
.,

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Lowest Common Ancestor Interconnection Networks

Brian D. Alleyne1, Chi-Kai Chien2 and Isaac D. Scherson2
~ ,,-

1 Department of Electrical Engineering
Princeton University
Princeton, NJ 08544

2Department of Information and Computer Science
University of California

Irvine, CA 92717

Technical Report #92-19

February 14 , 1992

z
0q7
~ 3
){ Q I 9 ')._~ (9

Lowest Common Ancestor Interconnection Networks *

Brian D. Alleyne 1
, Chi-Kai Chien2 and Isaac D. Scherson2

1 Department of Electrical Engineering
Princeton University

Princeton , New Jersey 08544

2Department of Information and Computer Science
University of California, Irvine

Irvine , California 92717

Abstract

Lowest Common Ancestor (LCA) networks a re built using switches capable of connecting
u + d inputs/outputs in a permutation pattern . For n source nodes and I stages of switches , J
switches are used in stage l - 1, J · J in stage / - 2, and in general , n · ~;-:-

1

switches in stage
i . The resulting hierarchical structure possesses interesting connectivity and permutational
properties . A full characterization of LCA networks is presented together with a permutation
routing a lgorithm for a family of LCA networks . The algorithm uses the network itself to collect
and disseminate information about the permutation. A schedule of O(dp logd/u n) passes is
obtained with a switch set-up cost factor of O(logd/u n) (p is the minimum number of passes
that an a lgorithm with global knowledge schedules) .

Keywords: SIMD , interconnection network , t ree, permutation routing

•This research was supported in part by the Air Force Office of Scientific Research under grant number AFOSR-
90-0144 and NSF under grant number MIP9106949.

1

1 Introduction

There have been many multistage interconnection networks (lvlIN's) proposed [l], [4], [6]. [14].

These networks can be used to effect communication between processing elements (PE's) in SIMD

machines, as well as MIMD machines . SIMD communication takes the form of permutation r01tting

where given a unique labelling of the PE 's, source-destination pairs are obtained from a one-to-one

mapping of the set of labels onto itself. Past research suggests that determining switch sett ings

to route permutations in ~1IN 's capable of routing any permutation takes at least O(n log n)

sequential time [11], [13] , [15]. To reduce this set-up cost, it is important to analyze networks

that could potentially take many passes to route any permutation; in each pass, a subset of the

permutation's connections (source-destination pairs) are set up and data is transmitted.

In this paper, a full characterization of Lowest Common Ancestor (LCA) interconnection net­

works is presented together with a permutation routing algorithm for a family of LCA networks.

LCA networks are built using switches capable of connecting u+ d inputs/outputs in a permutation

pattern. For n source nodes and l stages of switches , J switches are used in stage l-1, J ·;:[in stage

l - 2, and in general, n · ~~=:-
1

switches in stage i. The resulting hierarchical structure possesses

interesting connectivity and permuta tional properties. The permutation routing algorithm uses

the network itself to collect and disseminate information about the permutation. A schedule of

O(dp logd/u n) passes is obtained with a switch set-up cost factor of O(logd/u n) (pis the minimum

number of passes that an algorithm with global knowledge schedules).

LCA networks solve some implementation problems for SIMD computers . For instance , in

the MasPar MP-1, a massively parallel computer, there are many PE's on each chip and there

are many chips per board and boards are connected through a backplane [2]. Connections going

through the backplane are expensive in terms of connection time and the number of edge-connector

pins. Using traditional MIN's , the routing of all permutations requires utilizing one switch in every

stage; thus, all connections must go through the backplane. However, with LCA networks , every

connection need not utilize switches in every stage; LCA networks exploit the inherent hierarchy

in the hardware structure: permutations requiring only on-chip communication can be performed

the quickest, then permutations which require on-board communication and lastly, permutations

which require communication across the backplane.

