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Abstract 
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We present a series of numerical and statistical techniques for 
interpolating and combining ("amalgamating") data from meson-nucleon 
scattering experiments. These techniques have been extensively applied 
to TIp elastic and charge-exchange differential cross section and 
polarization data in the resonance region. The amalgamation is done 
by fitting a momentum and angle dependent interpolating surface to the 
'data over a moderately narrow momentum range, typically -150 MeV/c, 
using the interpolating surface to shift data in a narrower central 
momentum region into fixed angular bins at a predetermined central 
momentum, and then statistically combining the data in each bin. The 
fitting procedure takes into account normalization errors, momentum 
calibration errors, momentum resolution, electromagnetic corrections, 
threshold structure, and inconsistencies among the data. The full 
covariance matrix of the amalgamated data is ,calculated, including 
contributions of statistical error, systematic error, and interpolation 
error. Techniques are presented for extracting from the covariance 
matrix information on the collective statistical fluctuations which 
correlate the errors of the amalgamated data. These fluctuations are 
described in terms of "correlation vectors" which facilitate the use 
of the amalgamated data as input for resonance region phenomenology. 

Prepared for the u.S. Department of Energy under Contracts 
W-7405-ENG-48 and EY-76-02-3066, and for the,U.S. National 
S~ience Foundation under grant No. PHY76-2l097. 
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I. Introduction 

The best modern measurements of two-body meson-nucleon scattering in 

the resonance region have such high statistical precision that it is 
.. 

important to take systematic errors carefully into account when the data 

are used. Some sources of systematic error, such as normalization error 

and beam momentum calibration error, are routinely monitored and documented 

by experimentalists, but are not always taken into account by data analysts. 

Other sources of systematic error arise from unknown experimental biases, 

and show up only as discrepancies between the results of overlapping 

measurements, or as discontinuities between nearby measurements. Data 

analysis itself can introduce systematic biases not present in the original 

data, e.g., by the common practice of binning together several measurements 

made at slightly different angles and/or momenta. 

This paper describes techniques designed to deal with these problems 

and to produce "amalgamated" differential cross-section and polarization 

data in an accurate and economically usable form. The purpose is twofold: 

first, to resolve many questions about systematic errors and discrepant 

data at an early stage of analysis which is essentially model independent, 

and second, to summarize the content of an original data set which may 

contain hundreds of data extending over a band of momenta by a fixed-

,'IA 
• momentum dataset which will be smaller and more manageable when used in 

subsequent stages of analysis. The second purpose is similar to that of a 

more commonly employed procedure, which is to replace the actual data by a 

set of "Legendre coefficients" or a similar set of parameters. We believe 

our approach is superior, because the amalgamated data are a more direct 

, and faithful representation of all the features of the original data." The 

statistical correlations between the amalgamated data are also smaller 
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and are more easily handled in a subsequent analysis than are the correlations 

between expansion coefficients. 

The general procedure begins by fitting the available data of a given 

type in a narrow momentum range with a momentum and angle dependent 

"interpolating surface". The momentum range is chosen to be narrow enough 

so that the interpolating surface can be taken to be quadratic in the 

laboratory momentum. In practice, this fit often involves many parameters 

and many constraints. We have developed a fast and accurate fitting 

procedure using a two-variable orthogonal polynomial technique tailored 

to the comparatively simple structure of the relevant x2-function. Systematic 

errors and systematic discrepancies between different measurements are taken 

into account during the fit· of the interpolating surface. Once the surface 

is determined, data in a narrower central momentum range (in practice, 

about one-third as wide as the full range of the fit) where the surface is 

particularly well determined are shifted along the surface to the nearest 

of a set of closely spaced preselected angles at. a preselected central 

momentum. The shifted data in each angular "bin"are then statistically 

combined ("amalgamated") • 

. The amalgamated data are correlated through their common dependence 

on the interpolating surface and on·the systematic errors of the original 

input data. The covariance matrix of the amalgamated data can. be calculated 

directly from the errors of the input data using .the two-variable 

orthogonal.polynomials mentioned above. We have found that the correlation 

properties of the. amalgamated da.tacan be accurately represented in terms 

of collective·fluctuations characterized by "correlation vectors". The use 

of these· correlation·· vectors simplifies the X2 -function that one would use 

" 

• 



3 

in a fit to the amalgamated data, and they can also be used to correct 

the data for the effect of collective fluctuations. 

