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Abstract

Prediction of Potential Host–Pathogen Protein Interactions by Structure

by

Fred Pejman Davis

Proteins function through interactions with other biomolecules. Here I describe a series

of tools developed and applied to study potential interactions between host and pathogen

proteins. First, I describe a comprehensive relational database of structurally defined in-

terfaces between pairs of protein domains, PIBASE. A diverse set of geometric, physico-

chemical, and topologic properties are calculated to describe each complex, its domains,

interfaces, and binding sites (http://salilab.org/pibase). This database allows a range

of observations, from the atomistic detail of individual interfaces, to the structural or-

ganization of protein interaction space. Next, I present a comparative modeling method

that uses experimentally determined structures of protein complexes as templates to pre-

dict the composition of protein complexes. Candidate complexes are assessed by com-

parative modeling of the components and subsequent assessment by a statistical potential

derived from binary domain interfaces in PIBASE. Moreover, the predicted complexes were

also filtered using functional annotation and sub-cellular localization data. The proto-

col was validated using experimentally observed interactions in Saccharomyces cerevisiae

(http://salilab.org/modbase). Finally, I present a global computational protocol that

generates testable predictions of potential host–pathogen protein interactions. The proto-

http://salilab.org/pibase
http://salilab.org/modbase
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col first scans the total genomes for host and pathogen proteins with similarity to known

protein complexes, then assesses these putative interactions, using structure if available,

and finally filters these using biological context, such as the stage-specific expression of

pathogen proteins and tissue expression of host proteins. The technique was applied to a

set of ten pathogens, including species of mycobacterium, apicomplexa, and kinetoplastida,

responsible for “neglected” human diseases. The method was assessed by (i) comparison

to a set of known host–pathogen interactions, (ii) comparison to genomics data describing

host and pathogen genes involved in infection, and (iii) analysis of the functional properties

of the human proteins predicted to interact with pathogen proteins. The predictions in-

clude interactions known from previously characterized mechanisms, such as cytoadhesion

and protease inhibition, as well as suspected interactions in hypothesized pathways, such

as apoptotic pathways (http://salilab.org/hostpathogen). These results suggest that

comparative protein structure modeling in combination with genomic and proteomic data

can be a valuable tool for the study of inter-specific protein interactions.

http://salilab.org/hostpathogen
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Chapter 1

Introduction

This thesis is organized as follows. I first present an overview of the work that be-

gins with an introduction for non-scientists and is followed by an introduction for scientists

(Chapter 1). The body of the work then follows in three parts: PIBASE: A Comprehensive

Database of Structurally Defined Protein Interface (Chapter 2), Protein Complex Composi-

tions Predicted by Structural Similarity (Chapter 3), and Potential Host–Pathogen Protein

Interactions Predicted by Structure (Chapter 4). I conclude by discussing future directions

for these specific methods and for the role of computation and structure in the investigation

of inter-specific biomolecular networks (Chapter 5).

1.1 Introduction for non-scientists

Proteins are one important kind of molecule in our bodies that carry out many of

the different tasks required for life. In fact, all forms of life, from microscopic bacteria to

the largest grey whale, have unique sets of proteins that are responsible for different tasks.
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Some proteins interact with other proteins, with the DNA in your genome, or with ‘small

molecules’ such as pharmaceutical drugs. For example, hemoglobin is a protein that binds

to the oxygen in air that you breathe into your lungs and carries it through blood vessels

to other cells in your body that need oxygen.

Each protein is made up of a string of building blocks called amino acid residues.

There are 20 basic kinds of amino acid residues, but they can be decorated in different ways

to make more individual kinds. The specific order and kind of amino acid residues in a

protein is called its amino acid sequence. This linear chain of amino acid residues arranges

itself in three-dimensions to form a unique three-dimensional shape. Every protein usually

has one preferred 3D structure, although sometimes this preference changes when the protein

is in different environments. This 3D structure determines how the protein interacts with

other molecules in the body, similar to how the shape of Lego R© connectors determines what

Lego R© blocks can connect to one another.

Tools have been created to take pictures of the 3D structures of proteins, when they

are alone and when they are interacting with other molecules. This field of biology is called

structural biology. Different tools can be used to study the structure of pictures at different

resolutions. At the highest resolution, these structures describe almost exact positions of

individual atoms in the proteins. Structural biologists around the world have determined

the structures of thousands of proteins. When these biologists work in universities, and

sometimes when they work for companies, they have made these structures freely available

to the public.

Determining the structures of proteins is very expensive and requires a significant
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amount of time and effort. However, actually determining the structure by experiment

is not always necessary to learn about the structure of a protein. When the amino acid

sequences of two proteins are similar, their 3D structures are also likely to be very similar.

This relationship has sparked the development of computer programs that predict the 3D

structure of one protein given the structure of another protein with a similar sequence. This

procedure is called comparative protein structure modeling.

Many proteins carry out their functions by interacting with other proteins. Some

proteins come together almost permanently to form a molecular machine. In other cases,

pairs of proteins interact briefly to pass a message along. The structure of a protein de-

termines what other proteins it interacts with and how these interactions occur. There are

many ways to study protein–protein interactions that can teach us about the structure of

the complex and strength of the interaction. The structure of a protein complex can be

determined by the same kind of techniques used for individual proteins. As they do for

individual proteins, the structures of complexes also help determine what kinds of functions

the interactions mediate.

In addition to the interactions that occur between proteins from a single species,

interactions are possible between proteins from different species. For example, interactions

between human proteins and pathogen proteins, such as those from bacteria or viruses,

occur during infection. These interactions are important for both the pathogen’s invasion

of the human and for the human’s immune response against the pathogen. Knowledge of

these host–pathogen interactions are important for two reasons. First, these interactions

are key to understanding the molecular process of infection. Second, these interactions
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highlight possible ways that infection can be treated. If a drug can be designed to inhibit

these interactions, then the infection process may be halted.

In the work I present in this thesis, I have made predictions of interactions between

human proteins and proteins from a set of microbes that cause human diseases including

leprosy, tuberculosis, cryptosporidiosis, malaria, toxoplasmosis, Chaga’s disease, African

sleeping sickness, and leishmaniasis. Individual protein interactions have been observed

between human proteins and microbial proteins, but a comprehensive survey of these inter-

actions has not been performed for any infectious disease. There are experimental challenges

that make studying these types of interactions more complicated than studying interactions

within an organism. For this reason, computation can be a useful tool, since it does not

suffer from the experimental difficulties of studying a human pathogen in the lab. In addi-

tion, computation doesn’t expose laboratory workers to the dangers of studying microbes

that cause human infectious diseases.

This work was done in three parts. First, I will describe a database that I built of

protein interfaces, or the parts of proteins that interact with other proteins. I collected these

interfaces out of the database of all protein structures and described them in different ways

that capture the chemistry and geometry of the interfaces. These include properties such

as the size of the area that the two proteins contact one another and what kinds of amino

acids interact with one another. I’ve made this database freely available on the internet

to help biologists interested in a specific protein or protein–protein interactions in general

(http://salilab.org/pibase).

Second, I describe a comparative modeling procedure that uses experimentally

http://salilab.org/pibase
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determined structures of protein complexes to predict protein-protein interactions. If two

proteins are similar to a pair that have been previously observed to interact, then this is a

clue they could also interact. I made a table of how often certain amino acids interact with

one another across the protein interfaces in the database I described earlier. Then, I used

this list to score how likely it is that two proteins interact with one another, given the types

of amino acids that they contain. I used this program to predict protein–protein interactions

in Saccharomyces cerevisiae, a yeast that is one of the most common organisms used to study

molecular biology. Thousands of protein–protein interactions have been identified in this

species, making it a good test case to assess the performance of our method. I’ve made

these predictions freely available on the internet to help biologists who are interested in S.

cerevisiae protein interactions (http://salilab.org/modbase).

Finally, I discuss how I used these tools to predict interactions between human

proteins and proteins from micro-organisms that cause human infectious diseases. In addi-

tion to structures of the human and pathogen proteins, I also used information about the

disease. For example, tuberculosis affects lung tissue. Therefore, if a human protein exists

in lung tissue then it is more likely to encounter proteins from the bacteria that causes

tuberculosis. Sometimes, it is even known where on a bacteria a certain protein exists. For

example, some proteins occur on the surface of the bacteria, and so are more likely to en-

counter human proteins, than if they occurred deep inside the bacteria. We make thousands

of predictions for the ten different infectious diseases. It is difficult to assess how good our

predictions are since not much is known about the physical interactions that occur between

human and pathogen proteins. However, many of our predictions make sense given what is

http://salilab.org/modbase
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known about the different diseases, and in some cases help explain observed effects of the

diseases. For example, we predict an interaction between a human protein that is known to

be involved in the immune system and a protein, from the organism that causes malaria,

that is known to stimulate the immune system. I’ve made these predictions available on

the internet, so that scientists that are interested in a specific disease, or specific human or

pathogen protein, can get ideas about potential interactions that may be involved in the

infection process. (http://salilab.org/hostpathogen).

1.2 The protein sequence to structure to function relation-

ship

Proteins function in vivo by interacting with other biomolecules, including small

molecules, nucleic acids, as well as other proteins. The three-dimensional structure of a

protein, which is governed by its primary amino acid sequence as well as its environment,

determines the nature of the biomolecular interactions it engages in. Thus, knowledge of a

protein’s structure provides insight into its biological function.

The atomic structure of proteins can be modeled using experimentally determined

information, such as the diffraction pattern observed by X-ray crystallography or the nuclear

Overhauser effects (NOE) observed by nuclear magnetic resonance (NMR) spectroscopy.

Both of these experimental methods however require a substantial amount of experimental

resources and time. X-ray crystallography requires the expression, purification, and most

importantly, crystallization of a protein sample in order to be subsequently analyzed under

http://salilab.org/hostpathogen
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an X-ray beam-line. Technological advances have been made in all of the steps required

for protein crystallography, partly as a result of the large-scale structural genomics efforts.

These advances include more efficient expression systems and robotic sampling of crystal-

lization conditions. In addition, synchrotron light sources which emit brighter X-ray beams

enable the collection of higher resolution data, in a shorter span of time, than conventional

X-ray sources. NMR has also been used in the structural genomics efforts, and methods

have been similarly improved. NMR also has practical lower limits in sample quality, such

as the purity and concentration, and requires experimental effort in radio-labeling the pro-

tein to be studied. Recent advances in NMR spectroscopy have extended its applicability

to larger complexes, for example the GroEL-GroES complex [57].

Both X-ray crystallography and NMR spectroscopy have practical upper bounds

on the size of the complex to be structurally characterized. Other experimental tech-

niques are applicable beyond these limits, although they typically exhibit lower resolution.

These techniques include electron cryo-microscopy, electron cryo-tomography, single-angle

x-ray scattering. Traditional biochemical techniques, such as co-immunoprecipitation, gold

immuno-labeling, and biophysical techniques, such as analytical ultracentrifugation, can

also provide useful information about the individual positions of the proteins in the com-

plex, as well as the overall shape of the macromolecular assembly.

Computational methods play a pivotal role in structural biology; their contribution

can be logically organized into two, related and non-exclusive, categories: (1) analyzing

experimental data and (2) leveraging available experimental data to help describe systems

for which experimental information is not available. First, computation has become essential
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for the analysis of experimentally observed data, such as diffraction maps or NOE data.

Structural modeling by both X-ray crystallography and NMR spectroscopy make use of

molecular mechanics force fields to build structural models. Computational methods are

also useful in integrating multiple sources of structural information. For example, density

fitting algorithms are used to combine the atomic structure of an individual protein with

the electron cryo-microscopy density map of larger multi-protein assemblies that are not

amenable to X-ray crystallography [221, 222]. Other methods have also been developed

that use many additional sources of information, such as indirect information gleaned from

biophysical and biochemical studies, in order to help determine the structure of multi-

protein assemblies [5].

The broad goal of traditional protein structural biology, as well as the more recent

large-scale structural genomics efforts, is to determine the structure of proteins and their

complexes, in order to gain a mechanistic understanding into protein function. Compu-

tational methods leverage these experimentally determined protein structures in order to

expand the structural coverage of protein space, by applying available experimental data

towards systems for which experimental information is not available. Comparative protein

structure modeling has been developed to predict the structure of a protein based on its

sequence similarity to a protein whose structure has been experimentally determined. De

novo modeling techniques have also been developed that extract general rules of protein

structure from the set of available experimental protein structures, and then apply these

to predict the structure of proteins for which experimental information is not available.

Computational methods have also been developed to predict the structures of multi-protein
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assemblies. These include comparative modeling techniques, which infer the structure of an

interaction given the structure of a complex between closely related proteins, as well as de

novo protein docking methods, which aim to predict the structure of a complex given the

structure of its components. In this thesis I will focus on a comparative modeling technique

that I developed to predict physical protein interactions using structure.

The three-dimensional structure of a protein or protein assembly provides insight

into its biological function. Several computational methods have been developed to help

determine the function of a protein given its three-dimensional structure. Methods have

been developed to identify functional active sites, such as catalytic sites, small molecule

binding sites, and protein binding sites. Several methods also combine the structure with

the sequence conservation in the family of homologs to identify regions that are likely to be

functionally relevant. In addition to identifying sites that are likely to engage in interactions,

structure can also be used to predict likely interaction partners, including small molecule

ligands, protein partners, and DNA sequences. From quantum-level investigations into the

catalytic mechanisms employed by enzymes that catalyze the reactions of life, to the atomic

level detail of molecular recognition, structure enables the study of protein function at a

variety of resolutions. In this thesis, I will focus on structural insights into physical protein–

protein interactions, with a brief mention of protein–ligand interactions in this context.

In addition to providing mechanistic insight into function, the structure of a pro-

tein or protein assembly is an important morphological attribute for the study of protein

evolution. Structure can be more useful than sequence in this respect, because similarities

in tertiary structure can be detected over greater evolutionary timescales than similarities
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in the primary amino acid sequence [35]. Thus, structure can often identify putative evolu-

tionary relationships that are not obvious from the sequence alone. For example, structural

modeling was used to identify remote structural relationships between components of the

nuclear pore complex and coated vesicles, suggesting an ancient evolutionary relationship

between these two compartmentalization systems [43, 44].

1.3 Protein–Protein Interactions

It has been estimated that each protein in the Homo sapiens proteome interacts

with approximately 5-10 other proteins [81]. These include transient interactions as well as

multi-protein assemblies that act as molecular machines [6]. Protein–protein interactions

can be identified by a variety of techniques, including both traditional low-throughput

and high-throughput techniques. Biochemical techniques, such as immunoprecipitation

and tandem-affinity purification (TAP), can be used to isolate protein complexes formed

in vivo. These complexes can then be further resolved by gel electrophoresis techinques

such as two-dimensional PAGE. Mass spectroscopy (MS) can then be used to identify the

proteins that form these complexes. The combination of TAP and MS (TAP-MS) has been

used to comprehensively characterize physical protein interactions in the Saccharaomyces

cerevisiae proteome [66, 115]. Another method used to identify protein interactions in a

high-throughput fashion is the yeast-two-hybrid (Y2H) genetic technique. Genome-wide

Y2H has been used to characterize the protein–protein interaction networks in a variety of

organisms, including Saccharomyces cerevisiae [93, 225] and Homo sapiens [185]. However,

genome-wide Y2H suffers from an estimated 50% false positive and 90% false negative rates
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[81].

Protein–protein interactions have been studied using a variety of genetic, biochem-

ical, biophysical, and bioinformatic techniques [62]. These techniques provide information

at a variety of spatial and temporal resolutions. At the highest spatial resolution, struc-

tural techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) spec-

troscopy provide detailed information about the atomic interactions that mediate biomolec-

ular recognition. However, these methods suffer from an upper-limit on the size of complexes

they can analyze. For this reason, electron cryo-microscopy and cryo-tomography are useful

to study larger complexes, although they provide a lower resolution than X-ray or NMR.

While three-dimensional structures provide insight into the atomic detail of molec-

ular recognition, they often do not enable the study of the thermodynamics and kinetics of

interaction. For example, it is difficult to estimate the strength of an interaction using only

the structures of protein complexes. Biophysical techniques are useful in characterizing

the thermodynamics and kinetics of biomolecular interactions, characterizing parameters

including heat capacities, entropy, enthalpy, equilibrium association constants, and the as-

sociation and dissociation rate constants.

As they have for structure-determination techniques, computational tools have

proven useful both in processing the data generated by large-scale experimental surveys, as

well as leveraging this data to predict protein interactions that have not been experimentally

observed. In this thesis I will develop a series of computational tools that aim to identify

protein interactions based on structure.
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1.4 Host–Pathogen Interactions

Infectious diseases account for over 25% of annual global deaths [242]. Over the

past thirty years, this burden has been amplified by newly emerging diseases, such as HIV

and SARS, as well as diseases such as tuberculosis and malaria, that are re-emerging as

drug resistance becomes widespread. Recent technological advances, such as whole genome

sequencing, genomic, and proteomic experiments have been applied to infectious diseases,

increasing our understanding of the basic biology behind infection. Within one year of

the 2003 SARS outbreak, the causative agent was identified as a new coronavirus by DNA

microarray technology, the whole genome was sequenced, the structures of key proteins

proposed by comparative modeling, and potential inhibitors identified by molecular docking.

However, in general, this basic biology data has yet to have a significant impact on public

health.

Elucidation of the interaction network between host and pathogen biomolecules is

important for two reasons. First, the details of this network will illuminate the molecular ba-

sis of infectious diseases. Second, this network will highlight potential targets for chemother-

apeutic or immunization strategies. Individual interactions between host and pathogen

proteins have been identified using traditional biochemical and genetic techniques that fo-

cus on one protein or pathway. However, high-throughput techniques, such as TAP-MS,

have not yet been used to identify direct physical interactions between host and pathogen

proteins. Thus, the network of interactions between host and pathogen proteins remains

largely uncharacterized.