2

Pre\· ious work uses trees as a model of communication, either hy employing a tree of processors.

f .g. X- rree, the D.-\C. a nd the P-tree [5], [8], [9], [10], or a t ree of switches as an interconnectio n

network between processors, e.g. Hypertree and KYKLOS [7], [12]. LCA networks fall into the

latter category. Trees are attract ive to use as interconnection networks because they are highl y

scalable and require a number of switches that is linear with respect to the number of PE 's. However,

trees are unappealing because of the high degree of contention near the root of the tree. Hypert ree

and X-t ree are variations upon complete binary trees, both n~tworks add links between nodes on the

same level to reduce the average interprocessor distance . KYKLOS comprises replications of k-ary

trees; the isomorphic repli cations provide alternate paths , again reducing the average interprocessor

distance. In [5], [7] and [12], X-tree, Hypertree and KYKLOS were analyzed in a MIMD context ,

i.e. they have strategies for PE-to-PE routing, not permutation routing.

Section 2 formally defines and characterizes LCA networks , shows when they are fully con­

nected and discusses how they are related to MIN's with identical switches. Section 3 explains the

permutation routing algorithm, and section 4 concludes and discusses future research directions.

2 Characterization of LCA's

In an LCA network , each stage of switches corresponds to a level in the network. Switches can

communicate with both their children and parent(s), i.e. information can be sent up and down the

network (see Figure 3), using their bi-directional uppers and downers, connectors which facilitate

communication up and down the network, respectively.

In a tree, the lowest common ancestor of two nodes is the node at greatest depth which counts

both nodes among its descendants . Two PE's communicating in an LCA network need only utilize

switches as high as their lowest common ancestor (a switch).

2.1 Switch Description

Each switch has d bi-directional links which connect to switches in next lower level (labeled

1, 2, · · ·, d) called downers, and u bi-directional links which connect to switches in the next higher

level (1, 2, · - · , u) called uppers (see Figure 1).

3

0 B
1 2 u 1 2 u 1 2 u ..

Switch or Switch

1 2 d 1 2 d 1 2 d

A C
Figure 1: An LCA switch

Each bi-directional link actually represents two wires, each wire carrying information in a op­

posite directions. Let the uppers be partitioned into two groups, B and D , which represent wires

carrying information to and from the switch respectively and the downers be also partitioned into

two groups, A and C, which represent wires carrying information to and from the switch. In order

to achieve the connections between the groups A, B . C, D, they need to be connected by cross point

switches detailed in Figure 2. In Figure 2 each intersection of two lines represents a crosspoint.

The switch operates in two modes . In the first mode , data on the inputs B and A are used to

set the internal crosspoints of the switch . How this data is actually interpreted by the switch in

order to setup the internal crosspoints is dependent on the routing strategy, and is outlined later

as different routing st rategies are considered. In the second mode, information is passed through

the switch using the internal crosspoint setup .

2.2 Parameter Description

LCA networks are parameterized by (u , d ,n, l ,SP)- tuples. There are n PE's, and/ levels (stages)

of switches in the network. SP is a vector of size l, each vector element describing the permutations

b etween stages, the manner in which the switches in adjacent stages are connected. Each switch

in level i, where 0 ~ i ~ l - 1, has d bi-directional downers, links which connect to switches in the

next lower level , level i + 1, and u bi-directional uppers which connect to switches in the next higher

level, level i - 1 (see Figures 1 and 3). Thus, switches in level i are only connected to switches in

levels i - 1 and i + l. The exceptions are level 0 (the highest level in the network), in which case

4

l

A • ... : ... :
·---~~-+-+--+-I---+--+-+-+~~·~-+--+-+-+~-+-+-+-+-~-·~-

• - ..----------
~--+--+->-+---+-t--+--+++~~----· ..

• • B
--+--+-+-1-----+--+-+-1----· ----

Crosspoint Switch

, +, •••• +++

D c
Figure 2: LCA switch showing crosspoints

the uppers do not connect to anything, and level l - 1 (the lowest level in the ne twork), in which

case the downers connect to the PE's. A switch accepts up to u + d inputs and switches them to

u + d outputs . Any upper and downer can connect to any upper or downer , including itself.

When d > u, the number of switches per stage decreases as the number of stages grows; d = u,

the number of switches per stage is constant ; d < u, the number of switches per stage increases as

the number of stages grows. In this paper, we are primarily interested in tuples where d ~ u since

they represent networks that are highly scalable.

