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Abstract

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies 

(GWAS) and gene expression datasets to identify gene-trait associations. In this Perspective, we 

explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by 

using simulations and case studies of literature-curated candidate causal genes for schizophrenia, 

low-density-lipoprotein cholesterol and Crohn’s disease. We explore risk loci where TWAS 

accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, 

some likely to be non-causal, owing to sharing of expression quantitative trait loci (eQTL). TWAS 

is especially prone to spurious prioritization with expression data from non-trait-related tissues or 

cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. 

Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We 

suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities 

for improvement. Our results showcase the strengths and limitations of using eQTL datasets to 

determine causal genes at GWAS loci.

GWAS have robustly associated thousands of genomic loci with complex traits. Despite this 

success, GWAS loci are often difficult to interpret: linkage disequilibrium (LD) often 

obscures the causal variants driving the association, and the causal genes mediating variant 

effects on the trait are rarely ascertainable from GWAS data alone1. This interpretation 

challenge has motivated the development of methods to prioritize causal genes at GWAS 

loci.

One such family of methods is TWAS, which leverage expression reference panels (eQTL 

cohorts with expression and genotype data) to discover gene-trait associations from GWAS 

datasets2–4. First, the expression panel is used to learn per-gene predictive models of 

expression variation by using allele counts of genetic variants in the gene’s vicinity 

(typically within 500 kilobases or 1 megabase). These models are used to predict gene 

expression for each individual in the GWAS cohort. Finally, statistical associations are 

estimated between predicted gene expression and the trait (Fig. 1a). Expression prediction 

and association may be performed sequentially with individual-level GWAS data 

(PrediXcan2) or simultaneously with summary-level GWAS data (Fusion3 and S-

PrediXcan4). Closely related methods include SMR/HEIDI5–7, which performs Mendelian 

randomization (MR) from gene expression to trait, and GWAS-eQTL colocalization 

methods such as Sherlock8, coloc9,10, QTLMatch11, eCaviar12, enloc13 and RTC14, which 

discover genes whose expression is regulated by the same causal variants that underlie a 

GWAS hit.

Wainberg et al. Page 2

Nat Genet. Author manuscript; available in PMC 2019 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TWAS have garnered substantial interest within genetics and have been conducted for many 

traits and tissues15,16. Although TWAS methods are statistical tests associating genetically 

predicted expression and disease risk, with no guarantees of causality, a key reason for their 

appeal is the promise of prioritizing candidate causal genes (genes mediating the phenotypic 

effects of causal genetic variants) and tissues underlying GWAS loci. Unfortunately, there is 

a prevalent misconception that TWAS are causal-gene tests and that TWAS associations 

represent bona fide causal genes; in the following sections, we provide guidelines for 

interpreting TWAS results, highlighting scenarios in which TWAS accurately prioritize 

candidate causal genes and others for which TWAS-prioritized genes are likely to be non-

causal.

As a motivating example illustrating both the successes and interpretational challenges of 

TWAS, consider C4A, a causal gene for schizophrenia. Variants at the C4A locus contribute 

to schizophrenia risk by increasing the brain expression of C4A17. A TWAS has strongly 

associated C4A with schizophrenia on the basis of brain expression data from the Genotype-

Tissue Expression (GTEx) project18. Notably, C4A is by far the most significantly 

associated gene within 100 kilobases in brain tissues. C4A is also the most significantly 

associated gene in any tissue (Supplementary Table 1), even compared with other closely 

related genes in the complement system (C4B, CFB and C2). However, 8 of the 12 other 

genes within 100 kilobases are at least marginally significant (P <0.05) in some brain tissue, 

and 11 of 12 are highly significant (P <5 × 10−5) in at least one tissue. C4A is also more 

significantly associated with schizophrenia in the pancreas than in any brain tissue.