The sparsity of experimental information makes computational tools especially
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valuable for suggesting possible host–pathogen protein interactions. Specifically, this is a

niche where computational tools may precede comprehensive experimental characterization,

and provide valuable clues or starting points for subsequent experimental follow-up. Ulti-

mately, the elucidation of the physical interactions that underly host–pathogen interaction

will help the treatment and prevention of infectious disease.

1.5 Outline

Here, I will present a series of studies that work towards the prediction of poten-

tial interactions between host and pathogen proteins using structural information. First,

I will present a database of protein structure interfaces that I developed to aide in the

investigation of protein-protein interactions (http://salilab.org/pibase). I will discuss

the development of the database, highlight some interesting observations, and discuss cur-

rent applications. Second, I will present a comparative modeling method that uses ex-

perimentally determined structures of protein complexes as templates to predict physical

protein–protein interactions. The predictions made for protein interactions in S. cerevisiae

are publicly available through the MODBASE database (http://salilab.org/modbase).

Finally, I will describe the use of these structural tools in conjunction with genomic and

proteomic data to predict potential host–pathogen protein interactions formed in a set of

ten human infectious diseases (http://salilab.org/hostpathogen). I conclude with a

general discussion of the current, and future, roles of computation and structure in the

investigation of inter-specific biomolecular networks.

http://salilab.org/pibase
http://salilab.org/modbase
http://salilab.org/hostpathogen
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Chapter 2

PIBASE: A Comprehensive

Database of Structurally Defined

Protein Interfaces

This chapter has been previously published [39].
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Abstract

In recent years, the Protein Data Bank (PDB) has experienced rapid growth.

To maximize the utility of the high resolution protein-protein interaction data stored in

the PDB, we have developed PIBASE, a comprehensive relational database of structurally

defined interfaces between pairs of protein domains. It is composed of binary interfaces

extracted from structures in the PDB and the Probable Quaternary Structure (PQS) server

using domain assignments from the Structural Classification of Proteins (SCOP) and CATH

fold classification systems. PIBASE currently contains 158,915 interacting domain pairs be-

tween 105,061 domains from 2,125 SCOP families. A diverse set of geometric, physicochem-

ical, and topologic properties are calculated for each complex, its domains, interfaces, and

binding sites. A subset of the interface properties are used to remove interface redundancy

within PDB entries, resulting in 20,912 distinct domain-domain interfaces. The complexes

are grouped into 989 topological classes based on their patterns of domain-domain contacts.

The binary interfaces and their corresponding binding sites are categorized into 18,755 and

30,975 topological classes, respectively, based on the topology of secondary structure ele-

ments. The utility of the database is illustrated by outlining several current applications.

The database is accessible via the world wide web at http://salilab.org/pibase.

2.1 Introduction

Proteins do not act in isolation, but rather through interactions with molecules in

their spatio-temporal environment that includes small molecules, nucleic acids, as well as

http://salilab.org/pibase


16

other proteins [6]. Therefore, the structures of individual proteins are often uninformative

of biological function if taken out of context. Recent experimental advances have addressed

this problem by enabling studies of protein interactions along two frontiers [186, 190]: (1)

large-scale detection of protein-protein interactions [58, 65, 88, 93, 225] and (2) structure

determination of protein complexes [187]. To maximize their utility, these experiments

require informatics resources to store, organize, visualize, analyze, and disseminate the

data. The objective is to understand the evolution and physics of protein interactions and

to develop predictive models of protein structure and function.

Experimentally determined structures of protein complexes are deposited in the

Protein Data Bank (PDB) [24]. The protein structure database is growing rapidly, in part

due to the recent structural genomics effort [24, 48]. The PDB currently holds approx-

imately 28,000 structures. Each entry contains on average 2.2 protein chains, and each

chain contains on average 2.1 domains. Domains are considered the basal unit of protein

structure, function, and evolution [169]. These units fold independently, often mediate a

specific biological function, and combine modularly to form larger proteins. Several ap-

proaches to the definition of domain boundaries in proteins have been developed based on

sequence and structure [232]. The Structural Classification of Proteins (SCOP) [148] and

CATH [155] are two commonly used structure-based domain definition and classification

systems.

Biologically relevant quaternary states are proposed for crystallographic protein

structures by the Probable Quaternary Structure (PQS) server [83]. The server applies

crystallographic and non-crystallographic symmetry operations to the PDB structure, and
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then assesses the validity of each chain interface using a set of empirically derived cutoffs

for properties such as buried solvent accessible surface area, buried number of residues,

hydrogen bonding, and salt bridges. The PDB and the PQS are sources of the highest

resolution protein-protein interaction data.

The structures of protein subunit interfaces have long been studied using collec-

tions of protein chain and domain interfaces [11, 15, 37, 87, 94, 98, 108, 160, 224]. Numerous

analyses have used datasets of protein chain interfaces extracted from the PDB to investigate

properties such as residue type propensities, sequence conservation, and structure conser-

vation at protein interfaces [11, 29, 98, 99, 154, 228]. These studies of interface properties

have given valuable insights into the physics and evolution of protein interactions.

In this paper, we describe a comprehensive relational database of structurally

defined domain-domain interfaces. We annotate them by a diverse set of geometric, physic-

ochemical, and topologic properties that characterize the structure of the protein complexes

from the level of the complex to the atomic level details of each interface. A subset of these

properties are used to remove interface redundancy as well as categorize the complexes, the

interfaces, and the binding sites into topological classes. This multi-level characterization

allows queries that span a range from properties of specific interfaces to proteome level views

of interactions. The motivation in developing PIBASE has been to create a comprehensive

repository of information characterizing the structure of protein complexes at a range of

size scales using a diverse set of descriptors.

The construction of the database is described first, detailing the data sources, inter-

face definition, properties computed, interface redundancy removal, and clustering (Meth-
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Figure 2.1: PIBASE Build Procedure. Briefly, inter-atomic distances calculated from PDB
and PQS structures are combined with domain definitions from SCOP and CATH to gen-
erate a list of interacting domain pairs. A set of properties are then computed for all the
interfaces and binding sites. A subset of these properties are then used to remove interface
redundancy within structures associated with each PDB code. The binding sites, interfaces,
and complexes are then clustered using their topological properties.

ods). We then discuss the composition of the database, describing the contents as well as the

distributions of several of the computed interface properties (Results). Finally, we conclude

with a brief discussion of several of our current applications of PIBASE (Discussion).
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2.2 Methods and Results

2.2.1 Sources of protein structures and their classification

Two types of input data were used: protein structures and domain definitions.

Structures were obtained from the Protein Data Bank [24] and the Probable Quaternary

Structure (PQS) server [83]. For those structures determined by NMR spectroscopy, the

first model in the ensemble was used.

Domain definitions for the PDB structures were obtained from the Structural Clas-

sification of Proteins (SCOP) [148] and CATH [155] classification systems. A mapping was

generated between PDB and PQS chains that allowed domain definitions to be transferred

from the PDB to its associated PQS entries. Approximately 1.5% of PQS entries contain

chains with sequence changes, chain breaks, or chain mergers relative to their parent PDB

structure. These differences occur for reasons such as missing density in the PDB struc-

ture. Domain definitions were not generated for these PQS entries as the chain mapping is

difficult and inexact.

2.2.2 Detection of domain-domain interfaces

The list of binary interfaces was generated by a three step procedure (Figure 2.1).

First, inter-atomic distances were calculated for all structures using a user specified distance

cutoff. A cutoff of 6.05 Å was chosen unless specified otherwise, to allow contacts made

via water molecules [180, 181]. The inter-atomic distances were then combined with the

domain definitions to create a list of all domain pairs that share at least one inter-atomic

distance below the specified distance threshold. This list of interacting domain pairs serves
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as the core of PIBASE. Buried solvent accessible surface area (below) was also computed

for each interacting domain pair and a minimum cutoff on the burial was imposed to yield

the list of interfaces. Unless specified otherwise, a cutoff of 300 Å2 was used, as justified

below.

It is often difficult to ascertain the biologically relevant quaternary state solely

based on crystallographic information [31]. Previous studies have attempted to determine

the biological relevance of observed chain contacts by two alternative strategies. The first

is to define empirical thresholds on a set of interface properties (such as change in solvent

accessible surface area, number of buried residues, etc) that are able to distinguish true

biological interfaces from crystal packing artifacts [83]. The second strategy is to analyze

the conservation of residues at the observed interface, with the hypothesis that a biological

interface would be more conserved than a crystal packing artifact [49, 228]. While validation

of both strategies is difficult, error rates of 4.3-20% have been reported [49, 83, 228]. The

first strategy of empirical cutoffs has been implemented in an automated fashion in the

PQS server [83]. PQS uses a threshold of 400 Å2 as one of the factors in determining

biological relevance of a chain-chain interface. Unless otherwise mentioned, we used a

lower threshold of 300 Å2, which removed roughly 45% of the interacting SCOP domain

pairs (Supplementary Figure 2.4). However, all interacting domain pairs are stored and all

analysis can be performed easily with any choice of cutoff.
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2.2.3 Properties of complexes, domains, interfaces, and binding sites

For each processed structure, PIBASE contains a set of properties at four different

levels: the complex, its constituent domains, binary interfaces, and binding sites (the two

halves of an interface) (Supplementary Table 2.2). These properties are described next.

Complexes. A domain connectivity graph was generated for each structure, de-

scribing the pattern of domain-domain contacts. In this graph, a domain is a node, and a

binary domain interface is an edge (Supplementary Figure 2.6(b)). This graph captures the

arrangement of the individual domains in the complex. A crude linear representation of this

graph is then computed and used as a topological fingerprint to group the structures into

topological classes (Supplementary Information: Topological Fingerprints, Supplementary

Figure 2.6(d)). While degeneracy exists in this representation (ie, two distinct topologies

may have the same sorted edge list), it is useful as both a query and crude clustering term.

Domains. Solvent accessible surface area was computed for each domain using

a probe radius of 1.4 Å with the algorithm of Richmond and Richards as implemented

in MODELLER [179, 189]. Secondary structure assignments are made by DSSP [100].

Classification codes (eg, class, fold, superfamily, and family) from the domain assignment

system used, SCOP or CATH, are also associated with each domain.

Interfaces and Binding Sites. The interface and binding site properties compose

the majority of PIBASE content. A subset of these properties were used for redundancy

removal and clustering of the interfaces. The interface properties can be grouped into two

categories: non-contact and contact. Non-contact properties (properties 1-8 in the Inter-

face column of Supplementary Table 2.2(c)) are properties that are a sum or a union of the
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properties in the corresponding domains. For instance, the number of residues presented

at the interface is computed as a sum of the number of residues presented by each of the

two binding sites. The contact properties (properties 9-17 in the Interface column of Sup-

plementary Table 2.2(c)) implicitly capture the interface orientation. These properties can

not be defined independently by the two binding sites. The binding site properties fall into

two categories: non-topology and topology. Non-topology properties (properties 1-8 in the

Binding Site column of Supplementary Table 2.2(c)) describe the size and physicochemical

properties of the binding site. Topology properties (properties 9-14 in the Binding Site

column of Supplementary Table 2.2(c)) describe the local structure of the binding site.

The change in solvent accessible surface area (defined as ∆SASAAB = SASAA

+ SASAB − SASAAB), number of residues, and number of secondary structure elements

describe the extent of the interface. The residue types present, secondary structure types

present, and change in polar solvent accessible surface area are more fine-grained properties

describing the actual physical structures present and their chemical composition. Two

measures of binding site continuity were computed. The number of structural patches was

determined by counting the number of connected components in a graph representation of

binding site residues where an edge was placed between residues within 6 Å of each other.

The number of sequence segments was counted to describe the sequence continuity of each

binding site. The continuity properties of the interfaces were calculated by summing the

properties from their corresponding binding sites.

The number of residue pairs, number of secondary structure element contacts, and

number of inter-atomic contacts describe a combination of the extent and complexity of
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the interface. The residue contact types, secondary structure contact types, and secondary

structure topology capture the nature and complexity of the interface. The inter-atomic

contacts are further categorized into Van der Waals contacts, hydrogen bonds, salt bridges,

and disulfide bridges based on distance criteria (H-bond criteria as defined by JOY [142];

disulfide bridge defined when two Cys S atoms are closer than 3.0 Å).

As for the domain connectivity graphs, a crude linear representation of the sec-

ondary structure topology graph was generated for use as a topological fingerprint to group

the structures into topological classes (Supplementary Information: Topological Finger-

prints, Supplementary Figure 2.6(c), 2.6(d)).

2.2.4 Redundancy Removal and Clustering

Two types of clustering were performed on the domain-domain interfaces. The

first procedure, redundancy removal, aims to provide a non-redundant set of interfaces for

analysis by addressing the issue of duplicate interface structures. The second procedure,

clustering, aims to group together similar interfaces to aide in the understanding of interface

diversity. Although both procedures involve clustering, they serve different purposes.

Removal of Redundancy of domain-domain interfaces

Redundancy, in the form of duplicate interface structures, exists for several rea-

sons: redundancy within PDB entries, interfaces duplicated in derived PQS structures, and

redundancy across different PDB entries. The first two types of redundancy are explic-

itly addressed by hierarchically clustering interfaces associated with each PDB code using
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a distance function that combines the following properties: types of residue-residue con-

tacts present (represented as a 210-bit vector, aa), buried solvent accessible surface area

(∆ SASA), and the number of residues in the interface (numres) (Eq 2.1). The bit vectors

were compared using the Hamann distance measure, disthamann, a rescaled and reversed

version of the traditional Hamann similarity coefficient, simhamann, developed for use in

plant systematics (Supplementary Information: Eq 2.3, 2.3) [78]. The resulting dendrogram

was cut into clusters using a strict threshold of 0.1. This cutoff corresponds to maximum

differences of 10% in the buried surface areas, 10 % in the numbers of residues, or 0.1

Hamann distance in the residue-residue type contact vectors. The cluster membership of

each interacting domain pair is stored in PIBASE. The clustering was performed on the in-

teracting domain pairs list, prior to the buried surface area filter. This procedure identified

approximately 75% of the domain pairs as redundant (Table 2.1).

dA,B =
1

3
(disthamann(aaA, aaB)

+ (1 −
min(∆SASAA,∆SASAB)

max(∆SASAA,∆SASAB)
)

+ (1 −
min(numresA, numresB)

max(numresA, numresB)
))

(2.1)

The third type of redundancy, duplicate interfaces across PDB entries, can also

be addressed in a similar fashion, but is not yet implemented. While the minimal three

property set was found to be effective at recognizing interface similarity within a PDB file, a

different and likely larger set of interface properties are required for a more general interface

similarity measure. However, the choice of specific properties to use depends heavily on the
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definition of redundancy, and the intended application. As such, we leave this clustering up

to the user, while providing the appropriate tools (eg, properties, clustering algorithms).

Clustering of complexes, interfaces, and binding sites

The topological fingerprints were used to group the non-redundant complexes,

interfaces, and binding sites into discrete topological classes. The complexes were grouped

according to their domain connectivity (Supplementary Figure 2.6(b)), while the interfaces

and binding sites were grouped according to the topology of their secondary structure

elements (Supplementary Figure 2.6(c)). The clustering reveals 989, 18,755, and 30,975

topological groups of complexes, interfaces, and binding sites, respectively.

In the current implementation, groups are formed by members with identical topo-

logical fingerprints. A more refined distance metric for topology fingerprints would be useful

in describing a continuous gradation of topology similarity. However, such a clustering will

depend on a specific application, and is therefore beyond the scope of the current paper.

2.2.5 Implementation

PIBASE was implemented using the MySQL relational database system

(http://www.mysql.com). It was built by a set of Perl programs using the DBI interface to

communicate with the MySQL system. Most properties were computed with MODELLER

[188]. Secondary structure assignments were made by DSSP [100]. Inter-atomic distances

were computed using an in-house ANSI C implementation, called kd-contacts, of the me-

dian kd-trees algorithm [23, 61]. The kd-trees algorithm, a commonly used computational

http://www.mysql.com
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geometry algorithm, performs nearest neighbor queries by first building a tree in O(n log n)

time, and then querying it in O(n1−1/d + k) time, where n is the number of data points in

the d-dimensional space, and k is the number of reported points (Supplementary Informa-

tion: kd-trees algorithm). This approach is much faster than the naive approach of all vs

all distance calculation (O(n2)). The logarithmic scaling allows rapid calculation of contact

maps even for large structures with tens of thousands of atoms, such as PQS entries of virus

capsids.

The clustering of the distance matrix for redundancy removal was performed using

an in-house Perl library. The calculations were done in a parallel fashion on 50 2.6 GHz

Pentium IV processors in approximately 15 hours. The database is updated automatically

with every SCOP and CATH release.

2.2.6 Accessibility

PIBASE is accessible via the world wide web at http://salilab.org/pibase. The

interface allows the user to query the database by PDB codes, complex topology fingerprints,

and domain classification codes. The range of possible queries will expand as users request

additional functionality.

While a web interface is well suited for standard queries with relatively simple

conditions, a programming interface can be more useful for complex queries. A Perl library,

used in the construction of the database, will be released shortly, allowing complex queries to

be performed without the complexity of directly accessing the underlying MySQL structures.

In addition, the contents of the database tables, as well as a schema describing the logical

http://salilab.org/pibase
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Structures

Structures (PDB & PQS) 38,940

Associated PDB codes 20,740

SCOP CATH

Domains 120,110 103,246

Interfaces

Interacting domain pairs 158,915 138,286

Interfaces (∆SASA ≥ 300 Å2) 86,127 76,746

Redundancy

Interacting domain pairs unique 77,105
within structure file

Interacting domain pairs unique 41,493
within PDB code

Unique and ∆SASA ≥ 300 Å2 20,912

Table 2.1: PIBASE content. Unless otherwise noted, all the numbers shown represent data
obtained from both PDB and PQS structures. The number of interacting domain pairs are
shown using both SCOP and CATH definitions. The interface clustering was performed only
on the SCOP pairs. The ∆SASA filter of 300 Å2 removes ∼ 45% of the interacting domain
pairs. The redundancy removal procedure flags ∼ 75% of the interfaces as redundant.

relationships between the tables, are available for download.

