inspiration for the present work.

When n = 2, Theorem 1.6 shows that a Euclidean, round disk maximizes illumination
simultaneously at all points of its boundary, and therefore maximizes the average illumi-
nation over the boundary. But, as a consequence of the divergence theorem, the total illu-
mination over the boundary is proportional to |Ω|. A Euclidean, round disk must therefore
minimize |∂Ω|, which is precisely Weil’s theorem.

1.2.4. Equality cases. We also characterize the equality cases in Theorems 1.4 and 1.5,
with a moderate weakening when κ = 0.

Theorem 1.7. Suppose that Ω is optimal in Theorem 1.4 or 1.5, again with n ∈ {2,4}.
When κ = 0, suppose further that Ω is

√
Ric class 0. Then Ω is isometric to a metric ball

in Xn,κ .

Again, see Section 2.2 for the definition of root-Ricci curvature
√

Ric. In particular,√
Ric class 0 implies Candle(0), but it does not imply K 6 0 when n > 2.
We will prove Theorem 1.7 in Section 8.1; see also Section 9.
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1.2.5. Relative inequalities and multiple images. Choe [Cho03, Cho06] generalizes Weil’s
and Croke’s theorems in dimensions 2 and 4 to a domain Ω⊆M which is outside of a con-
vex domain C, which is allowed to share part of its boundary with ∂C; he then minimizes
the boundary volume |∂Ωr∂C|. The optimum in both cases is half of a Euclidean ball.

Choe’s method in dimension 4 is to consider reflecting geodesics that reflect from ∂C
like light rays. (This dynamic is also called billiards, but we use optics as our principal
metaphor.) Such an Ω cannot have unique reflecting geodesics; rather two points in Ω are
connected by at most two geodesics. We generalize Choe’s result by bounding the number
of connecting geodesics by any positive integer.

Theorem 1.8. Let Ω be a compact n-manifold with boundary with n = 2 or 4, let κ > 0,
and let W ⊂ ∂Ω be a (possibly empty) (n− 1)-dimensional submanifold. Suppose that Ω

is Candle(κ) for geodesics that reflect from W as a mirror, and suppose that every pair of
points in Ω can be linked by at most m (possibly reflecting) geodesics. Suppose also that

|Ω|6
|Xn,κ |

2m
.

Then

|∂Ωr∂W |>
In,κ(m|Ω|)

m
. (6)

Note that Günther’s inequality generalizes to this case (Proposition 5.8): If Ω satisfies
K 6 κ , and if the mirror region W is locally concave, then Ω is LCD(κ) and therefore
Candle(κ) for reflecting geodesics.

Theorem 1.8 is sharp, as can be seen from various examples. Let G be a finite group that
acts on the ball Bn,κ(r) by isometries. Then the orbifold quotient Ω = Bn,κ(r)/G matches
the bound of Theorem 1.8, if we take the reflection walls to be mirrors and if we take
m = |G|. Although Ω has lower-dimensional strata where it fails to be a smooth manifold,
we can remove thin neighborhoods of them and smooth all ridges to make a manifold with
nearly the same volume and boundary volume.

We could state a version of Theorem 1.8 for κ < 0 using the LCD(κ) condition, but it
would be much more restricted because we would require an ambient M in which every
two points are connected by exactly m geodesics. We do not know any interesting example
of such an M. (E.g., if the boundary of M is totally geodesic, then this case is equivalent to
simply doubling M and Ω across ∂M.)

1.2.6. Counterexamples in dimension 3. We find counterexamples to justify the hypothe-
ses of an ambient Cartan-Hadamard manifold and unique geodesics in Conjectures 1.2
and 1.3. One might like to replace these geometric hypotheses by purely topological ones.
However, we show that even if Ω is diffeomorphic to a ball, this does not imply any isoperi-
metric inequality.

Theorem 1.9. For every ε > 0, there is a Riemannian 3-manifold Ω ∼= B3 with (1− ε)-
pinched negative curvature and with arbitrarily large volume |Ω| and bounded surface
area |∂Ω| (depending only on ε).

Recall that a Riemannian manifold has δ -pinched negative curvature when its sectional
curvature K satisfies −16 K 6−δ everywhere.

While the manifold Ω we construct in Theorem 1.9 has trivial topology, its geometry is
decidedly non-trivial. Most of its volume consists of a truncated hyperbolic knot comple-
ment S3 r J with constant curvature K = κ ≈−1. Such an Ω has closed geodesics, which
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strongly contradicts the property of unique geodesics. Informally, we can say that Ω is “a
3-ball that wants to be a hyperbolic knot complement”.

Theorem 1.9 was inspired by Joel Hass’ construction of a negatively curved ball with
totally concave boundary [Has94]. Both constructions yield counterexamples to a Rie-
mannian extension problem considered by Pigola and Veronelli [PV16]. In both cases, the
ball Ω has closed geodesics; if Ω could extend to a complete manifold W that satisfies
K 6 −1+ ε or even K 6 0, then its univeral cover M = W̃ would be a Cartan-Hadamard
manifold with closed geodesics, contradicting the Cartan-Hadamard theorem. The ulti-
mate purpose of either construction also obstructs a Cartan-Hadamard extension. In Hass’
case, a compact Ω in a Cartan-Hadamard manifold cannot have totally concave boundary.
In our case, by Kleiner’s isoperimetric inequality [Kle92], Ω cannot have arbitrarily large
volume and bounded surface area.

It is not hard to convert the result of Theorem 1.9 to a complete refutation of any possible
isoperimetric relation for negatively curved 3-balls.

Corollary 1.10. For each V,A > 0, there is a Riemannian 3-ball Ω with K 6−1 and with
|Ω|=V and |∂Ω|= A.

We sketch the proof of Corollary 1.10: Starting with |Ω|�V and |∂Ω| bounded, we can
rescale Ω to make |Ω|=V − ε and |∂Ω|< A. We can then increase |∂Ω| while increasing
|Ω| by an arbitrarily small constant by adding a long, thin finger to Ω. Pinched negative
curvature is an interesting extra property. We do not know whether one can achieve |∂Ω|→
0 with |Ω| bounded below, and with (1− ε)-pinched negative curvature.

1.3. The linear programming model. Our method to prove Theorems 1.4 and 1.5 (and
indirectly Theorem 1.6) is a reinterpretation and generalization of Croke’s argument, based
on optical transport, optimal transport, and linear programming.

We simplify our manifold Ω to a measure µΩ on the set of triples (`,α,β ), where `
is length of a complete geodesic γ ⊆ Ω and α and β are its boundary angles. Thus µΩ

is always a measure on the set R>0× [0,π/2)2, regardless of the geometry or even the
dimension of Ω. We then establish a set of linear constraints on µΩ, by combining Theorem
5.3 (more precisely equations (23) and (24)) with Lemmas 5.4, 5.5, and 5.6. The result is
the basic LP Problem 6.1 and an extension 7.2. The constraints of the model depend on
the volume V = |Ω| and the boundary volume A = |∂Ω|, among other parameters.

Given such a linear programming model, we can ask for which pairs (V,A) the model is
feasible; i.e., does there exist a measure µ that satisfies the constraints? On the one hand,
this is a vastly simpler problem than the original Conjecture 1.2, an optimization over all
possible domains Ω. On the other hand, the isoperimetric problem, minimizing A for any
fixed V , becomes an interesting question in its own right in the linear model.

Regarding the first point, finite linear programming is entirely algorithmic: It can be
solved in practice, and provably in polynomial time in general. Our linear programming
models are infinite, which is more complicated and should technically be called convex
programming. Nonetheless, each model has the special structure of optimal transport prob-
lems, with finitely many extra parameters. Optimal transport is even nicer than general
linear programming. All of our models are algorithmic in principle. In fact, our proofs of
optimality in the two most difficult cases are computer-assisted using Sage [Sage].

Regarding the second point, our model is successful in two different ways: First, even
though it is a relaxation, it sometimes yields a sharp isoperimetric inequality, i.e., Theorems
1.4, 1.5, and 1.8. Second, our models subsume several previously published isoperimetric
inequalities. We mention six significant ones. Note that the first four, Theorems 1.11-1.14,
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are special cases of Theorems 1.4, 1.5, and 1.8 as mentioned in Section 1.2. The other two
results are separate, but they also hold in our linear programming models.

Theorem 1.11 (Variation of Weil [Wei26] and Bol [Bol41]). Let Ω be a compact Riemann-
ian surface with curvature K 6 κ > 0 with unique geodesics, and suppose that κ|Ω|6 2π .
Then for fixed area |Ω|, the perimeter |∂Ω| is minimized when |Ω| has constant curvature
K = κ and is a geodesic ball.

Theorem 1.12 (Variation of Bol [Bol41]). Suppose that Ω⊆M is a domain in a Cartan-
Hadamard surface M that satisfies K 6 κ 6 0. Then for fixed area |Ω|, the perimeter |∂Ω|
is minimized when |Ω| has constant curvature K = κ and is a geodesic ball.

Theorem 1.13 (Croke [Cro84]). If Ω is a compact 4-manifold with boundary, with unique
geodesics, and which is Candle(0), then for each fixed volume |Ω|, the boundary volume
|∂Ω| is minimized when Ω is a Euclidean geodesic ball.

Theorem 1.14 (Choe [Cho03, Cho06]). Let M be a Cartan-Hadamard manifold of dimen-
sion n∈ {2,4}, and let Ω⊆M be a domain whose interior is disjoint from a convex domain
C ⊆M. Then

|∂Ωr∂C|>
In,0(2|Ω|)

2
.

Theorem 1.15 (Croke [Cro80]). If Ω is an n-manifold with boundary with unique geode-
sics, then |∂Ω| > |∂Yn,ρ | where Yn,ρ is a hemisphere with constant curvature ρ and ρ is
chosen so that |Ω|= |Yn,ρ |.

Note that when |Ω| > |Xn,κ |/2, we obtain ρ 6 κ , so that Croke’s inequality extends
Theorem 1.4, as promised. See the end of Section 8.5.2 for further remarks about this
result.

Theorem 1.16 (Yau [Yau75]). Let M be a Cartan-Hadamard n-manifold which is LCD(κ)
with κ < 0. Then every domain Ω⊆M satisfies

|∂Ω|> (n−1)
√
−κ|Ω|.

Finally, we state the result that our models subsume all of these bounds.

Theorem 1.17. Let µ be a measure on R+× [0,π/2)2 that satisfies LP Problem 6.1, with
formal dimension n, formal curvature bound κ , formal volume V (µ) (defined by (39)),
and formal boundary volume A(µ) (defined by (35)). Then µ satisfies Theorem 1.4 and
therefore 1.11. If µ satisfies LP Problem 7.2, then it satisfies Theorems 1.16 and 1.5, and
therefore 1.12. If µ satisfies LP Problem 8.3, then it satisfies 1.15. If µ satisfies the LP
model 8.1, then it satisfies Theorem 1.8 and therefore 1.14.

We will prove some cases of Theorem 1.17 in the course of proving our other results;
the remaining cases will be done in Section 8.5.

Our linear programming models are similar to the important Delsarte linear program-
ming method in the theory of error-correcting codes and sphere packings [Del72, CS93,
CE03]. Delsarte’s original result was that many previously known bounds for error-cor-
recting codes are subsumed by a linear programming model. But his model also implies
new bounds, including sharp bounds. For example, consider the kissing number problem
for a sphere in n Euclidean dimensions [CS93]. The geometric maximum is of course
an integer, but in a linear programming model this may no longer be true. Nonetheless,
Odlyzko and Sloane [OS79] established a sharp geometric bound in the Delsarte model,
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which happens to be an integer and the correct one, in dimensions 2, 8, and 24. (The
bounds are, respectively, 6, 240, and 196,560 kissing spheres.) The basic Delsarte bound
for the sphere kissing problem is quite strong in other dimensions, but it is not usually an
integer and not usually sharp even if rounded down to an integer.

Another interesting common feature of the Delsarte method and ours is that they are
both sets of linear constraints satisfied by a two-point correlation function, i.e., a measure
derived from taking pairs of points in the geometry.

1.4. Other results.

1.4.1. Croke in all dimensions. There is a natural version of Croke’s theorem in all di-
mensions. This is a generalized, sharp isoperimetric inequality in which the volume of
Ω is replaced by some other functional when the dimension n 6= 4. This result might not
really be new; we state it here to further illustrate of our linear programming model.

If Ω is a manifold with boundary and unique geodesics, then the space G of geodesic
chords in Ω carries a natural measure µG, called Liouville measure or étendue (Section 5).

Theorem 1.18. Let Ω be a compact manifold with boundary of dimension n > 4, with
unique geodesics, and with non-positive sectional curvature. Let

L(Ω) =
∫

G
`(γ)n−3 dµG(γ)

If Bn,0(r) is the round, Euclidean ball such that

L(Ω) = L(Bn,0(r)),

then
|∂Ω|> |∂Bn,0(r)|.

By Theorem 5.3 (Santaló’s equality),

ωn−1|Ω|=
∫

G
`(γ)dµG(γ).

(Here ωn = |Xn,1| is the n-sphere volume; see Section 2.1.) Thus Theorem 1.18 is Croke’s
Theorem if n = 4. The theorem is plainly a sharp isoperimetric bound for the boundary
volume |∂Ω| in all cases given the value of L(Ω), which happens to be proportional to the
volume |Ω| only when n = 4.

Similar results are possible with a curvature bound K < κ , only with more complicated
integrands F(`) over the space G.

1.4.2. Non-sharp bounds and future work. We mention three cases in which the methods
of this paper yield improved non-sharp results.

First, when n = 3 and κ = 0, Problem 6.1 yields a non-sharp version of Kleiner’s theo-
rem under the weaker hypotheses of Candle(0) and unique geodesics. Croke [Cro84] estab-
lished the isoperimetric inequality in this case up to a factor of 3

√
36/32= 1.040 . . .. Mean-

while Theorem 1.6 implies the same isoperimetric inequality up to a factor of 3
√

27/25 =
1.026 . . .. The wrinkle is that Croke’s proof uses only (36), while Theorem 1.6 uses only
(37). A combined linear programming problem should produce a superior if still non-sharp
bound.

Second, it is a well-known conjecture that a metric ball is the unique optimum to the
isoperimetric problem for domains in the complex hyperbolic plane CH2. (The same
conjecture is proposed for any non-positively curved symmetric space of rank 1.) If we
normalize the metric on CH2 so that it is (−4,−1)-pinched (Section 2.1), then CH2 is
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LCD(−16/9). Then Theorem 1.5 is, to our knowledge, better than what was previously
established for moderately small volumes. Even so, this is a crude bound; we could do
even better with a version of Problem 7.2 that uses the specific candle function of CH2.

Third, even for domains in Cartan-Hadamard manifolds with K6−1 (or more generally
LCD(−1)), we can relax the smallness condition (4) in Theorem 1.5 simply by increasing
the curvature bound κ from κ = −1. This is still a good bound for a range of volumes
until it is eventually surpassed by Theorem 1.16. This is also a crude bound that can
surely be improved, given that both Theorem 1.5 and Theorem 1.16 hold in the same linear
programming model, Problem 7.2.

ACKNOWLEDGMENTS

The authors would like to thank Sylvain Gallot, Joel Hass, Misha Kapovich, and Qinglan
Xia for useful discussions about Riemannian geometry and optimal transport. The authors
would also like to thank an anonymous referee for detailed corrections and comments.

2. CONVENTIONS

2.1. Basic conventions. If f : R>0→ R is an integrable function, we let

f (−1)(x) def
=
∫ x

0
f (t)dt

be its antiderivative that vanishes at 0, and then by induction its nth antiderivative f (−n).
This is in keeping with the standard notation that f (n) is the nth derivative of f for n > 0.

If M is a Riemannian manifold, we let νM denote the Riemannian measure on M. As
usual, T M is the tangent bundle of M, while we use UM to denote the unit tangent bundle.
Also, if Ω is a manifold with boundary ∂Ω, then we let

U+
∂Ω

def
=
{

u = (p,v) | p ∈ ∂Ω,v ∈UpΩ inward pointing
}
.

We say that M has (δ1,δ2)-pinched curvature if its sectional curvature K satisfies δ1 6
K 6 δ2 everywhere. To paraphrase, we may say that M is pinched, its metric is pinched,
etc.

We let |M| be the volume of M:

|M| def
=
∫

M
dνM.

We let

ωn = |Xn,1|=
2π(n+1)/2

Γ( n+1
2 )

be the volume of the unit n-dimensional sphere Xn,1 = Sn ⊆ Rn+1.