TWAS-significant loci contain multiple associated genes

GWAS are well known to rarely identify single variant-trait associations but instead to 

identify blocks of associated variants in LD (Fig. 1b). Analogously, TWAS frequently 

identify multiple hit genes per locus16 (Fig. 1c).

To explore this phenomenon, we performed TWAS in two traits and two tissues with Fusion 

and S-PrediXcan, by using GWAS summary statistics for low-density lipoprotein (LDL) 

cholesterol19 and Crohn’s disease20, and the 522 liver and 447 whole-blood expression 

samples from the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task 

(STARNET) cohort21 (Supplementary Fig. 2 and Supplementary Note). We grouped hit 

genes within 2.5 megabases and found some loci with a single hit gene but others with as 

many as 11 hit genes (Supplementary Fig. 3).

Correlated expression across individuals may cause false hits

We explored the extent to which co-regulation can lead to multi-hit loci. Co-regulation is 

conventionally measured by correlating the expression of a pair of genes across individuals. 

Do genes with correlated expression with a strong TWAS hit also tend to be TWAS hits? We 

analyzed the SORT1 locus in LDL/liver (TWAS P = 1 × 10−243; Fig. 2a), the strongest hit 

locus across all four Fusion TWAS.

Although SORT1 has strong evidence of causality, its locus contains eight hit genes in 

addition to SORT1, and their TWAS P values are highly related to their expression 
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correlation with SORT1 (Spearman correlation = 0.75; Fig. 2b). A similar pattern holds for 

S-PrediXcan (Supplementary Fig. 5). The two most correlated genes, PSRC1 and CELSR2, 

were previously noted22 to share an eQTL with SORT1 in the liver (rs646776). Given 

SORT1’s strong evidence of causality and the other genes’ lack of strong literature evidence, 

the most parsimonious (though certainly not the only) explanation is that most or all other 

genes are non-causal and are prioritized only because of correlation with SORT1.

Correlated predicted expression may also cause false hits

However, expression correlation is not the whole story: TWAS tests for association with 

genetically predicted expression, not total expression. Total expression includes genetic, 

environmental and technical components, and the genetic component includes contributions 

from common cis eQTLs (the only component reliably detectable in current TWAS 

methods), rare cis eQTLs and trans eQTLs. Predicted expression represents only a small 

component of total expression: a large-scale twin study23 has found that common cis eQTLs 

explain only approximately 10% of genetic variance in expression.

Predicted expression correlations between same-locus genes are generally slightly higher 

than total expression correlations, sometimes substantially so (Fig. 3a and Supplementary 

Figs. 4 and 5d). A gene pair can have correlated predicted expression if the same causal 

eQTL regulates both genes or if two causal eQTLs in LD each regulate one of the genes24. 

Although only the first case counts as mechanistic co-regulation, we consider both cases 

together, because they are not designed to be distinguishable by TWAS: the two genes’ 

TWAS models can rely on distinct variants even in the first case or rely on the same variant 

even in the second case. For instance, given a causal eQTL in near-perfect LD with another 

variant, an L1-penalized linear expression model (for example, LASSO or ElasticNet) may 

place the most weight on only one of the two variants, but which variant is chosen could 

change depending on statistical fluctuations in the training set.

Predicted expression correlation may lead to non-causal genes being prioritized before 

causal genes, even if the total expression correlation is low. This type of confounding has 

also been observed in gene-set analysis25. For instance, SARS is the main outlier in Fig. 2b 

and is as significant as SORT1 despite having a total expression correlation of only ~0.2, 

because of its high predicted expression correlation of ~0.9 (Fig. 3a). SARS is also an outlier 

in PrediXcan for the same reason (Supplementary Fig. 5d).