2.2.7 Composition of PIBASE

Briefly, PIBASE currently contains 158,915 interacting domain pairs between

105,061 domains from 2,125 SCOP families. More interface structures are available be-

tween domains from the same SCOP family (1405 homo-family pairs) than different SCOP

families (982 hetero-family pairs) (Figure 2.2(a)). Of a total of 2,567 families in the SCOP

classification, interface structures are available for 1,946 of them.

Visually, it is obvious that the distribution of partner structural similarities is non-

uniform (Figure 2.2(b)). To investigate this distribution further, we compared the observed

distribution of partner structural similarities to a random model in which all SCOP fam-
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Figure 2.2: Interactions in SCOP space. (a) Venn diagram of interaction coverage in SCOP
space. Regular font represents numbers of SCOP families. Italics represents numbers of
interfaces (eg, 1405 homo-family SCOP family pairs). (b) Partial SCOP domain family
interactome. Nodes represent SCOP families. Edges represent structurally observed inter-
faces. Edge color represents the SCOP similarity of the interacting nodes (Red = same
superfamily, Green = same fold, Blue = same class, Black = no similarity). Only interfaces
between different SCOP families are shown. Graph layout by LGL [3].
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ilies interact with all other SCOP families. We found that interactions between domains

with similarities only at the superfamily level are overrepresented (∼ 5-fold). Interactions

between domains from the same fold are almost twice as abundant as expected from the

random model. Interactions between domains from the same SCOP class are approximately

the same as expected. The interfaces between structurally dissimilar domains are under-

represented (∼ 2-fold). In summary, the structures of interacting domain pairs currently

available are weighted towards partners with the most structural similarity along the SCOP

hierarchy. However, it is difficult to conclude from this observation that actual protein in-

teraction networks behave in this manner, as the observed preferences likely reflect both an

actual non-uniform distribution of structural similarity between interacting partners and

sampling bias in the PDB.

Interfaces are observed to be mostly continuous in structure, but very segmented

in sequence. On average, ∼ 78 residues are presented to the interface on ∼ 34 secondary

structure elements, or ∼ 23 continuous sequence segments (Figure 2.3(a), Supplementary

Figure 2.6(a), 2.6(b)). However, each interface usually involves only 2 structurally con-

tinuous patches, one contributed by each binding site (Supplementary Figure 2.6(c)). As

expected, the sequence discontinuity is directly proportional to the buried surface area of

the interface (r2 = 0.71, Supplementary Figure 2.6(d)).

An example of the physicochemical properties that can be analyzed using PIBASE

is the polarity of interfaces (Figure 2.3(b)). The polarity of each interface was defined by the

fraction of the buried solvent accessible surface area that was contributed by polar atoms

(N, O). The interface polarity exhibits a broad distribution with a mean of ∼25%. This
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Figure 2.3: PIBASE Interface Property Distributions. All the plots are calculated from
the non-redundant set of interfaces. (a) Number of residues at the interface. Maximum
862 residues (not shown). (b) Interface polarity (solid) compared to whole domain surface
polarity (dashed). The polarity of an interface is defined by the fraction of buried surface
area contributed by polar atoms (N, O). Similarly, the polarity of the whole domain surface
is defined by the fraction of solvent accessible surface area contributed by polar atoms. The
whole domain surface polarities were calculated from all SCOP domains.

distribution is slightly more hydrophobic than the whole domain surface, which exhibits a

narrower distribution with a mean of ∼30%. The polarity of the whole domain surface was

similarly defined, as the fraction of the solvent accessible surface area contributed by polar

atoms.

2.3 Discussion

We presented a comprehensive database of structurally characterized protein com-

plexes. We first described its construction (Figure 2.1), followed by its content (Tables 2.1,

Figure 2.2). From domain topology to secondary structure topologies at individual inter-

faces, we presented groupings at size scales from the entire complex to individual interfaces.
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We also described the distributions of a subset of the interface properties stored in PIBASE

(Figure 2.3).

Several collections of protein chain and domain interfaces have been recently re-

ported [87, 98, 108, 160, 224]. A SCOP domain family interactome was published that

supplemented SCOP interfaces extracted from the PDB with those observed in yeast pro-

tein interaction data [160]. This resource allowed the proposal of possible evolutionary

reasons for the observed repertoire of family-family intermolecular and intra-molecular in-

teractions. More recently, a collection has been created of non-redundant high-resolution

structures of protein chain pairs extracted from the PDB [108]. The interfaces were clus-

tered using geometric hashing [152], a sequence order-independent structural superposition

algorithm, which allowed the detection of conserved interface architectures across different

fold types. The datasets reported vary widely in their size and breadth of descriptors, as

expected from the different types of analysis they were designed for.

The main goals in developing PIBASE have been completeness of its domain in-

terface coverage as well as diversity of the descriptors calculated at various scales. Though

it contains a comprehensive set of interfaces, filters can easily be applied to focus on a

specific type of interface or on those with a given minimum experimental resolution. The

explicit topological clustering, previously developed for fold classification [241], is unique in

its application to protein complexes.

The completeness of PIBASE makes it suited for investigations into the structure of

protein interactions, as well as for benchmarking methods such as protein-protein docking.

To illustrate its utility as a general purpose bioinformatics resource, we list here several



32

current applications in our group.

The interfaces stored in PIBASE have been used as templates for the prediction

of protein interaction partners [167]. Candidate interaction partners are generated by de-

tecting pairs of proteins from the same genome that contain domains for which an interface

has been observed. These candidate interactions are then assessed by building comparative

models of the individual proteins and scoring their putative interface using a statistical

potential that captures residue type contact preferences at interfaces. This method predicts

not only interaction partners, but also binding modes. Similar schemes have been previously

reported [9, 126]. The interaction predictions have been deposited in MODBASE [167].

The spatial localization of protein binding sites in PIBASE has been analyzed

(Korkin, Davis, Sali, in preparation). Localization is a measure that describes the degree

of overlap of the binding sites observed for a given protein domain family. The lower the

localization, the more scattered the distribution of binding sites. A range of localization

values are observed for domain families. Many families exhibit a higher localization than

expected by random (eg, obligate homo-dimeric enzymes such as alkaline phosphatase),

while others exhibit a lower localization than expected by random (eg, highly divergent

families such as C-type lectins).

The binding sites stored in PIBASE are also used by LS-SNP, a large-scale struc-

tural annotation of human single nucleotide polymorphisms (SNPs) [103]. This analysis

combines multiple types of sequence and structure information, including protein binding

sites, to predict whether an observed SNP is functionally deleterious.

Lastly, PIBASE has been integrated into an automated structure annotation sys-
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tem in the DBAli [137] and MODBASE [167] databases. As structural genomics efforts

are rapidly determining protein structures, it becomes important to annotate them using

automated methods which leverage existing knowledge. For a given input protein structure,

a structural alignment program MAMMOTH [157] is used to find similarities to known pro-

tein structures, and the SALIGN module of MODELLER (Madhusudhan, Marti-Renom,

Eswar, Sali, in preparation) is applied to prepare multiple alignments of similar protein

structures. The query protein structure can then inherit numerous properties from the

similar characterized structures, including ligand binding sites from LIGBASE [213], and

binding partners from PIBASE.

The modular and relational design of PIBASE allows easy cross-referencing to

other databases of protein structure, sequence, and function. Work is currently underway

to cross-reference binary protein interaction databases such as BIND [18], using MODBASE

structural annotation of the interacting proteins [167]. Through further integration with

the plethora of high quality databases, PIBASE will become a valuable resource for the

structural biology community.
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2.4 Supplementary Information: Hamann Distance Function

Bit vectors were compared using the Hamann distance measure, disthamann, a

rescaled and reversed version of the traditional Hamann similarity coefficient, simhamann,

developed for use in plant systematics [78]. To compare bit vectors X and Y of length

m, the numbers of matches and mismatches for on and off states are first counted. The

Hamann distance function is then computed as detailed below (Eq 2.3).

Xi = 1 Xi = 0

Yi = 1 na nb

Yi = 0 nc nd

simhamann =
(na + nd) − (nb + nc)

m
= [−1, 1] (2.2)

disthamann = 1 −
(simhamann + 1)

2
= [0, 1] (2.3)

2.5 Supplementary Information: Topological Fingerprints

2.5.1 Complexes

A domain connectivity graph is generated for each structure, describing the pattern

of domain-domain contacts. In this graph, a domain is a node, and a binary domain interface

is an edge (Figure 2(b)). This graph captures the arrangement of the individual domains

in the complex. A crude linear representation of this graph is then computed. This string

is generated by labeling the nodes with their degree (ie, the number of nodes they are

connected to). The edges are then listed using the labels of their composite nodes. The

edge list is sorted lexically and the resulting string is used as a crude topological fingerprint
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to group the structures into topological classes (Figure 2(d)). While degeneracy exists in

this representation (ie, two distinct topologies may have the same sorted edge list), it is

useful as both a query and crude clustering term.

2.5.2 Binding Sites and Interfaces

Similar to the domain connectivity graphs, a crude linear representation of the

secondary structure topology graph was generated for use as a topological fingerprint. This

string is generated by labeling each node on the secondary structure topology graph with

their degree and their secondary structure type. The edges are then listed using the labels

of their composite nodes. The edge list is sorted lexically and the resulting string is used

as a crude fingerprint to group the structures into topological classes (Figure 2(c), 2(d)).

2.6 Supplementary Information: Kd-trees algorithm

Inter-atomic distances were computed using an in-house ANSI C implementation,

called kd-contacts, of the median kd-trees algorithm [23, 61]. The kd-trees algorithm, a

commonly used computational geometry algorithm, performs nearest neighbor queries by

first building a tree in O(n log n) time, and then querying it in O(n1−(1/d) + k) time,

where n is the number of data points in the d-dimensional space, and k is the number of

reported points. This approach is much faster than the naive approach of all vs all distance

calculation (O(n2)). The logarithmic scaling allows rapid calculation of contact maps even

for large structures with tens of thosuands of atoms, such as PQS entries of virus capsids.

Briefly, the algorithm begins by building a binary tree that recursively decomposes the d-
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Figure 2.4: Distribution of buried solvent accessible surface area in interacting SCOP do-
main pairs. The distribution is calculated from the non-redundant set of interacting domain
pairs (Methods). The largest interface is 7225 Å2 (not shown). The dashed vertical lines
shows the cutoff on the solvent accessible surface area used to obtain interfaces for subse-
quent annotation and analysis.

dimensional (here, d = 3) input space on alternate axes along the median partition. At

each branch the splitting value is stored, which allows a unique bounding box of points to

be associated with each node in the tree. The result is a non-uniform hypercube binning of

d-dimensional space, which is adapted to the actual distribution of data points. A nearest

neighbor query, given a query point and radius, is then performed by traversing only those

branches that may possibly contain a nearest neighbor according to their bounding box

definitions. This procedure allows rapid elimination of entire branches of the tree, leaving

only those bins that may contain a nearest neighbor. Distance calculations are required

only for the points in these candidate bins.
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(a) Complexes

1 Domain connectivity graph

(b) Domains

1 Solvent accessible surface area
2 Secondary structure assignment
3 Domain classification code

(c) Interfaces and Binding Sites

Interface Binding
Site

1 Buried solvent accessible surface area (∆SASA) X

2 Buried polar solvent accessible surface area (∆SASApolar) X

3 Number of residues X X

4 Residue types present X X

5 Number of secondary structure elements X X

6 Secondary structure types present X X

7 Number of structural patches X X

8 Number of sequence segments X X

9 Number of residue contacts X X

10 Residue contact types X X

11 Inter-atomic contacts (distance binned) (≤ 4.5, 5, 5.5, 6.05 Å) X X

12 Number of secondary structure element contacts X X

13 Secondary structure type contacts X X

14 Secondary structure topology X X

15 Number of H bonds X

16 Number of salt bridges X

17 Number of disulfide bridges X

Table 2.2: PIBASE properties. The computed properties characterize each complex at four
levels: the overall complex, its constituent domains, interfaces, and binding sites. A subset
of the properties are later used to remove interface redundancy and cluster the complexes,
interfaces, and binding sites into topological classes.
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(a) Structure (PQS 1ivo 1.mmol).

1

2

3

4

5

(b) Complex topology.

Figure 2.5: Topology properties calculated for each structure. Color represents the SCOP
classification of the domains (blue, g.3.9.1; red, g.3.11.1; black, c.10.2.5). (a) Ribbon and
surface representation of the complex of human epidermal growth factor and receptor ex-
tracellular domains (PQS entry 1ivo 1.mmol). The interfaces are colored in green. (b)
Graph representation of the domain connectivity. Solid lines represent intra-chain inter-
faces; Dashed lines represent inter-chain interfaces.
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(c) Interface and binding site topologies for

interface number 4, as defined in (b).

complex 3-2.3-2.3-1.2-2.2-2

interface 4 3 -2T.4B-3 .4T-2 .4T-3T.4T-
4B.5B-2T.5B-2T.5H-1 .5H-1 .5H-
2T.5H-3T.5H-4B.5T-1 .5T-
2 .5T-3 .5T-5B.5T-5T.5 -1 .5 -
2 .5 -5B.5 -5T.6B-2 .6B-3T.6B-
4B.6B-5B.6B-5T.7B-1T.7B-
2B.7B-2T.7B-4T.7B-5T.7B-5 .7B-
6B.8H-1B.8H-1B.8H-1B.8H-
1T.8H-1 .8H-2B.8H-2T.8H-5T

red bind-
ing site
(interface
4)

2H-2B.3 -2T.3 -2T.3 -3 .4T-
2 .4T-3 .4 -4T.4 -4T.4 -4 .6B-
3 .6B-4T.6B-4T.6B-4 .6B-4 .8B-
2B.8B-2H.8B-2 .8B-4T.8B-
4T.8B-4 .8B-4 .8B-6B

(d) Topological Fingerprints.

Figure 2.5: Topology properties calculated for each structure (cont.). Color represents
the SCOP classification of the domains (blue, g.3.9.1; red, g.3.11.1; black, c.10.2.5). (c)
Graph representation of the binding site and interface topology for interface 4, as defined
in (b). The interface topology is defined by the subgraph containing only dashed edges.
The topologies of the two interacting binding sites are defined by the two disconnected
subgraphs containing only solid edges. Node shapes represent secondary structure type
(triangle is β sheet, circle is α helix, filled box is loop, and open box is unassigned). (d) The
topological fingerprints are listed for the overall complex, interface number 4, as defined in
(b), and one of its corresponding binding sites. The characters in the interface and binding
site fingerprints represent secondary structure type (B is β sheet, H is α helix, T is Loop,
and = unassigned). Structure visualization by PyMOL (http://pymol.sourceforge.net);
Graph layout by LGL [3].

http://pymol.sourceforge.net
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(a) Number of secondary structure elements at the in-

terface.
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(b) Number of sequence segments at the interface.
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(c) Number of structural patches at the interface.
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(d) Number of Sequence Segments vs Buried Surface
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Figure 2.6: PIBASE Interface Property Distributions. All the plots are calculated from the
non-redundant set of interfaces. (a) Number of secondary structure elements at the inter-
face. Maximum 253 elements (not shown). (b) Number of continuous sequence segments
at the interface. Maximum 148 segments (not shown). (c) Number of structural patches
at the interface. Maximum 43 structural patches (not shown). (c) Number of sequence
segments vs buried surface area (r2 = 0.71).
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Chapter 3

Protein Complex Compositions

Predicted by Structural Similarity

This chapter has been previously published ([40])
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Abstract

Proteins function through interactions with other molecules. Thus, the network of

physical interactions among proteins is of great interest to both experimental and compu-

tational biologists. Here we present structure-based predictions of 3,387 binary and 1,234

higher order protein complexes in Saccharomyces cerevisiae involving 924 and 195 proteins,

respectively. To generate candidate complexes, comparative models of individual proteins

were built and combined together using complexes of known structure as templates. These

candidate complexes were then assessed using a statistical potential, derived from binary

domain interfaces in PIBASE (http://salilab.org/pibase). The statistical potential dis-

criminated a benchmark set of 100 interface structures from a set of sequence-randomized

negative examples with a false positive rate of 3% and a true positive rate of 97%. More-

over, the predicted complexes were also filtered using functional annotation and sub-cellular

localization data. The ability of the method to select the correct binding mode among alter-

nates is demonstrated for three camelid VHH domain — porcine α-amylase interactions. We

also highlight the prediction of co-complexed domain superfamilies that are not present in

template complexes. Through integration with MODBASE, the application of the method

to proteomes that are less well characterized than that of S. cerevisiae will contribute to ex-

pansion of the structural and functional coverage of protein interaction space. The predicted

complexes are deposited in MODBASE (http://salilab.org/modbase).

http://salilab.org/pibase
http://salilab.org/modbase
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3.1 Introduction

Recent developments in high-throughput screening have generated large data sets

identifying protein complexes. The Saccharomyces cerevisiae proteome has been especially

well characterized through yeast-two-hybrid (Y2H) [93, 225] and tandem affinity purification

(TAP) experiments [65, 66, 88]. Experimentally observed interactions, resulting from both

high-throughput and traditional low-throughput methodologies, are deposited in databases

such as the Biomolecular Interaction Network Database (BIND, 18) and the Database of

Interacting Proteins (DIP, 192).

Concomitant with these experimental advances, a spate of computational tech-

niques to predict protein-protein interactions have also been developed. Several approaches

based on protein sequence, structure, function, and genomic features have been described

[191]. In an effort to reduce the prediction errors, several methods integrate multiple types

of experimentally determined information and theoretical considerations [96, 121, 127].

Structure-based methods have been developed for the prediction of binary protein

interactions. InterPreTS [9] uses a statistical potential derived from known hetero-dimer

structures and MULTIPROSPECTOR [125] relies on threading to score pairs of proteins

that are similar to binary interactions of known structure. In addition to predicting new

interactions, structure-based methods can also annotate interactions that have been pre-

viously observed experimentally. A recent study used computational methods in conjunc-

tion with experimentally determined complex compositions and electron density maps from

negative-stain electron cryo-microscopy to generate structural models of yeast complexes

[12]. In a similar vein, structural knowledge has been used to predict the domains that are
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most likely to mediate binary protein interactions [153].