When u = 1, the network is a d-ary tree. Figure 4 shows (2, 3, 9, 2, 2 - 3 bipartite), an LCA

network that has two levels of switches, a bottom level comprising nine PE's and a stage permutation

that connects every three switches in level i with two switches in level i - 1 with a 2-way shuffle

(denoted 2-3 bipartite).

2.3 Full Connection

Certain tuples represent fully connected networks, i.e. any two PE's can communicate using the

network and all switch downers and uppers , except those at the highest level , are utilized. These

5

level 0

...

level 1

.· ... ·.·.· ... ·.·· "s· p· ···2·.·

· · · · · · · · · · · · · · .. · · ·s· p· · 1· ·1" "· ·" · · "·" ·" ~ .

level 1-1

PE's

Figure 3: The LCA network structure

LevelO----

Level 1-

SP2 --

Figure 4: An example LCA network: (2,3,9,2,2-3 bipartite)

6

tuples ::i. re of interest because the networks th ey desc ribP a re reg ul ar. \Ne fir st make som e observa­

tio 11.,; o n the number of switches required per level in order to ut ili ze a ll upp ers and do,,·ners . and

then prove a th eorem about fully connec ted LCA networks.

Let S;, where 0 S i S l - 1, be the number of switches in stage i. Given that n is t he number

of PE's, S1_ 1 = J sillce each switch has d pi ns connecting to lower levels. The :;! switch es in stage

l - l each have u pins connecting to higher levels, thus there a re udn pins going up from st age I - 1.

Repeating the same reasoning for St-Ii S1 - 2 = u · n/ d2.

In general ,

u
Si = d Si+1, where 0 Si S l - 2, 51 -1 = n/d. (1)

Recursively substit uting, as i decreases, Si changes by a factor of u/d:

ul- i -1

Si= n · ~, where 0 Si S l - l. (2)

The S;'s, u, d, 1 and n are all integers; thus, to fully utilize the swit ch pins , we are in te rested in

finding parameter values that satisfy the above constraints.

LCA networks where d > u and all uppers of a switch in stage i connect to one switch in stage

i - 1 resemble (d/u)-ary trees, each link consisting of u bi-directional links. In this event , we say

that the stage permutation is a tree and we represent it as SP= tree.

Theorem 1 An LCA network, (u,d,n,l,tree), is fully connected if and only if

l-i-1
1. S; =n ·v.d1_, , 0'.S i'.Sl -1 ,

2. u = k · d, where k is an integer, and

3. So = l.

Proof:

7

.,

Figure 5: An LCA network, A

(~)Property 1 follows from (1). Since Si must be integer for 0 :Si::; l - 1, property 2 must

hold . If So = j, j > 1, then the network would consist of j disjoint subtrees by the definition of

SP= tree. Thus, So = 1, property 3.

(¢:) Properties 1 and 2 insure that the uppers of stage i and the downers of stage i - 1,

1 < i < l - 1, are fully utilized. The downers of stage l - 1 are fully utilized by the n PE's, and

the uppers of stage 0 are not utilized. So = 1 guarantees that subtrees of the topmost switch are

connected, as per the definition of SP =tree . DQ.E.D.

2.4 Relationship to MIN's

LCA networks can also ! . viewed in another fashion. Let A be the an LCA network (see Figure

5); let A1 comprise the PE's , the switches and the upward-going wires of the bi-directional links.

Let A2 comprise duplications of the PE's, the switches (except those in level 0) and the downward­

going wires of the bi-directional links. Unfold A2 in a mirror-like fashion (see Figure 6). Each

switch in A1 effectively has an extra link to it s corresponding mirrored switch in A2 (represented

by the thick edges in Figure 6). These are virtual links, and are costless to traverse; removing these

links shows LCA networks' topological relationship to MIN's. LCA networks are different because

communication in MIN's can only occur in a forward direction; however, in the folded LCk A,

8

physical links
__.. virtual link s

Figure 6: A unfolded into A1 and A2 showing virtual links

communication can move forward and backward.