The techniques described here have been developed in the course of 

an·extensive .TIN partial wave analysisl , and have so far only been applied 

to TIp elastic and charge-exchange cross-section and polarization data
2

• 

In most of the following description we use somewhat more general language 

appropriate to any elastic or two-body inelastic meson-nucleon cross-section 

and polarization data. The generality of the description is somewhat 

illusory, however, because our methods are designed for situations in which 

there isa large amount of high precision data, and this is presently true 

of only a few meson-nucleon reactions. In principle, the technique could 

also be extended to deal with other types of data such as spin-rotation 

parameter measurements in meson-nucleon scattering or measurements with the 

various combinations of polarized targets and polarized beams possible 

in photoproduction or pp scattering, but we will not consider such 

possibilities here. 
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II. Parametrization of the Interpolating Surface 

The purpose of the interpolating surface is to accurately approximate 

the true physical values of the measured quantities for which we are 

amalgamating data. We emphasize that this surface is only an intermediate 

tool, and is not to be thought of as the final result. Before considering 

its full energy and angular dependence, let us discuss the angular 

dependence of the_ interpolating surface at fixed energy. The differential 

cross section at fixed energy, I, is a sum of squares of real and-imaginary 

parts of irwariant amplitudes all of which are functions of x (=cos8) 

analytic throughout the cut x-plane except for singularities along the 

. real axis. The polarization itself is a quotient, but the polarized cross 

section, IP, is a bilinear form in the real and imaginary parts of the 

invariant amplitudes multiplied by an overall kinematic factor of sinS. 

It is the quantities I and IP/sinS for which we actually form interpolating 

surfaces in the fitting procedure described in the following sections, and 

their fixed energy behavior can thus be represented by analytic functions 

of x with singularities at the same locations as those of the invariant 

amplitudes. Specifically, an interpolating surface for meson-nucleon 

scattering at fixed energy has right- and left-hand cuts starting at the 

t- and u-channel thresholds and may have poles and dipoles corresponding 

to baryon exchange (the same analyticity domain as that of the invariant 

amplitude Re B). For an elastic reaction, I and IP/sinS also have a 

singularity at x=l corresponding to Coulomb scattering, but we omit this '." 
from the interpolating surface~Coulomb corrections are taken into account 

separately and are discussed in the following section and in Appendix A. 

The parametrization we use to represent the angular dependence is a 
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3 
polynomial in the angular variable z of Cutkosky and Deo This variable 

is defined in terms of two points on the real axis of the x-plane denoted 

as x+ and -x_ which lie to the right and left, respectively, of the 

physical region (x±>l). The variable z is then defined by the requirement 

that it map the x-plane cut along (x+,~) and (-~,-x ) onto the interior of 

a unifocal ellipse with the cuts mapped onto the periphery, the interval 

(-x_,x+) mapped onto the real axis, and the points x=±l mapped onto z=!l. 

This mapping str.etches the physical region in the forward and backward 

peaks whiIecompressing it in the wide-angle region, thus tending to 

produce flatter structure inz than in x and to thereby reduce the number 

of terms required in a polynomial expansion for a good fit to the data. 

As discussed in Ref. 3, the most rapidly convergent polynomial expansion 

of a scattering amplitude is a sum of explicit pole terms and a polynomial 

in z with x+ and -x located at the tips of the physical t- and u-channel 

cuts. We adopt here a simpler and more flexible version of the 

parametrization in which we omit pole terms and treat x+ and -x as 

phenomenological parameters representing "effective" cut positions at which 

the strengths of the right- and left-hand singularities (including poles) 

first become appreciable. The reason for omitting explicit pole 

contributions is twofold, first because it is more complicated to include 

pole contributions in observables than in amplitudes4 , and second because 

the fitting problem we are dealing with here, unlike the problem of 

determining an amplitude from data, has no continuum ambiguity and the 

constraining effect of the known residue of a baryon-exchange pole is 

consequently less important. The reason for not requiring the strict 

optimal convergence prescription for x+ and x is that it may happen that 
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the main features of the angular dependence of the data are controlled by 