Here, we describe predictions of proteins that form complexes in S. cerevisiae based

on similarity to complexes whose atomic structures have been solved experimentally. First,

comparative models of conceivable complexes are built and then assessed by a specialized

statistical potential. The high-confidence interactions can be additionally filtered by exam-

ining orthogonal sources of information including sub-cellular localization and functional

annotation.

The current study is unique primarily in its prediction of structural models for

higher-order complexes as well as homomeric complexes. Computational methods have

been developed to infer higher-order complexes from binary protein interaction networks

[17, 207], but they do not explicitly use structural knowledge. Previous studies have also

focused primarily on the prediction of heterodimers, though homodimerization is biologically

prevalent and functionally significant [133]. We show that the multiple structure-based

assessment steps, from the initial fold assignment, to the interaction prediction, enables our

method to achieve a higher coverage, and presumably accuracy, than methods based solely

on sequence similarity.

We begin by describing the approach and benchmarking the method. Predictions

are then presented for proteins in S. cerevisiae and validated against experimentally ob-

served complexes. We highlight the performance of the protocol in the selection of the

correct binding mode when multiple template interface structures are available and discuss

newly predicted co-complexed superfamilies. Finally, we conclude with a brief discussion of

potential applications of the method in light of the ultimate goal of full structural coverage
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of interaction space.

3.2 Methods

3.2.1 Prediction Algorithm

Candidate complexes are first generated, then assessed, and finally filtered by

orthogonal biological information (Fig. 3.1(a)).

Candidate Complex Generation

Pairs of S. cerevisiae proteins were identified as potential interaction partners

if they were assigned SCOP domains belonging to superfamilies for which an interaction

structure exists in PIBASE (Fig. 3.1(b)) [39]. In some superfamilies, such as the ARM

superfamily (SCOP a.118.1), the lengths of the member domains vary widely. Because

alignments between structures of different lengths are difficult, a threshold was placed on

the relative sizes of the target and template domains - the shorter of the two domains must

be at least 60% of the length of the longer domain. In addition, the target domains were

required to be aligned with the template domains in sufficient number of positions such

that the corresponding template residues formed at least 50 % of the template interface

contacts.

Protein Data Bank (PDB) [24] structures that contained more than two domains

were used as templates for the prediction of higher-order complexes with more than two

proteins. Target domains that were assessed to interact through the interface modes in a

given PDB structure were listed as candidate members of a complex. Each complex was
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Figure 3.1: Prediction Logic Overview. (a) Prediction Flowchart. Groups of protein se-
quences modeled with SCOP domains observed to form a complex in PIBASE are listed
as candidate complexes. These candidate complexes are then assessed by a statistical po-
tential. Interactions that score above a Z-score threshold are filtered using sub-cellular
localization and functional annotation. The resultant predictions are deposited in MOD-
BASE. (b) Candidate Complex Generation. Comparative models of target domains are
structurally aligned to templates of known structure in PIBASE using the SALIGN module
of MODELLER. Putative interface residues are identified from the alignment. (c) Predicted
complexes are merged if they contain different domains of a single target protein.
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then scored with the worst of the Z-scores for the interacting domain pairs it contained,

as described below. This was done to provide a conservative estimate of complex quality

based on the lowest scoring constituent inerface. Predicted complexes were merged if they

contained different domains of a single target protein. In effect, the covalent link between

the domains served as a ‘bridge’ between predicted complexes that were based on different

templates (Fig. 3.1(c)).

Assessment of Candidate Complexes

Each candidate interaction pair was scored by assessing the agreement between the

target sequences and the template interface structure using a statistical potential derived

from binary interface structures in PIBASE.

First, residue contacts across the interface were calculated for the template in-

terface and grouped into classes based on the main chain or side chain participation of

each residue. Next, the MODBASE models of each candidate interaction partner were

structurally aligned against the corresponding domains in the template interface using the

SALIGN module of MODELLER [188]. Finally, the residue correspondences defined by

the alignments were used to score the candidate partner sequences against the template

interface contacts using the statistical potential, as described below.

A Z-score was calculated to assess the significance of the raw statistical potential

score, by consideration of the mean and standard deviation of the statistical potential scores

for 1,000 sequences where all amino acids in the target domain sequences were shuffled. Se-

quence randomization has been previously shown to perform comparably to a more physical
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model involving structural sampling in the context of fold assessment [141].

Orthogonal Biological Information

Orthogonal biological support for each predicted complex was provided by sub-

cellular localization and gene ontology functional annotation of their components, obtained

from the YeastGFP [68] and SGD databases [46], respectively. The number of shared local-

ization and function terms were computed for both experimental and predicted complexes.

If all pairs of proteins in a complex shared at least one function or localization term, the

complex was flagged as co-functioning or co-localized, respectively.

3.2.2 Construction of Statistical Potentials

A series of statistical potentials was built using the binary domain interfaces in

PIBASE extracted from structures at or above 2.5 Å resolution, randomly excluding 100

benchmark interfaces. Twenty-four statistical potentials were built using different values of

three parameters: the contacting atom types (main chain - main chain, main chain - side

chain, side chain - side chain, or all), the relative location of the contacting residues (inter-

or intra- domain), and the distance threshold for contact participation (4, 6, or 8 Å):

gij =

N
∑

p=1

∆n(p)
ij

(Ro)
∑

c=1
cifaci,cjnp

N
∑

p=1
n

(p)
ij max(cifai,j)

(3.1)

cifax,y = min (
interacting atomsx

atomsx
,
interacting atomsy

atomsy
)
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n
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j intra-domain potential,

n
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i n

(d2)
j + n

(d2)
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(d1)
j inter-domain potential.

wij = − ln

[

gij

1
400

∑20
k=1

∑20
l=1 gkl

]

(3.2)

Each of the ∆n
(p)
ij (Ro) residue pairs of type i and j in protein p that occurred

within the distance threshold Ro was weighted by cifa, the minimum of the fraction of total

atoms (of the type specified in the potential) in each residue that fell within the distance

threshold (Eqn. 3.1), and np, the number of residues in the protein. This count for each

residue type pair was normalized by n
(p)
ij , the total number of possible contacts of that type

in each protein, weighted by max(cifaij). In the case of the inter-domain potential, n
(p)
ij

was computed by taking into account the occurrence of each residue type in each domain

individually. Finally, the score for each residue type pair was normalized by the sum of the

scores observed for all residue type pairs (Eqn. 3.2).

3.2.3 Benchmarking of Statistical Potentials

Performance on the benchmark set of 100 randomly selected interface structures,

that were excluded during construction of the potentials, was used to compare the 24

statistical potentials. Eighty-four of these benchmark interfaces occur between domains

from the same family. This is representative of all interfaces in PIBASE, 8,877 (15.5%)

of which are between domains from different families, and 48,257 (84.5%) of which are

between domains from the same family. The sequences of the benchmark interfaces were

scored against their structures and a Z-score was calculated, as described above. Receiver-
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operator curves (ROC) were built to describe the observed false-positive and true-positive

rates at different Z-score thresholds. The ROC curves were then integrated to calculate the

area under the curve (AUC). The AUC represents the probability that a classifier ranks a

randomly chosen positive instance higher than a randomly chosen negative instance, with

0.5 corresponding to a random prediction, and 1 to a perfect classifier [56].

To investigate the effect of variation in the benchmark set on each of the ROC

curves, 20 jack-knife trials were performed where 20 randomly selected structures were

removed and the ROC curves recomputed using the remaining 80 structures. Standard

deviations of the areas under the resulting ROC curves were then calculated.

3.2.4 Validation of complex prediction

The predicted interactions were validated in two ways. First, the predicted S.

cerevisiae complexes were compared to the experimentally determined complexes in the

BIND database [18] and those recently reported by Gavin et al, referred to as Cellzome

[66]. The binary interactions were compared by counting the overlap of the predictions

with the interactions in the BIND and Cellzome sets. The Cellzome set consisted of pairs of

proteins that were deemed highly reliable in forming partnerships based on their computed

‘socio-affinity’ score [66].

Second, the higher order complexes were compared between the predicted and

experimental sets by counting how many of the predicted complexes were equivalent to,

or were subcomplexes of, experimentally determined complexes. Since the predictions are

based on known structures, the sizes of the predicted complexes are far smaller than those
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obtained by biochemical methods such as tandem affinity purification methods. For this

reason, we elected not to use a metric that explicitly penalizes size differences (eg, the metric

defined in 17).

3.2.5 Binding Mode Selection

The ability of the potential to select the proper binding mode when multiple

template interfaces of different orientation are available was assessed. The test cases used

were the structures of camelid VHH domains AMB7, AMD10, and AMD9 bound to porcine

pancreatic α-amylase (PPA) (PDB codes 1kxt, 1kxv, and 1kxq, respectively). All three

modes were evaluated for each VHH-PPA complex using the interface statistical potential.

3.2.6 Data Sources

The prediction algorithm uses three types of data: (i) target protein sequences

among which complexes are to be predicted, (ii) structures of protein complexes to be used

as templates, and (iii) a list of the locations and types of structural domains in the target

and template proteins (Fig. 3.1(a)).

Target Proteins

S. cerevisiae protein sequences were obtained from MODBASE, a relational database

of annotated comparative protein structure models for all available protein sequences matched

to at least one known protein structure [168]. The models were calculated by MOD-

PIPE [52], an automated modeling pipeline that relies on MODELLER for fold assign-

ment, sequence-structure alignment, model building, and model assessment [188]. 6,600
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S. cerevisiae proteins were processed, resulting in 9,464 models for 3,440 sequences. 2,659

sequences had at least one reliable model (5,387 reliable models in total). A model is con-

sidered reliable when the model score, derived from statistical potentials, is higher than a

cutoff of 0.7 [141]. A reliable model has a greater than 95% probability of having at least

30% of Cα atoms within 3.5 Å of their correct positions. 3,376 sequences had at least

one reliable fold assignment (8,935 reliable folds in total). A fold assignment is considered

reliable when the model is based on a PSI-BLAST match to a template with an e-value

smaller than 0.0001.

Structural Domain Annotation

The domain definitions for PDB structures were obtained from the SCOP database

(ver 1.69) that classifies each domain using a four level hierarchy, class, fold, superfamily,

and family [148]. The location and types of domains in the target protein sequences were

then predicted using the SCOP annotation of their MODBASE templates, as follows. Do-

main boundaries were first assigned based on the MODBASE alignment of each target

protein to its structural template. Each target domain was required to have at least 70%

of the residues in its template domain to receive the domain assignment. Next, if the

target domain had greater than 30% sequence identity to the template domain and the

MODBASE structural model was assessed to be reliable, the target domain received the

template’s SCOP classification at the family level. If the sequence identity was less than

30% and a reliable model was built or if the sequence identity was greater than 30% but

MODBASE deemed only a reliable fold assignment, the superfamily was assigned. The
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remaining domains received the template domain’s SCOP classification at the fold level,

and were not used in the interaction prediction.

For those target proteins for which multiple models were available in MODBASE,

a tiling procedure combined the domain assignments for each model into a non-overlapping

set of domain boundaries that maximized the coverage length and classification detail in

the SCOP hierarchy.

Template Complexes

Structures of template complexes were retrieved from PIBASE, a comprehensive

relational database of structurally defined protein interfaces [39]. It currently includes

209,961 structures of interactions between 2,613 SCOP domain families. The ASTEROIDS

component of the SCOP ASTRAL compendium was used to cluster the interfaces, reducing

the computational expense of the predictions [32]. The ASTEROIDS alignments, available

for SCOP classes a-g, were used together with the interface contacts stored in PIBASE to

cluster all interface structures that shared pairs of SCOP families. When at least 75% of the

pairwise residue contacts in one interface also occurred between residues that were aligned

in another interface, the two interfaces were merged into a single cluster. The clustering

reduced the 79,428 domain interfaces between pairs of domains in the SCOP classes a-g to

21,791 representative interfaces. These interfaces were filtered using a threshold of at least

1,000 interatomic contacts resulting in a set of interfaces of significant size. Thresholds

similar to this, which roughly corresponds to a buried surface area of 400 Å2, have been

previously used to filter crystallographic artifacts from biologically relevant interfaces[83].
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Figure 3.2: Assessment of statistical potentials. Receiver operator curves (ROC) are shown
for the inter-domain potential performance on the benchmark set of complexes.

The final set of template binary interfaces contained 5,275 structures, including both inter-

molecular and intramolecular interfaces.

3.2.7 Technology

The prediction system was implemented as a Perl module and an integrated set

of Perl scripts, except for the inter-atomic contacts calculator written in ANSI C [39]. The

SALIGN module of MODELLER [188] was used to generate model template alignments.

The Perl DBI interface was used to access the MODBASE and PIBASE MySQL databases

(http://www.mysql.com). The calculations were done in a parallel fashion on 50 3.0 GHz

Pentium IV processors, taking 20 hours for the yeast genome. The predictions are accessible

via the MODBASE web interface (http://salilab.org/modbase).

http://www.mysql.com
http://salilab.org/modbase
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3.3 Results

3.3.1 Benchmark

The statistical potentials were tested using the benchmark set of 100 complexes,

and their performance compared using receiver operator curves (ROC) (Methods). The

highest power of discriminating between the native and non-native interfaces was achieved

by the statistical potential built from side chain - side chain contacts across the interfaces at

a threshold of 8 Å, corresponding to the extent of the first residue shell (Fig. 3.2). The ROC

curve for this potential had an area under the curve (AUC) of 0.993, and at the optimal

Z-score threshold of −1.7 had true positive and false positive rates of 97% and 3%, respec-

tively. Clear performance trends were observed for the parameters sampled in the potential

construction. The general trend of increased performance at the 8 Å threshold over the

lower thresholds is likely due to a more complete description of interactions within the first

residue shell. The inter-domain potential always performed better than the corresponding

intra-domain potential, when all other parameters were equivalent (data not shown). The

side chain - side chain (SS) potential performed better than the corresponding main chain

- side chain (MS) potential, which in turn performed better than the corresponding main

chain - main chain (MM) potential. At 6 Å and 8 Å, the all atom-type potential performed

better than only the MM potential. At 4 Å, the all atom-type potential performed better

than both MS and MM potentials. The range of performances, generated by varying the

other parameters (ie, atom type, inter- or intra- domain), was widest at the 4 Å distance

threshold and least at 8 Å.
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Jack-knife trials were performed to determine the effect of variation in the bench-

mark set on the ROC curves (Methods). The AUC of the jack-knifed ROC curves exhibited

narrow distributions, with the lowest standard deviation (0.002) achieved by the inter-

domain SS potential at 8 Å, and the highest (0.02) achieved by the intra-domain MM

potential at 4 Å. This suggests the ROC analysis is robust to variations in the benchmark

set.

Here, the potentials were assessed using a benchmark set of native interface struc-

tures. In the predictive setting, the absolute performance of each potential will likely be

diminished due to errors in the comparative models. However, the relative performance

of the different formulations, as captured by the ROC curves, remains a valid guide for

selection of the potential to use in the predictions.

3.3.2 Predictions

The best statistical potential, as determined above, was then used to assess can-

didate interactions between S. cerevisiae proteins. 12,867 binary interactions that scored

at or below a Z-score threshold of −1.7 were predicted between 1,390 S. cerevisiae pro-

teins (Fig. 3.3(a)). Next, the co-function and co-localization filters were separately applied,

reducing the original 12,867 interactions to 6,808 and 4,606, respectively. The combined

co-localization and co-function filter resulted in 3,387 predictions. 12,702 higher-order com-

plexes were also predicted at a Z-score threshold of −1.7 between 589 proteins. Similar

to the binary predictions, the orthogonal filters reduced this number to 1,234 complexes

between 195 proteins.
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The predictions spanned the entire spectrum of target-template sequence similarity

(Fig. 3.3(b)). This distribution reflects both the comparative modeling procedure used

to build models of the individual proteins and the procedure used to identify potential

interaction templates. The mean target-template sequence identity of the reliable models

built for S. cerevisiae proteins is 31%. Domains from different families within the same

superfamily, the SCOP level used to identify potential interaction templates, often share

less than 30% sequence identity. Both of these factors influence the distribution of target-

template identities observed for the predicted interactions.

The fractions of predicted binary interactions that passed the co-function (53%),

co-localization (36%), and both co-function and co-localization (26%) filters were similar to

the fractions for BIND interactions (39%, 34%, and 22%, respectively). The Cellzome set

more readily passed these filters (65%, 60%, and 46%, respectively).

3.3.3 Validation

The predictions were then compared with known experimental interactions, as de-

posited in the BIND database. 270 of the 3,387 predicted binary interactions that passed

the combined co-localization and co-function filter overlapped with known binary interac-

tions. 8 of the 1,234 predicted higher-order complexes were also found as subcomplexes of

experimental complexes.

The enrichment of the unfiltered predictions with known binary interactions begins

to plateau at 0.2 around a Z-score threshold of −3.5, with an enrichment value of 0.03 at

the Z-score of −1.7 (Fig. 3.4(a)). The predictions that passed the separate localization
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and function filters both reached a peak of 0.28 at a Z-score of −3.6. Both filters produced

enrichment values of 0.06 at the Z-score threshold of −1.7. The enrichment of the predictions

that passed the combined co-localization and co-function filter exhibited a higher peak of

0.36 at the Z-score of −3.6. At the Z-score threshold of −1.7, the combined filter produced

an enrichment of 0.08, a more than two-fold increase compared to the unfiltered predictions.

3.3.4 Comparison to other computational methods

The performance of the method in predicting binary interactions is comparable

to similar structure-based methods that have been previously applied to S. cerevisiae on

a genomic scale. Here, an overlap of 270 binary interactions is observed between the set

of 3,387 (8%) predictions and 19,424 (1.4%) experimentally observed binary interactions.