2.2. Candles. Our main results are stated in terms of conditions Candle(κ) and LCD(κ)
that follow from the sectional curvature condition K 6 κ by Günther’s comparison theorem
[Gün60, BC64]. These conditions are non-local, but in previous work [KK15], we showed
that they follow from another local condition, more general than K6 κ that we called

√
Ric

class (ρ,κ). The original motivation is that Croke’s theorem only needs that the manifold
D is Candle(0), and even then only for pairs of boundary points. Informally, a Riemannian
manifold M is Candle(κ) if a candle at any given distance r from an observer is dimmer
than it would be at distance r in a geometry of constant curvature κ .
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More rigorously, let M be a Riemannian manifold and let γ = γu be a geodesic in M that
begins at p = γ(0) with initial velocity u ∈UpM. Then the candle function jM(γ,r) of M
is by definition the normalized Jacobian of the exponential map

u 7→ γu(r) = expp(ru),

given by the equation
dνM(γu(r)) = jM(γu,r)dνUpM(u)dr

for r > 0, where νM is the Riemannian volume on M and νUpM is the Riemannian measure
on the round unit sphere UpM. More generally, if a < b, we define

jM(γ,a,b) = jM(γa,b−a),

where γa is the same geodesic as γ but with parameter shifted by a. We also define

jM(γ,b,a) = jM(γb,b−a),

where γb is the same geodesic as γ , but reversed and based at γ(b). (But see Corollary 5.2.)
The candle function of the constant-curvature geometry Xn,κ is independent of the geo-

desic. We denote it by sn,κ(r); it is given by the following explicit formulas:

sn,κ(r) =



( sin(r
√

κ)√
κ

)n−1
if κ > 0, r 6

π√
κ

rn−1 if κ = 0( sinh(r
√
−κ)√

−κ

)n−1
if κ < 0.

(7)

We will also need the extension sn,κ(r) = 0 when κ > 0 and r > π/
√

κ .

Definition. An n-manifold M is Candle(κ) if

jM(γ,r)> sn,κ(r)

for all γ and r. It is LCD(κ), for logarithmic candle derivative, if

log( jM(γ,r))′ > log(sn,κ(r))′

for all γ and r. (Here the derivative is with respect to r.) The LCD(κ) condition implies
the Candle(κ) condition by integration. If κ > 0, then these conditions are only required
up to the focal distance π/

√
κ in the comparison geometry.

To illustrate how Candle(κ) is more general than K 6 κ , we mention root-Ricci curva-
ture [KK15]. Suppose that M is a manifold such that K 6 0 and let κ < 0. For any unit
tangent vector u ∈UpM with p ∈M, we define

√
Ric(u) def

= Tr(
√
−R(·,u, ·,u)).

Here R(u,v,w,x) is the Riemann curvature tensor expressed as a tetralinear form, and the
square root is the positive square root of a positive semidefinite matrix or operator. We say
that M is of

√
Ric class κ if K 6 0 and

√
Ric(u)> (n−1)

√
−κ.

Then

K 6 κ =⇒
√

Ric class κ =⇒ LCD(κ) =⇒ Candle(κ) =⇒ Ric6 (n−1)κg.

The second implication, from
√

Ric to LCD, is the main result of [KK15]. (We also estab-
lished a version of the result that applies for any κ ∈ R. This version uses a generalized√

Ric class (ρ,κ) condition that also requires K 6 ρ for a constant ρ > max(κ,0).) All
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implications are strict when n > 2. By contrast in dimension 2, the last condition trivially
equals the first one, so all of the conditions are equivalent.

We conclude with two examples of 4-manifolds of
√

Ric class−1, and which are there-
fore LCD(−1), but that do not satisfy K 6−1:

• The complex hyperbolic plane, normalized to be (− 9
4 ,−

9
16 )-pinched.

• The product of two simply connected surfaces that each satisfy K <−9.
Actually, the most important regime where Candle(κ) is weaker than K 6 κ is at short
distances. Since

jM(γ,r) = rn−1− Ric(γ ′(0),γ ′(0))
6

rn+1 +O(rn+2)

in dimension n, we can write informally that

Candle(κ) ≈⇐⇒ Ric6 (n−1)κg

as diam(M)→ 0.

3. THE LITTLE PRINCE AND OTHER STORIES

FIGURE 1. The Little Prince on his not-very-big planet, actually an asteroid.

3.1. The problem of the Little Prince. As Saint-Exupéry related to inhabitants of our
planet, the Little Prince lives on his own planet, also known as asteroid B-612 (Figure 1).
Since this planet is not very big, its gravitational pull is small and its habitation is precari-
ous. The question arises as to what shape it should be to maximize the normal component
of gravity for the Little Prince, assuming that the planet has a fixed mass, and a uniform,
fixed mass density. Let Ω be the shape of the planet. The divergence theorem tells us that
the average normal gravity is proportional to |Ω|/|∂Ω|, so maximizing the average would
be exactly the isoperimetric problem. Suppose instead that the Little Prince has a favorite
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location, and does not mind less gravity elsewhere. (After all, in the illustrations he usually
stands on top of the planet.)

We cannot be sure of the dimension of the Little Prince or his planet. The illustra-
tions are 2-dimensional, but the Prince visits the Sahara Desert which suggests that he is
3-dimensional. In any case higher-dimensional universes, which are a fashionable topic in
physics these days, would each presumably have their own Little Prince. So we assume
that the Little Prince is n-dimensional for some n > 2. We first assume Newtonian grav-
ity and therefore a Euclidean planet; recall that in n dimensions, a divergenceless central
gravitational force is proportional to r1−n.

Proposition 3.1 (Little Prince Problem). Let Ω be the shape of a planet in n Euclidean
dimensions with a pointwise gravitational force proportional to r1−n. Suppose that the
planet has a fixed volume |Ω| and a uniform, fixed mass density, and let p ∈ ∂Ω. Then
the total normal gravitational force F(Ω, p) at p is maximized when Ω is bounded by the
surface r = k cos(θ)1/(n−1) for some constant k, in spherical coordinates centered at p.

The problem of the Little Prince in 3 dimensions is sometimes used as an undergraduate
physics exercise [McD03]. It has also been previously used to prove the isoperimetric
inequality in 2 dimensions [HHM99]. However, our further goal is inequalities for curved
spaces such as Theorem 1.6.

Proof. For convenience, we assume that the gravitational constant and the mass density of
the planet are both 1. Given x ∈Ω, let r = r(x) and θ = θ(x) be the radius and first angle
in spherical coordinates with the point p at the origin, and such that the normal component
of gravity is in the direction θ = 0. Then the total gravitational effect of a volume element
dx at x is cos(θ)r1−n dx, so the total gravitational force is

F(Ω, p) =
∫

x∈Ω

cos(θ)r1−n dx.

In general, if f (x) is a continuous function and we want to choose a region Ω with fixed
volume to maximize ∫

Ω

f (x)dx,

then by the “bathtub principle”, Ω should be bounded by a level curve of f , i.e.,

Ω = f−1([k,∞))

for some constant k. Our f is not continuous at the origin, but the principle still applies.
Thus Ω is bounded by a surface of the form

r = k cos(θ)1/(n−1). �

As explained above in words, the integral over ∂Ω of the normal component of gravity
is proportional to |Ω| by the divergence theorem. More rigorously: We switch to a vector
expression for gravitational force and we do not assume that p = 0. Then

F(Ω, p) =
∫

Ω

(x− p)|x− p|−n dx.

Since for each fixed x ∈ Int(Ω), the vector field p 7→ (x− p)|x− p|−n is divergenceless
except at its singularity, we have∫

∂Ω

〈−w(p),x− p〉|x− p|−n dp = ωn−1
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where w(p) is the outward unit normal vector at p. Thus∫
∂Ω

〈−w(p),F(Ω, p)〉dp = ωn−1|Ω|

by switching integrals. Then
ωn−1|Ω|6 |∂Ω|Fmax, (8)

where Fmax is the upper bound established by Proposition 3.1.
In particular, when n = 2, the optimum Ω is the polar plot of r = k cos(θ), which is a

round circle. In this case
〈−w(p),F(Ω, p)〉= Fmax

at all points simultaneously. Thus when n = 2, equation (8) is exactly the sharp isoperi-
metric inequality (2).

3.2. Illumination and Theorem 1.6. Proposition 3.1 is close to a special case of The-
orem 1.6. To make it an actual special case, we slightly change its mathematics and its
interpretation, but we will retain the sharp isoperimetric corollary using the divergence
theorem. Instead of the shape of a planet, we suppose that Ω is the shape of a uniformly
lit room, and we let I(Ω, p) be the total intensity of light at a point on the wall p ∈ ∂Ω.
More rigorously, if Vis(Ω, p) is the subset of Ω which is visible from p (assuming that the
walls are opaque, but allowing geodesics to be continued when they meet the boundary
tangentially so that Vis(Ω, p) is closed), then

I(Ω, p) =
∫

Vis(Ω,p)
〈−w(p),x− p〉|x− p|−ndx.

We still have ∫
Vis(∂Ω,x)

〈−w(p),x− p〉|x− p|−n dp = ωn−1

and we can still exchange integrals. Moreover,

I(Ω, p) = F(Ω, p)

when Ω is convex. Thus, this variation of Proposition 3.1 is also true and also implies (2).
We now consider the case when Ω is a curved Riemannian manifold, that is, Theo-

rem 1.6. The proof is a simplified version of the proof of Theorems 1.4 and 1.5. Before
giving the proof, we give a rigorous definition of illumination in the curved setting. (The
definition agrees with the natural geometric assumption that light rays travel along geode-
sics.)

Let Ω be a compact Riemannian n-manifold with boundary and unique geodesics. We
define a Riemannian analogue of p 7→ −(x− p)|x− p|−n, changing sign here to match
the illumination interpretation. Namely, for each fixed x ∈ Int(Ω), we define a tangent
vector field vx as follows. If y ∈ Vis(Ω,x), then we let γ be the geodesic with γ(0) = x and
γ(r) = y, and then let

vx(y) =
γ ′(r)

jΩ(γ,r)
.

If y /∈ Vis(Ω,x), then we let vx(y) = 0. The motivation, as above, is that this formula
describes the radiation from a point source of light at x to the rest of Ω.

We claim that divvx = ωn−1δx in a distributional sense, where δx is the Dirac measure
at x, so that we can then use vx in the divergence theorem. It is routine to check that this
holds at x itself and at any point y where vx is continuous. The only delicate case is when
y ∈ ∂ Vis(Ω,x)r ∂Ω. The vector field vx is not continuous at these points; however, it is
parallel to ∂ Vis(Ω,x) and thus does not have any singular divergence.
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We fix a point p ∈ ∂Ω and again let w(p) be the outward unit normal vector to ∂Ω at p.
Then the illumination at p is defined by

I(Ω, p) =
∫

Vis(Ω,p)
〈w(p),vx(p)〉dνΩ(x).

Proof of Theorem 1.6. First, we express I(Ω, p) as an integral over U = U+
p ∂Ω, the unit

inward tangent vectors at p. Given u ∈U , let `(u) be the length of the maximal geodesic
segment defined by u and let α(u) be the angle of u with the inward normal −w(p). Then,
in polar coordinates we get

I(Ω, p) =
∫

U

∫ `(u)

0
cos(α(u))dt dνU (u)

=
∫

U
`(u)cos(α(u))dνU (u).

The first equality expresses the fact that the norm ||vx(p)|| is the reciprocal of the Jacobian
of the exponential map from p. In other words, it is based on an optical symmetry principle
(Corollary 5.2): If two identical candles are at x and p, then each one looks exactly as bright
from the position of the other one.

Second, the Candle(0) hypothesis tells us that

|Ω|> |Vis(Ω, p)|=
∫

Vis(Ω,p)
dνΩ(x)>

∫
U

∫ `(u)

0
tn−1 dt dνU (u),

so that

|Ω|>
∫

U

`(u)n

n
dνU (u). (9)

Third, we apply the linear programming philosophy that will be important in the rest of
the paper.

All of our integrands depend only on ` and α . Thus we can summarize all available
information by projecting the measure νU to a measure

σΩ = (`,α)∗(dνU )

on the space of pairs

(`,α) ∈ R>0× [0,
π

2
).

Then we want to maximize
I =

∫
`,α

`cos(α)dσΩ (10)

subject to the constraint ∫
`,α

`n

n
dσΩ 6V. (11)

We have one other linear piece of information: If we project volume on the hemisphere U
into the angle coordinate α ∈ [0, π

2 ), then the result is

α∗(dσΩ) = α∗(dνU ) = ωn−2 sin(α)n−2 dα, (12)

since the latitude on U at angle α is an (n−2)-sphere with radius sin(α).
We temporarily ignore geometry and maximize (10) for an abstract positive measure

σ = σΩ that satisfies (11) and (12). To do this, choose a > 0, and let

f (α) = sup
`>0

(
`cos(α)− a`n

n

)
. (13)



16 BENOÎT R. KLOECKNER AND GREG KUPERBERG

We obtain

06
∫
`,α

(
f (α)+

a`n

n
− `cos(α)

)
dσ(`,α)

6
∫

π/2

0
f (α)ωn−2 sin(α)n−2 dα +aV − I. (14)

The integral on the right side of (14) is a function of a only. Finally (14) is an upper bound
on I, one that achieves equality if (11) is an equality and σ = σΩ is supported on the locus

cos(α) = a`n−1,

because that is the maximand of (13). The first condition tells us that Ω is Euclidean and
visible from p. The second gives us the polar plot (5) if we take k = a−1/(n−1). �

Remark. It is illuminating to give an alternate Croke-style end to the proof of Theorem 1.6.
Namely, Hölder’s inequality says that

I =
∫
`,α
`cos(α)dσΩ

6
(∫

`,α
`n dσΩ

) 1
n
(∫

`,α
cos(α)

n
n−1 dσΩ

) n−1
n

6 (nV )
1
n

(∫ π
2

0
cos(α)

n
n−1 ωn−2 sin(α)n−2 dα

) n−1
n
.

The last expression depends only on V and n, while the inequality is an equality if (11) is
an equality, and if

`n
∝ cos(α)

n
n−1 .

The first condition again tells us that Ω is Euclidean and visible from p; the second one
gives us the same promised shape (5).

The Croke-style argument looks simpler than our proof of Theorem 1.6, but what was
elegance becomes misleading for our purposes. For one reason, our use of the auxiliary
f (α) amounts to a proof of this special case of Hölder’s inequality. Thus our argument
is not really different; it is just another way to describe the linear optimization. For an-
other, we will see more complicated linear programming problems in the full generality of
Theorems 1.4 and 1.5 that do not reduce to Hölder’s inequality.

4. TOPOLOGY AND GEODESICS

In this section we will analyze the effect of topology and geodesics on isoperimetric
inequalities.

Weil and Bol established the sharp isoperimetric inequality (2) for Riemannian disks Ω

with curvature K 6 κ , without assuming an ambient manifold M, and for any κ ∈ R. The
cases κ 6 0 of the Weil and Bol theorems is equivalent to the n = 2 case of Conjecture 1.2
[Dru10].

The case κ > 0 is more delicate, even in 2 dimensions. Aubin [Aub76] assumed that B
is a Riemannian ball with K 6 κ and then that Ω⊆ B; but this formulation does not work.
Even if B is a metric ball with an injective exponential map, and even if in addition B⊂M
and M is complete and simply connected with the same K 6 κ , there may be no control
over the size of ∂Ω. We can let M be a “barbell” consisting of two large, nearly round
2-spheres connected by a rod (Figure 2). Then Ω can be just the rod, while B is Ω union
one end of the barbell. B is also a metric ball with an injective exponential map. Then Ω is
an annulus S1× I in which both the meridian S1 and the longitude I can have any length.
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Ω

B

M

FIGURE 2. A counterexample Ω ⊆ B ⊆ M to Aubin’s conjecture with
κ > 0, in which both |Ω| and |∂Ω| are unrestricted.

Thus both |Ω| and |∂Ω| can have any value. Morgan and Johnson [MJ00] made the same
point and used it to justify their small-volume hypothesis; of course, they require an upper
bound on the volume that depends on the geometry of the ambient manifold.

Theorem 1.9 says that Weil’s theorem fails completely for negatively curved Riemann-
ian 3-balls. Our proof is similar to Hass’s construction [Has94] of a negatively curved
3-ball with concave boundary.

If Ω is a smooth domain in a Cartan-Hadamard manifold as in Conjecture 1.2, then
it has unique geodesics, but unique geodesics is a strictly weaker hypothesis even in 2
dimensions. For example, if Ω is a thin, locally Euclidean annulus with an angle deficit
(Figure 3), then it has unique geodesics, but by the Gauss-Bonnet formula its inner circle
cannot be filled by a non-positively-curved disk. Theorem 1.9 tells us that we need some
geometric condition on a manifold Ω to obtain an isoperimetric inequality, because even
the strictest topological condition, that Ω be diffeomorphic to a ball, is not enough. One
natural condition is that Ω has unique geodesics. (See also Section 5.5 for a generalization.)