singula~ities which are stronger and more distant than those which determine 

truly asymptotic convergence rates. In 'ITN scattering, for example, the 

right-hand cut begins at t=4m~, and is weak there, while the nearest 

t-channel resonance exchange poles lie on unphysical sheets at 

t=(m fir /2)2. We have found in practice that acceptable fits can be 
p p 

obtained with values of x+ corresponding to intermediate values of 

r 2 
~(m - ) • 

p p 
For the left-hand cut, on the other hand, the strong nucleon 

exchange in 'IT+P elastic and'IT-pcharge-exchange scattering must be taken 

into account by using a value of x corresponding to u=m~, while for 

2 
'IT P elastic scattering we can use u~(m~-r~) . Atypical example of the 

mapping for 'IT+P scattering at 2 GeV/c is.shown in Fig. 1. 

We have made several tests which verify that the prescription for 

x± is well matched to the characteristics of the data. In particular, in 

tests in which we used x =00 (in which case z ::::x, so that our expansion is ± 

equivalent to the usual one) our fits were generally less satisfactory 

and also required more terms. 
2 

Choosing x to correspond to t=4m also + 'IT 

tended to give less satisfactory results. ' 

The energy dependence of the surface is handled more simply because 

we always fit data over a rather narrow range. The energy range is always 

chosen to be sufficiently narrow so .that quadratic interpolation is 

sufficient, and the surface is taken to be of quadratic (or lower) degree 

in the laboratory momentum q. We introduce the normalized variable, 

y (ILl) 

• 
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+ Fig. 1. Conformal mapping of the x-plane onto the z-plane for TI p 
scattering at 2 GeV!c. Nearby pole and branch-point singularities 
in the t- and u-channels are shown, and the "effective" branch points, 
±x+, are indicated. The distortion of the physical region is shown 
by-a dashed line which is drawn with equal intervals of 0.1 in the 
x-plane, and wi~h the corresponding mapped intervals in the z-plane. 
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where q is a weighted average beam momentum for all of the input data. 

The parameter q is chosen to match the amount of momentum dependent o 

curvature of the surface required.by the data; for TIp scattering q 
o 

is usually about 300 MeV/c. The surface can now be represented in the 

form, 

(II.2) 

where fk(z) is a polynomial in z. In principle the relation between z 

and x is energy dependent, but we neglect this t;;mall effe<;:t within the 

momentum range of a· single amalgamation, and use a fixed function z(x) 

appropriate to the. central momentum. In the following discussion we allow 

K to be either 0,1, or 2, although K=2 is by far the most common case 

encountered in practice. The higher order coefficients of the polynomials 

fk are constrained to be of comparable magnitude by the "truncation 

function" of Eq. (III. 8). Thus, for K=2,' qo is the momentum range over 

which the surface develops a large amount of angle-dependent curvature. 

Threshold singularities are not introduced into the interpolating 

surface itself, but are handled in a manner similar to the Coulomb 

corrections. This is discussed in the following section and in Appendix B. 

The only threshold that has·been treated in detail so far is the nn 

threshold at 687 MeV/c, but it should also be possible ,to include the Wn 

threshold at 1092 MeV/c. 

-.... 
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III. Definition of the x2-function 

The interpolating surface is fit to experimental data by minimizing 

the function, 

(III.I) 

where X2 
contains the constraints imposed by the data, and ~ is a 

"truncation function" (TF)5 which imposes a smooth truncation on the 

number of parameters used in the fit. In this section we give detailed 

definitions of X2 and ~. 

The available world data ofa particular type in a narrow momentum 

range typically consists of several "blocks" of data from different 

experiments covering various regions of scattering angle at different momenta. 

We denote each data block by a Greek subscript, and denote the ith datum 

of block E as D .• The inverse square statistical error of D . is called E1 E1 

w ., and the value of the interpolating surface fez .,y ) at datum Ei E1 E1 E . 

is designated by f .• 
E1 

spread of the beam. 