374 of 7,321 (5 %) interactions predicted by threading occurred in a set of 78,930 (0.4%)

experimentally determined yeast interactions [126]. An overlap of 59 predicted interactions

with an experimental set of 2,590 (2.3%) interactions was obtained by interface model

assessment [9].

To compare it directly to a method that does not use structural assessment, PSI-

BLAST [195] was used to predict binary interactions by detecting similarities between S.

cerevisiae proteins and the template complexes. An overlap of 929 binary interactions was

observed between the set of 36,790 (2.5%) predictions and the 19,424 (4.8%) experimentally

observed binary interactions.
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Protein Domain
Interactions Proteins Interfaces Domains

Input

MODBASE models - 3,440 - 5,219
Template Complexes - - 5,275 9,314

Binary Interactions

Z-score ≤ −1.7 12,867 (5.1%) 1,390 13,773 1,727
Z + Co-Function 6,808 (9.6%) 1,152 7,364 1,389
Z + Co-Localization 4,606 (14.1%) 1,021 5,030 1,255
Z + Co-Loc + Co-Func 3,387 (19.2%) 924 3,738 1,112

Higher-Order Complexes

Z-score ≤ −1.7 12,702 589
Z + Co-Function 3,544 332
Z + Co-Localization 2,189 280
Z + Co-Loc + Co-Func 1,234 195
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Figure 3.3: S. cerevisiae predictions. (a) Predictions of binary and higher-order complexes
filtered by sub-cellular localization and annotated function. The homomeric fraction of
interactions is listed in parenthesis. (b) Average sequence identity of predicted interaction
partners to template interacting domains vs Z-score. The predictions shown were scored
with Z-score ≤ −1.7, and passed the combined co-localization and co-function filter.
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Experimental Overlap

Predicted All BIND Cellzome

Binary Interactions

experimental 19,424 13,191 6,942

Z-score ≤ −1.7 12,867 409 324 151
Z + Co-Function 6,808 390 311 145
Z + Co-Localization 4,606 278 220 102
Z + Co-Loc + Co-Func 3,387 270 217 97

Higher-Order complexes

experimental 783 296 491

Z-score 12,702 66 54 35
Z + Co-Function 3,544 51 45 28
Z + Co-Localization 2,189 14 7 10
Z + Co-Loc + Co-Func 1,234 8 4 7

(b)

Figure 3.4: Experimental overlap of S. cerevisiae predictions. (a) The probability of finding
an experimentally observed interaction in the predicted set, as a function of the statistical
potential Z-score. The unfiltered predictions are represented by dotted-dashed, the co-
function filtered by dotted, the co-localization by dashed, and the combined co-localization
and co-function filtered set by solid lines. The curves are only shown to a Z-score threshold
of −5.0, because of the sparseness of predictions below this level. (b) Experimental overlap
of the binary and higher-order predictions filtered by sub-cellular localization and annotated
function.
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AMB7 mode AMD10 mode AMD9 mode Kd [nM]

AMB7 -3.27 (-2.27) -1.19 (14.02) -2.65 (5.00) 235

AMD10 -1.39 (12.61) -3.40 (-4.84) -2.36 (6.73) 25

AMD9 -2.13 (4.94) -0.97 (15.78) -3.60 (-9.75) 3.5

Figure 3.5: Selection among alternate binding modes. Camelid VHH domains AMB7 (or-
ange), AMD10 (magenta), and AMD9 (blue) bind to porcine pancreatic α-amylase (PPA,
grey surface) through three distinct binding modes (PDB codes 1kxt, 1kxv, and 1kxq, re-
spectively). All three modes were evaluated for each VHH-PPA complex using the interface
statistical potential. The Z-scores are presented along with the raw score in parenthesis.
Dissociation constants measured by total internal reflectance (IAsys) were obtained from
literature [120]. Image created by PyMOL (Delano Scientific, 2002).

3.3.5 Alternate Binding Modes

The ability of the algorithm to correctly select the native binding mode when al-

ternate templates are available was tested. The native binding mode was correctly selected

for all three VHH domains interacting with porcine pancreatic α-amylase (Fig. 3.5). In

addition, the statistical potential scores that were computed for the native binding modes

exhibit the same rank-order as the affinity measured experimentally by total internal re-

flectance [120].
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Superfamily BIND or
pairs Cellzome BIND Cellzome

BIND or Cellzome 13,586 13,586 3,997 11,594

PDB direct 671 181 131 159
PDB co-complexed 1,555 420 143 393

Predicted 100 43 24 35
co-complexed

Figure 3.6: Co-complexed domain superfamilies. The pairs of co-complexed superfamilies
observed in the BIND and Cellzome complexes are compared to the direct interactions in
the PDB, co-complexed pairs in the PDB, and the predicted co-complexed pairs resulting
from the complex extension procedure.

3.3.6 Co-complexed domains

An extension process merged predicted complexes containing different domains

of a single target protein (Fig. 3.1(c)). This process predicted 279 pairs of co-complexed

SCOP domain families that were not present in the structures of template complexes. The

comparison to experimental complexes was done at the superfamily level, as many of the

domains in the experimental complexes were assigned domains that were classified only to

this level in the SCOP hierarchy (Fig. 3.6).

3.4 Discussion

We presented a method to predict protein complex compositions by generating

comparative models of candidate complexes based on sequence similarity to structurally

known complexes followed by model assessment (Fig. 3.1). We applied the method to the

S. cerevisiae proteome (Fig. 3.3) and compared the predicted complexes with experimental

data (Fig. 3.4, Fig. 3.6). We further tested the method by distinguishing between multiple

template binding modes (Fig. 3.5). We now discuss the observed performance and describe
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the limitations of the algorithm. We close by discussing the information gained in the present

study and its applications to increasing structural description of protein interactions.

3.4.1 Accuracy

Because a large set of true negative interactions is not available, only the positives,

or predicted interactions, can be compared between experiment and predictions. This limi-

tation restricts the validation of the predictions because if the Z-score threshold is loosened,

maximal overlap can be achieved at the expense of the false positive rate. However, the false

positive rate can not be counted with certainty, as false positives can not be distinguished

from false negatives in the experimental data sets, which can be quite high [235]. Similar

validation problems are encountered when testing protein ligand docking algorithms. Here,

a measure related to the enrichment factor used in protein ligand docking was applied (Fig.

3.4(a)).

The overlap observed between the predicted and experimentally observed com-

plexes is comparable to that between different experimental procedures [235]. 270 of the

3,387 predicted binary interactions and 8 of the 1,234 predicted higher-order complexes

were present in the BIND or Cellzome datasets (Fig. 3.4).

This overlap is a result of several factors. First, by construction our method is

restricted to protein interactions for which structural templates exist. For this reason,

our method is also biased towards complexes that are stable enough to be amenable to

structure determination, whereas the yeast-two-hybrid method that populates most of the

high-throughput entries in BIND, is biased towards transient interactions [235]. Secondly,
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many PDB entries do not contain complete domains for both partners (eg,, SH3 domain

- peptide complexes) and were thus not considered as templates in the current prediction

protocol. Finally, the challenge faced in predicting binary interactions increases combina-

torially for higher-order complexes.

Errors in the predicted interactions are also a result of errors that may arise in

each stage of the comparative modeling procedure, including fold assignment, alignment,

and structure modeling. Comparative modeling errors vary in type and magnitude with

the sequence identity between the template and target proteins[128]. At very low sequence

identities, the fold type of the target sequence may be assigned erroneously. When the

proper fold has been assigned, misalignments may still occur due to gaps and insertions in

the target sequence. Given the correct alignment, main chain distortions may still occur due

to differences in the target and template backbone structure. At the finest resolution, side

chains may suffer from errors in packing. These comparative modeling errors contribute to

both false positives and false negatives in the predicted interactions.

The use of sub-cellular localization data and functional annotation as filters for

the predictions increased their overlap with experimental complexes, as compared to the

unfiltered predictions. This finding is in agreement with previous observations that combin-

ing multiple sources of information improves the accuracy of function annotation as well as

interaction prediction [96, 121, 127]. Our method easily allows for the use of additional bi-

ological filters when other types of data are available, such as synthetic gene lethality [219],

co-expression [217], etc. This incremental addition of orthogonal information is also neces-

sary to more accurately represent the conditions in the cellular milieu, where the propensity
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of two protein structures to interact is not limited only by the physical chemistry of the

interaction, but also by higher levels of biological regulation, including compartmentaliza-

tion, expression, degradation, abundance, etc. Depending on the application, the user may

decide to apply different biological filters.

3.4.2 Importance of Structure

The majority (98.6%) of the filtered binary interactions as well as the subset

that overlapped with experimentally observed interactions (86.9%) were based on templates

sharing less than 80% sequence identity, a threshold previously established for reliable

transfer of a known interaction to a putative interaction between homologous proteins (Fig.

3.3(b)) [247]. This distribution highlights the advantage garnered by the use of structure

and the importance of a structure-based assessment.

One such example is the experimentally observed interaction between LSM2 and

LSM7 that was predicted here based on structural similarity to the 14-mer complex of

SmAP3, an Sm-like protein from the archae Pyrobaculum aerophilum (PDB 1m5q). The

sequence identities of LSM2 and LSM7 to SmAP3 are 23% and 2.4%, respectively. While

interface templates with higher sequence identities were available (highest identities of 20.7%

for LSM2 and 32.1% for LSM7 to chains G and A of PDB 1jbm, respectively), the 1m5q-

based model was scored most favorably by the statistical potential. Another example of a

known interaction predicted using a distantly related template interaction is that between

the delta (GCD2) and beta (GCD7) subunits of the translation initiation factor eIF2B,

predicted based on similarity to the structure of Ypr118w, a methylthioribose-1-phosphate
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isomerase related to regulatory eIF2B subunits. The prediction was made based on sequence

similarities of 16% and 15%, respectively.

For comparison, a näıve search for putative interaction partners was performed

by using PSI-BLAST to detect similarities between yeast proteins and the template com-

plexes. As expected, this approach, which is equivalent to the current method performed

without the structural assessment, predicted more binary interactions that have been ob-

served previously by experiment (929) than the structure-based method (270). However,

the näıve approach likely suffers from a higher false positive rate, as can be observed in the

lower enrichment of its predictions with experimentally observed interactions (2.5%) than

the structure-based method (8%) (Methods).

3.4.3 Alternative Binding Modes

The ability of the algorithm to choose the correct binding mode when multiple

templates are available was illustrated by evaluation of three alternative binding modes

that have been structurally characterized between porcine pancreatic α-amylase and camelid

VHH domains (Fig. 3.5). The algorithm successfully chose the native binding mode for

all three VHH domains. In addition, the statistical potential scores that were computed

for the native binding modes exhibit the same rank-order as the affinity of the interactions

measured by total internal reflectance [120].

However, this example is also cautionary in that each VHH domain had one non-

native mode that scored below the optimal Z-score threshold, though only the native modes

produced negative raw scores (Results). In a large-scale predictive setting, if the native
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binding mode was not available as a template, the VHH domain would have been predicted

to interact with PPA, but through an incorrect binding mode. This example illustrates a

connection between the observed performance and the underlying scoring scheme. However,

a systematic analysis of alternative binding modes in protein interactions, and the ability

of our method to distinguish them, remains a useful goal for the future.

3.4.4 Network Specificities

A more difficult test of the method is the prediction of specificities within inter-

action networks between homologous proteins. To address this problem, the method was

applied to predict the specificities within the Epidermal Growth Factor Receptor (EGFR)

and Tumor Necrosis Factor β (TNFβ) networks of ligand receptor interactions (data not

shown). In both networks the method failed to recapitulate known binding preferences.

Specifically, the rank order of the Z-scores for the assessed pairs did not correlate with

known binding preferences.

This error was not surprising. The randomization scheme employed in the Z-score

assessment of the raw statistical potential score simulated alternative binding modes. In

contrast, it was not designed or tested to determine specificities. This task is difficult as

large training data sets of this type are not available.

Rather than predicting specificities, the method presented here is applicable as a

first pass for genome-wide predictions of protein complexes. The resulting predictions are

then suitable for a follow up with more accurate computational methods, which on their

own are not feasible on a large-scale.
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3.4.5 Extension of Known Co-complexed Domain Superfamilies

Large protein complexes present unique challenges to structural characterization.

Direct physical interactions have been experimentally observed between domains from 671

pairs of different SCOP superfamilies (excluding homo-family interactions). Domains from

1,555 pairs of different superfamilies have been observed to co-complex in the same PDB

entry. 420 of these pairs have also been observed in biochemical complexes. Through an

extension process that merged predicted complexes containing different domains of a single

target protein, an additional 100 pairs of superfamilies were predicted to be co-complexed

(Fig. 3.1(c), Fig 3.6). 43 of these newly predicted pairs were also found in the experimental

complexes. This extension procedure will be especially informative when applied to proteins

from higher organisms with greater domain architecture complexity than S. cerevisiae [25].

3.4.6 Future Directions

We presented a tool for the prediction and assessment of the composition and

structure of protein complexes. The results suggest that the algorithm may in practice

be useful in conjunction with additional biological data, such as protein localization and

functional annotation. Through its integration with MODBASE, the method is applicable,

in an automated fashion, to all genomes with sequences that are amenable to comparative

protein structure modeling. The method will be especially informative for proteomes of

species that have not been characterized to the extent of S. cerevisiae, either because the

genomes have only recently been sequenced or because the organisms are difficult to analyze

experimentally.



69

In addition to proposing new protein complexes that have not previously been

observed, the present study also enables a more rigorous, structure-based, analysis of ex-

perimental protein interaction data. For instance, the system could be used to distinguish

complexes from temporally distinct interactions by assessing whether the interactions are

sterically compatible or exclusive [79]. The predictions may also prove useful in guiding

experiments that aim to probe the interactions, such as various site-directed mutagenesis

and interaction design studies.

Comparative protein structure modeling is increasingly used to help bridge the res-

olution gap between electron cryo-microscopy (cryo-EM) density maps and atomic protein

structures [221]. Fitting of protein and protein domain models into density maps of large

assemblies is already common, but depending on the resolution, the information encoded in

the map is often insufficient for an unambiguous determination of the positions and orien-

tations of the individual proteins [55]. Models of the complexes predicted here may provide

additional restraints for a more accurate fitting of proteins into large complexes studied by

cryo-EM and electron cryo-tomography [12, 190].

As the number and size of experimentally determined structures of protein com-

plexes increase, the number of complexes that can be predicted and modeled using these

structures as templates increases correspondingly, expanding the structural coverage of pro-

tein interaction space [10]. In combination with other computational methods, the presented

method will allow biologists to harness interaction information that has been experimentally

determined for similar systems to inform their hypotheses or experiments.
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Chapter 4

Host–Pathogen Protein

Interactions Predicted by

Structure

This chapter includes text that will be submitted for publication.

Abstract

Pathogens have evolved numerous strategies to invade their hosts, acquire nutri-

ents, and evade host immune defenses, while hosts have evolved immune responses and

other defenses to these foreign challenges. The vast majority of these interactions involve

protein–protein recognition. Here, we present and apply a computational whole-genome

protocol that generates testable predictions of potential host–pathogen protein interac-
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tions. The protocol first scans the host and pathogen genomes for proteins with similarity

to known protein complexes, then assesses these putative interactions, using structure if

available, and finally filters the remaining interactions using biological context, such as the

stage-specific expression of pathogen proteins and tissue expression of host proteins. The

technique was applied to ten pathogens, including species of mycobacterium, apicomplexa,

and kinetoplastida, responsible for “neglected” human diseases. The method was assessed

by (i) comparison to a set of known host–pathogen interactions, (ii) comparison to gene

expression and essentiality data describing host and pathogen genes involved in infection,

and (iii) analysis of the functional properties of the human proteins predicted to interact

with pathogen proteins. The final set of 1,501 potential host–pathogen protein interactions

predicted for Plasmodium falciparum, one of the ten pathogens studied, is approximately

5 orders of magnitude smaller than the initial set of all possible pairs, with an estimated

2 order of magnitude enrichment in true interactions. The predictions include interactions

from previously characterized mechanisms, such as cytoadhesion and protease inhibition,

as well as suspected interactions in hypothesized networks, such as apoptotic pathways.

We present several specific predictions which warrant experimental follow-up. Our com-

putational method provides a means to mine whole-genome data and is complementary to

experimental efforts in elucidating networks of host–pathogen protein interactions. It can

ultimately aid in the identification of potential targets for immunization and chemotherapy

strategies.
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4.1 Introduction

Genome sequencing has changed the scale and diversity of biomedical problems

amenable to investigation [77]. Complete genome sequences are now readily available for

many species, including human and a number of biomedically relevant microbes. Functional

insights into the proteins encoded by these genomes are emerging from technical advances

such as three-dimensional structure determination and the detection of genetic and physical

interactions [18, 19, 22, 240, 244]. For example, within one year of the SARS outbreak, the

causative agent was classified as a new coronavirus using DNA microarray technology, its

genome was sequenced, structures of key proteins were proposed by comparative modeling,

and potential inhibitors were identified through molecular docking studies [14, 117, 184,

234, 245]. However, in general, the wealth of genomic information available for both human

host and pathogens remains unmined due to the lack of whole-genome protocols that can

predict host–parasite interactions.

Pathogens have evolved numerous strategies to successfully invade their hosts, ac-

quire nutrients, and evade their immune defenses [147]. These strategies often involve direct

interactions between host and pathogen molecules, including the formation of protein com-

plexes. Molecular mimicry of host cellular components has been observed as a bacterial and

viral infection strategy in which the pathogen is able to circumvent the host immune sys-

tem as well as harness the host signaling pathways to benefit its own survival [7, 210]. For

example, the Salmonella virulence protein SptP activates the human Rho-GTPase Rac1

in a structurally similar mode as human Cdc42 GAP activates the human Rho-GTPase

Cdc42 [209]. Host factors also determine the course of infection [105]. Productive HIV in-
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fection requires several host factors, including ATM kinase, inhibition of which was recently

demonstrated to suppress HIV infection [71, 119].