FIGURE 3. A conical, locally Euclidean annulus that has unique geode-
sics but does not embed in a Cartan-Hadamard surface, with a geodesic
indicated in red. (We glue together the edges marked with arrows.)
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Question 4.1. If M is a Cartan-Hadamard manifold and Ω minimizes |∂Ω| for some fixed
value of |Ω|, then is it convex? Is it a topological ball?

Since we first proposed this question in an earlier version of the present article, Hass
[Has16] proved that an isoperimetric minimizer Ω in a Cartan-Hadamard manifold need
not be connected, which is thus a negative answer to both parts of the question. He also
shows that in two dimensions, each connected component is a convex disk. He then gives
partial evidence that nonconvex, connected minimizers exist in three dimensions. It may
still be interesting to ask what restrictions there are on the topology of Ω, for simplicity
given that it is a manifold with boundary.

In two dimensions, if Ω is a non-positively curved disk, then it has unique geodesics.
(Proof: If a disk does not have unique geodesics, then it contains a geodesic “digon”. By
the Gauss-Bonnet theorem, a geodesic digon cannot have non-positive curvature.) Thus
the κ = 0, n = 2 case of Theorem 1.4 implies Weil’s theorem; but, as explained in the
previous paragraph, it is more general.

In higher dimensions, there are non-positively curved smooth balls with closed geo-
desics. Hass’s construction has closed geodesics, and so does our construction in Theo-
rem 1.9.

N2

N1

N = N1∪N2

∂M

M ⊆ S3 r J

L

FIGURE 4. A diagram of Ω = M∪N∪L, schematically like a decanter.
It consists of a truncated hyperbolic knot complement M, plus a 2-handle
N ∪L that consists of a 3-ball lid L and a thickened annulus neck N =
N1∪N2.
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4.1. Proof of Theorem 1.9. In our proof of Theorem 1.9, we will construct Ω to be (−1−
ε,−1+ ε)-pinched, so that

√
1+ εΩ is (−1,−1+2ε)-pinched. We can then change ε to

match the stated conclusion of Theorem 1.9.
Our construction is shown schematically in Figure 4. We make Ω as a union of three

pieces M, N, and L. M is a truncated hyperbolic knot complement, L is a “lid” which is a
horospheric pseudocylinder, and N is a connecting neck which is a thickened annulus. Both
M and L have constant curvature K =−1, while the neck N has a (−1−ε,−1+ε)-pinched
metric that interpolates between the metrics on ∂M and ∂L and meets each one along an
annulus. Although the two ends of N are both horospheric annuli, they are mismatched in
two ways: First, ∂M and the bottom of ∂L are both concave, so their extrinsic curvature
must be interpolated. Second, the annulus ∂M∩N is vertical (isometric to a cylinder S1× I
with the product metric) while ∂L∩N is horizontal (isometric to an annulus in E2). In order
to achieve both interpolations, we further divide N = N1∪N2 into two thickened annuli N1
and N2.

To construct N1 and N2, which will be the most technical part of the proof, we review
some facts about warped products [BO69, AB04]. Recall that if B and F are two Riemann-
ian manifolds and h : B→R+ is a smooth function, we can define a Riemannian metric on
B×F by the formula

ds2
B×F(p,q) = ds2

B(p)+ f (p)2ds2
F(q)

for (p,q) ∈ B×F . The manifold B×F with this metric is denoted B× f F and is called
a warped product, while the function f is a warping function. In this paper, we will only
need warped products of the form I× f M, where the base I is an interval.

Lemma 4.1. Let I be an interval, let f : I → R+ be a warping function, let F be a Rie-
mannian manifold, and let W = I× f F. Then:

1. If F is locally Euclidean and f (t) = et , then W has constant curvature K =−1.
2. If F has constant curvature K =−1 and f (t) = cosh(t), then W also has constant

curvature −1.
3. If F is 1-dimensional, then the intrinsic curvature of W is given by

KW (t,x) =− f ′′(t)
f (t)

for t ∈ I and x ∈ F.
4. If F is (−1−ε,−1+ε)-pinched and f (t) = cosh(t), then W is also (−1−ε,−1+

ε)-pinched.

In the proof of Lemma 4.1, and later in the proof of Theorem 1.9, we will make use of
the standard upper half-space model for hyperbolic space:

ds2
Hn+1 =

ds2
En +dz2

z2 =
dx2

1 + . . .+dx2
n +dz2

z2 . (15)

Recall that in this model, xk ∈ R for every k and z > 0.

Proof. Cases 1, 2, and 3 all follow quickly from the conditions (16) and (17) below. How-
ever, as these are well-known facts in differential geometry, we also give separate calcula-
tions. Case 1 is confirmed by a standard metric model of Hn+1,

ds2
Hn+1 = e2tds2

En +dt2,
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which is obtained from (15) by the change of variables z = e−t . Case 2 is confirmed by a
standard metric model of Hn+1,

ds2 = cosh(t)2ds2
Hn +dt2,

which may also be obtained from (15) by the change of variables

(xn,z) = (y tanh(t),ysech(t)),

to obtain the metric

ds2
Hn+1 = cosh(t)2 dx2

1 + . . .+dx2
n−1 +dy2

y2 +dt2.

Case 3 follows from the Jacobi field equation (64), considering that the I fibers in a
warped product I× f F are geodesic curves.

Case 4 is a special case of a result of Alexander-Bishop [AB04, Prop 2.2.]. Reducing to
the case of a one-dimensional base B = I, this proposition says that:

1. W has curvature bounded above by K0 if

f ′′ >−K0 f and KF 6 K0 f 2 + f ′2. (16)

2. W has curvature bounded below by K0 if

f ′′ 6−K0 f and KF > K0 f 2 + f ′2. (17)

(The proposition states “if and only if” and requires that B be complete, but their proof
makes clear that the “if” direction does not require completeness.) If we take K0 =−1+ε

for the upper bound and K0 =−1−ε for the lower bound, and if f (t) = cosh(t), we obtain
the requirements

cosh(t)(1− ε)6 cosh(t)6 cosh(t)(1+ ε)

−1− ε cosh(t)2 6 KF 6−1+ ε cosh(t)2.

All of these inequalities hold immediately. �

Lemma 4.2. Let ε,δ ,a,b > 0. Then there exists c > 2 and a smooth f : [0,c]→ R+ such
that the manifold

N1 = [−δ ,δ ]×R/2πZ× [0,c]
with coordinates (ρ,θ ,h) and metric

ds2 = dρ
2 + cosh(ρ)2( f (h)2 dθ

2 +dh2)

is (−1− ε,−1+ ε)-pinched, and such that

f (h) =

{
ae−h h6 1
beh−c h> c−1

and
|∂N1|= Oε

(
cosh(δ )2(a+b)

)
.

Proof. Following Lemma 4.1, N1 is (−1− ε,−1+ ε)-pinched if and only if

(1− ε) f (h)6 f ′′(h)6 (1+ ε) f (h).

This relation holds if and only if the logarithmic derivative u(h) = f ′(h)/ f (h) approxi-
mately satisfies a Riccati equation:

1− ε 6 u′(h)+u(h)2 6 1+ ε. (18)
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h

tanh(h)

u(h)

−1

0

1

FIGURE 5. The function u(h), an approximate Riccati solution that tran-
sitions from −1 to 1 and which partly agrees with the exact solution
tanh(h)

We first construct u(h), for convenience for all h ∈ R. Actually, we will shift h by a
constant, which has no effect on (18). Let u(h) be a smooth function such that:

1. u(h) = tanh(h) when | tanh(h)|6 1− ε

2 .
2. 06 u′(h)6 ε when | tanh(h)|> 1− ε

2 .
3. u(h) increases with h until it reaches 1 at h = c0 and then stays constant.
4. u(−h) =−u(h) for all h.

(See Figure 5.) When | tanh(h)|6 1− ε

2 , we have

u′(h)+u(h)2 = 1.

For other values of h, we have

1− ε < u(h)2 6 1, 06 u′(h)6 ε,

so that (18) is satisfied in all cases.
Choose c1 6−c0−1 and c2 > c0 +1 such that also∫ c2

c1

u(t)dt = log(b)− log(a),

and let c = c2− c1. Then

f (h) = aexp
(∫ h+c1

c1

u(t)dt
)

has all of the required properties on the interval [0,c].
We can estimate |∂N1| by first considering the area of the level surface ρ = 0, which is∫ c

0 2π f (h)dh. Splitting the integral of f into∫ c

0
f (h)dh =

∫ −c0−c1

0
f (h)dh+

∫ c0−c1

−c0−c1

f (h)dh+
∫ c

c0−c1

f (h)dh,

we observe that ∫ −c0−c1

0
f (h)dh =

∫ −c0−c1

0
ae−h dh < a∫ c

c0−c1

f (h)dh =
∫ c

c0−c1

beh−c dh < b∫ c0−c1

−c0−c1

f (h)dh < 2c0 max(a,b) = Oε(a+b).
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The estimate for |∂N1| follows quickly. �

Lemma 4.3. Let ε > 0 and let f : [0,3]→ [0,1] be a smooth function such that f (h) = 0
for h6 1 and f (h) = 1 for h> 2. Then there exists b > 0 such that the manifold

N2 = [−1,1]×R/2πZ× [0,3]

with coordinates (ρ,θ ,h) and with the metric

ds2 = e2h(dρ
2 +(b+ f (h)ρ)2 dθ

2)+dh2, (19)

is (−1− ε,−1+ ε)-pinched.

Note that if f (h) is locally constant near h = h0, then Lemma 4.1 tells us that the metric
(19) has constant negative curvature K = −1 at h0. In particular, K = −1 for every h ∈
[0,1]∪ [2,3].

Proof. For clarity, we work in the universal cover Ñ2, so that θ ∈R. Without yet choosing
b, we apply the change of variables θ = α/b to obtain the metric

ds2 = e2h
(

dρ
2 +
(
1+

f (h)ρ
b

)2 dα
2
)
+dh2. (20)

Since h and ρ are bounded independently of the choice of b, and since f (h) is a fixed,
smooth function, the metric (20) converges uniformly in the C∞ topology to the metric

ds2 = e2h(dρ
2 + dα

2)+dh2 (21)

as b→ ∞. Recall that the curvature tensor Ri jkl of a manifold M with a metric gi j has a
polynomial formula in terms of the derivatives gi j,k and gi j,kl , and the matrix inverse gi j. In
our case, the limiting metric (21) has constant curvature K =−1 by Lemma 4.1. Both gi j
and gi j are uniformly bounded, since they are independent of the non-compact coordinate
α . It follows that the sectional curvature of Ñ2 converges uniformly to K =−1 as b→ ∞.
This is equivalent to the conclusion that Ñ2 or N2 is (−1− ε,−1+ ε)-pinched when b is
sufficiently large. �

Proof of Theorem 1.9. Let J ⊆ S3 be a hyperbolic knot and give its complement S2 r J
its complete hyperbolic metric with curvature K = −1. We can choose J so that |S3 r
J| is arbitrarily high by a theorem of Adams [Ada05]. A tubular neighborhood of J is
metrized as a parabolic cusp, and this cusp can be truncated to obtain a manifold M with a
horospheric torus boundary ∂M. Let γ ⊂ ∂M be a geodesic meridian circle. Note that we
can truncate |S3 r J| as far out along the cusp as we like. We choose the truncation so that

|M|> |S3 r J|−1, |∂M|6 1, |γ|6 1.

If we attach a 2-handle D2× I to M along γ , then the result

Ω = M∪ (D2× I)

is diffeomorphic to a ball B3. (Recall that an n-dimensional k-handle is a Bk×Bn−k which
is to be attached along (∂Bk)×Bn−k to some other manifold.) We want to give the han-
dle D2× I a (−1− ε,−1+ ε)-pinched metric that extends smoothly to the metric on M.
We also want to bound |∂ (D2× I)| by a constant, independent of the choice of M (but
depending on ε).

We construct the 2-handle D2× I as the union of a thickened annulus N, the “neck”; and
a 3-ball L, the “lid”. The connecting neck N is divided into two stages, N1 and N2. Each
Nk is of the form Ishort×S1× Ilong, where S1× Ilong is thus a long annulus. More precisely
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N1

N2 1/e

1

e

−1 1

x1

z1

z1

x1
=

1
sinh(δ )

FIGURE 6. Gluing N1 to N2 in the half-space model in coordinates x1
and z2. If sinh(δ )6 1, then N1 inserts into the end of N2 as shown.

(as in Figure 4), we will glue M to N1, N1 to N2, and N2 to L. It will be convenient for each
pair to overlap with positive volume.

We construct N1 and N2 using Lemmas 4.2 and 4.3, which both use the coordinates
(ρ,θ ,h). To distinguish them, we change the variables names to ρ1 and h1 in Lemma 4.2
and to ρ2 and h2 in Lemma 4.3; the coordinate θ will be the same.

We choose the constant a in Lemma 4.2 so that |γ|= 2πa, and we choose the constant
b to match its value provided in Lemma 4.3. We parametrize γ by θ ∈ R/2πZ so that
aθ represents the length along γ from some starting point. Since γ is horocyclic, it has a
neighborhood in M with coordinates (ρ1,θ ,h1) with the metric

ds2 = cosh(ρ1)
2(a2e−2h1dθ

2 +dh2
1)+dρ

2
1 ,

and where γ itself in these coordinates is γ(θ) = (0,θ ,0) and (0,θ ,h1) is at a distance
of h1 from ∂M. Choose δ so that the region ρ1 ∈ [−δ ,δ ] and h1 > −δ is an embedded
neighborhood of γ . We also want sinh(δ ) 6 1, for a reason that we will discuss later. We
use these coordinates to glue M to N1, with its metric provided by Lemma 4.2.

To glue N1 to N2, we introduce the coordinates (x1,y1,z1) with x1,z1 ∈ R and θ ∈
R/2πZ, and with the hyperbolic metric

ds2 =
dx2

1 +dy2
1 +dz2

1

z2
1

.

As in the proof of Lemma 4.1, we can identify these coordinates with both (ρ1,θ ,h1) and
(ρ2,θ ,h2) using the equations

(x1,y1,z1) = (ec−h1 tanh(ρ1),bθ ,ec−h1 sech(ρ1))

(x1,y1,z1) = (ρ2,bθ ,e−h2).

Both changes of variables preserve the defined metrics. We can also solve for (ρ2,h2) in
terms of (ρ1,h1) to obtain

(ρ2,h2) = (ec−h1 tanh(ρ1),h1− c− log(sech(ρ1))).
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If sinh(δ )6 1, the constant curvature end of N1 stays within the constant curvature end of
N2, and is inserted between its corners, as in Figure 6.

Finally we define the lid L to be the region

L = {(x2,y2,h2) | x2
2 + y2

2 6 b2,26 h6 3}
in R3 with metric

ds2 = e2h2(dx2
2 +dy2

2)+dh2
2.

We glue N2 to L by changing to polar coordinates,

(x2,y2,h2) = ((ρ2 +b)cos(θ),(ρ2 +b)sin(θ),h2),

which also converts between the metrics on L and N2.
By construction, N1 ∪N2 ∪L is a 2-handle that attaches to M along γ . The result is a

(−1− ε,−1+ ε)-pinched 3-ball

Ω = M∪N1∪N2∪L

with piecewise smooth boundary; we can make the boundary smooth by shaving it slightly.
Since M itself has arbitrarily large volume, Ω does too. It remains to bound the surface
area

|∂Ω|6 |∂M|+ |∂N1|+ |∂N2|+ |∂L|.
The submanifolds N1 and L only depends on ε . Meanwhile we have already specified that
|∂M|6 1. Finally |∂N1| is estimated in Lemma 4.2 in terms of the constants a and b. The
constant a is bounded because |γ|6 1, while the constant b only depends on ε . Thus |∂Ω|
is bounded by a constant, depending on ε . �

5. GEODESIC INTEGRALS

In this section we will study Santaló’s integral formula [San04, Sec. 19.4] in the for-
malism of geodesic flow and symplectic geometry. See McDuff and Salamon [MS98, Sec.
5.4] for properties of symplectic quotients. The formulas we derive are those of Croke
[Cro84]; see also Teufel [Teu93].

5.1. Symplectic geometry. Let W be an open symplectic 2n-manifold with a symplectic
form ωW . Then W also has a canonical volume form µW = ω∧n

W which is called the Liou-
ville measure on W . Let h : W → R be a Hamiltonian, by definition any smooth function
on W , suppose that 0 is a regular value of h, and let H = h−1(0) then be the corresponding
smooth level surface. Then ωW converts the 1-form dh to a vector field ξ which is tangent
to H. Suppose that every orbit γ of ξ only exists for a finite time interval. Let G be the set
of orbits of ξ on H; it is a type of symplectic quotient of W . G is a smooth open manifold
except that it might not be Hausdorff.