Another example is the IRF2BP2 locus in LDL/liver (Fig. 3b). IRF2BP2 encodes an 

inflammation-suppressing regulatory factor with causal evidence from mouse models. RP4–

781K5.7 is a largely uncharacterized long non-coding RNA that lacks evidence of function; 

most long non-coding RNAs are non-essential for cell fitness26, and current evidence is 

compatible with most non-coding RNAs being non-functional27. Despite a negligible total 

expression correlation between the two genes (−0.02), IRF2BP2’s Fusion expression model 

includes GWAS hit rs556107 with a negative weight, whereas RP4–781K5.7’s includes the 

same variant (plus two linked variants) with a positive weight (Fig. 3c), thus resulting in 

almost perfectly anti-correlated predicted expression (−0.94) and both genes being TWAS 

hits. IRF2BP2 and RP4–781K5.7 are also both hits with S-PrediXcan, and both S-PrediXcan 
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and Fusion place the largest weight on rs556107 but with opposite signs (Supplementary 

Fig. 6).

We simulated expression and trait data (ntrait = 50,000 individuals; nexpression = 500) for 

1,000 random genomic loci by using the FOCUS simulation framework24 and conducted 

TWAS by using L2-penalized linear regression (Supplementary Note). As expected, a larger 

predicted expression correlation increased the probability of having a larger TWAS z score 

than that of the causal gene (Supplementary Table 2). However, this probability remained 

modestly high even when the predicted expression correlation was low, thus implying that 

predicted expression, though better than true expression, still imperfectly captures co-

regulation.

Shared GWAS variants may cause false hits

More generally, pairs of gene models may share variants (or at least LD partners) even if the 

predicted expression correlation is low, because other variants distinct between the models 

may ‘dilute’ the correlation. For instance, at the NOD2 locus for Crohn’s disease/ whole 

blood, NOD2 is a known causal gene, but four other genes are also Fusion hits (Fig. 4a), 

none of which have strong causal evidence (though rare variants in ADCY7 have been 

associated with ulcerative colitis28). The model for the strongest hit gene, BRD7, places the 

most weight on rs1872691, the strongest GWAS hit in NOD2’s model (Fig. 4b). However, 

NOD2’s model places the most weight on two weaker GWAS hits, rs7202124 and 

rs1981760. Thus, even though co-regulation with NOD2 may explain why BRD7 is a TWAS 

hit, this co-regulation is not captured by the metrics that we discussed: both the predicted 

expression (−0.03) and total expression (0.05) correlations are near 0. The same five genes 

are also S-PrediXcan hits, and NOD2 and BRD7’s models share the same rs1872691 

variant, as with Fusion (Supplementary Fig. 7).

Most generally, models need not even share the same GWAS variants (or LD partners) to 

have spurious hits. For instance, rs4643314, the strongest GWAS hit in BRD7’s Fusion 

model, is neither shared nor in strong LD with any variants in NOD2’s model, although it is 

in weak LD with rs1872691 (Fig. 4b). Although the most parsimonious explanation is that 

BRD7 is also causal, and rs4643314 acts through BRD7, BRD7 lacks evidence of causality. 

An alternate explanation is that only NOD2 is causal, rs4643314 acts through NOD2 (but 

also happens to co-regulate BRD7), and NOD2’s model erroneously fails to include it (a 

false negative). One trivial reason for false negatives is variants outside the 500 kilobase/1 

megabase window included in the model, which can be solved by increasing the window. 

More problematic causes include bias in the expression panel (‘Discussion’) and, for 

methods using GWAS summary statistics, LD mismatch between the expression panel and 

GWAS. This scenario might occur even without any false negatives, for example, if a variant 

in LD with rs4643314 deleteriously affects NOD2’s coding sequence as well as regulating 

BRD7, because TWAS is not designed to detect coding effects. Figure 5 illustrates the 

various types of co-regulation that may lead to non-causal TWAS hits.
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Bias with expression panels from non-trait-related tissues

Tissues with large expression panels (whole blood or lymphoblastoid) are commonly used to 

maximize power, even when they are mechanistically less related to the trait. To date, our 

case studies have used expression from mechanistically related tissues: liver for LDL and 

whole blood for Crohn’s disease. What if we swap these tissues and use tissues without a 

clear mechanistic relationship? The architecture of eQTLs differs substantially across 

tissues: even among strong eQTLs in GTEx (P ≈ 1 × 10−10), one-quarter show a switch in 

the most significantly associated gene across tissues18.