The host and pathogen genes and proteins involved in the infection process are

currently studied using traditional small-scale biochemical and genetic experiments, which

focus on one protein or pathway at a time, or a few genome-scale studies that survey

the response of many genes and proteins simultaneously. The genome-scale studies utilize

technologies such as RNA interference, transposon mutagenesis, and genomic microarrays

to identify and characterize the genes involved in infection and the time-course of their

involvement [28, 89, 166].

Although the exact number of host–pathogen protein interactions involved in in-

fection is difficult to estimate, it is likely that the currently known interactions for specific

host–pathogen pairs, which vary in number from none to approximately ten, do not rep-

resent the complete interaction networks. Recently, a computational method predicted 20

putative interactions between 20 human and 8 Kaposi’s sarcoma-associated herpesvirus

(KSHV) proteins. 13 of these interactions were verified by co-immunoprecipitation, all of

which were previously unidentified [226]. Thus, even for pathogens with small genomes, such

as the ∼80 open reading frames in KSHV, much is left to be learned about the network of

interactions between host and pathogen proteins.

While experimental efforts to characterize these networks can enhance our knowl-

edge of the infection process, large-scale experimental methods, such as tandem affinity pu-

rification and yeast-two-hybrid experiments, also exhibit significant false negative as well as

false positive error rates. For example, yeast-two-hybrid experiments have an estimated false
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positive rate of over 50% and a false negative rate approaching 90% [81]. Computational

methods have demonstrated utility in improving the coverage and accuracy of identifying

protein–protein interactions in combination with experimental data sets [96, 121]. Compu-

tational methods may similarly complement large-scale experimental efforts to characterize

host–pathogen interaction networks. These methods incur essentially no material costs,

present no safety concerns to laboratory workers, and are unaffected by the experimental

challenges of culturing pathogens, and expressing and purifying their proteins.

One useful role of computation is to reduce the total number of potential host–

pathogen protein interactions to an experimentally tractable number of interactions, while

improving the enrichment of true interactions. Here, we develop and apply a protocol

that sequentially reduces the number of potential protein interactions between a host and

pathogen by combining experimental genomic, proteomic, and structural data together

with comparative protein structure modeling to predict pairs of pathogen and host proteins

that potentially interact physically. The protocol begins by identifying pairs of host and

pathogen proteins that each have similarity to components of a known interaction. Next, the

putative interface is assessed using structure, if available. Finally, independent information

that captures the biological context of potential interactions, such as the stage-specific

expression of pathogen proteins and tissue expression of host proteins, is used to filter the

initial set of pairs. The result of the protocol is an enriched candidate set that is suitable for

subsequent experimental study. Here, we have applied the protocol to ten human pathogens,

including species of mycobacteria, kinetoplastida, and apicomplexa, that are responsible for

“neglected” human diseases. These pathogens infect over one billion people and incur over
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one million annual deaths [242].

We first describe the protocol, detailing the data sources and the computations

used. We then present the predictions made for the ten pathogens. We assess the protocol by

(i) comparison to a set of known host–pathogen protein interactions, (ii) comparison to gene

expression and essentiality data describing host and pathogen genes involved in infection,

and (iii) analysis of the functional properties of the human proteins predicted to potentially

interact with pathogen proteins. We present several specific predictions whose support in

the literature warrants experimental follow-up. We discuss the observed performance of

the method and future improvements. Finally, we conclude by discussing the implications

of these results for understanding the molecular mechanisms of pathogenesis and designing

immunization and chemotherapy strategies.

4.2 Results

The protocol begins with the target set of host and pathogen protein sequences

(Fig 4.1, Materials and Methods). These sequences are first modeled by an automated com-

parative protein structure modeling pipeline that detects similarities to all known protein

sequences and structures. Pairs of host and pathogen proteins that each have detectable

similarity to components of a known interaction are identified. If an experimentally deter-

mined three dimensional structure of the known interaction is available, structural models

are built for the host and pathogen target sequences, and their putative interface is as-

sessed using a statistical potential score. In the absence of structure, the significance of

the similarity between the target proteins and their corresponding interaction templates is
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Potential host-pathogen interactions

Identify pairs of proteins with 

similarity to known complexes

Template

interactions

Host, pathogen

proteomes

Template

structures

Detect sequence similarities Detect structure similarities

Apply biological and

network-level !lters

Assess sequence or structural

basis for putative interaction

P. falciparum - Human

protein pairs

1.7 x 108 

2.0 x 105

1.2 x 104 

1.5 x 103

Figure 4.1: Prediction protocol. The protocol begins with the set of host and pathogen
proteins. Sequence matching procedures are then used to identify similarities between
the host or pathogen proteins and proteins with known structure or known interaction
partners. A structure-based statistical potential assessment, or a sequence similarity score
in the absence of structure, is then used to predict potential interacting partners. Finally,
this set of potential interactions is filtered using the biological contexts of the host and
pathogen proteins and a network-level filter. The protocol reduces the number of potential
P. falciparum – human protein interactions by approximately 5 orders of magnitude (Table
4.2).

assessed using a sequence similarity score. These potential interactions are then filtered

by the biological context of their component proteins, such as life-cycle stage and tissue

expression, and by the network-level information, including the template usage frequencies.

4.2.1 Detecting sequence and structure similarities

The interaction template coverage of the pathogen proteomes, or fractions of the

pathogen proteomes that had detectable similarity to a protein that in turn interacted with

a protein to which a human protein had detectable similarity, ranged from 16% of T. cruzi

sequences to 25% of C. parvum sequences (Table 4.1). 34% of the human proteome had
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Protein With Interaction With Biological
Pathogen Sequences Templates Data

M. leprae 1,601 359 22% 1,023 64%
M. tuberculosis 3,954 729 18% 2,551 65%

L. major 8,009 1,908 24% 3,749 47%
T. brucei 8,965 1,817 20% 4,040 45%
T. cruzi 19,245 3,147 16% 8,604 45%

C. hominis 3,886 780 20% 1,591 41%
C. parvum 3,806 958 25% 1,828 48%
P. falciparum 5,342 1,126 21% 4,691 88%
P. vivax 5,334 1,131 21% 413 8%
T. gondii 7,787 1,311 17% 3,627 47%

H. sapiens 32,010 10,993 34% 26,595 83%

Table 4.1: Interaction template and biological data coverage of the genomes analyzed. Our
automated comparative protein modeling pipeline MODPIPE was used to detect sequence
and structure similarities to proteins in known complexes. Biological coverage refers to
those proteins for which at least one type of annotation was available (Table 4.6).

detectable similarity to a protein that in turn interacted with a protein to which a pathogen

protein had detectable similarity.

4.2.2 Identifying pairs of proteins with similarity to known complexes

The number of pairs of host and pathogen proteins that had detectable similarity

to known interacting proteins varied widely among the pathogen species, with the bac-

terial pathogens having far fewer pairs than the eukaryotic pathogens (Table 4.2 column

2). For example, 43,528 host–pathogen protein pairs were identified for the M. tuberculosis

proteome (3,954 sequences, 18% interaction template coverage), while 160,952 pairs were

identified for the C. hominis proteome with approximately the same proteome size and in-

teraction template coverage (3,886 sequences, 20% interaction template coverage). Among

the eukaryotic pathogens, the number of host–pathogen protein pairs varied approximately
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in proportion to the size of the pathogen proteome (Tables 4.1, 4.2).

4.2.3 Assessing the sequence or structural basis of the potential interac-

tions

The assessment procedure, using the statistical potential score when structure was

available, or the sequence identity threshold in the absence of structure, identified approxi-

mately 5% of the host–pathogen pairs identified in the previous step as possible interacting

partners (Table 4.2). The reduction in the number of pairs by this assessment was greatest

for the T. gondii–human pairs, of which only 3.4% passed the scoring thresholds.

As expected from the number of host–pathogen protein pairs with interaction tem-

plates, the Mycobacterium species have far fewer predicted potential interactions than the

eukaryotic pathogens. The number of potential interactions predicted between M. tubercu-

losis and human proteins was approximately 3-fold smaller than that for the similarly sized

C. hominis proteome.

4.2.4 Applying biological and network-level filters

The fractions of the pathogen proteomes with biological annotations varied widely,

from the well characterized P. falciparum proteome (88%) to the minimally characterized

P. vivax proteome (8%) (Tables 4.1, 4.6). The low biological coverage of P. vivax, whose

genome sequencing is still in progress, results from minimal gene ontology function annota-

tion as well as poor experimental coverage relative to other Plasmodium species. Potential

interactions between host and pathogen proteins that each met at least one biological cri-
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terion were considered to pass the biological context filter (Materials and Methods).

Next, we implemented a network-level filter that flagged those predictions based

on templates that were used for more than 1% of the total predictions. This filtering was

done because these predictions exhibited a low level of observed interaction specificity. For

example, many pairs of G-protein subunits α and β were predicted to potentially interact

with each other based on the crystal structure of the G-protein GI heterotrimer (PDB

1GG2).

Application of the biological and network-level filters resulted in a wide range of

reductions in predicted complexes (Table 4.2). This variability in reduction is due to the

different levels of biological annotation used for the genomes. For example, P. falciparum

had the highest biological annotation coverage (88%) and, as expected, the highest fraction

of potential interactions that passed the biological and network-level filters (13%). This

final set of potential P. falciparum–human interactions is a 5 order of magnitude smaller

than the initial set of all possible protein pairs. The low coverage of biological annotation for

other pathogens was also evident, as filtering the predictions for two pathogens, T. brucei

and T. gondii, resulted in removal of all potential interactions.

4.2.5 Assessment

Next, the predictions were assessed to characterize the coverage and accuracy of

the method. Coverage refers to the fraction of interactions that are accessible by the method

and accuracy refers to the fraction of the covered interactions that were correctly identified.

We assessed the quality of the protocol in three ways.
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Pathogen Pairs with templates Potential interactions Filtered interactions

M. leprae 26,234 (6,200/359) 1,351 (706/101) 13 (13/1)
M. tuberculosis 43,528 (6,549/729) 2,474 (992/240) 45 (41/13)

L. major 411,468 (9,978/1,908) 22,243 (2,680/656) 289 (186/29)
T. brucei 427,884 (9,935/1,817) 20,797 (2,546/661) 0 (0/0)
T. cruzi 750,419 (10,078/3,147) 33,869 (2,601/1,028) 914 (356/138)

C. hominis 160,952 (9,118/780) 7,237 (1,854/257) 79 (59/8)
C. parvum 203,570 (9,242/958) 10,987 (2,108/335) 211 (156/13)
P. falciparum 200,428 (9,554/1,126) 11,655 (2,291/434) 1,501 (826/216)
P. vivax 211,185 (9,546/1,131) 12,159 (2,305/399) 34 (26/4)
T. gondii 216,187 (9,683/1,311) 7,282 (2,024/261) 0 (0/0)

Table 4.2: Potential interaction set reduction by assessment and filtering. The potential in-
teractions meet the structural assessment or sequence alignment significance criteria. These
interactions are then filtered so that they meet at least one pathogen biological criterion,
one host biological criterion, and are based on a template that is used for less than 1% of
the total number of predictions in a given host–pathogen network.

4.2.6 Assessment I: Comparison of predicted and known host–pathogen

protein interactions

The predicted potential interactions were first compared to a set of known host–

pathogen protein interactions (Table 4.3). This set of known interactions, which are the

result of studies that have focused on single proteins or interactions, is too small to rig-

orously assess the method. However, this set still allows insight into the performance of

the method, highlighting what is missed and what is captured. Our protocol recovered 4

of the previously identified host–pathogen protein interactions published in the literature

for the ten pathogen species. Other known interactions were not identified because of the

lack of available template interactions in the interaction databases. None of these latter

cases was due to incorrect assessment by our method (Fig 4.1 step 3). As expected, this

result suggests that currently, a limitation of the protocol is the restriction of the coverage
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to interactions with an appropriate template.
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4.2.7 Assessment II: Comparison to gene expression and essentiality data

Next, we compared our pre-filtered predictions to genome-scale datasets describing

pathogen genes involved in M. tuberculosis infection and human genes involved in L. ma-

jor, M. tuberculosis, and T. gondii infections. These comparisons were performed because

genomic studies are so far the only techniques that have produced large-scale datasets de-

scribing host–pathogen interactions, even though previous studies have observed only weak

correlation between physical protein interactions and expression data [95, 145].

Previous studies have identified 194 M. tuberculosis genes that are essential for in

vivo infection [194], as well as 286 genes that are up-regulated in granuloma, pericavity, or

distal lung infection sites compared to in vitro conditions [174]. We compared these two sets

of genes to the set of M. tuberculosis proteins that we predicted to potentially interact with

human proteins. The overlap between these three data sets is minimal (Table 4.4). In fact,

only one gene occurs in both experimental data sets as well as our computational predictions:

Rv3910 (15611046), a probable conserved trans-membrane protein. The overlap of our

predictions with the set of genes upregulated during infection (23 genes) is greater than

the overlap between the two experimental sets of upregulated genes and essential genes (18

genes).

Previous studies have identified human genes that are differentially regulated in

response to a variety of protozoal infections, in particular the macrophage and dendritic

cells that are involved in the immune response [33]. The human proteins that we predicted

to potentially interact with L. major, M. tuberculosis, and T. gondii include respectively

231, 78, and 169 proteins that are encoded by genes observed to be differentially expressed
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Pathogen Data Set 1 (size) Data Set 2 (size) Overlap

(a) Pathogen proteins

M. tuberculosis Rachman (286) Predictions (240) 23

M. tuberculosis Sassetti (194) Predictions (240) 8

M. tuberculosis Rachman (286) Sassetti (194) 18

(b) Host proteins

L. major Chaussabel (3060) Predictions (2680) 231

M. tuberculosis Chaussabel (2893) Predictions (992) 78

T. gondii Chaussabel (2475) Predictions (2024) 169

Table 4.4: Comparison of predictions to experimental observations of proteins involved in
infection. (a) M. tuberculosis proteins predicted (pre-filtered) to potentially interact with
host proteins are compared to genes observed to be essential for in vivo growth (Sassetti
[194]) and those up-regulated in granuloma, pericavity, or distal lung infection sites (Rach-
man [174]). (b) H. sapiens proteins predicted (pre-filtered) to potentially interact with
pathogens are compared to genes that are differentially regulated in macrophages or den-
dritic cells upon infection by L. major, M. tuberculosis, and T. gondii (Chaussabel [33]).

in macrophages and dendritic cells upon infection by these pathogens (Table 4.4(b)) [33].

Again, the minimal observed overlap is a function of the weak correlation between physical

protein interactions and gene expression data, as previously observed [95, 145].

4.2.8 Assessment III - Functional overview of predicted potential inter-

actions

Finally, we analyzed the functional annotations of the human proteins predicted

to potentially interact with pathogen proteins in order to identify functions that were signif-

icantly enriched compared to the whole human proteome. This functional analysis is useful

both to quickly summarize the predictions and to evaluate the relevance of the predicted

interactions to the infection process. The human proteins predicted to potentially inter-

act with pathogen proteins were significantly enriched in several gene ontology function

terms, even before application of the biological filters (Table 4.5). For example, the hu-
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man proteins predicted to potentially interact with M. tuberculosis are enriched in cellular

component terms that make sense in light of known mechanisms of tuberculosis infection

including immunological synapse (7.7 fold enrichment, p-value = 10−3), T-cell receptor

complex (8.5 fold enrichment, p-value = 1.6 · 10−2), and autophagic vacuole (17.1 fold en-

richment, p-value = 3 · 10−4). These terms all reflect the known immunobiology of this

pathogen, which is known to elicit a T-cell response and was recently found to be elimi-

nated through autophagy [36, 42, 76, 204, 233]. Similarly, the human proteins predicted to

potentially interact with P. falciparum proteins are enriched in terms such as extrinsic to

plasma membrane (5.2 fold enrichment, p-value = 9.2 · 10−15) and homophilic cell adhesion

(4.2 fold enrichment, p-value = 2.8 · 10−21).

The enriched functional terms that have not been previously implicated in the

infection process represent either novel biological insight or false positives. Identification of

these terms as mechanisms that are relevant in vivo or false positive requires experiments

beyond the scope of this paper. However, some of the enriched terms suggest that false

positives could be identified and discarded if they arise from conservation of core cellular

components. For example, the conservation of core translation machinery across all divi-

sions of life [215] could result in an erroneously predicted potential interactions causing the

enrichment in the human–P. falciparum network for eukaryotic translation elongation fac-

tor (7.4 fold, p-value = 8.4 · 10−4). Similarly, terms such as pyruvate deydrogenase activity

(25.6 fold, p-value = 2.2 · 10−2) and asparate-tRNA ligase activity (24.4 fold, 5.3 · 10−5)

that are enriched in the human proteins predicted to interact with M. tuberculosis, may

also be false positives caused by the conservation of core cellular components, and should
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be filtered.
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4.3 Discussion

We will now discuss several of the predicted potential interactions and their sup-

port in the literature. We then describe the observed performance of the method, includ-

ing its advantages and limitations, and future developments to improve the performance.

We close by discussing possible applications of the method to aid in understanding host–

pathogen interactions as well as other types of inter-species interactions.

4.3.1 Specific examples of potential interactions

(1) Enzyme dimerization. We predicted several potential inter-species enzyme

dimerizations, such as T. brucei ornithine decarboxylase (ODC) binding to human ODC.

Functional dimerization of parasitic and host enzyme subunits has been previously observed,

such as in T. brucei and mouse ODC [158]. The number of instances and relevance of

this kind of dimerization to infection need to be experimentally validated. In the case of

ODC, both host and pathogen ODCs have been implicated in viral and protozoal infections.