The manifold G is also symplectic with a canonical 2-form ωG and its own Liouville
measure µG. H cannot be symplectic since it is odd-dimensional, but it does have a Liou-
ville measure µH . (In fact G and ωG only depend on H, and not otherwise on h, while µH
depends on the specific choice of h.) Let (a(γ),b(γ)) be the time interval of existence of
γ ∈ G; here only the difference

`(γ) = b(γ)−a(γ)

is well-defined by the geometry. In this general setting, if f : H→R is a suitably integrable
function, then ∫

H
f (x)dµH(x) =

∫
γ∈G

∫ b(γ)

a(γ)
f (γ(t))dt dµG(γ). (22)
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Or, if σ is a measure on H, we can consider the push-forward (πG)∗(σ) of σ under the
projection πG : H→G. Taking the special case that f is constant on orbits of ξ , the relation
(22) says that

(πG)∗(µH) = `µG.

FIGURE 7. A manifold M in which the space of geodesics is not Haus-
dorff. The horizontal chords make a “zipper” 1-manifold.

5.2. The space of geodesics and étendue. If M is a smooth n-manifold, then W = T ∗M
is canonically a symplectic manifold. If M has a Riemannian metric g, then g gives us a
canonical identification T M ∼= T ∗M. It also gives us a Hamiltonian h : T M→R defined as

h(v) = (g(v,v)−1)/2.

The level surface h−1(0) is evidently the unit tangent bundle UM. It is less evident, but
still routine, that the Hamiltonian flow ξ of h is the geodesic flow on UM. Suppose further
that M only has bounded-time geodesics. Then the corresponding symplectic quotient G is
the space of oriented geodesics on M. The structure on G that particularly interests us is its
Liouville measure µG. The Liouville measure on H =UM is also important, and happens
to equal the Riemannian measure νUM . Even in this special case, G might not be Hausdorff
if the geodesics of M merge or split, as in Figure 7.

The Liouville measure µG is important in geometric optics [Smi07], where among other
names it is called étendue1. Lagrange established that étendue is conserved. Mathemat-
ically, this says exactly that the (2n− 2)-form µG, which is definable on H, descends to
G. More explicitly, suppose (in the full generality of Section 5.1) that K1,K2 ⊆ H are two
transverse open disks that are identified by the holonomy map

φ : K1
∼=−→ K2

induced by the set of orbits. Then the Liouville measures K1 and K2 match, i.e., φ∗(µG) =
µG. (As in the proof of Liouville’s theorem, φ is even a symplectomorphism.)

Now suppose that Ω is a compact Riemannian manifold with boundary and with unique
geodesics, and let M be the interior of Ω. Then G, the space of oriented geodesics of Ω

or M, is canonically identified in two ways to U+∂Ω. We can let γ = γu be the geodesic
generated by u, or we can let γ = γu be the geodesic with the same image but inverse
orientation. These are both examples of identifying part of G, in this case all of G, with
transverse submanifolds as in the previous paragraph. Let

σ+ : U+
∂Ω

∼=−→ G, σ− : U+
∂Ω

∼=−→ G

1In English, not just in French.
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be the two corresponding identifications.
The maps σ± are smooth bijections; when ∂Ω is convex, they are diffeomorphisms. In

general, the inverses σ
−1
± are smooth away from the non-Hausdorff points of G. These

correspond to geodesics tangent to ∂Ω, and they are a set of measure 0 in G. Thus, the
composition

φ = σ
−1
− ◦σ+ : U+

∂Ω
∼=−→U+

∂Ω

is an involution of U+∂Ω that preserves the measure µG. (It is even almost everywhere a
local symplectomorphism with respect to ωG.) We call the map φ the optical transport of
Ω.

We define several types of coordinates on G, UΩ and U+∂Ω. Let u = (x,v) be the
position and vector components of a tangent vector u ∈UΩ, and let u = (p,v) be the same
for u ∈U+∂Ω. On G itself, we already have the length function `(γ). In addition, if γ = γu
for

u = (p,v) ∈U+
∂Ω,

let α(γ) be the angle between v and the inward normal vector w(p). If γ = γu, then let β (γ)
be that angle instead.

The map σ+ relates the Liouville measure µG with Riemannian measure νU+∂Ω. More
loosely, the projection πG from Section 5.1 relates µG with νUΩ. Then by slight abuse of
notation,

dµG = cos(α)dνU+∂Ω =
dνUΩ

`
. (23)

In words, µG is close to νU+∂Ω but not the same: If a beam of light is incident to a surface
at an angle of α , then its illumination has a factor of cos(α). The measure (πG)∗(νUΩ) is
also close but not the same, because the étendue of a family of geodesics does not grow
with the length of the geodesics.

Another important comparison of measures relates geodesics to pairs of points.

Lemma 5.1. Suppose that p,q ∈ Ω lie on a geodesic γ and that p 6= q. Let p = γ(a) and
q = γ(b). Then

dνΩ×Ω(p,q) = jΩ(γ,a,b)dµG(γ)da db.
In the cases (p,q) ∈Ω×∂Ω, (p,q) ∈ ∂Ω×Ω and (p,q) ∈ ∂Ω×∂Ω we respectively have

dνΩ×∂Ω(p,q) =
jΩ(γ,a,b)
cosβ (γ)

dµG(γ)da

dν∂Ω×Ω(p,q) =
jΩ(γ,a,b)
cosα(γ)

dµG(γ)db

dν∂Ω×∂Ω(p,q) =
jΩ(γ,a,b)

cosα(γ)cosβ (γ)
dµG(γ).

Proof. We start with the case p,q ∈ Ω. On the one hand, a localized version of formula
(23) is

dµG(γ)da = dνUΩ(u) = dνUpΩ(v)dνΩ(p)

when u = (p,v) and γ is the geodesic such that γ(a) = p and γ ′(a) = v. On the other hand,
by the definition of the candle function, we have for all fixed p:

dνΩ(q) = jΩ(γ,a,b)dνUpΩ(v)db

when γ(a) = p, γ(b) = q and v = γ ′(a). Thus, we obtain a pair of equalities of measures:

dµG(γ)da db = dνΩ(p)dνUpΩ(v)db =
dνΩ(p)dνΩ(q)

jΩ(γ,a,b)
.
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The other cases are handled in the same way. When p ∈Ω and q ∈ ∂Ω we have

dµG(γ)da = dνUpΩ(v)dνΩ(p)

dν∂Ω(q) =
jΩ(γ,a,b)
cosβ (γ)

dνUpΩ(v)

where b is entirely determined by p and v, instead of being a variable; when p ∈ ∂Ω and
q ∈Ω then a can be fixed to 0 by choosing a suitable parametrization of geodesics, and we
have

dµG(γ)db = cosα(γ)dνU+
p ∂Ω

(v)dν∂Ω(p)db

dνΩ(q) = jΩ(γ,a,b)dνU+
p ∂Ω

(v)db

and finally when (p,q) ∈ ∂Ω×∂Ω we use

dµG(γ) = cosα(γ)dνU+
p ∂Ω

(v)dν∂Ω(p)

dν∂Ω(q) =
jΩ(γ,a,b)
cosβ (γ)

dνU+
p ∂Ω

(v). �

Lemma 5.1 has the important corollary that the candle function is symmetric. To gener-
alize from an Ω with unique geodesics to an arbitrary M, we can let Ω be a neighborhood
of the geodesic γ , immersed in M.

Corollary 5.2 (Folklore [Yau75, Lem. 5]). In any Riemannian manifold M,

jM(γ,a,b) = jM(γ,b,a).

Combining (22) with (23) yields Santaló’s equality.

Theorem 5.3 (Santaló [San04, Sec. 19.4]). If Ω is as above, and if f : UΩ→ R is a
continuous function, then∫

UΩ

f (u)dνUΩ(u) =
∫

U+∂Ω

∫ `(γu)

0
f (γu(t))cos(α(u))dt dνU+∂Ω(u).

Finally, we will consider another reduction of the space G, the projection

πlab : G→ R>0× [0,π/2)2, πlab(γ) = (`(γ),α(γ),β (γ)).

Let
µΩ = (πlab)∗(µG)

be the push-forward of Liouville measure. Then µΩ is a measure-theoretic reduction of the
optical transport map φ , and is close to a transportation measure in the sense of Monge-
Kantorovich. More precisely, equation (23) yields a formula for the α and β marginals of
µΩ, so we can view µΩ, or rather its projection to [0,π/2)2, as a transportation measure
from one marginal to the other. The projection onto the α coordinate is

α∗(µΩ)
def
=
∫
`,β

dµΩ = |∂Ω|ωn−2 sin(α)n−2 cos(α)dα,

where as in (12) we use the volume of a latitude sphere on U+
p ∂Ω. Using the abbreviation

z(θ) =
ωn−2 sin(θ)n−1

n−1
,

we can give a simplified formula for both marginals:

α∗(µΩ) = |∂Ω|dz(α), β∗(µΩ) = |∂Ω|dz(β ). (24)
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A final important property of µΩ that follows from its construction is that it is symmetric
in α and β .

5.3. The core inequalities. In this section, we establish three geometric comparisons that
convert our curvature hypotheses to linear inequalities that can then be used for linear
programming. (Section 5.2 does not use either unique geodesics or a curvature hypothesis.
Thus, the results there are not strong enough to establish an isoperimetric inequality.)

Lemma 5.4. If Ω is Candle(κ) and has unique geodesics, then:∫
`,α,β

sn,κ(`)

cos(α)cos(β )
dµΩ 6 |∂Ω|2 (Croke) (25)

∫
`,α,β

s(−1)
n,κ (`)

cos(α)
dµΩ 6 |∂Ω||Ω| (Little Prince) (26)∫

`,α,β
s(−2)

n,κ (`)dµΩ 6 |Ω|2 (Teufel) (27)

If Ω is convex and has constant curvature κ , then all three inequalities are equalities.

The first case of Lemma 5.4, equation (25), is due to Croke [Cro84]. Equation (26)
generalizes the integral over p ∈ ∂Ω of equation (9) in Theorem 1.6. Finally equation (27)
generalizes an isoperimetric inequality of Teufel [Teu91]. Nonetheless all three inequalities
can be proven in a similar way.

Proof. We define a partial map τ : Ω×Ω→ G by letting τ(p,q) be the unique geodesic
γ ∈ G that passes through p and q, if it exists. We define τ(p,q) only when p 6= q and
only when γ is available. Also, if γ exists, we parametrize it by length starting at the initial
endpoint at 0.

By construction,

||τ∗(ν∂Ω×∂Ω)||6 |∂Ω|2

||τ∗(ν∂Ω×Ω)||6 |∂Ω||Ω|

||τ∗(νΩ×Ω)||6 |Ω|2.

Note that each inequality is an equality if and only if Ω is convex.
Using Lemma 5.1, we can write integrals for each of the left sides

||τ∗(ν∂Ω×∂Ω)||=
∫

G

jΩ(γ,0, `)
cos(α)cos(β )

dµG(γ)

||τ∗(ν∂Ω×Ω)||=
∫

G

∫ `

0

jΩ(γ,0,r)
cos(α)

dr dµG(γ)

||τ∗(νΩ×Ω)||=
∫

G

∫ `

0

∫ t

0
jΩ(γ,r, t)dr dt dµG(γ).

Because Ω is Candle(κ),

jΩ(γ,0, `)> sn,κ(`),∫ `

0
jΩ(γ,0, t)dt > s(−1)

n,κ (`),∫ `

0

∫ t

0
jΩ(γ,r, t)dr dt > s(−2)

n,κ (`),
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and note that each inequality is an equality if Ω has constant curvature κ . We thus obtain∫
G

sn,κ(`)

cos(α)cos(β )
dµG(γ)6 |∂Ω|2

∫
G

s(−1)
n,κ (`)

cos(α)
dµG(γ)6 |∂Ω||Ω|∫

G
s(−2)

n,κ (`)dµG(γ)6 |Ω|2.

Because these integrands only depend on `, α , and β , we can now descend from µG to
µΩ. �

5.4. Extended inequalities. Lemma 5.4 will yield a linear programming model that is
strong enough to prove Theorem 1.4, but not Theorem 1.5 nor many of the other cases of
Theorem 1.17. In this section, we will establish several variations of Lemma 5.4 using
alternate hypotheses.

The following lemma is the refinement needed for Theorem 1.5 and Theorem 1.16.

Lemma 5.5. Suppose that Ω is a compact domain in an LCD(−1) Cartan-Hadamard
n-manifold M and let

chord(Ω)6 L ∈ (0,∞].

Then ∫
`,α,β

( s(−1)
n,−1(`)

cos(α)
−

(n−1)s(−2)
n,−1(`)

tanh(L)

)
dµΩ 6 |∂Ω||Ω|− (n−1)|Ω|2

tanh(L)
(28)

∫
`,α,β

( sn,−1(`)

cos(α)cos(β )
−

(n−1)s(−1)
n,−1(`)

tanh(L)cos(α)

)
dµΩ 6 |∂Ω|2− (n−1)|∂Ω||Ω|

tanh(L)
. (29)

If ω is convex and has constant curvature κ , then the inequalities are equalities.

Proof of (28). We abbreviate

s(`) def
= sn,−1(`),

and we switch α and β in the integral.
Let G be the space of geodesics of Ω and recall the partial map τ : Ω×Ω→ G used

in the proof of Lemma 5.4 and the measures ν∂Ω×Ω and νΩ×Ω. We consider the signed
measure

σΩ×Ω

def
= νΩ×∂Ω−

n−1
tanh(L)

νΩ×Ω.

To be precise, if (p,q) ∈ Ω× ∂Ω, then γ = τ(p,q) is the geodesic that passes through p
and ends at q. We claim two things about the pushforward τ∗(σΩ×Ω):

1. That the net measure omitted by τ is non-negative:

||τ∗(σΩ×Ω)||6 |∂Ω||Ω|− n−1
tanh(L)

|Ω|2.

2. That the measure that is pushed forward is underestimated by the comparison can-
dle function:∫

G

( s(−1)(`)

cos(β )
− (n−1)s(−2)(`)

tanh(L)

)
dµG(γ)6 ||τ∗(σΩ×Ω)||.



30 BENOÎT R. KLOECKNER AND GREG KUPERBERG

Just as in the proof of Lemma 5.4, equation (28) follows from these two claims.
To prove the second claim, let γ ∈ G be a maximal geodesic of Ω with unit speed and

domain [0, `]. We abbreviate the candle function along γ:

j(t) def
= j(γ, t), j(r, t) def

= j(γ,r, t).

Since M and therefore Ω is LCD(−1), we have the inequality

j′(t)
j(t)
>

s′(t)
s(t)

.

We can rephrase this as saying that

∂ j
∂ t

(r, t)− s′(t− r)
s(t− r)

j(r, t) =
∂ j
∂ t

(r, t)− n−1
tanh(t− r)

j(r, t)

is minimized (with a value of 0) in the K =−1 case. Now

tanh(t− r)6 tanh(L),

while LCD(−1) implies Candle(−1), i.e.,

j(r, t)> s(t− r).

It follows that

∂ j
∂ t

(r, t)− (n−1) j(r, t)
tanh(L)

> s′(t− r)− (n−1)s(t− r)
tanh(L)

. (30)

We can integrate with respect to r and t to obtain:∫ `

0

∫ `

r

[
∂ j
∂ t

(r, t)− (n−1) j(r, t)
tanh(L)

]
dt dr =

∫ `

0
j(r, `)dr− n−1

tanh(L)

∫ `

0

∫ `

r
j(r, t)dr dt

> s(−1)(`)− (n−1)s(−2)(`)

tanh(L)
.

Then, if the terminating angle of γ is β , we can again use the Candle(−1) condition to
obtain ∫ `

0

j(r, `)
cos(β )

dr− n−1
tanh(L)

∫ `

0

∫ t

0
j(r, t)dr dt >

s(−1)(`)

cos(β )
− (n−1)s(−2)(`)

tanh(L)
.

Since the left side is the fiber integral of τ∗(σΩ×Ω), as in the proof of Lemma 5.4, this
establishes the second claim.

To establish the first claim, for each p∈Ω, we consider the set ΩrVis(Ω, p) consisting
of points q ∈ Ω that are not visible from p. The union of all of these is exactly the pairs
(p,q) where τ is not defined. If γ is a geodesic in M emanating from p, we can restrict
further to its intersection

γ ∩ (ΩrVis(Ω, p)),

where we extend the geodesic γ from Ω to M. We claim that the integral of σΩ×Ω on each
of these intersections, with the appropriate Jacobian factor, is non-negative.