The added functionality provided by the virtual links allows certain connections to be made

without utilizing a switch in every stage, i.e. some middle stages need not be traversed. Given

that the switch that is the lowest common ancestor of two communicating PE's belongs to some

stage k, to connect the PE's, 1 + 2(k - 1) stages in A can be skipped by utilizing the virtual links

between A1 and A2 •

3 Permutation Routing

In this section, some observations concerning permutation routing on LCA networks are made , and

then the permutation routing algorithm is explained by means of an example LCA network where

d = 2, u = 1, S0 = 1, and SP = tree, i.e. a binary tree with one switch in the top stage. To

develop the permutation routing algorithm, LCA networks where the stage permutation is simple

and homogeneous is considered, i.e. SP = tree. The algorithm is analyzed, and then extended to

cases where d > 2 and u > 1.

9

3.1 Path Intersection Graphs and Vertex Coloring

Finding the minimum number of passes needed to route a permuta tion can be for mulated as a vertex

coloring problem. Minimizing the number of passes utilizing the full bi-direction al functionality of

the upp ers and downers of the switches results in a highly complex vertex coloring formulation .

As such , for simplicity, th e swit ch functionality is restricted such that no two connections (source­

destination pairs) in the same pa ss may utilize the same switch . This results in the following vertex

coloring formulation .

Each permutation of n elements is routed using n connections , each connecting two PE's . Let

s(P) be the set of connections in a permutation P. Routing a permutation can potentially take

many passes through the network. A permutation routing algorithm determines the schedule for

the connections, i.e. which connections get routed in each pass. Each connection is effected using a

unique path; if c is a connection, let path(c) represent its path. Two paths intersect if they contain

a common switch. If the paths of two connections intersect, then the connections cannot be routed

in the same pass.

A k-vertex coloring of a graph G consists of assigning k colors to the vertices of G; G is called

k-colorable. A vertex coloring is proper if no two distinct adjacent vertices have the same color .

The chromatic number, x (G), of G, is the minimum k for which G is properly k-colorable [3].

To determine the schedule for a permutation P, we first construct its Path Intersection Graph

(PIG). Let PIG(P) have vertex set V and edge set E. Every vertex v, where v E V, represents

a connection c E s(P). Each edge e, where e E E , represents a conflict between two connections,

i.e. the paths of two connections intersect. Thus, given a permutation P, and two connections

c1,c2 E s(P), V vertices v1,v2 EV (v1 ~v2), :le EE if f path(c1) n path(c2) . Let the minimum

number of passes required to route P be p. Then p = x(P IG(P)). A connection is scheduled for

the pass corresponding to its color.

3.2 Permutation Routing Algorithm

This section shows how to determine a permutation 's schedule on an LCA network where d = 2

and u = 1. The algorithm repeatedly proceeds in three phases for each pass: the first two phases

determine the switch settings necessary to route the connections in the pass and set the switches; in

10

the t hird phase, those connect ions route th eir data t brough t he ne twork. The algori thm schedules

O (p log n) passes, and the settings for each pass take O(f og n) steps to determille an d set (pi s t he

minimu m number of passes that an algorithm with global knowledge schedules).

First , however , the lowest common ancestor (LCA } of two PE 's is defined and routing between

two PE's is described. The PE-to- P E routing is used in t he permutat ion routing algorit hm.

3.2.1 PE-to-PE Routing

Let the LCA switch of a connection (source-destination pair) be the switch at greatest depth which

counts both PE's of the connection among its descendants. In a binary tree, each switch in level

i has a parent link to a switch in level i - 1, and left and right links to switches in level i + 1.

The level of the switch is determined as follows . Every PE has a label which consists of a binary

number. Since there are l levels in the tree, each label consists of l digits. Given a permutation,

each PE has a source address, S = s1 -1s1- 2 .. . so, and a destination address, D = d 1-1d1-2 .. . do .

Let i be the smallest i such that s1 - 1s1 -2 . . . Si+1 = d 1-1d1- 2 ... d ;+1 · If s1-1 f::. d 1-1 , then i = l - 1.

The LCA is in level l - i - 1.