We curated candidate causal genes from the literature (Supplementary Table 3) at nine LDL/

liver and four Crohn’s disease/ whole-blood Fusion TWAS loci and examined how the hit 

strengths changed when we swapped tissues (Fig. 6). Notably, almost every candidate causal 

gene (9 of 11 for LDL and 5 of 6 for Crohn’s disease) was no longer a hit in the ‘opposite’ 

tissue, because of either insufficient expression (n = 4: PPARG, LPA, LPIN3 and SLC22A4) 
or insufficiently heritable cis expression according to Fusion’s likelihood-ratio test (n = 10: 

SORT1, IRF2BP2, TNKS, FADS3, ALDH2, KPNB1, SLC22A5, IRF1, CARD9, STAT3). 

This trend held globally, albeit less strongly: genome-wide, 3,085 of 5,858 LDL/liver genes 

(53%) dropped out after switching to whole blood, and 1,202 of 2,118 Crohn’s disease/

whole-blood genes (57%) dropped out after switching to liver. Just because a gene does not 

drop out, and is present in both tissues as a result of shared cross-tissue regulatory 

architecture, causality is not necessarily implied.

More problematically, 15 other genes at the same loci were still hits (eight in LDL/whole 

blood and seven in Crohn’s disease/liver), five with P <1 × 10−20. This result suggests that 

the strategy of conducting TWAS in a sub-optimal tissue with a large expression panel is 

especially problematic because even if there are hits at a locus, the causal gene may not be 

among them.

Combining the whole-blood and liver reference panels by averaging each individual’s 

expression in the two tissues (equivalent, for L1- and/or L2-penalized regression, to 

concatenating the two panels) performed more poorly than using the mechanistically related 

tissue alone but better than using the less related tissue alone (Supplementary Fig. 8).

TWAS improves causal-gene prioritization

We investigated TWAS’s performance at ranking (prioritizing) causal genes at loci from the 

previous section. We compared Fusion to two simple gene-ranking baselines 

(Supplementary Table 4): transcription-start-site proximity to the most significant GWAS 

variant within 2.5 megabases of any gene at the locus (‘proximity’) and median expression 

across GTEx individuals in the liver (for LDL genes) or whole blood (for Crohn’s disease 

genes) (‘expression’). Genes with more significant TWAS P values, smaller distances to the 

lead GWAS variant or higher expression had higher rankings. The mean rank of the 17 

candidate causal genes was 3.9 by random per-locus ranking, 2.0 by TWAS, 2.2 by 

proximity (P = 0.5, two-tailed Wilcoxon signed-rank test) and 2.9 by expression (P = 0.006). 

Hence, Fusion outperforms both baselines but does not significantly outperform proximity.
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Suggested best practices and future opportunities

We highlighted two vulnerabilities—co-regulation and tissue bias— that affect TWAS’s 

performance in causal-gene prioritization. In this section, we discuss current best practices 

and future opportunities for their mitigation.

One emerging approach to address co-regulation repurposes GWAS fine-mapping to TWAS, 

on the basis of the analogy between LD in GWAS and co-regulation in TWAS. Fine-

mapping of causal gene sets (FOCUS)24 directly models predicted expression correlations 

and uses them to assign genes posterior probabilities of causality. At the SORT1 locus, 

FOCUS includes SORT1, SARS and CELSR2 in the 90%-credible set; at the IRF2BP2 
locus, FOCUS includes both IRF2BP2 and RP4–781K5.7 (Fig. 2d). We recommend using 

fine-mapping methods such as FOCUS or, at a minimum, considering relative association 

strengths (P values and effect sizes) at a locus when interpreting TWAS results. If 

individual-level data are available, inferring effects jointly through penalized regression (for 

example, LASSO or Ridge) offers a flexible alternative (Supplementary Tables 5 and 6). 