To verify this claim, we suppose that the intersection is non-empty, and we parametrize
γ at unit speed so that γ(0) = p. Let I be the set of times t such that

γ(t) ∈ΩrVis(Ω, p),
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let {tk} be the set of right endpoints of I where γ leaves Ω, and for each k, let βk ∈ [0,π/2]
be the angle that γ exits Ω at γ(tk). Let ` be the rightmost point of I. Then the infinitesimal
portion of σΩ×Ω on γ(I) is

∑
k

j(tk)
cos(βk)

− n−1
tanh(L)

∫
I

j(t)dt > j(`)− n−1
tanh(L)

∫ `

0
j(t)dt.

(In other words, we geometrically simplify to the worst case: I = [0, `] and β = 0.) The
derivative of the right side is now

j′(`)− n−1
tanh(L)

j(`)> 0. (31)

The inequality holds because it is the same as (30), except with the right side simplified to
0. This establishes the first claim and thus (28).

The equality criterion holds for the same reasons as in Lemma 5.4. �

Proof of (29). The proof has exactly the same ideas as the proof of (28), only with some
changes to the formulas. We keep the same abbreviations. This time we define

σ∂Ω×Ω

def
= ν∂Ω×∂Ω−

n−1
tanh(L)

ν∂Ω×Ω,

we consider τ∗(σ∂Ω×Ω), and we claim:
1. That the net measure omitted by τ is non-negative:

||τ∗(σ∂Ω×Ω)||6 |∂Ω|2− n−1
tanh(L)

|∂Ω||Ω|2.

2. That the integral underestimates the pushforward:∫
G

( s(`)
cos(α)cos(β )

− (n−1)s(−1)(`)

cos(α) tanh(L)

)
dµG(γ)6 ||τ∗(σ∂Ω×Ω)||.

To prove the second claim, we define γ and j as before and we again obtain (30). In this
case, we integrate only with respect to t ∈ [0, `] to obtain

j(0, `)− n−1
tanh(L)

∫ `

0
j(0, t)dt > s(`)− (n−1)s(−1)(`)

tanh(L)
.

Now divide through by cos(α), and we use the Candle(−1) property to divide the first
term cos(β ), to obtain

j(0, `)
cos(α)cos(β )

− n−1
cos(α) tanh(L)

∫ `

0
j(0, t)dt >

s(`)
cos(α)cos(β )

− (n−1)s(−1)(`)

cos(α) tanh(L)
.

The left side is the fiber integral of τ∗(σ∂Ω×Ω), so this establishes the second claim.
The proof of the first claim is identical to the case of (28), except that p ∈ ∂Ω, and we

divide through by cos(α). �

Meanwhile Theorem 1.15 requires the following striking inequality that depends only
on the condition of unique geodesics rather than any bound on curvature. We omit the
proof as the lemma is equivalent to Lemma 9 of Croke [Cro80].

Lemma 5.6 (Croke-Berger-Kazdan). If Ω is a compact Riemannian manifold with bound-
ary and with unique geodesics, then∫

`,α,β
s(−2)

n,(π/`)2(`)dµΩ 6 |Ω|2.
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5.5. Mirrors and multiple images. In this section, we establish the geometric inequal-
ities needed for Theorem 1.8. Let M be a Riemannian manifold with boundary ∂M (al-
though M might not be compact), and consider geodesics that reflect from ∂M with equal
angle of incidence and angle of reflection. We then have an extension of the exponential
map at any point x∈M beyond the time of reflection. This extended exponential map has a
natural Jacobian; thus M has an extended candle function jM(γ,r) as treated in Section 2.2.
Then we say that M is Candle(κ) in the sense of reflecting geodesics if this Jacobian satis-
fies the Candle(κ) comparison.

Let Ĝ be the space of these geodesics, for simplicity considering only those geodesics
that are never tangent to ∂M. Then the results of Section 5.2 still apply, with only slight
modifications. In particular M might have a compactification Ω with ∂M =W ⊆ ∂Ω. Then
(23) applies if we replace ∂Ω by ∂ΩrW ; Lemma 5.1 holds; etc.

If Ω has a mirror W as part of its boundary, then some pairs of points have at least
two connecting, reflecting geodesics. We can suppose in general that every two points in
(Ω,W ) are connected by at most m geodesics (which is also interesting even if W is empty),
and we can suppose that (Ω,W ) is Candle(κ) in the sense of reflecting geodesics. In this
case it is straightforward to generalize Lemma 5.4. The generalization will yield the linear
programming model for Theorem 1.8.

Lemma 5.7. If (Ω,W ) is Candle(κ) and has at most m reflecting geodesics between any
pair of points, then: ∫

α,β ,`

sn,κ(`)

cos(α)cos(β )
dµΩ 6 m|∂Ω|2 (32)

∫
α,β ,`

s(−1)
n,κ (`)

cos(α)
dµΩ 6 m|∂Ω||Ω| (33)∫

α,β ,`
s(−2)

n,κ (`)dµΩ 6 m|Ω|2. (34)

Proof. The proof is nearly identical to that of Lemma 5.4. In this case

τ : Ω×Ω→ G

is not a partial map, but rather a multivalued correspondence which is at most 1 to m every-
where. We can define a pushforward measure such as τ∗(νΩ×Ω) by counting multiplicities.

By construction:

||τ∗(ν∂Ω×∂Ω)||6 m|∂Ω|2

||τ∗(ν∂Ω×Ω)||6 m|∂Ω||Ω|

||τ∗(νΩ×Ω)||6 m|Ω|2.

On the other hand,

||τ∗(ν∂Ω×∂Ω)||=
∫

G

j(γ, `)
cos(α)cos(β )

dµG(γ)

||τ∗(ν∂Ω×Ω)||=
∫

G

∫ `

0

j(γ,r)
cos(α)

dr dµG(γ)

||τ∗(νΩ×Ω)||=
∫

G

∫ `

0

∫ t

0
j(γ,r, t)dr dt dµG(γ).

Using the Candle(κ) hypothesis, we obtain the desired inequalities. �
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Finally, the following generalization of Günther’s inequality [Gün60, BC64] shows that
the Candle(κ) condition is actually useful for reflecting geodesics.

Proposition 5.8. Let M be a Riemannian manifold with K 6 κ for some κ ∈ R, and sup-
pose that ∂M is concave relative to the interior. If κ > 0, suppose also that chord(M) <
π/
√

κ . Then M is LCD(κ) with respect to geodesics that reflect from ∂M.

Proposition 5.8 generalizes Lemma 3.2 of Choe [Cho06], which claims Candle(0) using
(in the proof) the same hypotheses when κ = 0. However, the argument given there omits
many details about reflection from a convex surface. (Which is thus concave from the other
side as we describe it.) We will prove Proposition 5.8 in Section 8.2.

6. LINEAR PROGRAMMING AND OPTIMAL TRANSPORT

6.1. A linear model for isoperimetric problems.

6.1.1. Feasibility. In this section we abstract the results of Section 5.2 and 5.3 into a linear
programming model.

Assume that Ω is an n-manifold with boundary, with unique geodesics, and with curva-
ture at most κ . Let V = |Ω| and A = |∂Ω|. Then equations (23), (24) (25), (26), and (27)
show (after symmetrization in α and β ) that µ = µΩ is a solution to the following infinite
linear programming problem.

LP Problem 6.1. Given n, κ , A, and V , let

z(θ) =
ωn−2 sin(θ)n−1

n−1
.

Is there a positive measure µ(`,α,β ) on R>0× [0,π/2)2, which is symmetric in α and β ,
and such that

α∗(µ) =
∫
`,β

dµ = A dz(α) (35)∫
`,α,β

sn,κ(`)sec(α)sec(β )dµ 6 A2 (36)∫
`,α,β

s(−1)
n,κ (`)

(
sec(α)+ sec(β )

)
dµ 6 2AV (37)∫

`,α,β
s(−2)

n,κ (`)dµ 6V 2 (38)∫
`,α,β

`dµ = ωn−1V ? (39)

(We could have written Problem 6.1 without symmetrization in α and β . It would have
been equivalent, but more complicated.)

Since our ultimate goal is to prove a lower bound for |∂Ω|, we want to show that given
n, κ , and V , Problem 6.1 is infeasible for values of A that are too low. As usual in linear
programming, we will profit from stating a dual problem.

LP Problem 6.2 (Dual to Problem 6.1). Given n, κ , A, and V , are there numbers a,b,c> 0
and d ∈ R and a continuous function f : [0,π/2)→ R such that

asn,κ(`)sec(α)sec(β )+bs(−1)
n,κ (`)

(
sec(α)+ sec(β )

)
+ cs(−2)

n,κ (`)−d`+ f (α)+ f (β )> 0 (40)

aA2 +2bAV + cV 2−dωn−1V +2A
∫

π/2

0
f (α)dz(α)< 0 (41)



34 BENOÎT R. KLOECKNER AND GREG KUPERBERG

for all (α,β , `) ∈ [0,π/2)2×R>0?

(Note that the constant d can have either sign. We subtract it so that it will be positive
in actual usage.)

We will discuss in what sense Problem 6.2 is dual to Problem 6.1, and the consequences
of this duality, in Section 6.2. For now, we will concentrate on sufficient criteria to prove
our main theorems. Problem 6.2 is strong enough to prove Theorem 1.4. In Sections 7.3
and 8, we will state other linear programming problems to handle our other results stated
in Section 1.

In the rest of this section (Section 6.1), including in the statements of the lemmas, we
fix V , n, and κ , but not A.

Lemma 6.3. Let a,b,c> 0, let d ∈ R, and let

E(`,α,β ) = asn,κ(`)sec(α)sec(β )+bs(−1)
n,κ (`)

(
sec(α)+ sec(β )

)
+ cs(−2)

n,κ (`)−d`. (42)

Let f : [0,π/2)→ R be a continuous function such that
∫ π/2

0 f (α) dz(α) is absolutely
convergent. If

F(`,α,β )
def
= E(`,α,β )+ f (α)+ f (β )> 0, (43)

then Problem 6.1 is infeasible for those A> 0 such that

P(A) def
= aA2 +2bAV + cV 2−dωn−1V +2A

∫
π/2

0
f (α)dz(α)< 0.

Explicitly, if P(A) has two real roots, let the roots be A0 < A1; if P(A) is linear, let A1 be
its root and let A0 =−∞. Then A ∈ (A0,A1)∩ [0,∞) is infeasible.

We introduce some terminology which will be justified in Section 6.2.2. E(`,α,β ) is a
cost function, f (α) is a potential, and F(`,α,β ) is an adjusted cost function.

Proof. Except for a change of variables, the proposition is the assertion that if Problem 6.2
is feasible, then Problem 6.1 is infeasible. More explicitly: For any a,b,c > 0, d ∈ R,
and suitable f : [0,π/2)→ R, we can combine the relations in Problem 6.1 to produce a
formula of the form ∫

`,α,β
F(`,α,β )dµ 6 P(A). (44)

If the integrand F(`,α,β ) is non-negative while the upper bound P(A) is strictly negative,
then the measure µ cannot exist. �

At this point, there is a potential difference between solving a geometric isoperimet-
ric problem and solving a linear programming model for one. (Recall that Theorem 1.17
promises the latter.) Geometrically, the set of possible values of A in each of our isoperi-
metric problems must be an open or closed ray in R+. Thus, if we apply Lemma 6.3 to
exclude A ∈ (A0,A1), then all values of A ∈ [0,A1) are geometrically impossible even if
A0 > 0. Problem 6.1 has the same property because we can think of A = A(µ) as a func-
tion of µ , and we can increase A by adding measure to µ at ` = 0. But this is less clear
for Problem 7.2 which we will need later; in any case, a single use of Lemma 6.3 need not
satisfy A0 < 0. The simplest way to establish Theorem 1.17 is to obtain a negative value of
A0 and a sharp value of A1 in Lemma 6.3. This is the case if and only if

P(0) = cV 2−dωn−1V < 0,

which simplifies to
cV < dωn−1. (45)
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We will attain the condition (45) for Problem 6.1. In our treatment of Problem 7.2, we will
take a slightly more complicated approach.

6.1.2. Optimality. Suppose that for some value A1, we find a solution µ to Problem 6.1,
and we find (a,b,c,d, f ) in Lemma 6.3 with P(A1) = 0 and P′(A1) > 0; and suppose that
(45) also holds. Then the two solutions are an optimal pair. The existence of (a,b,c,d, f )
shows that A = A1 is the smallest feasible value in Problem 6.1; the existence of µ shows
that A = A1 is the smallest infeasible value in Problem 6.2.

There is a simple test of whether µ and (a,b,c,d, f ) are an optimal pair. If they are,
then the conditions (44), F > 0, and P(A) = 0 tell us that µ is supported on the zero locus
of the adjusted cost F . On the other hand, if (a,b,c,d, f ) satisfies both Lemma 6.3 and
(45), if µ is a solution to Problem 6.1 that is supported on the zero locus of F , and if we
happen to know that all inequalities in Problem 6.1 are equalities, then we can calculate
that P(A) = 0.

If in addition µ = µΩ for an admissible domain Ω, then A = |∂Ω| is the sharp isoperi-
metric value. Recall that we plan to prove that Ω = Bn,κ is an isoperimetric minimizer.
First, since this Ω is convex and has constant curvature κ , Lemma 5.4 tells us that all in-
equalities in Problem 6.1 are indeed equalities. Second, the geodesics of this Ω have the
property that α = β and that ` = h(α) is a function of α . If we combine these properties
with the assumption that µΩ is part of an optimal pair and is thus supported on the zero
locus of F , then we can solve for f , once we know (a,b,c,d). Together with the rest of the
discussion in this section, we obtain the following sufficient criterion.

Lemma 6.4. Suppose that a,b,c > 0 and d ∈ R are numbers that satisfy (45), and that
h : [0,π/2)→ R>0 is a continuous function. Let µ be the unique measure that satisfies
(35) for some A = A(µ) and that is supported on the set (h(α),α,α), and let

f (α) =−E(h(α),α,α)

2
. (46)

If µ is a solution to Problem 6.1, and if f satisfies (43) for the same A, then µ and
(a,b,c,d, f ) are an optimal pair. If in addition µ = µΩ for an admissible domain Ω,
then A = |∂Ω| is the sharp isoperimetric value.

Lemma 6.4 is the basis for our proof of Theorem 1.4 and the corresponding part of The-
orem 1.17. We will use similar reasoning to prove Theorems 1.5 and 1.8. The calculations
will be organized as follows. We temporarily assume the conclusion, that µΩ is optimal
when Ω = Bn,κ(r). This yields the dependence `= h(α). If our construction were to work,
the adjusted cost F(`,α,β ) would attain a minimum of 0 at (h(α),α,α). Thus, we can
solve for a, b, c, and d by applying a derivative test to the cost E or the adjusted cost F ,
namely,

∂F
∂`

(`,α,α) =
∂E
∂`

(`,α,α) = 0 (47)

when `= h(α) and 06 `6 2r.
Having calculated a, b, c, and d, which determine E(`,α,β ), (46) tells us f (α). The

remaining hard part of the proof is then to confirm (43). We will carry out these calculations
in Section 7.

Our approach to solving Problem 6.1 as outlined in this section may seem both lucky
and creative. It is indeed lucky, in the sense that (47) is an equality of functions used to
solve for four numbers; it only has solutions when n∈ {2,4}. In Section 6.2, we will argue
that solving Problem 6.1 follows the precepts of linear programming and optimal transport
with fairly little creativity.
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6.2. Generalities. As explained at the end of Section 6.1.2, this section only provides
context and is not needed for the proofs of our results.

6.2.1. Linear programming. The genesis of linear programming is a structure theorem for
finite systems of linear equalities and inequalities due to Farkas and Minkowski [Far01,
Min10, Kje02].

Theorem 6.5 (Farkas-Minkowski). Let x = {xi} be a finite list of real variables, and a
finite system L of linear inequalities and equalities, given by two matrices A and B:

∑
i

A j,ixi 6 a j ∑
i

Bk,ixi = bk.

Then:
1. The system L is infeasible if and only if some linear combination of the form

∑
i, j

y jA j,ixi +∑
i,k

zkBk,ixi 6∑
j

y ja j +∑
k

zkbk ∀ j,y j > 0 (48)

simplifies to the falsehood 06−1. (Or 06 c for some constant c < 0.)
2. A linear bound ∑i cixi 6 c holds for solutions to L if and only if it is expressible in

the form (48).
3. If L is feasible and ∑i cixi is bounded on its solution set, then it has a maximum c,

which is also the minimum of the right side of (48) subject to the constraint that
the left side simplifies to ∑i cixi.