For example, inhibition of host ODC reduces the ability of host macrophages to take up

parasites, such as T. cruzi [109], and inhibition of parasite ODC has been demonstrated

to reduce parasite growth in P. falciparum and Leishmania donovani [75, 203]. However,

these phenotypes are not necessarily due to interaction of ODC subunits across the species,

but rather the polyamines synthesized by the enzyme. Because the in vivo relevance of

these homodimer-like complexes is not clear, we generally removed predictions based on

homodimer sequence templates or template structures of subunits classified in the same

domain family (Materials and Methods). This restriction also facilitates visualization and
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(a) Template structure: cathepsin-H –

cystatin-A

(b) Experimental structure: falcipain-2 – Gallus gallus

cystatin

Figure 4.2: Example of a validated prediction: falcipain-2 – cystatin-A. A potential interac-
tion was predicted between falcipain-2 and cystatin-A based on (a) a template structure of
cathepsin-H (orange) bound to cystatin-A (teal) (PDB 1nb3). (b) The structure of falcipain
2 bound to chicken cystatin was recently experimentally determined (PDB 1yvb). Although
the interaction is experimentally verified, the question remains whether it would occur in
vivo. Figures were generated by PyMOL (http://www.pymol.org).

http://www.pymol.org
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(a) P. falciparum PFI0595c – CD51 (b) P. falciparum TRAP – TLR4

Figure 4.3: Examples of predicted potential interactions. (a) P. falciparum PFI0595c was
predicted to potentially interact with human CD51 (Integrin alpha-V; ENSP0000261023)
based on a structure of platelet membrane glycoprotein IIIA bound to CD51, respectively
(PDB 1JV2). (b) P. falciparum Thrombosdpondin-related anonymous protein (TRAP)
was predicted to potentially interact with Toll-like receptor 4 (TLR4) based on a tem-
plate structure of Glycoprotein IB alpha (orange) bound to Von Willenbrand Factor (blue),
respectively (PDB 1M10).



96

(c) P. falciparum PF13 0289 – XIAP (d) M. tuberculosis probable exported protein

Rv0888 – Actin

Figure 4.3: Examples of predicted potential interactions. (cont) (c) P. falciparum Hypothet-
ical metacaspase PF13 0289 was predicted to potentially interact with X-linked inhibitor
of apoptosis protein (XIAP) based on a template structure of Caspase-9 (orange) bound
to XIAP (teal), respectively (PDB 1NW9). (d) M. tuberculosis probable exported protein
Rv0888 was predicted to interact with actin, based on a structure of DNAse bound to actin
(PDB 1ATN). Figures were generated by PyMOL (http://www.pymol.org).

http://www.pymol.org
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analysis of the networks, although some true positive predictions may be lost.

(2) Cell adhesion. P. falciparum is known to adhere to host cell cytoadhesion

molecules. Several of the potential interactions predicted by our method involved human

cell adhesion proteins such as integrins and fibronectin containing proteins. For example,

we predicted that PFI0595c, a hypothetical P. falciparum protein, may potentially interact

with human CD51 (Integrin alpha-V; ENSP0000261023) based on a structure of platelet

membrane glycoprotein IIIA bound to CD51 (PDB 1JV2 [246]) (Fig 4.3). Previous studies

have observed that P. falciparum adherence to human microvascular endothelial cells in-

volves CD51 [199]. In addition, no potential interactions were predicted between integrins,

such as CD51, and P. vivax proteins. This prediction is in agreement with previous ex-

perimental evidence that indicates P. vivax does not engage in microvascular sequestration

[201].

(3) Actin cytoskeleton rearrangement. We predicted that M. tuberculosis proba-

ble exported protein Rv0888 (GI 15608028) may potentially interact with several human

α-actins (ENSP00000295137) based on the template structure of DNAse-I bound to actin

(PDB 1ATN) [101] (Fig 4.3). Rv0888 is thought to be exported by M. tuberculosis, while

the human protein is essentially ubiquitously expressed, including in macrophages where

the pathogen lives. The interaction between DNAse and actin is known to be strong enough

to depolymerize actin [101], and could potentially explain the observed M. tuberculosis re-

arrangement of host actin [74]. In addition to phagocytic cells, such as macrophages, M.

tuberculosis has been observed to be internalized by non-phagocytic cells, such as pneu-

mocytes [64]. Actin filament rearrangement has also been observed in these types of cells,
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and is hypothesized to be triggered by a secreted pathogen factor [64]. The potential inter-

action we predicted suggests a possible molecular mechanism for the changes in the actin

cytoskeleton that are observed upon infection.

(4) Innate Immunity: Toll-like receptor signaling. We predicted that P. falciparum

thrombospondin-related adhesive protein (TRAP, SSP2, PF13 0201) may potentially inter-

act with human Toll-like receptor 4 (TLR4, ENSP00000346893), based on a template struc-

ture of Glycoprotein IB alpha bound to Von Willenbrand Factor (PDB 1M10 [91]) (Fig 4.3).

TLR4, a “pattern recognition module” involved in the innate immune response, is known to

play a role in malaria through recognition of the glycosylphosphatidylinositol (GPI) mem-

brane anchors of P. falciparum proteins [114]. Single nucleotide polymorphisms have been

observed in the TLR4 gene that are associated with an increased severity of malaria, but

they fall outside of the modeled region [143]. TRAP is known to elicit an immune response

and so has been used as a component of several vaccine candidates [21, 85, 144, 170]. Anal-

ysis of TRAP sequence data from a Gambian P. falciparum population indicates that the

gene is under strong selection for variation in the sequence, with peaks in this variation oc-

curring in the A-domain, that we predicted could potentially mediate the interaction with

TLR4 [239]. The possible encounter of these two proteins is also supported by the biological

context, TRAP is expressed on the surface of the parasite during the sporozoite stage of

the plasmodium life-cycle and TLR4 is known to express in the liver. While alternative

explanations are possible, the biological evidence and the structural predictions made here

suggest that a TRAP – TLR4 interaction may play a role in vivo in the infection process.
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(5) Proteases. We predicted several potential interactions between proteases and

protease inhibitors, such as the P. falciparum falcipain-2 protease and the human cystatin-A

inhibitor suggested based on a template structure of human cathepsin-H bound to cystatin-

A (PDB 1NB3, Fig 4.2(a)). This prediction was recently experimentally validated, with

chicken cystatin [238] (PDB 1YVB, Fig 4.2(b)). This crystal structure was not present in

our template set, because it has not yet been classified by the SCOP domain annotation

database (Materials and Methods, [148]). Thus, the predicted complex was a true blind

prediction.

Although the experimentally determined structure provides direct validation of our

prediction, it does not imply relevance to the infection process. However, cysteine proteases

are known to be involved in malaria pathogenesis [159]. The known involvement of cysteine

proteases and experimentally established cross-talk between host and pathogen protease

and inhibitors suggests that the predicted interaction may play a role during infection.

This case is an example where structure is important both in making the pre-

diction and in highlighting its relevance as a potential pharmacologic target. A sequence-

based method with the established threshold of 80% joint sequence identity [247] would

have missed this interaction, because falcipain-2 and cathepsin-H share only 34% sequence

identity. However, comparison of the experimental falcipain-2–cystatin structure with the

template cathepsin-H–cystatin-A structure reveals a C-α RMSD of 0.43 Å at the interface.

In addition, this structure can be used to search for small-molecules that may disrupt or

mimic the target interaction.

(6) Apoptosis. We predicted that the hypothetical P. falciparum meta-caspase
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PF13 0289 may potentially interact with several human apoptosis inhibitors, including X-

linked inhibitor of apoptosis protein (XIAP), melanoma inhibitor of apoptosis protein (ML-

IAP), and neuronal apoptosis inhibitory protein, based on a template structure of caspase-

9 interacting with baculovirus inhibitor of apoptosis protein (PDB 1NW9) (Fig 4.3). P.

falciparum does not contain a true caspase, such as those found in animals, but instead

contains metacaspases, which are also found in plants, fungi, and other protozoa [227].

Nevertheless, animal inhibitors of apoptosis, such as XIAP, have been shown to affect cell

death programs in plants, which also lack true caspases [45, 123]. In addition, apoptosis-like

cell death has recently been observed in the mid-gut of mosquitoes as a result of malaria

infection [92]. These observations suggest that apoptotic machinery cross-talk, such as the

potential interactions predicted here, may be relevant to in vivo infection.

4.3.2 Enrichment of potential interactions with actual interactions

We initially suggested that one role of computation is to reduce the total number

of possible host–pathogen protein interactions to a more experimentally tractable number

of interactions, while improving the enrichment of true interactions. The protocol we pre-

sented here sequentially reduced the total number of potential interactions using a series

of assessments: (i) identifying template interactions, (ii) assessing the putative interaction,

using structure if available, and finally (iii) filtering using biological context and network-

level information (Fig 4.1). For example, the procedure resulted in a 5 order of magnitude

reduction in the number of possible human–P. falciparum protein interactions (Table 4.2).

We expect that this reduced set of potential interactions predicted by the protocol
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contains a higher fraction of true interactions compared to the initial set of all possible

host–pathogen protein pairs. This expected enrichment is difficult to assess directly, be-

cause there are no large sets of known host–pathogen protein interactions. However, the

enrichment can be estimated using the intra-proteomic predictions previously made for S.

cerevisiae. Of the 3,387 interactions predicted by the structure-based method, 270 occurred

in experimental datasets (8%) [40]. In total, 19,424 interactions have been observed out

of the possible 21,776,700 pairs of yeast proteins (0.09%) (Jan 2006) [40]. Thus, the num-

ber of potential yeast protein pairs was reduced by approximately 4 orders of magnitude,

while the enrichment was increased by approximately ∼ 2 orders of magnitude. These esti-

mates reflect intra-proteomic predictions and do not reflect the errors that uniquely affect

host–pathogen predictions, such as the conservation of core components discussed above.

4.3.3 Limitations in coverage

The performance of any method, computational or experimental, can be charac-

terized by two factors: coverage, describing the fraction of all interactions covered by the

method, and accuracy, describing the fraction of the covered interactions that were correctly

identified. The method presented is affected by various sources of error that affect both the

coverage and accuracy.

The main factor that limits the coverage of our method is that, like all comparative

approaches, it depends on previous experimental observations of similar interactions. The

effect of this limitation is reflected in the low number of currently known host–pathogen

protein interactions that were recovered by the method. Despite the limited coverage, the
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availability of structure enables a more rigorous assessment of the interaction than that

allowed by sequence alone (Fig 4.2) [40]. As experimental efforts identify more interactions

and further characterize the biology of host and pathogen proteins, the increased number

of templates and expanded biological context data will increase the coverage and accuracy

of our method, respectively.

Another factor that limits the coverage of our method is that the template identifi-

cation procedure is primarily restricted to domain-mediated interactions, although peptide-

mediated interactions are also known to contribute to protein interaction networks [149,

163]. Peptide motifs that mediate protein interactions are being identified through a com-

bination of computational and experimental methods [150, 220]. Applying these motif-based

methods will likely expand the coverage of host–pathogen protein interactions.

4.3.4 Errors in accuracy

The accuracy of interaction prediction methods is most rigorously assessed when

large sets of true positive interactions as well as true negative interactions are available.

Large negative sets are not yet available for any protein interaction system; however, large

positive sets are available for intra-proteomic interactions, particularly for S. cerevisiae

[66, 115]. In the case of host–pathogen interactions, neither large positive, nor large negative

sets of interactions are available. This lack of a true host–pathogen protein interaction set

makes direct assessment of our predictions difficult. However, we attempted three different

methods to gauge the accuracy of the predictions: (1) comparison to known host–pathogen

protein interactions (Table 4.3), (2) comparison to gene expression and essentiality data
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describing human and pathogen genes involved in infection (Table 4.4), and (3) analysis

of the functional annotations of the host proteins predicted to potentially interact with

pathogen proteins (Table 4.5). All three of these indirect methods of assessment suffer

from problems: (1) very few host–pathogen protein interactions have been described - in

some pathogens none is known; (2) gene expression is, at best, only weakly correlated

with physical protein-protein interactions [95, 145]; and (3) automated function annotation

methods, responsible for a significant portion of annotations, exhibit various types of error

[229].

Although direct assessment of the method is not feasible, it is possible to estimate

its accuracy in predicting intra-proteome protein interactions, for which at least a large

true positive set is available. The interaction map for S. cerevisiae is the most well stud-

ied experimentally and so is typically used to benchmark interaction prediction methods.

Previous benchmarking of the sequence-based method in S. cerevisiae demonstrated that

the interactions predicted, using an 80% joint sequence identity threshold, were all correct

[247]. We previously benchmarked the structure-based prediction module for protein inter-

actions within S. cerevisiae and found that 270 of the 3,387 interactions (8%) we predicted

were previously observed experimentally [40]. Although the sequence-based threshold of

80% sequence identity demonstrated a 100% true positive rate, the structure-based method

is able to predict below this high threshold. In fact, approximately 90% of the true inter-

actions predicted using the structure-based method fell below the 80% sequence identity

threshold. These performance characteristics observed for S. cerevisiae represent a baseline

for performance in the current application to host–pathogen interactions.
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Several factors affect the accuracy of the method. First, errors in each stage of the

comparative protein structure modeling procedure can affect the accuracy of the predicted

interactions. The magnitude of these errors vary depending on the similarity between the

target protein sequence and the template structure. The errors range from local errors in

side chain packing and minor shifts in backbone conformation, to more severe errors in loop

conformations, target-template alignment, and fold assignment [136]. These errors in the

comparative models propagate into the interactions that are predicted [40].

Second, the structural assessment was done using a coarse-grained statistical po-

tential that aims to capture frequencies of residue types in contacts that occur across in-

terfaces [40]. Although the coarse-grained statistical potential allows greater coverage of

interaction space compared to sequence-based methods alone, it also suffers from false pos-

itives and false negatives [40]. More accurate interaction scoring functions have been devel-

oped; however, these require explicit atomic modeling and refinement of candidate protein

complexes, which is computationally expensive [72]. Thus, these more accurate methods

can serve as computational follow-ups to the genome-scale predictions made here with the

faster coarse-grained potential.

Third, the method evaluated interactions as mediated by independent domains. It

is possible that even though the interaction between a given pair of domains is favorable,

that the protein–protein interaction can not occur due to unfavorable interactions between

the rest of the two proteins, which may not be amenable to comparative structure modeling.

In a similar vein, we do not attempt to assess the impact of post-translational modifica-

tions, which are known to play a significant role in the intricate specificities of biological
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networks [162, 196]. Although attempts can be made to take these factors into account,

they require explicit modeling which increases the computational expense beyond what is

currently feasible for genome-scale prediction.

These first three sources of error affect both intra-proteomic and host–pathogen

protein interactions. However, there is an additional source of error that uniquely affects

inter-species protein interactions. As the pathogen and host species are both eukaryotic for

eight of the ten pathogens studied, many of the predicted potential interactions are between

core cellular components, such as translation machinery, metabolic enzymes, and ubiquitin-

signaling components (Table 4.5). Addressing the relevance to infection requires in vivo

testing in an appropriate infection model. Although these interactions could potentially

occur if the host and pathogen proteins were to encounter one another, their availability for

such an encounter is not guaranteed. It is difficult to capture this “accessibility” information.

We have used biological data, such as known exported pathogen proteins and known host

tissue targets, but the precise spatial and temporal locations of these proteins are generally

difficult to characterize. We expect this last source of false positives to be diminished when

the evolutionary distance between pathogen and host is greater, such as between bacterial

or viral pathogens and their human hosts.

4.3.5 Other computational methods

Numerous computational methods have been developed to infer physical protein

interactions within a species [9, 38, 50, 96, 132, 164, 165, 208, 230, 247]. Several of these

methods rely on information such as genomic proximity, gene fission/fusion, phylogenetic
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tree similarity, gene co-occurrence, co-localization, co-expression and other features that

only make sense or are currently feasible in the context of a single genome. However, com-

parative approaches that infer interactions based on previously observed interactions remain

applicable to host–pathogen protein interactions, including the sequence and structure-

based methods we have used here [40, 247]. Other methods that are applicable include

those that identify peptide motifs that mediate specific protein interactions [149] or identify

pairs of sequence signatures that are found to mediate interactions [208].

One possible extension of the presented method that may improve the accuracy of

the predictions is an analysis of the selective pressure on the proposed interacting proteins.

If the host and pathogen genes both appear to be under selective pressure, for example

human TLR4 and P. falciparum TRAP (Fig 4.3), then there may be greater reason to

believe that evolution has driven the proteins to interact with one another. In addition

to potentially improving the accuracy of the predictions, it may also help highlight those

potential interactions that are most relevant to the infection process.

4.3.6 Potential impact

We have developed a computational whole-genome method to study potential

host–pathogen protein interactions. Knowledge of host–pathogen interactions is useful in

the development of strategies to treat and prevent infectious diseases. These interactions

may serve as pharmacologic targets, both for traditional drug discovery efforts aimed at

disrupting individual pathogen proteins and for small molecule or antibody inhibitors of

protein–protein interactions. The proposed interactions also highlight pathogen proteins
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that may be potential immunization targets.

We have also applied our method to ten pathogens involved in human infec-

tious diseases. The predictions are available on the internet at http://salilab.org/

hostpathogen and can be viewed and filtered according to criteria of interest to an in-

vestigator, such as particular host tissues or pathogen life-cycle stages. We hope that the

predictions serve the larger biomedical research community in moving towards the ultimate

goal of treating infectious diseases, in the “open source” model of the Tropical Disease Ini-

tiative [140]. The Tropical Disease Initiative is a decentralized, web-based, community-wide

effort where scientists from laboratories, universities, institutes, and corporations can work

together for a common cause (http://www.tropicaldisease.org).

In closing, as illustrated in Discussion, we expect our method to help provide

insight into the basic biology of host–pathogen systems, as well as other inter-species rela-

tionships that fall elsewhere on the mutualism – parasitism continuum.