To route between two PE's labelled Sand D, traverse up i parent links towards the root of the

tree; now we are level i + l. Next , we traverse downwards using d;d;_1 ••• do. At level j , if dj = 0,

follow the left link; if dj = 1, follow the right link. The switches' crosspoint setting algorithm follow

these rules when routing packets calling for set ting switches are received .

3.2.2 Permutation Routing: d = 2 and u = 1

The algorithm uses the LCA network to collect and disseminate information about the schedule.

It requires the switches to have a contention mechanism that arbitrarily chooses between routing

packets in case of contention, i.e. when two incoming routing packets both want to use the outgoing

link .

Let the LCA level of a connection, or a PE (and its destination), be the level of the LCA switch

of two communicating PE's . The algorithm gives connections with higher LCA level (closer to the

top of the tree) priority over those with lower LCA level (closer to the bottom of the tree). The

algorithm repeatedly proceeds in three phases .

11

,,

•I

In phase one, our permut ation rout ing algo rithm begins by attempting to schedule PE' s \\·ith

t he highest (closest to the top of the t ree) LC A lH el h. PE's wit h LCA level h send a routing

packet to t heir parent switches in level l - 1. Any switch which receives two rout ing packets deals

with the contention by arbitrarily selec ting one packet to "win ," the other packet "loses;" t his

process is te rmed competition an d is arbi trated by th e switch 's content ion mechani sm . In thP next

step, the winning packets pro ceed to t heir parent switches in level l - 2, and PE's wit h LCA le \el

h + 1 send packets to their parent swit ches in level I - 1. Now, competition occurs both at swit ches

in levels l - 1 and l - 2. In lockstep fashion , sending routing packets up the tree and competing at

switches repeats until packets from P E's with LCA level h reach their LCA swi tch; a t this point

packet s of all LCA levels reach their LCA switch .

Phase two resolves conflicts between the winning packets that are at their LCA switch , and sends

routing packets that set the swit ches according to the contention resolutions. There are potenti ally

two winning packets at the highest LCA level, one from each subtree of the LCA switch. Let

the source and destination addresses of one packet be S1 and D 1 ; likewise let S2 and D 2 be the

addresses of t he other packet. Each packet generates and sends two packets: one packet towards

its des tination and another towards its source in order to remove conflicting packets at lower LCA

levels in both subtrees . The two packets going to one subtree, say S1 and D 2 are concatenated

into one packet ; likewise fo r S2 and D1 . When the concatenated packets are received a t switches

in level h + 1, wire-contention is resolved with any winning packets waiting at the level h + 1

switches . On the way down to the sources, the S i' s are understood to require the upward-going

wire of the bi-directional uppers and downers; and the Di 's require the downward-going wires. The

crosspoint switches are set following the crosspoint setting algorithm rules described in the PE­

to-PE routing section . Any waiting packets which do not contend with packets from higher LCA

levels repeat, in lockstep manner , t he same process of creating two packet s, one for t he source and

one for the destination . Any packet can hold at most two addresses, those of the PE's requiring the

upwards and downwards wires of the bi-directional link . All other packets would have lost due to

competition . This repeats until the packets from LCA level h reach their sources and destinations.

Each PE that receives an Si packet knows that it is to send data in phase three, and each PE tha t

receives a D; packet knows it is to receive data in phase three .

In phase three, winning connections passing their data through the network . Aft erwards, the

12

phases are repeated ; repetiti on ends when a ll PE 's have been scheduled a nd rou ted.

The pseudo-code th at each P E executes is as follows:

while :J unscheduled PE 's

}

** phase one **
h = highest LCA level of unscheduled PE 's

for level = 0 to l

if PE 's LCA level = level and PE not routed then

compete one level (attempt to route to LCA level)

if PE wins (reaches LCA level) then

{

}

** phase two **
for level = 0 to l

if PE's LCA level = h or :S level then

compete one level (while returning to source and going to destination)

** phase three **
if PE receives routing packet then

send data

Assuming that resolving competition at switches using their contention mechanism takes one

step, determining winning PE's for one pass takes O(log n) steps since at worst a pass contains a

connection with LCA level 0, necessitating traversing the height of the tree two times (up during

phase one and down during phase two) in lockstep fashion with connections having other LCA

levels . The algorithm is not guaranteed to produce a schedule with the minimum number of passes.