The coefficients {y j} and {zk}, subject to the constraints in one of the cases of Theo-
rem 6.5, is then a dual system L∗ to L. If {xi} is feasible for L and attains a value of c for
the objective ∑i cixi, and if {y j} and {zk} are feasible for L∗ and attain the same c, then
they are an optimal pair; each half of the pair proves that the other half is optimal. Thus,
case 3 of Theorem 6.5 says that every maximization problem in finite linear programming
with a finite maximum can be solved by finding an optimal pair.

We cannot directly apply Theorem 6.5 to Problem 6.1 because it is an infinite-dimen-
sional problem. The theorem still holds in infinite dimensions, or in finite dimensions with
infinitely many inequalities, with an extra hypothesis such as compactness. We do not
know a simple way to make Problem 6.1 compact, but we will find optimal pairs anyway.

The standard notion of an optimal pair from Theorem 6.5 is not exactly the same as
that in Section 6.1.2, because Problem 6.1 is nonlinear in the variable A. However, the two
concepts are analogous. Indeed, we can change Problem 6.1 slightly to make A a linear
variable, as follows. First, we switch to the measure µ̂

def
= µ/A and divide through by A.

Then the first three relations, (35), (36), and (37), are all linear in the variables µ̂ and A.
The last two relations, (38) and (39), now have a factor of 1/A, but we can convert them to
these two equations:∫

`,α,β
(ωn−1s(−2)

n,κ (`)−V `)dµ̂ 6 0
∫
`,α,β

`dµ̂ >
ωn−1V

A
.

These relations are moderately weaker than (38) and (39), but switching to them is nearly
equivalent to assuming the condition (45). Although the second equation is still nonlinear,
it is a convex relation between A and µ̂; it can be expressed by a family of linear relations.

Finally, linear programming in infinite dimensions usually involves topological vector
spaces. For instance, the measure µ in Problem 6.1 lies in a space of Borel measures.
This raises the question of the appropriate regularity of the dual variable f (α). Because
of (35), the function f (α) could in principle be integrable rather continuous; f (α) dz(α)
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could even be replaced a Borel measure. However, Proposition 6.6 from optimal transport
theory tells us that an optimal f (α) is continuous.

6.2.2. Optimal transport. We can interpret Problem 6.1 as an optimal transport problem.
See Villani [Vil09, Ch.3-5] for background material on optimal transport. Following Vil-
lani, we assume that A dz(α) is a distribution of boulangeries and A dz(β ) is a distribution
of cafés. Moreover, for each boulangerie α and café β , there are a range of possible roads
parametrized by `. By (35), µ is a transport of baguettes2 from the boulangeries to the
cafés. Problem 6.1 then asks whether the transport is feasible given the constraints that
we must pay separate road tolls in Polish zlotys (36), Czech korunas (37), and Hungarian
forints (38); and given an exact labor requirement (39) (neither more nor less). Strictly
speaking, this is a feasible transport problem rather than an optimal transport problem, but
we can convert it to optimal transport.

The function E(`,α,β ) defined in equation (42) is a natural reduction of all four re-
source limits into one combined cost function, which we can then optimize to test feasibil-
ity. In the economics interpretation, the coefficients a, b, and c are currency conversions,
while d is a wage rate. The last term d` is naturally subtracted if employment is the goal
of the program and thus a negative cost. Certainly if any choice of a,b,c,d yields a cost
function E such that∫

`,α,β
E(`,α,β )dµ 6 aA2 +2bAV + cV 2−dωn−1V (49)

is infeasible, then the original multi-resource transport problem is also infeasible. We
won’t try to prove the converse for all n and κ: that if Problem 6.1 is infeasible, then there
exist (a,b,c,d) such that (49) is also infeasible.

Even so, once a,b,c,d are chosen, Problem 6.1 reduces to just (35) and (49), which is a
nearly standard optimal transport problem. The two differences are:

1. We have a choice of “roads” parametrized by `. Given a scalar cost, we can convert
it to a standard optimal transport problem if we choose the most efficient road for
each pair (α,β ) and let the cost be

E(α,β ) = min
`

E(`,α,β ).

2. The transport µ does not usually have to be symmetric in α and β . We can live
without this constraint because Problem 6.1 is itself symmetric in α and β , if
we add the relation β∗(µ) = A dz(β ), which is the other half of (24). We can
symmetrize any solution using

µ̂(`,α,β )
def
=

µ(`,α,β )+µ(`,β ,α)

2
.

Having fixed a,b,c,d, the remaining dual variable in Problem 6.2 is f (α). Its sole
constraint is (43). In optimal transport terminology, f (α) is known as a Kantorovich po-
tential. We will call the left side, F(`,α,β ), the adjusted cost function. In standard optimal
transport, we would have two potentials f (α) and g(β ) satisfying the equation

E(`,α,β )+ f (α)+g(β )> 0. (50)

But, just as symmetry is optional in Problem 6.1, it is also optional in Problem 6.2; we can
symmetrize a solution to make f = g.

2Even though in Section 5.2, we transported photons.
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Proposition 6.6. An optimal potential f (α) in Problem 6.2 is a convex function of sec(α)
and therefore continuous.

Proposition 6.6 is a standard type of result in optimal transport theory. A potential that
satisfies an equation such as (51) below is called cost convex.

Proof. We assume two potentials f (α) and g(β ). In an asymmetric variation of Prob-
lem 6.2, they are chosen to minimize∫

π/2

0
f (α)dz(α)+

∫
π/2

0
g(β )dz(β ).

For each fixed g(β ), we can minimize this integral subject to the constraint (50) by choos-
ing

f (α) = sup
`,β

[
−E(`,α,β )−g(β )

]
. (51)

For each fixed value of ` and β , the supremized function on the right side is linear in sec(α)
by (42). It follows that f (α) is convex in sec(α) and thus continuous; the same is true of
g(β ). If this asymmetric optimization yields f 6= g, then their average ( f +g)/2 has all of
the desired properties. �

7. PROOFS OF THE MAIN RESULTS

In this section, we will complete the proofs Theorems 1.4 and 1.5, picking up from
Section 6.1. Up to rescaling, we can assume that κ ∈ {−1,0,1}. We first explicate the
condition (47), which we will use to check whether Problem 6.1 has any hope of producing
a sharp isoperimetric inequality, and to calculate the parameters in Lemma 6.3.

If Ω = Bn,κ(r), then the length of a geodesic chord that makes an angle of α from the
normal to ∂Ω is given by the relation

cos(α) = Tκ,r(`)
def
=



tan(`/2)
tan(r)

if κ = 1

`

2r
if κ = 0.

tanh(`/2)
tanh(r)

if κ =−1

(52)

Equation (52) thus gives us the function `= h(α) in the statement of Lemma 6.4.
We combine equations (42) and (47) to obtain

∂E
∂`

(`,α,α) = a
s′n,κ(`)

cos(α)2 +2b
sn,κ(`)

cos(α)
+ cs(−1)

n,κ (`)−d = 0.

Combining with (52), we obtain

a
s′n,κ(`)
Tκ,r(`)2 +2b

sn,κ(`)

Tκ,r(`)
+ cs(−1)

n,κ (`)−d = 0. (53)

Again, (53) is an equation for the coefficients a,b,c,d that should hold for 0 6 ` 6 2r. In
each case, the coefficients will be unique up to rescaling by a positive real number. Note
that the factor of tan(r), r, or tanh(r) that appears in Tκ,r factors of out of the question of
whether there is a solution, since this factor can be absorbed into the constants a and b.

Our proofs in this section follow a set pattern:
1. Working either from Problem 6.1 or Problem 7.2, and their dual problems, calcu-

late (a,b,c,d) using (53).
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2. Change variables from α and β to x and y using (54), (56), or (61). Calculate
the cost E(`,x,y), the potential f (x), and the adjusted cost F(`,x,y) in the new
variables.

3. Using calculus methods, establish that the adjusted cost F(`,x,y) is non-negative,
according to (43). This will fulfill the hypotheses of Lemma 6.3 when κ > 0, or
its equivalent when κ < 0, and finish the proof. In the hardest two cases (n = 4
and κ 6= 0), this step depends crucially on symbolic algebra software.

Also, we abbreviate s = sn,κ throughout.
Here are two general remarks about dimension n= 2. First, for every value of κ , there is

a separation (55) in this dimension. This means that we could have proved the results with
a simpler measure µ(`,α) that depends on only one angle, in the spirit of Section 3.2. Sec-
ond, a = 0 when n = 2, so we can immediately accept A as a linear variable in Problem 6.1
or 7.2.

7.1. Weil’s and Croke’s theorems. This case is a warm-up to the more difficult cases
with κ 6= 0. We introduce the change of variables

(x,y) def
=
( sec(α)

r
,

sec(β )
r

)
(54)

in place of α and β . We will give them the range x,y ∈R>0. By abuse of notation, we can
change variables without changing the names of functions; for example, we can write

E(`,α,β ) = E(`,α(x),β (y)) = E(`,x,y).

If κ = 0, then

s(`) = `n−1, s′(`) = (n−1)`n−2,

s(−1)(`) =
`n

n
, s(−2)(`) =

`n+1

n(n+1)
.

Equation (53) becomes

4(n−1)r2a`n−4 +4rb`n−2 +
c`n

n
−d = 0.

Obviously this has solutions if n∈ {2,4} and not otherwise; this point was known to Croke
(personal communication).

When n = 2, the solution is

a = 0, b =
1
r
, c = 0, d = 4.

From (42), we thus obtain

E(`,α,β ) =
`2(sec(α)+ sec(β ))

2r
−4`

Then (46) and (52) give us the potential

f (α) =−E(2r cos(α),α,α)

2
= 2r cos(α).

Then the adjusted cost (43) separates as

F(`,α,β ) = G(`,α)+G(`,β ) (55)

with

G(`,α) =
`2 sec(α)

2r
−2`+2r cos(α) =

2r cos(α)− `

2r cos(α)
> 0.
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Thus F > 0, which establishes Weil’s theorem.
When n = 4, the solution to (53) is

a =
1
r2 , b = 0, c = 0, d = 12.

These coefficients plainly satisfy condition (45). The cost function is

E(`,α,β ) =
`3 sec(α)sec(β )

r2 −12`,

the potential is

f (α) =−E(2r cos(α),α,α)

2
= 8r cos(α),

and their sum is

F(`,α,β ) =
`3 sec(α)sec(β )

r2 −12`+8r(cos(α)+ cos(β )).

Using the change of variables (54),

F(`,x,y) = `3xy−12`+
8
x
+

8
y
.

We want to show that F > 0. For each fixed value of xy, F is minimized when x = y. We
can then calculate

F(`,x,x) = `3x2−12`+
16
x

=
(`x+4)(`x−2)2

x
> 0.

This establishes Croke’s theorem.
Following the comments after the proof of Theorem 1.6 in Section 3.2, our proof of

Croke’s theorem is only superficially different from Croke’s proof. The extra point here is
that Croke’s theorem (and Weil’s theorem along with it) hold in Model 6.1, which estab-
lishes part of Theorem 1.17.

7.2. The positive case. In this section we will establish Theorem 1.4. We will let κ = 1,
but before we do that, we note that κ = 0 is a limiting case of κ > 0. Section 7.1 established
that a sharp result in the case κ = 0 is only possible when n ∈ {2,4}, this justifies the same
restriction in Theorem 1.4.

We use the change of variables

(x,y) def
=
( sec(α)

tan(r)
,

sec(β )
tan(r)

)
(56)

with the range x,y ∈ R>0. Note that equation (52) simplifies to

tan(
`

2
) =

1
x
. (57)

7.2.1. Dimension 2. In dimension n = 2,

s(`) = sin(`), s′(`) = cos(`),

s(−1)(`) = 1− cos(`), s(−2)(`) = `− sin(`)

when ` < π , and
s(`) = 0, s(−1)(`) = 2, s(−2) = 2`−π

for `> π . Equation (53), with (52), becomes

a tan(r)2 cos(`)
tan(`/2)2 +

2b tan(r)sin(`)
tan(`/2)

+ c(1− cos(`))−d = 0.
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The solution is

a = 0, b =
1

tan(r)
, c = 2, d = 4.

In the variables (56), the cost function (42) is

E(`,x,y) = (1− cos(`))(x+ y)−2sin(`)−2`,

for `6 π , and is constant in ` for `> π:

E(`,x,y) = E(π,x,y) ∀`> π. (58)

Using (57), the potential (46) becomes

f (x) = `= 2arctan(
1
x
).

The adjusted cost (43) again separates according to (55), where this time

G(`,x) = (1− cos(`))x− sin(`)− `+2arctan(
1
x
).

We can minimize G with the derivative test either in ` or in x. The latter is slightly simpler
and gives us

∂G
∂x

(`,x) =
x2(1− cos(`))− (cos(`)+1)

x2 +1
.

We learn that ∂G/∂x crosses 0 exactly once, when x and ` satisfy (57); this is therefore
the minimum of G for each fixed `. Since the relation (57) is used to define the potential
f (x), it is automatic that this minimum value is 0; the substitution x = 1/ tan(`/2) also
establishes it. Thus G(`,x) > 0, which confirms (43) and establishes the n = 2 case of
Theorem 1.4.

7.2.2. Dimension 4. In dimension n = 4,

s(`) = sin(`)3,

s′(`) = 3sin(`)2 cos(`),

s(−1)(`) =
cos(`)3−3cos(`)+2

3
,

s(−2)(`) =
6`− sin(`)3−6sin(`)

9
when ` < π , and

s(`) = 0, s(−1)(`) =
4
3
, s(−2)(`) =

4`−2π

3
when `> π . Equation (53) becomes

3a tan(r)2 cos(`)sin(`)2

tan(`/2)2 +
2b tan(r)sin(`)3

tan(`/2)
+

c(cos(`)3−3cos(`)+2)
3

−d = 0.

The solution is

a =
1

tan(r)2 , b =
3

tan(r)
, c = 9, d = 12.

The clean optimality condition (45) becomes

9V < 12ω3 = 24π
2.
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Since V is at most the volume of a hemisphere, we have

9V <
9ω4

2
= 12π

2.

Thus (45) holds.

FIGURE 8. The slice F(π/6,x,y) in the case κ = 1.

The cost function (42) is

E(`,x,y) = sin(`)3xy+(cos(`)3−3cos(`)+2)(x+ y)− sin(`)3−6sin(`)−6`.

for `6 π , while once again E is constant in ` for `> π , as in (58). The potential from (46)
and (57) is

f (x) = 6arctan(
1
x
)+

2x
x2 +1

.

We will include the values x = 0 and y = 0 in our calculations, so it is helpful to recall that

arctan(
1
x
) =

π

2
− arctan(x).

The adjusted cost (43) is

F(`,x,y) = sin(`)3xy+(cos(`)3−3cos(`)+2)(x+ y)− sin(`)3−6sin(`)−6`

+6π−6arctan(x)+
2x

x2 +1
−6arctan(y)+

2y
y2 +1

. (59)

The remainder of the proof of Theorem 1.4 is given by the following lemma. Although
the lemma is evident from contour plots (e.g., Figure 8), the authors found it surprisingly
tricky to find a rigorous proof.

Lemma 7.1. The function F(`,x,y) on [0,π]×R2
>0 given by (59) is non-negative, and

vanishes only when

x = y =
1

tan(`/2)
.
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Proof. We will use these immediate properties of the potential f (x):

f (0) = 3π, f (x)> 0.

We first check the non-compact direction of the domain of F . There exists a constant
k > 0 such that

s(−1)(`)> k`4.

(Because `4/s(−1)(`) is continuous on [0,π] and therefore bounded. In fact

k =
s(−1)(π)

π4 =
4

3π4

works.) Thus

F(`,x,y) = s(`)xy+3s(−1)(`)(x+ y)+9s(−2)(`)−12`+ f (x)+ f (y)

> 3k(x+ y)`4−12`

by discarding positive terms and simplifying s(−1)(`). Thus

liminf
x+y→∞

(
min
`

F(`,x,y)
)
> liminf

x+y→∞

(
min
`>0

(
3k(x+ y)`4−12`

))
= liminf

x+y→∞

−9
3
√

k(x+ y)
= 0.

The inequality comes from discarding positive terms, while the equality follows just from
the properties of s(−1)(`) that it is continuous, and that it is positive for ` > 0.

Having confined the locus of F(`,x,y) 6 −ε to a compact region for every ε > 0, we
will calculate derivatives and boundary values to show that this region cannot have a local
minimum and must thus be empty. First, taking `= 0, we get

F(0,x,y) = f (x)+ f (y)> 0.

Second, taking `= π , we get

F(π,x,y) = 4(x+ y)−6π + f (x)+ f (y).