Nonetheless, TWAS fine-mapping is more challenging than GWAS fine-mapping: predicted 

expression only imperfectly captures cis expression, owing to both variance and bias in the 

expression modeling (Box 1).

To address tissue bias, we recommend using an expression panel from only the most 

mechanistically related tissue available, even when it is smaller than other tissues’. However, 

using a slightly less related tissue (for example, a different region of the brain) would be 

advisable if the sample size would be substantially increased; the trade-off between tissue 

bias and sample size should be evaluated on a case-by-case basis. When a trait’s most 

related tissue is not known a priori, a recent approach based on LD Score regression29 can 

be used to select among multiple reference panels. Methods to handle cross-tissue pleiotropy 

and cell-type heterogeneity, discussed above in the context of fine-mapping, can also 

mitigate tissue bias. If no sufficiently large reference panels from closely related tissues are 

available, we recommend aggregating information across all available tissues in a tissue-

agnostic manner4,30.

When reference panels have highly dissimilar sizes across tissues, the tissue with the most 

significant TWAS P value cannot necessarily be assumed to be causal, because reference-

panel size affects the P value. For this reason, we recommend considering TWAS effect size 

in addition to P value when investigating causal tissues for TWAS-associated genes. Even 

when all reference panels are similarly sized, the exact combination of tissue, cell type and 

context (for example, developmental stage and cellular stress) mediating the causal gene’s 

effect may not be captured by any panel, and this may be the case even if TWAS finds the 

correct causal gene (for example, C4A is correctly chosen on the basis of RNA-seq on adult 

samples even though its causal effect on schizophrenia probably occurs in adolescence). 

Furthermore, bias may alter the pattern of TWAS P values and effect sizes across tissues in 

unexpected ways. We caution against over-interpretation.

Several emerging topics in TWAS deserve further mention. Multi-tissue TWAS methods 

such as UTMOST30 increase power by jointly training expression models across multiple 
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tissues. MulTiXcan31 fits a multivariate regression with phenotype as the outcome and a 

gene’s expression across multiple tissues or contexts as the inputs to increase power. The 

adaptive sum of a powered score test32 increases power by adaptively adjusting how much to 

exponentiate the weighted genotypes (genotypes times expression model weights) in the 

final expression-trait test, from γ = 1 (for example, Fusion or PrediXcan) or γ = 2 (for 

example, SKAT33) to γ = ∞ (in which all weight is placed on the most significant GWAS 

variant, a method more appropriate than standard TWAS when there are few associated 

variants). Mogil et al.34 have shown that between-population allele-frequency differences 

worsen cross-ancestry expression predictions, thus underscoring the importance of gathering 

diverse expression cohorts. Finally, the emerging ability to generate very large expression 

panels offers the promise of using trans eQTL signals to overcome the co-regulation 

problem35–36: although all genes at a locus may show GWAS signal at their cis eQTLs, 

owing to co-regulation, only the true causal genes are expected to show significant GWAS 

signal at their trans eQTLs as well.

Discussion

In our case studies, we assumed that the single gene with substantial causal evidence was the 

sole causal gene at the locus, with some exceptions (FADS1/2/3 and SLC22A4/5-IRF1). 

Nonetheless, other loci may contain multiple causal genes. Indeed, under an omnigenic 

model37, every gene may be causal to some degree, although TWAS identification of 

marginally causal genes as strong hits due to coregulation (effect size inflation) remains 

problematic. Furthermore, the expression of a ‘non-causal’ gene may causally influence 

expression of the causal gene merely by being transcribed, even if the gene is non-coding or 

its protein product is non-causal38.