{For the moment we ignore the finite momentum 

See Eq. (IV. 2) for a more precise definition of f .• ) E1 

Each data block has an overall normalization error and a corresponding 

fitted scale factor. For later convenience, we chose to construct X2 

using the reciprocal of the normalization scale factor, A
E

, rather than 

the scale factor itself. Thus therenormalized datum Ei is D ./A·. As E1 E 

long as the normalization error is small compared to unity the error in AE 

is the same as the original normalization error. Each data block also has 

a measured beam momentum P
E 

with a calibration error, and a corresponding 

fitted beam momentum qE. Note that the definition of fEi given above uses 

the fitted momentum qE. Non-analytic effects {Coulomb scattering and/or 

• 
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threshold effects) which are not allowed for in the interpolating surface, 

are taken into account by calculating an explicit correction term for 

each datum, cE:i' which includes these effects. The calculation of the 

correction terms is described in Appendices A and B. They are to be 

subtracted from the renormalized input data before these are compared with 

the interpolating surface in the x2~function. Finally, as discussed in 

the previous section, when dealing with polarization data we multiply by 

a factor s ., equal to the corresponding cross-section interpolating El. 

surface divided by sine ., and evaluated at the fitted momentum q. The 
, El. E 

X2 -function con'structed in this manner is, 

[f&l SEi (D;: - CEi ) J 2-
(III. 2) 

+ -I) + L W,~ (i-, -fo,.)(~, - ~.,) 6., 
where sEi=l for cross-section data. 1 2 

The matrices WEn and WEn are the 

inverse covariance matrices of the normalizations and beam moinenta, 

respectively, with correlations taken into account by appropriate off-

diagonal elements. 

A simpler, approximatex2-function obtained from Eq. (111.2) is inuch 

more convenient for actual computations. Let, 

. (III. 3) 

2 then the sum over individual data points in X can be rewritten as, 

\ 
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(III.4) 

which has the form of an expansion in quantities of order, 

--- 1 eel' · ( nor W\Q\ 'i-at ion et"ro r-hi 
(s~(l~ist'C.Q\ error)&i . 

(III. 5) 

There is some arbitrariness in the correction terms, in that we can 

include in them any analytic contributions we like (as long as these 

contributions vary slowly enough to be well represented by the interpolating 

surface), in addition to the specifically non-analytic effects that they 

are intended to represent. This freedom can be used to keep Ic . I small, 
e:~ 

and it is fairly easy to arrange that the quantity, 

(III.6) 

is typically of order unity where non-analytic effects are important and 

much smaller elsewhere. Thus for well normalized data e . is small, and 
e:~ 

the second and third sums inEq. (111.4) will be small compared to the first. 

Furthermore, the summand in the second sum fluctuates in sign so we expect 

a further reduction by a factor or order (total number of data)I/2 

compared to the first sum. The weakest point in this line of reasoning 

occurs for elastic differential cross-section data at very small angl~s, 
, 
, . .. 
I r 
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where the Coulomb correction terms can in principle become arbitrarily 

large. However, it is difficultto'make a measurement far into the 

Coulomb region without encountering backgrounds which also make the 

statistical error grow. In explicit checks we have found that even 

for the most forward available 'TTp data.eEi seldom exceeds 0.3. Occasional 

data points for which eEi>0.3 can be handled by artificially increasing 

the statistical error to keep eEi small. Thus, in the remainder of 

this paper we will use the x2-function, 

xl. =L~!i (Ae f.,-Sei cRf)1-
&\.r '. ~ (III. 7) 

+ L W~., ().e -I)(}.., ":'1) T L W,; 
E." """ 

The advantage of this form over Eq. (III.2) is that the correction terms 

can now simply be subtracted from the data before fitting, as in Eq. (III.3), 

and do not enter explicitly into the l-funct:i.on itself. 

The free parameters to be determined by fitting are the coefficients 

of the polynomials fk(z), 'the scale parameters A , and the momenta q • 
. EE 

The polynomials fk(z) typically have appreciable coefficients up to 

'. order 8 or higher, so that there i.s no well def;l.ned sharp cutoff point 

for the number of polynomial coefficients retained. We therefore use the 

TF ~ to impose a smooth truncation on the higher powers of z. This is 

2. 2 done by minimizing X +~, rather than X alone, where 

~= 2 n ~ ~I dt' /1 12-
1T" k j ~I_ ~,. ~ (t) (III. 8) 
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with the line integral being taken around the unifocal ellipse onto 

which the t- andu-channel· cuts are ,,,mapped by the Cutkosky-Deo mapping. 