Here we check that

∂F
∂x

(π,x,y) =
4x4

(x2 +1)2 > 0,
∂F
∂y

(π,x,y) =
4y4

(y2 +1)2 > 0, F(π,0,0) = 0.

Fourth, taking x = y = 0, we obtain

F(`,0,0) = 9s(−2)(`)−12`+6π.

We check in this case that

F(π,0,0) = 0,
∂F
∂`

(`,0,0) = 9s(−1)(`)−126 0.

The fifth case is the case y = 0 with x and ` interior, which by symmetry is equivalent
to the case x = 0 with y and ` interior. The sixth and final case is the interior for all three
coordinates. We will handle the fifth and sixth cases together. Using the final change of
variables

t def
= tan

( `
2
)
,
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and with the help of Sage, we learn that

∂F
∂`

(t,x,y) =−12
(t4− t2)xy−2t3(x+ y)+3t2 +1

(t2 +1)3

∂F
∂x

(t,x,y) = 4
(2t3y−3t2−1)(x2 +1)2 + x4(t2 +1)3

(t2 +1)3(x2 +1)2 .

Note that the partial derivatives are rational functions in x, y, and t. We can rigorously
determine the common zeroes of their numerators by finding their associated prime ideals
in the ring Q[x,y, t] using the “associated primes” function in Sage3 (In other words, we
use the Lasker-Noether factorization theorem converted to an algorithm by the Gröebner
basis method.) The solution set is characterized by five prime ideals:

I1 = (x− y,yt−1)

I2 = (x+ t, t2 +1)

I3 = (y+ t, t2 +1)

I4 = (x,2yt3−3t2−1)

I5 = (2x2y+3x2t + xyt + x+ y,x2t3 + xyt3− xt2− yt2−2x+2t,
xy2t2 +2xyt3 + y2t3−2xyt−3xt2− yt2− y− t,

y2t4 + y2t2 + xt3 +3yt3 +2xy+3xt−3yt−7t2−1,

xyt4− xyt2−2xt3−2yt3 +3t2 +1).

Four of these ideals cannot vanish when x > 0 and y, ` > 0: I2 and I3 contain t2 + 1, I4
contains x, and I5 contains

2x2y+3x2t + xyt + x+ y > 0.

The ideal I1 yields the desired locus x = y = 1/t.
A careful examination of the equality cases shows that x= y= 1/t is the only possibility

for the minimum value F = 0. �

7.3. The negative case. In this section we will establish Theorem 1.5. As in Section 7.2,
we let κ = −1 and we must take n ∈ {2,4}. We cannot use Problem 6.1, because in both
dimensions, one of the dual coefficients turns out to be negative. Instead we the use the
following model, which is provided by Lemma 5.5.

LP Problem 7.2. Given n, A, V , and L, let

q =
n−1

tanh(L)
.

3See the attached Sage files in the source file of the arXiv version of this paper.
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Is there a symmetric, positive measure µ(`,α,β ) such that

α∗(µ) =
∫
`,β

dµ = A dz(α)∫
`,α,β

(
s(`)sec(β )−qs(−1)(`)

)
sec(α)dµΩ 6 A2−qAV.∫

`,α,β

(
s(−1)(`)sec(α)−qs(−2)(`)

)
dµΩ 6 AV −qV 2

∫
`,α,β

s(−2)(`)dµ 6V 2

∫
`,α,β

`dµ = ωn−1V ?

We will need the dual problem, which we can state without changing variables.

LP Problem 7.3 (Dual to Problem 7.2). Given n, A, V , and L, let

q =
n−1

tanh(L)
.

Are there numbers a,b,c,d ∈ R and a continuous function f : [0,π/2)→ R such that

a> 0 2b+qa> 0 c+q(2b+qa)> 0 (60)

asn,−1(`)sec(α)sec(β )+bs(−1)
n,−1(`)

(
sec(α)+ sec(β )

)
+ cs(−2)

n,−1(`)−d`+ f (α)+ f (β )> 0

aA2 +2bAV + cV 2−dωn−1V +2A
∫

π/2

0
f (α)dz(α)< 0?

We will use the change of variables

(x,y) def
=
( sec(α)

tanh(r)
,

sec(β )
tanh(r)

)
(61)

with the range x,y ∈ (1,∞). Equation (52) simplifies to

tanh(
`

2
) =

1
x
. (62)

7.3.1. Dimension 2. In dimension n = 2,

s(`) = sinh(`), s′(`) = cosh(`),

s(−1)(`) = cosh(`)−1, s(−2)(`) = sinh(`)− `.

Equation (53), with (52), becomes

a tanh(r)2 cosh(`)
tanh(`/2)2 +

2b tanh(r)sinh(`)
tanh(`/2)

+ c(cosh(`)−1)−d = 0.

The solution is

a = 0, b =
1

tanh(r)
, c =−2, d = 4.

We need to check the third case of condition (60), which reduces to

c+2qb =−2+
2

tanh(r) tanh(L)
> 0.

Since the tanh function is bounded above by 1, this is immediate.
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In the variables (61), the cost function (42) is

E(`,x,y) = (cosh(`)−1)(x+ y)− sinh(`)−2`.

The potential (46) is

f (x) = 2arctanh(
1
x
).

The adjusted cost (43) separates according to (55) with

G(`,x) = (cosh(`)−1)x− sinh(`)− `+2arctanh(
1
x
).

We minimize G using the derivative test in x to obtain

∂G
∂x

(`,x) =
x2(cosh(`)−1)− (cosh(`)+1)

x2−1
.

We learn that the minimum of G in x for each fixed ` occurs when x and ` satisfy (62) and it
is easy to confirm that the value is 0. Thus G(`,x)> 0, which confirms (43) and establishes
the n = 2 case of Theorem 1.5.

7.3.2. Dimension 4. In dimension n = 4,

s(`) = sinh(`)3,

s′(`) = 3cosh(`)sinh(`)2,

s(−1)(`) =
cosh(`)3−3cosh(`)+2

3
,

s(−2)(`) =
sinh(`)3−6sinh(`)+6`

9
.

Equation (53) becomes

3a tanh(r)2 cosh(`)sinh(`)2

tanh(`/2)2 +
2b tanh(r)sinh(`)3

tanh(`/2)
+

c(cosh(`)3−3cosh(`)+2)
3

−d = 0.

The solution is

a =
1

tanh(r)2 , b =− 3
tanh(r)

, c = 9, d = 12.

We need to check the second case of condition (60):

2b+qa =− 6
tanh(r)

+
3

tanh(L) tanh(r)2 > 0.

This condition is equivalent to the smallness hypothesis (4).
Following the notation of Lemma 6.3, we claim that our choices for a,b,c,d and a

suitable choice of f produce a polynomial P(A) with two real roots A0 < A1, where A1 is
the sharp isoperimetric value, that together are a solution to Problem 7.3 when A∈ (A0,A1).
In other words, we want to confirm (43), but this is the hardest part of the proof and we save
it for the end of the section. In the meantime, we settle a different and simpler difficulty.
Recall that

V = |B4,−1(r)|= ω3s(−1)(r), A1 = |∂B4,−1(r)|= ω3s(r),

and that A0 < 0 is equivalent to the clean optimality condition (45). Since s(−1)(r) is
unbounded, (45) does not hold for all V . This criterion is not needed to prove Theorem 1.5,
since the set of geometrically feasible A is the closed ray [A1,∞); but it is important for
Theorem 1.17, which asserts that every A ∈ [0,A1) is infeasible for Problem 7.2. To prove
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this part of Theorem 1.17, we claim a second set of values a2,b2,c2,d2, f2 that are feasible
for Problem 7.3 and that produce P2(A) with P2(0)< 0 and P2(A1)< 0.

Let A2 = 3tanh(r)V . On the one hand, the proof of Theorem 1.16 in Section 8.5.1
produces the feasible values

a2 = 0, b2 = 1, c2 =−3, d2 = 0, f2 = 0,

and a linear P2(A) that vanishes at A2. Thus, every A ∈ [0,A2) is infeasible. On the other
hand, we claim that P(A2)< 0. We use P(A1) = 0 to calculate that∫

π/2

0
f (α)dz(α) =

dω3V −aA2
1−2bA1V − cV 2

2A1
=

4π2(cosh(r)−1)
sinh(r)

and

P(A2) =
( A2

tanh(r)
−3V

)2
−12ω3V +2A2

∫
π/2

0
f (α)dz(α) =− 24π2

cosh(r)
< 0,

so that A2 ∈ (A0,A1), as desired.
It remains to confirm (43) for the given values of a,b,c,d. The cost function (42) is

E(`,x,y) = sinh(`)3xy− (cosh(`)3−3cosh(`)+2)(x+ y)+ sinh(`)3−6sinh(`)−6`.

The potential from (46) and (62) is

f (x) = 6arctanh(
1
x
)+

2x
x2−1

.

The adjusted cost (43) is

F(`,x,y) = sinh(`)3xy− (cosh(`)3−3cosh(`)+2)(x+ y)+ sinh(`)3−6sinh(`)−6`

+6arctanh(
1
x
)+

2x
x2−1

+6arctanh(
1
y
)+

2y
y2−1

. (63)

We conclude the proof of Theorem 1.5 with the following lemma. The lemma is also
numerically evident but surprisingly tricky (for the authors).

Lemma 7.4. The function F(`,x,y) on R>0× (1,∞)2 given by (63) is non-negative, and
vanishes only when

x = y =
1

tanh(`/2)
.

Proof. The proof is analogous to that of Lemma 7.1, but differs in its technical details.
Throughout the proof, we will fix y and minimize F(`,x,y) with respect to x and `.

To check the non-compact limits of x and `, we re-express F as:

F(`,x,y) = sinh(`)3(x−1)(y−1)+h(`)(x+ y)−6sinh(`)−6`+ f (x)+ f (y),

where

h(`) = (sinh(`)3− cosh(`)3 +3cosh(`)−2) =
(3e`+1)(1− e−`)3

4
> 0.

We also have

f (x) =
1

x−1
+

1
x+1

+ arctanh(
1
x
)>

1
x−1

and the elementary relation sinh(`) > `. We combine these comparisons to obtain the
bound

F̂(`,x,y) def
= sinh(`)3(x−1)(y−1)+

1
x−1

−12sinh(`)< F(`,x,y).
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The function F̂ is useful for minimizing with respect to either ` or x, leaving the other
variables fixed. It is a bit simpler to use the variables

(x1,y1)
def
= (x−1,y−1),

which we will need anyway later in the proof. We obtain

F̂(`,x1,y1) = sinh(`)3x1y1 +
1
x1
−12sinh(`)

min
`

F̂(`,x1,y1) =
−16
√

x1y1
+

1
x1

min
x1

F̂(`,x1,y1) = 2
√

sinh(`)3y1−12sinh(`).

We obtain these uniform lim infs:

liminf
x→∞

(
inf
`

F(`,x,y)
)
> lim

x1→∞

(
min
`

F̂(`,x1,y1)
)
= 0

liminf
x→1

(
inf
`

F(`,x,y)
)
> lim

x1→0

(
min
`

F̂(`,x1,y1)
)
= ∞

liminf
`→∞

(
inf

x
F(`,x,y)

)
> lim

`→∞

(
min

x1
F̂(`,x1,y1)

)
= ∞

liminf
`→0

(
inf

x
F(`,x,y)

)
> lim

`→0

(
min

x1
F̂(`,x1,y1)

)
= 0.

Once we control x, we can also check the last case more directly by calculating that

F(0,x,y) = f (x)+ f (y)> 0.

Either way, this establishes that we can use the derivative test for each fixed y to confirm
that F(`,x,y)> 0.

We use the final change of variables

t def
= tanh(

`

2
).

Sage tells us that

∂F
∂`

(t,x,y) =−12
(t4 + t2)xy−2t3(x+ y)+3t2−1

(t2−1)3 ,

∂F
∂x

(t,x,y) =−4
(2t3y−3t2 +1)(x2−1)2 + x4(t2−1)3

(t2−1)3(x2−1)2 .

We again rigorously determine the common zeroes of their numerators by finding their
associated prime ideals in the ring Q[x,y, t] using Sage. The solution set in this case is
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characterized by 7 prime ideals:

I1 = (x− y,yt−1)

I2 = (t +1,x+1)

I3 = (t +1,y+1)

I4 = (t−1,x−1)

I5 = (t−1,y−1)

I6 = (x,2yt3−3t2 +1)

I7 = (2x2y−3x2t− xyt− x− y,x2t3 + xyt3− xt2− yt2 +2x+2t,
xy2t2−2xyt3− y2t3−2xyt +3xt2 + yt2− y+ t,

y2t4− y2t2 + xt3 +3yt3 +2xy−3xt +3yt−7t2 +1,

xyt4 + xyt2−2xt3−2yt3 +3t2−1).

The ideal I1 yields the desired locus x = y = 1/t, while the other six do not vanish when
06 t < 1 and x,y > 1. Five of these cases are easy: The ideals I2 and I3 contain t +1, the
ideals I4 and I5 contain t−1, and the ideal I6 contains x.

The ideal I7 is obviously more complicated. Setting the first two generators to zero, we
obtain:

2x2y−3x2t− xyt− x− y = 0

x2t3 + xyt3− xt2− yt2 +2x+2t = 0.

Since the first equation is linear in t, we can eliminate it by substitution, and then clear the
denominator and eliminate a factor of x+ y. The resulting equation in x and y is

4x6y3−12x5y2−8x4y3 +27x5 +27x4y+17x3y2 +5x2y3−11x3−11x2y−5xy2− y3 = 0.

We can express this in the variables x1 and y1 as

4x6
1y3

1 +12x6
1y2

1 +24x5
1y3

1 +12x6
1y1 +60x5

1y2
1 +52x4

1y3
1 +4x6

1 +48x5
1y1 +96x4

1y2
1

+48x3
1y3

1 +39x5
1 +63x4

1y1 +41x3
1y2

1 +8x2
1y3

1 +154x4
1 +46x3

1y1 +312x3
1 +55x2

1y1

+336x2
1 +56x1y1 +176x1 +16y1 +32+9x2

1y1(y1−1)2 +2x1y1(y1−2)2 = 0.

The left side is manifestly a sum of positive terms when x1,y1 > 0 and thus cannot vanish.
Thus I7 cannot vanish when x,y > 1, which completes the derivative test for F(`,x,y). �

8. PROOFS OF OTHER RESULTS

8.1. Uniqueness. Problems 6.1 and 7.2 both place strong restrictions on µ and therefore
on Ω in the sharp case. First, all of the inequalities in Problem 6.1 become equalities
when κ > 0; all of the inequalities in Problem 7.2 become equalities when κ < 0. In
particular, equation (27) becomes an equality, which implies that Ω is convex and that the
candle comparison is an equality at short distances. That in turn implies that Ω satisfies
Ric> (n−1)κg and that it is the equality case of Bishop’s inequality [BC64, Sec. 11.10],
which implies that it has constant curvature K = κ .

The case κ = 0 does not use (27), but it does use (25). This again implies that Ω is
convex. The stronger assumption that Ω is

√
Ric class 0 together with equality in (25) tells

us again that Ω has constant curvature K = 0.
Second, sharpness tells us that µΩ is concentrated on the locus given by equation (52).

In other words, every chord in Ω has the same length and incident angles as if Ω were a
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round ball Bn,κ(r). If Ω is convex with constant curvature, this implies that Ω is isometric
to Bn,κ(r).

8.2. Günther’s inequality with reflections. In this section, we will prove Proposition
5.8.

If γ(t) is a smooth curve in M with t ∈ [0,r], then it is a constant-speed geodesic if and
only if it is a critical point of the energy functional

E(γ) =
∫ r

0

〈γ ′(t),γ ′(t)〉
2

dt

assuming Dirichlet boundary conditions (i.e., that we fixed the endpoints of γ). Let γ be
such a geodesic with unit speed, and let y(t) be a smooth, infinitesimal normal displace-
ment. Then we can define a relative energy

E(y) def
= E(γ + y)−E(γ)+O(||y||3),

which is just the second variational derivative of the curve energy, equivalently half of
the second variation of the curve length. We can identify the normal bundle to γ(t) with
Rn−1 using parallel transport, thus view y as a function with values y(t) ∈ Rn−1. If γ is an
ordinary geodesic without reflections, then by a standard calculation,

E(y) =
∫ r

0

[
〈y′(t),y′(t)〉−〈y(t),R(t)y(t)〉

]
dt,

where
R(t) = R(·,γ ′(t), ·,γ ′(t))

is the Riemann curvature tensor specialized at the unit tangent γ ′. This leads to the differ-
ential equation

y′′(t) =−R(t)y(t), (64)

which is satisfied by y when it is a Jacobi field, i.e., a geodesic displacement of γ .