Co-regulation and tissue bias affect other methods integrating GWAS and expression data. 

Testing of gene-trait associations based on MR5–7 is vulnerable, because co-regulation, as a 

form of pleiotropy, violates one of the core assumptions of MR39. Although the HEIDI test5 

corrects for the case in which two genes have distinct but linked causal variants, it does not 

correct for the case in which they share the same causal variant. GWAS-eQTL colocalization 

methods such as Sherlock8, coloc9–10, QTLMatch11, eCaviar12, enloc13 and RTC14 are also 

vulnerable. The more tightly a pair of genes is co-regulated in cis, the more difficult it 

becomes to distinguish causality on the basis of GWAS and expression data alone. Our 

results underscore the need for computational and experimental methods that move beyond 

expression variation across individuals to complement TWAS in identifying causal genes at 

GWAS loci.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 |

Sources of variance and bias in expression modeling

• Finite-sized reference panel. The main source of variance is the finite 

reference-panel size. This variance can be mitigated with Bayesian methods 

that explicitly model expression-prediction error40. This variance will 

decrease in the future as reference-panel sizes increase.

• Pleiotropy across tissues. Traits rarely act through a single tissue: some 

genes may be causal in tissues different from the reference panel’s, thus 

introducing bias. Estimating causal tissues on a per-locus basis is an active 

area of research41 and could be integrated into future TWAS fine-mapping.

• Cell-type heterogeneity. Most existing reference panels are heterogeneous, 

comprising multiple distinct cell types and states. Genes may be causal for 

only a single cell type/ state: a study identifying IRX3 and IRX5 as causal 

genes at the FTO locus has found genotype-expression associations in 

primary preadipocytes, representing a minority of adipose cells, but not whole 

adipose tissue42. Cell-type heterogeneity within/between samples (from blood 

and immune-cell infiltration, or genetically driven differences in cell-type 

proportions within a tissue) can worsen bias. Single-cell RNA sequencing 

enables reference panels for individual cell types/ states, most prominently 

through the Human Cell Atlas43.

• Bias in expression quantification. Time of day, physiological state (time 

since eating or exercise, or disease status) or cause of death may bias 

expression measurements, even after covariate correction though methods 

such as probabilistic estimation of expression residuals44 (PEER). Covariates 

may be captured by a gene’s expression model if they correlate with variants 

near the gene.
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Fig. 1 |. TWAS, like GWAS, frequently has multiple significant associations per locus.
a, An overview of TWAS. Briefly, TWAS involves: (i) training a predictive model of 

expression from genotype on a reference panel such as GTEx; (ii) using this model to 

predict expression for individuals in the GWAS cohort; and (iii) associating this predicted 

expression with the trait. b,c, Manhattan plots of GWAS (b) and Fusion TWAS (c) for LDL 

cholesterol, using GWAS summary statistics from the Global Lipids Genetics Consortium 

and liver expression from the STARNET cohort (Supplementary Note). GWAS has multiple 

hits per locus, owing to LD, and TWAS has multiple hits per locus, owing to co-regulation 
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(which can also be driven in part by LD; described below), as explored in the main text. 

Clusters of multiple adjacent TWAS hit genes are highlighted in red. d, Three scenarios in 

which co-regulation can lead to multiple hits per locus, and the estimated percentage of non-

causal hit genes subject to each scenario; each scenario is presented in a case study later in 

the text. To estimate the percentages, we grouped hits into 2.5-megabase clumps and made 

the approximation that genes that were not the top hit in multi-hit clumps were non-causal; 

we then calculated the percentage of these genes with total or predicted expression r2 ≥ 0.2 

or ≥ 1 shared variant with the top hit in their block, aggregating genes across the LDL/liver 

and Crohn’s disease/whole-blood TWAS. The full distributions of the total and predicted 

expression correlations and number of shared variants are shown in Supplementary Fig. 1, 

separated by study.
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Fig. 2 |. Co-regulation strongly predicts TWAS hit strength at the SORT1 locus.
a, Fusion Manhattan plot of the SORT1 locus. b, Expression correlation (corr.) with SORT1 
versus TWAS P value, for each gene in the SORT1 locus. Chr, chromosome.
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Fig. 3 |. Correlated predicted expression can cause non-causal hits even in the absence of 
correlated total expression.
a, For nearby genes, Fusion-predicted expression correlations tend to be higher than total 

expression correlations, for example, at the SORT1 locus. b, Fusion Manhattan plot of the 