4.4 Materials and Methods

4.4.1 Detecting sequence and structure similarities

The input to the protocol is the host and pathogen protein sequences (Cryp-

toDB [82], GeneDB [84], OrthoMCL-DB [34], PlasmoDB [211], ToxoDB [110], TubercuList

http://genolist.pasteur.fr/TubercuList/) (Table 4.1). First, protein structure mod-

els were calculated for all sequences using MODPIPE, our automated software pipeline for

large-scale protein structure modeling [52]. MODPIPE relies on MODELLER [188] for its

functionality and calculates comparative models for a large number of sequences using dif-

http://salilab.org/hostpathogen
http://salilab.org/hostpathogen
http://www.tropicaldisease.org
http://genolist.pasteur.fr/TubercuList/
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ferent template structures and sequence-structure alignments. Sequence-structure matches

are established using a variety of fold-assignment methods including sequence-sequence

[205], profile-sequence [13, 53], and profile-profile alignments [54, 138]. Increased sensitiv-

ity of the search for known template structures is achieved by using an E-value threshold

of 1.0. Ten models are calculated for each of the sequence-structure matches to achieve

a reasonable degree of conformational sampling [188]. The best scoring model for each

alignment is then chosen using a statistical potential [198]. Finally, all models generated

for a given input sequence are evaluated for the correctness of the fold using a composite

model quality criterion that includes the coverage of the model, sequence identity of the

sequence-structure alignment, the fraction of gaps in the alignment, the compactness of

the model, and statistical potential Z-scores [51, 141, 198]. Only models that are assessed

to have the correct fold were included in the final datasets. An important feature of the

pipeline is that the validity of sequence-structure relationships is not pre-judged at the

fold assignment stage, but is assessed after the construction of the model and its evalua-

tion. This approach enables a thorough exploration of fold assignments, sequence-structure

alignments, and conformations, with the aim of finding the model with the best evaluation

score. The models have been deposited in our database of comparative models, MODBASE

[168] (http://salilab.org/modbase) as publicly accessible datasets.
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4.4.2 Identifying pairs of proteins with similarity to known interactions

and assessing the sequence or structural basis of the potential in-

teractions

Next, the detected structural similarities were used to assign structural domain

boundaries to the modeled sequences, according to the SCOP classification system [148].

Pairs of proteins that contained domains classified in the same superfamily as those previ-

ously observed to interact (PIBASE [39]) were assessed by alignment of their comparative

structure models onto the corresponding domains of the template complexes, and sub-

sequent assessment of the putative interface by a statistical potential [40]. A statistical

potential Z-score threshold of -1.7 was used, as previously benchmarked [40]. Interactions

predicted based on template complexes formed by protein domains from the same SCOP

family were omitted from the analysis, because these predictions primarily consisted of

multimeric enzyme complexes formed by both host and pathogen proteins as well as core

cellular components, such as ribosome subunits and proteasome subunits.

Sequence profiles, built by MODPIPE, were searched for proteins that participate

in binary protein interactions (IntAct; [107]). Host and pathogen sequences were predicted

to potentially interact when each aligned to at least 50% of the sequence of members of a

template complex with a joint sequence identity of
√

sequence identity1 ∗ sequence identity2 ≥

80% [247]. Interactions predicted based on homodimer templates were omitted from the

analysis, because the predictions primarily consisted of complexes formed between corre-

sponding core cellular components of host and pathogens (eg, histones).
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4.4.3 Applying biological and network-level filters

The predicted potential interactions were filtered using biological context and

network-level information. The biological context filter was imposed at two levels, indi-

vidual proteins and their potential interactions (Table 4.6). The host proteins were filtered

by expression in tissues known to be targeted by the pathogen (GNF Tissue Atlas [214],

Harrison’s Principles of Internal Medicine [104]), known expression on cell surface, and

known immune system involvement (ENSEMBL [90], Gene Ontology Annotation (GOA)

[30], IRIS [1]). The pathogen proteins were filtered by known or predicted secretion, known

expression on cell surface, infective life-cycle stage, and functional annotation to defense

response mechanisms (PlasmoDB [211], ToxoDB [110], CryptoDB [82], GeneDB [84], refer-

ences in Table 4.6). The GO terms for human protein involvement in immune system were:

GO:0051707, GO:0002376, GO:0006955. The GO terms for pathogen protein involvement in

host–pathogen interactions were: GO:00044419 (involved in defense response), GO:0043657

(cellular component: host cell), and GO:0009405 (pathogenesis). Potential interactions

between human and pathogen proteins that each met at least 1 biological criteria were

considered to pass the biological filter.

The second level of biological filters was applied simultaneously to both human

and pathogen proteins, as follows. M. tuberculosis: pairs of human proteins expressed in

lung tissue or bronchial epithelial cells and pathogen proteins upregulated in granuloma,

pericavity, or distal infection sites [174]. L. major: pairs of human proteins expressed in skin

and pathogen proteins expressed in the promastigote or metacyclic life-cycle stage, human

proteins expressed in blood and pathogen proteins expressed in amastigote life-cycle stage.
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T. brucei: pairs of human proteins expressed in blood and pathogen proteins expressed

in the bloodstream life-cycle stage. P. falciparum: pairs of human proteins expressed in

erythrocytes and pathogen proteins expressed in the merozoite life-cycle stage, known or

predicted to be secreted, and found on the surface of infected erythrocytes; human proteins

expressed in liver and pathogen proteins expressed in the sporozoite life-cycle stage. P.

vivax: pairs of human proteins expressed in erythrocyte and pathogen proteins predicted to

be secreted.

The network-level filter removed predictions based on templates that were used

for more than 1% of the total number of predictions in each host–pathogen network. This

filter was imposed due to the lack of specificity in the predictions based on these highly

used templates. On average, 15 interaction templates were removed from each run.

4.4.4 Assessment: Functional overview of predicted complexes

The human proteins predicted to potentially interact with pathogen proteins were

analyzed for significant enrichment of gene ontology function terms using GO::TermFinder

[26]. The enrichment for a given GO term was computed as the ratio of the fraction of

proteins in the predicted set annotated with the GO term to the fraction in the entire human

genome. The significance of this enrichment was computed as a p-value with Bonferroni

correction for multiple hypothesis testing [206].
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4.4.5 Assessment: Comparison to gene expression and essentiality data

Human genes previously observed to be differentially regulated (two-tailed t-test,

p-value < 0.05) in macrophages and dendritic cells during infection by L. major, M. tu-

berculosis, and T. gondii were retrieved from GEO Omnibus (GDS2600) [33, 47]. Lists of

M. tuberculosis genes that were found to be essential for in vivo infection [194], and genes

that are upregulated in granuloma, pericavity, or distal lung infection sites compared to in

vitro conditions [174], were obtained from literature. Differential regulation and essentiality

do not imply direct physical interactions with pathogen proteins, but rather some involve-

ment in the infection process. Nevertheless, these studies are useful because they provide

large-scale data that is not yet available for direct host–pathogen protein interactions.
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Pathogen Pathogen Information Host Tissues

M. leprae Transcribed during infection
[243]

Skin, lymph node, lung

M. tuberculosis Differential transcription at
granuloma, pericavity, or dis-
tal lung infection sites vs in
vitro [173, 174]

Lung, bronchial epithelial
cells, lymph node

L. major Metacyclic, procyclic,
amastigote stage-specific
expression [8, 122]

Skin, whole blood,
monocyte[1]

T. brucei Procyclic, bloodstream stage-
specific expression [27]

Erythrocyte[161], whole
blood, lymph node, brain,
endothelial

T. cruzi Metacyclic, amastigote, try-
pomastigotes, epimastigote
stage-specific expression [16]

Erythrocyte[161], whole
blood, lymph node, skele-
tal muscle, smooth muscle,
cardiac myocytes, endothelial

C. hominis Sporozoite stage expression
[200]

Colorectal adenocarcinoma

C. parvum Sporozoite stage expression
[200]

Colorectal adenocarcinoma

P. falciparum Ring, trophozite, schizont,
merozoite, gametocyte,
sporozite stage expression
[59, 182, 183], expression in
infected erythrocyte plasma
membrane [60], predicted
secreted [86, 135, 193]

Erythrocyte[161], liver, brain,
whole blood, endothelial

P. vivax Predicted secreted [193] Erythrocyte[161], liver, whole
blood

T. gondii Bradyzoite, tachyzoite, encys-
tation stage expression [175]

Lymph node, skeletal mus-
cle, cardiac myoctes, placenta,
brain, lung

Table 4.6: Biological data characterizing host and pathogen proteins. Host tissue expression
data was obtained from the GNF Tissue Atlas [214] unless as noted.



114

Author contributions.

FPD and JHM conceived and designed the experiments. FPD, DB, and NE per-

formed the experiments. FPD, JHM, and AS analyzed the data. FPD and AS wrote the

paper.



115

Chapter 5

Conclusion

I presented a series of computational tools, primarily based on three-dimensional

structures, that aim to enrich the functional characterization of protein–protein interactions,

particularly those formed between host and pathogen proteins. I will now describe how these

tools have been used and how they can be improved. I will close with a general discussion

of the role of computation and structure in the investigation of biological networks.

5.1 Summary

First, I described a database, PIBASE, that extracts binary domain interfaces

from the protein structure databases, and characterizes them in a number of ways. In

addition to the subsequent two studies described in this dissertation, this database is used

by a number of other projects as a source of protein interaction information. Analysis of

the binding sites in the database led to the development of a method to model the structure

of protein complexes that combines docking and comparative modeling [111, 112]. The
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binding site information has also been used to analyze the potential functional effects of

single nucleotide polymorphisms [103, 106]. Most recently, it has been integrated into an

automated protein function annotation pipeline to identify potential binding sites on the

structures of unannotated proteins, such as many of those generated by structural genomics

consortia [139]. In addition to these large-scale applications, the database tools have been

used to compare the geometric and physichochemical properties of newly determined protein

complex structures to previously observed complexes (eg [73]).

Next, I described a comparative modeling method that uses experimentally deter-

mined structures of protein complexes as templates to predict physical protein interactions.

In addition to host–pathogen protein interactions, the protocol has been applied to data

sets generated by fluid and tissue proteomics consortia.

Lastly, I presented a computational protocol, employing these tools, to predict po-

tential interactions between human and pathogen proteins. The predictions are difficult to

assess, since not many host–pathogen interactions have been previously identified. However,

analysis of the functional annotation of the predicted complexes suggests that the proce-

dure proposes interactions that are in concordance with what is known about the infection

process. In addition to recovering previously observed interactions and invasion mecha-

nisms, the procedure generates testable hypothesis of host–pathogen protein interactions

that warrant experimental follow-up.
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5.2 Future Directions

The studies I have presented suggest that the use of structure, in combination

with genomic and proteomic data, is a valid approach to investigating protein interaction

networks. There are a number of ways in which the methods I presented can be improved,

both in terms of coverage and accuracy.

5.2.1 Improvements in coverage

Expansion of the template interaction set is essential for improving the coverage of

the comparative methods presented here. As more protein structures are determined exper-

imentally, both alone and in complex, and more interactions are identified experimentally,

the coverage of the method will subsequently increase. However, specific modifications can

be made now that will likely improve the coverage of the methods.

The structure-based method currently requires that domain boundaries and clas-

sifications have been assigned to the template protein structures. This causes the current

template set to be restricted to those protein structures solved more than 1 - 1.5 years ago,

due to the lag time in defining structural domains in new protein structures. The use of

automatic domain boundary assignment and classification tools will immediately increase

the coverage of the method.

The templates that are currently used, in both the structure- and sequence-based

methods, are restricted to domain mediated protein interactions. However, it is known

that domain-peptide interactions contribute significantly to protein interaction networks.

The expansion of PIBASE to include the structures of domain–peptide interactions will
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likely increase the coverage of the method. This expansion will likely require changes to

the statistical potential. The potential may have to be rebuilt specifically for these types

of interactions, or at the very least, the potential must be benchmarked on known peptide-

mediated interactions. Similarly, the use of previously identified sequence motifs, such as

the proline-rich PXXP motif recognized by the SH3 domain, will also increase the coverage

of the template set in the absence of experimentally determined structures.

Finally, the currently available set of protein complexes are heavily biased towards

interactions that occur within species. Although the number of physical host–pathogen pro-

tein interactions that have been observed is currently fairly low, they represent a template

set that are especially applicable to the prediction of host–pathogen protein interactions.

Manual curation, and perhaps automated literature parsing tools, are necessary to convert

the microbiology and immunology literature into a format that is easily computable. This

expanded template set will likely improve coverage of host–pathogen protein interactions.

As the accuracy of protein structure modeling and docking methods improves,

and computational power increases, these methods will become increasing applicable on

a genome-wide scale. The use of de novo methods will ultimately overcome the coverage

barrier inherent to comparative methods. However, the current accuracy and efficiency of

these methods is not suitable for genome-wide predictions of protein interactions.

5.2.2 Improvements in accuracy

Improvements in the assessment protocol can increase the accuracy of the structure-

based prediction method. First, the explicit modeling of candidate complexes will likely
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improve the accuracy of the predictions. The current protocol uses structural alignments

of individual comparative models onto the template complex to transfer pairwise residue

interactions from the template onto the candidate complex. Although this procedure is

faster than explicit modeling, it can only assess target residue interactions for which cor-

responding residues interact in the template. Explicit structural models of the candidate

complex will allow a more accurate assessment by the current statistical potential.

Second, the use of more fine-grained statistical potentials, such as the DOPE [198]

potential, will likely improve the accuracy of the predictions. Although this modification

necessitates explicit modeling of candidate complexes, thereby increasing the computational

expense, it may provide greater performance, specifically in predicting the specificities of

protein–protein interaction networks. These more accurate potentials will also prove useful

in optimizing the structural models of candidate complexes.

Third, the use of negative or graded interaction information will likely improve

the prediction of interaction specificities. The balance between interactions that occur and

those that do not occur is what defines the intricate specificities observed in biological net-

works. Large negative sets of protein interactions known not to occur would be a great

help to the prediction of interaction specificities. One specific direction that I believe could

improve the accuracy of the predictions is the development of statistical potentials that are

explicitly trained on both negative and positive sets of protein interactions. Of course, pro-

tein interactions do not occur in a strictly binary fashion, but rather exhibit a continuum

of binding affinities. Therefore, rather than truly negative interactions, the use of experi-

mentally determined binding affinities, for example within a family of homologous ligands



120

and receptors, such as the epidermal growth factor ligand–receptor network, will likely be

an important step towards improving the specificity of structure-based predictions. Ex-

perimental affinities have proven difficult to recapitulate using only structural information,

but recent efforts to parameterize structure-based scoring functions using thermodynamic

data have shown promise in assessing protein interface structures [113]. Both the binary

and graded binding affinity approaches will require manual curation efforts to extract the

appropriate parameters from the literature. In collating a set of true negative interactions

it is important to distinguish interactions that do not physically occur, from those that do

not occur in vivo due to higher levels of regulation, such as sub-cellular localization.

The distinction between interactions that are physically possible and those that oc-

cur in vivo is an important consideration for interaction prediction efforts. While structure-

based methods, like the statistical potential developed here, aim to predict whether a pre-

diction is physically feasible, the ultimate goal is to predict interactions that are relevant

in vivo. Here, I attempted to bridge this physical–in vivo gap using biological context,

such as sub-cellular localization and function annotation of S. cerevisiae proteins. In the

host–pathogen networks, I used biological context such as host protein tissue expression

and pathogen life-cycle stage-specific expression. However, these properties represent just

a few of the ways in which genes, and the proteins they encode, are regulated. Further de-

velopments in high-throughput methods to study the properties of genes, and the proteins

they encode, will enable more precise descriptions of the spatio-temporal environments of

cellular components. These more precise descriptions will further reduce the gap between

predictions of physical interactions and those that are relevant in vivo.
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5.3 Role of computation and structure in the investigation

of inter-specific biomolecular networks

The methods that I have developed here aim to study just one kind of inter-

specific biomolecular interaction. Inter-species interactions have been observed between all

kinds of biomolecules including small molecules, carbohydrates, nucleic acids, and lipids.

Although computational structure analysis tools are most well developed for proteins and

nucleic acids, improvements are being made that allow them to address post-translation

modifications, such as phosphorylation, and other kinds of biomolecules, such as lipids and

carbohydrates. As knowledge of the mechanistic basis of protein interactions continues to

grow, and structure becomes integrated with energetics, computational tools will become a

more accurate tool for investigating biological networks, including inter-specific networks.

In particular, inter-specific biomolecular interactions is an exciting area that has received

relatively little attention compared to interactions within species. Characterizing these

inter-specific interactions will improve our understanding of medically relevant interactions

as well as the mechanisms that underly co-evolutionary processes.

Much of computational biology, and especially structural bioinformatics, is de-

voted to benchmarking and incremental improvements in basic methods. However, there

are also clear areas where these methods can be used to investigate the basic biology that

underly human diseases. The results I have presented here will likely have little direct effect

on human health, however the approach I have presented is a generalized technique that

seems to show promise in identifying inter-specific interactions. The approach I have pre-
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sented is only an initial computational attempt at investigating protein–protein interactions

that may form in infectious diseases, and as further experimental and computational devel-

opment enable more accurate understanding of protein interactions, the applicability will

increase. As advances in medicinal chemistry increase our ability to target protein–protein

interactions with small molecules, these host–pathogen protein interactions will represent a

valuable new class of targets for antimicrobial agents.

The goal of reducing the global infectious disease burden will require public health

initiatives, such as adequate sewage treatment systems and clean water supplies, and reprise

from the political upheaval that threatens much of the world. However, there is no doubt

that basic and applied biology is a significant component in improving global health. For

example, vaccination strategies led to a practical eradication of smallpox. As biology has

moved into an era of parallel data acquisition, computation has come to play an essential

role in interpreting these observations. The understanding gained from these new kinds of

basic biology data have the potential to contribute towards improvements in human health.

Computation has proven to be a valuable tool for biology. However, without

properly posed questions, developing these tools for their own sake is a less than optimal

endeavor. In addition, computation can only operate on available experimental data and

so is limited in the types of questions that it can address, when used alone. As experi-

mental data is being generated in larger quantities, the need for computational tools to

interpret has grown. However, these large datasets have not always produced great in-

sight into meaningful biological questions. Nevertheless, there are still basic biological and

biomedical questions that have received relatively little attention, but can be addressed us-
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ing experimental measurements and computational methods that are currently feasible. For

this reason, I believe computation will continue to be an exciting area than can contribute

to our understanding of biology and medicine, most significantly when used as a component

of an overall approach that includes experimental observations.
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