γ(t)

(γ + y)(t)

∂M

∂M

FIGURE 9. Diagram of a vector field y that displaces a geodesic γ in a
curved surface (non-geodesically), and a continuation if γ were straight.
The short red segment is the length variation of γ+y due to the reflection.

If γ reflects from ∂M, then the energy has extra terms. We will derive the energy
(65) and a modified Jacobi field equation (66). Although these equation are not really
new [Inn98, Sec. 2], we give a geometric argument that we have not seen elsewhere. To
understand the extra terms in E(y) due to the reflections, suppose that γ reflects from ∂M
at a point p = γ(t), and let Q = Q(p) be shape operator ∂M relative to the inward unit
normal w = w(p), i.e.,

Qu =−∇uw.
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If we give γ a ghost extension as in Figure 9, then the displacement γ + y has a gap when
∂M is curved. (The figure shows the convex case with a positive gap; the gap can also
have negative width.) We first assume the simplest case in which γ is normal to ∂M. The
quadratic form 〈·,Q·〉/2 osculates ∂M, so that the width of the gap, and thus the negative
of the change in length, is 〈y,Qy〉. If the angle of incidence of γ is θ 6= 0, then this answer
is subject to two corrections. First, the gap is at an angle of θ from γ , so the length saved
is cos(θ)〈·,Q·〉. Second, y no longer represents the position that γ + y meets Tp∂M, again
because the surface is angled.

To derive where γ +y meets Tp∂M, we call Tp(∂M) the tangent hyperplane, the normal
Np(γ) to γ(t) the coronal hyperplane, and the 2-dimensional plane spanned by w(p) and
γ ′(t) the sagittal plane4. Let P be the orthogonal projection from the tangent hyperplane to
the coronal hyperplane. If we choose an orthonormal coronal basis e1, . . . ,en−1 such that
e1 is in the sagittal plane, and a matching tangent basis, then

P =


cos(θ) 0 · · · 0

0 1 0
...

. . .
...

0 0 · · · 1

 .

Then the change in length, and therefore the extra energy term, is

−cos(θ)〈P−1y,QP−1y〉.

(This formula still works when θ = 0 if we take P to be the identity matrix.) If γ reflects
from a sequence of boundary points {pk} at times {tk}, then we have the same change in
length using angles θk and symmetric matrices Pk and Qk, and we can abbreviate the result
by letting

Ak
def
= cos(θk)P−1

k QkP−1
k .

Then energy of the normal field y is

E(y) =
∫ r

0

[
〈y′(t),y′(t)〉−〈y(t),R(t)y(t)〉

]
dt−∑

k
〈y(tk),Aky(tk)〉. (65)

Thus, if y is a (reflecting) Jacobi field, it satisfies the distributional differential equation

y′′(t) =−R(t)y(t)−∑
k

Aky(tk)δtk(t), (66)

where δt is a Dirac delta measure on R concentrated at t. Note that if ∂M is concave, then
Qk is negative semidefinite and therefore so is Ak.

We now follow a standard proof of Günther’s inequality [GHL90, Thm. 3.101]. First,
we will need that the energy (65) is positive definite, so that if y Jacobi field, it is an energy
minimum (assuming Dirichlet boundary conditions) and not just a critical point. This is
standard in the proof of Günther’s inequality without the Ak terms, with the aid of the
length restriction when κ > 0. It is still true with the Ak terms, since each such term is
positive semidefinite.

Second, we consider a matrix solution Y to (66) with Y (0) = 0 and Y (r) = I. Then the
candle function of γ satisfies

j(γ,0, `) =
detY (`)
detY (r)

,

4This terminology is borrowed from human anatomy.
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and the logarithmic derivative at r is given by

∂

∂ t

∣∣∣
t=r

log( j(γ,0, t)) = (detY )′(r) = Tr(Y )(r).

We generalize the energy (65) to the matrix argument Y , and we interpret it as a function
of Y , R(t), and each Ak:

E(Y,R,A) =
∫ r

0

[
〈Y ′(t),Y ′(t)〉−〈Y (t),R(t)Y (t)〉

]
dt−∑

k
〈Y (tk),AkY (tk)〉, (67)

using the Hilbert-Schmidt inner product

〈X ,Y 〉= Tr(XTY ).

If Y is a solution to (66), then integration by parts yields the remarkable equality

Tr(Y )(r) = E(Y,R,A).

If we minimize E with respect to all three arguments Y , R, and A, then we both solve (66)
and minimize the logarithmic derivative of γ . If we fix Y , then it is immediate from (67)
and from the constraints that we should take R = κI and Ak = 0, i.e., maximum curvature
and flat mirrors.

8.3. Multiple images. Lemma 5.7 yields the following model.

LP Problem 8.1. Given n, κ , A, V , and m, is there a symmetric, positive measure µ(`,α,β )
such that

α∗(µ) =
∫
`,β

dµ = A dz(α)∫
`,α,β

sn,κ(`)sec(α)sec(β )dµ 6 mA2

∫
`,α,β

s(−1)
n,κ (`)

(
sec(α)+ sec(β )

)
dµ 6 2mAV∫

`,α,β
s(−2)

n,κ (`)dµ 6 mV 2

∫
`,α,β

`dµ = ωn−1V ?

Theorem 1.8 now follows as a porism5 of Theorem 1.4. If we apply the transformation

Ṽ = mV, Ã = mA, µ̃ = mµ,

then Problem 8.1 becomes Problem 6.1.

8.4. Alternative functionals. In this section we prove Theorem 1.18. The proof is almost
the same as the proof of Croke’s theorems in Section 7.1.

Given L= L(Ω), we consider the following linear programming problem based on equa-
tion 25.

5A corollary of proof.
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LP Problem 8.2. Given n, A, and L, is there a symmetric positive measure µ(`,α,β ) such
that

α∗(µ) =
∫
`,β

dµ = A dz(α)∫
`,α,β

`n−1 sec(α)sec(β )dµ 6 A2

∫
`,α,β

`n−3 dµ = L?

We can apply a version of Lemma 6.4 to establish Theorem 1.18 as a sharp inequality.
Given a> 0 and d ∈ R, we consider the cost function

E(`,α,β ) = a`n−1 sec(α)sec(β )−d`n−3.

By design, given a radius r > 0, there are values of a,d > 0 such that E(`,α,α) is mini-
mized in ` when

`= 2r cos(α),

which thus satisfies (52). We can take

a =
n−3

r2 , d = 4(n−1).

(Note that we need n> 4. If n < 3, then a would be negative. If n = 3, then L(Ω) ∝ |∂Ω|
and Theorem 1.18 is vacuous.)

We define the potential

f (α) =−E(2r cos(α),α,α)

2
= 2n−1(r cos(α))n−3.

Applying the change of variables (54), the adjusted cost function is

F(`,x,y) = (n−3)`n−1xy−4(n−1)`n−3 +2n−1(x3−n + y3−n).

We want to show that F > 0. For any fixed value of xy, F(`,x,y) is minimized when x = y.
Then

F(`,x,x) = (n−3)`n−1x2−4(n−1)`n−3 +2nx3−n

=
(
(n−3)(`x)n−1−4(n−1)(`x)n−3 +2n)x3−n.

The first factor is a polynomial in `x that, by univariate calculus, decreases to 0 at `x = 2
and then increases again. This completes the proof of Theorem 1.18.

8.5. Old wine in new decanters. In this section, we complete the proof of Theorem 1.17.
The rest of this paper has covered all cases except Theorem 1.16, due to Yau, and Theo-
rem 1.15, due to Croke. The arguments given here are equivalent to the original proofs,
only restated in linear programming form.

8.5.1. Yau’s linear isoperimetric inequality. If Ω is n-dimensional and LCD(−1), then
Problem 7.2 yields∫

`,α,β

(
s(−1)(`)sec(α)− (n−1)s(−2)(`)

)
dµΩ 6 AV − (n−1)V 2

since q > n−1. The integrand is positive, since it is the second antiderivative of

s′(`)sec(α)− (n−1)s(`) = (n−1)sinh(`)n−2(cosh(`)sec(α)− sinh(`)
)
> 0.
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Thus the right side is positive, and Theorem 1.16 follows. In terms of optimal transport,
the result follows if we define a cost function

E(`,α,β ) = s(−1)(`)sec(α)− (n−1)s(−2)(`),

and then a vanishing potential f (α) = 0.

8.5.2. Croke’s curvature-free inequality. For simplicity, we take ρ = 1.
Suppose that Ω is n-dimensional with unique geodesics. Lemma 5.6 produces the fol-

lowing simple model independent of κ , and that can be combined with Problem 6.1.

LP Problem 8.3. Given n, A, and V , is there a symmetric, positive measure µ(`,α,β )
such that

α∗(µ) =
∫
`,β

dµ = A dz(α)∫
`,α,β

s(−2)
n,(π/`)2(`)dµ 6V 2

∫
`,α,β

`dµ = ωn−1V ?

To analyze this model, we simplify it in two respects. First, we can integrate away α and
β , because none of the integrals explicitly depend on them. We call the resulting measure
µ(`). Second, we can explicitly evaluate the integrand that arises from Lemma 5.6:

s(−2)
n,(π/`)2(`) =

( `

π

)n+1
s(−2)

n,1 (π) =
`n+1ωn

2πnωn−1
.

The first equality is just rescaling by `/π . The second equality is a tricky but standard
integral; the answer can also be inferred from the optimal case of a hemisphere Yn,1. The
simplified model is then as follows.

LP Problem 8.4. Given n, A, and V , is there a positive measure µ(`) on R>0 such that∫
`
dµ =

ωn−2

n−1
A∫

`

`n+1ωn

2πnωn−1
dµΩ 6V 2

∫
`
`dµΩ = ωn−1V

As usual, we state the dual of Problem 8.4.

LP Problem 8.5. Given n, A, and V , are there constants c> 0 and f ,d ∈ R such that

f + c
`n+1ωn

2πnωn−1
−d`> 0

f
ωn−2

n−1
A+ cV 2−dωn−1V < 0? (68)

In the optimal case of Yn,1, we have `= π everywhere and V = ωn/2. We can solve for
the constants f , c, and d assuming that the left side of equation (68) reaches 0 there and is
non-negative for other values of `. We obtain

c = 2ωn−1, d = (n+1)ωn, f = nπωn.
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Assuming that A is feasible for Problem 8.4, (68) then gives us the inequality

A>
(n−1)ωnωn−1

2πωn−2
= ωn−1.

This establishes Theorem 1.15.

Remark. It may seem wrong that Yn,1 does not itself have unique geodesics. But it is a
limit of manifolds that do, which is good enough. In any case the proof of Theorem 1.15
only really uses that Ω has unique geodesics in its interior.

9. CLOSING QUESTIONS

Of course, we want Theorem 1.5 without the smallness condition (4). It would suffice
to prove a stronger version of Lemma 5.5. This would be implied by the n = 4 case of the
following conjecture.

Conjecture 9.1. Let j(r, t) = jM(γ,r, t) be the candle function of a geodesic in γ in an
n-manifold M with curvature K 6−1. Then[

(n−1)2 j− (n−1)
∂ j
∂ t

+(n−1)
∂ j
∂ r
− ∂ 2 j

∂ r∂ t

]
(r, t) (69)

is minimized when M has constant curvature K =−1.

As in the proof of Lemma 5.5, we would use Conjecture 9.1 to obtain the inequality∫
`,α,β

( sn,−1(`)

cos(α)cos(β )
− (n−1)s(−1)

n,−1(`)
( 1

cos(α)
+

1
cos(β )

)
+(n−1)2s(−2)

n,−1(`)
)

dµΩ

6 |∂Ω|2−2(n−1)|∂Ω||Ω|+(n−1)2|Ω|2,
and thus sharpen Problem 7.2, by integrating over (γ ∩Ω)× (γ ∩Ω) for a general geodesic
γ . If we integrate over a connected interval [0, `], which suffices when Ω is convex, then
Conjecture 9.1 implies that

j(0, `)− (n−1)
∫ `

0
j(0, t)dt− (n−1)

∫ `

0
j(s, `)ds+(n−1)2

∫ `

0

∫ t

0
j(s, t)ds dt

is minimized when K = −1. Note that even this relation is not true under the weaker
hypothesis LCD(−1). For example, it does not hold when ` is large enough if M is the
complex hyperbolic plane CH2, normalized to be (−9/4,−9/16)-pinched.

The following relaxation of Kleiner’s theorem is open even though, as explained in
Section 1.4.2, it is close to true. The motivation is that the even strongest form holds in
dimension n = 4 following the proof of Croke’s theorem.

Question 9.1. Suppose that Ω is a compact 3-manifold with boundary, and with unique
geodesics, non-positive curvature, and fixed volume V = |Ω|. Then is its surface area |∂Ω|
minimized when Ω is a round, Euclidean ball? What if non-positive curvature is replaced
by Candle(0)? What if Candle(0) is only required for pairs of boundary points?

Question 9.1 could also be asked in dimension n > 5 and for other curvature bounds
κ 6= 0.

Finally, the following conjecture would give a more robust proof of Theorem 1.7, with
a weaker hypothesis as well when κ = 0.

Conjecture 9.2. Suppose that Ω is a convex, compact Riemannian n-manifold with bound-
ary with unique geodesics. Suppose that for some constants κ and r, all chords in Ω satisfy
equation (52). Then Ω is isometric to Bn,κ(r).
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vol. 1, CEDIC, Paris, 1981, Edited by J. Lafontaine and P. Pansu. 1.1, 1.1
[Gro99] Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathe-

matics, vol. 152, Birkhäuser Boston Inc., 1999, Based on the 1981 French original. 1.1
[Gün60] Paul Günther, Einige Sätze über das Volumenelement eines Riemannschen Raumes, Publ. Math. De-

brecen 7 (1960), 78–93. 1.1, 2.2, 5.5
[Has94] Joel Hass, Bounded 3-manifolds admit negatively curved metrics with concave boundary, J. Differen-

tial Geom. 40:3 (1994), 449–459. 1.2.6, 4
[Has16] Joel Hass, Isoperimetric regions in nonpositively curved manifolds, 2016, arXiv:1604.02768. 4
[HHM99] Hugh Howards, Michael Hutchings, and Frank Morgan, The isoperimetric problem on surfaces, Amer.

Math. Monthly 106:5 (1999), 430–439. 3.1
[Inn98] Nobuhiro Innami, Integral formulas for polyhedral and spherical billiards, J. Math. Soc. Japan 50:2

(1998), 339–357. 8.2

http://math.arizona.edu/~dido/presentations/Druet-Carthage.pdf‎
http://math.arizona.edu/~dido/presentations/Druet-Carthage.pdf‎


LE PETIT PRINCE 57

[Kje02] Tinne Hoff Kjeldsen, Different motivations and goals in the historical development of the theory of
systems of linear inequalities, Arch. Hist. Exact Sci. 56:6 (2002), 469–538. 6.2.1

[KK15] Benoı̂t Kloeckner and Greg Kuperberg, A refinement of Günther’s candle inequality, Asian J. Math
19:1 (2015), 121–134, arXiv:1204.3943. 1.1, 2.2, 2.2

[Kle92] Bruce Kleiner, An isoperimetric comparison theorem, Invent. Math. 108:1 (1992), 37–47. 1.1, 1.2.6
[Klo15] Benoı̂t R. Kloeckner, Curvatures and anisometry of maps, Comm. Anal. Geom. 23:2 (2015), 319–348,

arXiv:1403.4197. 1.1
[McD03] Kirk T. McDonald, Maximal gravity at the surface of an asteroid, 2003, arXiv:physics/0312029. 3.1
[Min10] Hermann Minkowski, Geometrie der Zahlen, B. G. Teubner Verlag, 1910. 6.2.1
[MJ00] Frank Morgan and David L. Johnson, Some sharp isoperimetric theorems for Riemannian manifolds,

Indiana Univ. Math. J. 49:3 (2000), 1017–1041. 1.1, 4
[MS98] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, second ed., Oxford Mathe-

matical Monographs, The Clarendon Press Oxford University Press, 1998. 5
[OS79] A. M. Odlyzko and N. J. A. Sloane, New bounds on the number of unit spheres that can touch a unit

sphere in n dimensions, J. Combin. Theory Ser. A 26:2 (1979), 210–214. 1.3
[Oss78] Robert Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84:6 (1978), 1182–1238. 1.1
[PV16] Stefano Pigola and Giona Veronelli, The smooth riemannian extension problem, 2016,

arXiv:1606.08320. 1.2.6
[Rit05] Manuel Ritoré, Optimal isoperimetric inequalities for three-dimensional Cartan-Hadamard mani-

folds, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., 2005, pp. 395–
404. 1.1

[Sage] Sage open-source mathematical software system, http://www.sagemath.org/. 1.3
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