IRF2BP2 locus, where RP4–781K5.7 is a likely non-causal hit due to predicted expression 

correlation with IRF2BP2. c, Details of the two genes’ Fusion expression models: a line 

between a variant’s rs number and a gene indicates that the variant is included in the gene’s 

expression model with either a positive weight (blue) or a negative weight (orange); the 

thickness of the line increases with the magnitude of the weight; red arcs indicate LD. Pink 

rs numbers are GWAS hits (genome-wide significant or sub-significant), whereas gray rs 

numbers are not. For clarity, four variants with weights less than 0.05 in magnitude for 

IRF2BP2 (rs2175594, P = 0.02, weight +0.03; rs2439500, P = 0.2, weight = +0.01; 

rs11588636, P = 0.3, weight = −0.03; and rs780256, P = 0.9, weight = −0.0 3) and five 

variants for RP4–781K5.7 (rs478425, P = 0.01, weight = + 0.02; rs633269, P = 0.02, weight 

= +0.01; rs881070, P = 0.06, weight = −0.02; rs673283, P = 0.1, weight = + 0.004; and 

rs9659229, P = 0.1, weight = −0.04) are not shown. d, Estimated causal probability for each 

significant gene from Fusion at the SORT1 and IRF2BP2 loci, according to TWAS gene-

based fine-mapping with the FOCUS method.
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Fig. 4 |. Sharing of GWAS variants between expression models can contribute to non-causal hits 
even without correlated predicted expression.
a, Fusion Manhattan plot of the NOD2 locus. b, Details of the expression models of NOD2 
and BRD7; as in Fig. 2, a line between a variant’s rs number and a gene indicates that the 

variant is included in the gene’s expression model with either a positive weight (blue) or a 

negative weight (orange), with the thickness of the line increasing with the magnitude of the 

weight. Red arcs indicate LD.
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Fig. 5 |. co-regulation scenarios in TWAS that may lead to non-causal hits, from least to most 
general.
a, Correlated expression across individuals: the causal gene has correlated total expression 

with another gene, which may become a non-causal TWAS hit. Co-reg, co-regulation. b, 

Correlated predicted expression across individuals: even if total expression correlation is 

low, predicted expression correlation may be high if the same variants (or variants in LD) 

regulate both genes and are included in both models. c, Sharing of GWAS hits: even if the 

two genes’ models include largely distinct variants, and predicted expression correlation is 

low, only a single shared GWAS hit variant (or variant in LD) is necessary for both genes to 

be TWAS hits. d, Both models include distinct GWAS hits: in the most general case, the 

GWAS hits driving the signal at the two genes may not be in LD with each other, for 

instance if the non-causal gene’s GWAS hit happens to regulate the causal gene as well, but 

this connection is missed by the expression modeling (a false negative), or if the causal 

gene’s GWAS hit acts via a coding mechanism (not shown).
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Fig. 6 |. Most candidate causal genes drop out after switching to a tissue with a less clear 
mechanistic relationship to the trait, owing to a lack of sufficient expression or sufficiently 
heritable expression.
Fusion TWAS P values at nine LDL/liver and four Crohn’s disease/whole-blood multi-hit 

loci, using expression from tissues with a clear (top row) or less clear or absent (bottom row) 

mechanistic relationship to the trait. Candidate causal genes are labeled and colored red.
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