Intuitively, this is because when choosiug between competing PE's, non-optimal choices could be

made, i.e. a choice could be made for PE's with LCA level h that precludes a PE with an LCA

level lower than h from inclusion in the same pass .

3.3 Analysis

Claim : given a permutation , if pis the minimum number of passes required to route the permutation

on a given network , our algorithm schedules O(p log n) passes, where pis the minimum number of

13

,,

..

passes and algorithm with global knowled.e;e schedules .

In this section , we prove co rrectness of t he rtlgorithm and t ime bou nds for d = 2 and u = 1,

a binary tree. In the course of the algorithm , no two paths in the same pass can ever use the

same wire of any bi-directional link. This is because competing connections have the same LCA

level, thus they have the same LCA switch; the cont <: ntion mechanism elimin ates the possibility

of two connections using the same wire on the way up the tree, and on the way down the tree.

Two connections travelling in opposite directions may simultaneously utilize the switch that is thei r

LCA since it has bi-directional links.

Lemma 1 Given a set of connections that have the same LCA level, h , the permutation routing

algorithm schedulr, s the minimum number of passes required to route the set.

Proof: Only those connections which utilize the same wire in a bi-directional link are not

allowed to be routed in the same pass . The LCA switches are those that are in level h. With

respect to the set, there are two subsets per LCA switch: those connections which go up the left

subtree of the LCA switch and those which go up the right subtree. No two connections of one

subset of one LCA switch may be routed in the same pass since they both need at least the upwards

wire linking their subtree to the root. The minimum number of passes needed to route the entire

set is the cardinality of the maximum sized subset. It is obvious that the algorithm performs thusly

due to the competition as connections progress up the tree . DQ .E.D .

Theorem 2 Given a permutation, on an LCA network where d = 2, u = 1, SP= tree and So = 1,

the permutation routing algorithm schedules at most 0 (p log n) passes, where p is the minimum

number of passes an algorithm with global knowledge schedules.

Proof: Let c be the set of connections routed in one pass of a given permutation. Assume there

is an algorithm, A', which computes the "minimum" schedule such that the number of passes is

a minimum. Due to the choices made in competition, at worst our algorithm, A, might not route

any two connections with different LCA levels in the same pass. Thus, the algorithm would route

connections with different LCA levels in different passes. There are at most 0(log n) different

LCA levels among the LCA levels in c, therefore, at very worst , A could turn each pass in the

"minimum" schedule into O(log n) different passes.

14

Sin ce A considers all conn ecti ons with the same LCA level at the same time. by Lem ma l . A

schedules O(p log n) passes in the wo ro· case . DQ.E .D.

3.4 Permutation Routing: d > 2 and u > 1

We still assume d > u and now consider LCA networks where d > 2 and u > 1. In these cases PE­

to-PE routing uses digits which are base d, not base 2. Since S P= tree , a network with u > 1 can

be mapped to a (d/ u)-a ry tree , where each link has capacity u, i.e. each link may simultaneously

make u connections. Thus each pass takes O(logd/v. n) steps (the height of the tree) , to determine

and set the switch settings.

Theorem 3 Given a permutation, on an LCA network where d > u , SP= tree and So = 1, the

permutation routing algorithm schedules at O(dp log n) passes in the worst case , where p is the

minimum number of passes an algorithm with global knowledge schedules.

Proof: In the permutation routing algorithm, up to d + u connections may compete at a

switch ; the switch contention mechanism resolves contention among these connections. When

connections are competing for the downers of t heir LCA switches, in the worst case d - 1 + u

connections compete for one downer. This is because the algorithm arbitrarily chooses winners

among competing connections. Due to "bad" choices in the worst case, the algorithm could use

d - 1 + u passes to route the connections .