The lengths of the semi-axes of the. ,ellipse are typica.lly between 2 

and 6 (depending on the momentum) so the higher powers of z are magnified 

with respect to the lower·powers on the boundary of the ellipse, and the 

addition of cp to X2 cuts off these higher powers smoothly. The region in 

which the cutoff becomes effective is controlled by adjusting the constant 

n. The ellipse shrinks with increasing energy so that cp naturally allows 

the number of effectively free parameters to increase with increasing 

energy even if n is held fixed. The particular weight function used in 

the integral is chosen because Chebyshev polynomials are orthogonal with 

respect to this weight and this facilitates computation of cp as discussed 

in the following section. 

In our applications to np scattering we found that a single value of 

-7 -2 
10 (mb/ster) forn gave generally satisfactory results for both cross 

sections and polarizations throughout the resonance .region. This value 

was arrived at in the usual way, by decreasing n until x2 ,per degree of 

freedom stopped improving. In a few cases where the data were particularly 

sparse and ·the interpolating surface was poorly constrained, we used values as 

-6 -2 
large as.lO, (mb/ster) • There are also some data sets with pronounced 

2 
structure where n can be decreased further before X per degree of freedom 

stops improving. Although we are aware that some of this structure may 

turn out to be spurious, we have usually attempted to,accomodate it by 

choosing a conservatively small value of n, sometimes as small as 

-8 -2 
10 (mb/ster) • 

" '., 
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IV. Construction of Orthoqonal polynomials 

As a preliminary to the discussion of the full minimization of. x2 , 

2 we co~sider here the problem of minimizing x with fixed values of the 

normalization and momentum parameters. This is a linear le~st squares 

problem which can be solved analytically. We represent the fitted 

surface as 

M 

f (2:, y) = L am T"" (~, y) 
m=o 

where the functions T (z,y) are polYnomials in z and y and the M+l 
m 

parameters a are variable coefficients to be determined by minimizing 
m 

(IV.l) 

i., It is useful for numerous aspects of the amalgamation procedure to 

attack the problem of determining the coefficients a by first chosing the 
m 

polynomials T to diagonalize the a -sector of the second-derivative 
m m 

. f 2 matrl.X 0 X. All of. the difficulties of the fixed A andq minimization 
e: e: 

problem are then contained in the construction of polynomials T which 
m 

sat.isfy an appropria,te orthogonality condition (Eq. (IV.lO) below), and 

once these polynomia.ls are constructed the .determination of the coefficients 

is trivial. This section is devoted to the formulation of the orthogonality 

condition and to the construction of the polynomials which satisfy it. 

The terms in x2 which are bilinear in the coefficients are those 

containing f~i and those coming from ~. The quantity f . is the average e:l. 

of the fitted surface over the spectrum of the e:th beam. If the beam 

resolution function is Be:(q) we have6 , 
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since f{z,y) is at most quadratic in y,f . can be evaluated completely 
E1 

in terms of the average momentum <q> , which we take to be the fitted 
E 

momentum q , and the mean squared deviation '<(q-<q> )2>=b2 Using E . EE· 

the dec6mpCisition of Eq. (IV.1) we have, 

M 

£Eo. =r a ,­L m Im6i 
"'=0 

where 

--

The TF has been designed to take advantage of the orthogonality 

(IV.3) 

(IV.4) 

property of Chebyshev polynomials on unifoca1 ellipses. For any ellipse 

with focii at z=±l we have, 

--
(IV.5) 

where R is the sum of the semi-axes of the e11ipse
7

• To use this relation 

we represent the polynomials Tmas" 

(IV.6) 



'..,: . 
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where (L+l) (K+l).=M+l. Comparing withEq. (II.2) we find 

~(t) =t t a.., DR~ ~(t) 
"'.0 R=O 

Thus the TF can be expressed as, 

M M 

~ = L L .-,: mn a ... a., 
M:::aO nco 

where the "truncation matrix" Tis, 

.WAA=nN.f 

(IV.7) 

(IV.8) 

(IV.9) 

We now have all the notation necessary to write down the coefficient 

sector.of the second derivative matrix of x2 and the orthogonality 

condition to be imposed on the T. This is, 
m· 

(IV.10) 