An algorithm with global knowledge can choose winners "wisely," and in the best case routes

the d - 1 + u connections in one pass. The ratio between the number of passes an algorithm with

global knowledge schedules in the best case to the number of passes our algorithm schedules in the

worst case is d-t+v.. Since d + 1 - u < 2d, our algorithm schedules 0(dp logd/v. n) passes. DQ .E .D.

4 Conclusion

We have introduced Lowest Common Ancestor interconnection networks, which comprise identi­

cal switches with bi-directional uppers and downers arranged in a hierarchical structure. These

networks are parameterized by (u, d, n, l , S P)- tuples . We investigated LCA networks where d > u

15

,,

'·

1;

an d So = 1 (t he number of switches in th0 highest level) because t hey are highly scalable. a11d

cost-effecti ve.

To show t he usefulness of LCA networks for SIMD computers, we developed a permutation

routing algorithm that schedules O(dp logd/u n) passes in t he worst case for fully connected LCA

net works with SP= tree , i .e. to within O (d log d./u n) of a schedule that an algorithm with global

knowledge obtains; each pass takes O (logd/u n) steps to determine and set the switch settings . The

algorit hm uses the network itself to collect and disseminate global information .

Because the analysis of the number of passes the algorithm schedules was not tight, and based

on simulated permutation routings, we conjecture that the number of passes is actually closer

to 0(dp) . In addition to more in-depth analysis of the algorithm 's performance , possible future

research includes investigating permutation routing on networks represented by tuples where d < u,

d = u , and d > u and So-:{: 1, i.e. finding LCA networks that minimize p for a given permutation.

References

[l] V.E. Benes, Mathematical theory of connecting networks and telephone traffic, Academic, New

York, 1965.

[2] T . Blank , R. Tuck, Personal communications, MasPar Computer Corporation, 1991.

[3] J.A. Bondy and U.S.R. Murty, Graph theory with applications, Elsevier Science Publishing ,

1976.

[4] C. Clos, A study of non-blocking switching networks, Bell System Technical Journal , Vol. 32,

1953, pp. 406-424.

[5] A .M. Despain and D.A. Patterson, X-Tree: A tree structured multiprocessor computer archi­

tecture, Proc. Fifth Int . Syrop. Comp. Architecture , April 1978, pp. 144-151.

[6] T. Feng, A survey of interconnection networks, Computer, Vol. 14 , December 1981, pp. 12-27.

[7] J .R. Goodman and C.H. Sequin, Hypertree: A multiprocessor interconnection topology, IEEE

Transactions on Computers, C-30, December 1981 , pp . 923-933.

16

[8] J. Har ris an d D. Smith , Simulat ion eJ.penments of a t ru organ ized multicomputer, Proc. 6th

Annual Symp. on Comp . Arch., IEEE. Ap ril 1979 , pp . 83-89.

[9] E. Horowitz and A. Zorat , A divide an d conquer computer, CS Dept. Technical Report , US C,

July 1979 .

[10] E. Horowitz and A . Zorat , Th e binary tree as an in terconnec tion ne twork: Applications to

multiprocessor s ystems and VLSI, Proc . of the Workshop on Interconnection Networks, April

21-22 , 1980, pp. 1-10.

[11] G.F . Lev, N. Pippenger and L.G. Valiant , A fa st parallel algorithm for routing in pe.rmutat ion

networks, IEEE Trans . Comput ., Vol. C-30, No . 2, February 1981 , pp . 93-100 .

[12] B.L. Menezes and R. Jenevein, The KYKLOS multicomputer network: Interconnection strate­

gies, properties, and applications, IEEE Transactions on Computers, Vol. 40, No. 6, June 1991 ,

pp. 693- 705.

[13] D. Nassimi and S. Sahni , Parallel algorithms to se t up the Benes permutation network, IEEE

Trans . Comput., Vol. C-31 , No. 2, February 1982, pp. 148-154.

[14] H.J . Siegel , Interconnec tion Networks for Large-Scale Parallel Processing, Lexington Books,

1985.

[15] C.W. Wu and T. Feng, Th e reverse-exchange interconnection network, IEEE Trans . Comput. ,

Vol. C-29 , No. 9, September 1980, pp . 801-811.

17

f/

II