When this condition is satisfied the values of the coefficients which 

minimize x2 are easily found to be, 

am = [ o(&i T .... tri 
Ei 

o(E-\ = Wf:i AI: J., /S6i 
_ (IV.ll) 
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The actual construction of the orthogonal polynomials can be 

carried out by a recursion method which is a gene~alization of the familiar 

recursion relation Q =(Ax+B)Q l+C Q 2 for orthogonal polynomials 
n n n n-· n n-

Q in a real variable x. The lowest order polynomial is chosen to be 
n 

a constant, 

(IV.12) 

Higher order polynomials are generated by expressing them. as a linear 

combination of all lower order polynomials, plus a linearly independent 

"leading term", L • 
m 

M-I 

TwJc,'t) = e ...... L ... (l,'Y)+ L C.,;" Tn(i:~ y) J 1'1"1>0 
n=-o 

(IV.l3) 

For the first K polynomia~~ with m>O we define Lm to introduce higher 

powers of y. For m>K we consecutively introduce higher powers of z in 

groups of K+l linearly independent terms. Specifically, 

O<m~K 

m>K 

where m=m-(K+l). For example, if K=2 new powers of z.and yare 

(IV.14) 

introduced in the following order: 
222 2 2 2 1, y, y , z, zy, zy , z , zy, z y , 

3 z , •.• From Eqs. (IV.13) and (IV.14) we immediately find that 

(IV.l,S) 

.. 
• 
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Note that unlike the familiar real-variable recursion relation, we 

cannot truncate the lower side of the sum in (IV.13) at some small value 

of m-n. This is because the TF is a scalar-product type of integral 

over complex values of z, and asa result L will in general not be 
m 

orthogonal to any of the polynomials T with n<m. . .. n 

We must now solve for the coefficients C by imposing the . 1lIIl 

orthogonality relation (IV.IO) on the representation (IV.13). For the 

first sum in the orthogonality .relation we need the representation' 

corresponding to (IV.13) for the "evaluated" polynomials T e:" This is, m ~ 

m-I 

Trn6i ::; Ci-wI .... L ..... i + E eml"l Tn6i J m>O 
.,=0 (IV.16) 

where 

L,ei = 1. T06i J K> 0 
. .~ 

L2.E', = 'If: ~ei + CII ~ To&i I K = 2- (IV.17) 

LvnE-i = ~ei T~&iJ m > K 
For the second sum we will need the analog of Eq. (IV.13) for the 

m 
coefficients DQ,k' Making a decomposition similar to Eq.(IV.6) for the 

L (z,y), 
m 

. L K m .i 
Lin (~/i) = L L ~RIt ~ (!»)' I \'V'I > 0 (IVolS) 

J=oA=t) 



18 

we obtain 

W\-, 

0; = Cmm Ll~ + [ CWO" D.f~ I WI> 0 . ,,-0 (IV.19) 

The coefficients ~~k vanish when (K+l)t+k>m, and by using the definition 

(IV.17) of the L and the relation 
m 

we can express all the ~-coefficients with (K+l)t+k~m in terms of 

(IV.20) 

D-coefficients corresponding to lower values of m. These relations are 

given below, where we use integers A and K defined by the decompos~tion 

m=(K+l)A+K with A~O and O<K~K • 

. J..&~' ) A=O 
AW\ = 0 L.Joo . 

·A W\ - DM -' 
~oJa - c> A-I 'I. 

~:A= 0 
A~ .. cD: .. } >- =1 

6:' ... = t D:l 
8:' .. = 0 
~r. = D:.a. 
Ai:'A :. Ja. D:I 

, D~ ~~A = 1. \.A, 

~~A =D:A+1:D~ 
~ .... - D:.~ -
~n - --'1 Dt-".A. -

Ill. ~X 
,A >11 
J.~2. 

J 

X=2. 

~=3 

(IV.2l) 

• 
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The procedure for solving the recursion relations is now straight-

forward. Suppose that we have dete~ined all the quantities e I' TnC1" and , nn "-
n 
D~ for n<m, rr<m. The next stage of the process is to substitute EqS. 

(IV.16) and (IV.19) into (IV.lO) , and impose orthogonality between T (z,y) 
m 

and all T (z,y) with n<m. ~his gives, 
n 

which, with the help of (IV.17) and (IV.2l), expresses the ratios 

e Ie in terms of previously calculated quantities. Imposing the 
mn mm 

normalization condition expressed by Eq. (!V.lO) with m=nwe obtain 

Crw\W\ =[[ W.I (LM&tf-t L W,e,l (A~)Z._ E (C",o), '2. J-
I/

2-

,1 JI.-'" " n=o \c.~W\ 
(IV.23) 

which is also in terms of previously calculated quantities. T ,and mE1 ' 
m 
D~k can ,now be calculated from Eqs. (IV.16) and (IV.19), and one can 

proceed to index m+l. The polynomials T (z,y) themselves can either 
m 

be calculated recursively using the coefficients emn,or,directly using 

m 
the coefficients D

ik
• 
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V. Effects of Individual Coefficients and Constraints 

2 
In the previous section we solved the problem of minimizing X 

when the normalization and momentum parameters are fixed. We now show 

that the orthogonal polynomial;formalism developed there allows us to 

make quite specific statements about the effect of individual coefficients 

and constraints on the resulting value of x2 at minimum. 

x? which involves the coefficients directly is 

The part of 

(V.l) 

and we can use the results of the previous section (particularly Eqs. 

(IV.3) and (IV. 8) - (IV .11» to rewrite this as . 

(V.2) 

The effect of an individual coefficient a 
m 

2 on the minimum value of X 
a 

is now clear. The minimum value is, 

x 1 
.. =LW,j-&!i - [. (V.3) 

~W\l'" &i· m 

th . 
and the result of omitting the m term from the sum (IV.l) is to 

. 2 
~ncrease X . 

a,m~n 

coefficients. 

by a:2 without changing the values of the remaining 
m 

2 
To describe the effects of individual constraints we rewrite X as a 

• 
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-- (V.4) 

where 

---
(V.5) 

and consider the effect of omitting one of the constraining terms, Le., 

setting one of the wEi or W~k to zero. Th 1 · d . 2 e resu t1ng ecrease 1n X . 
a,mJ.n 

can then be calculated by reminimizing and will generally be greater than 

the corresponding value of X~i or <P~k at the original minimum. 

Suppose we omit the constraint corresponding to datum nj, and 

denote quantities in which this datum is omitted by primes. Then, 

v'2.) = X2. _..y2.. 
~~ A ~7J 

(V.6) 

= [' W~i &~ - 2[ b ... a ... + [ S ..... a .. a .. 
E, . . m 'IM W'\ 

where 

b~ = aM - o<.,j T~..,j 

SMn = Om\'\-W."J T~1fJ T",..,j 
Minimizing x· 2 we obtain 

a 

(V.7) 
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- .I ( s-' , .) ..... a~ = b ~r' 
(V.8) 

, ~ L' 2. T X J) 'b S-'b, . Q Mil'\ = We-l ct"t'-
"J. 6i 

where we have converted to,matrix notation. The inverse of Sis, 

(V.9) 

where 

(V.10) 

It is easily verified that the fitted valu~ of the surface corresponding 

to datum nj, 

= L. a ... T .... .,j (V.1l) 

M 

is changed by an amount 

(V.12) 

by the reminimization and that the decrease in the minimum value of x2 is 
a 

(V.13) 

-2 2 
where X

nj 
is the value of X

nj 
at the origi~al minimum. 

,", 

• (J 
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If we omit theTFconstraint correspOnding to WR.k a similar 

calculation gives equations analogous to (V.12) and (V.13). 

\ (' I '-' )' D' ~ _/ARA.l ([ - D""')' ~ ll ... - a", . U - G _ Au) ... Q...:«.A (V.14) 

- (V.15) 

where 

-- (V.16) 

It is clear from Eqs. (V.12)-(V.15) that thE;l quantity \:i (or AR.k) 

is a measure of the "pull" of constraint £i (or R.k) on the fitted 

parameters a and on the value of x2
" . ". The sense in which this is 

m' a,m1n 

true can be made more precise by noting that the orthogonality relation 

implies that, 

Thus it is natural to identify A . (or An~) with the effective number £1 ' ~ 

of parameters used in fitting constraint £i (or R.k). Eq.(V.17} can 

be rewritten in terms of the truncation matrix defined in Eqs. (IV.9) 

(V.17) 

as, 

(V.1S) 
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We identify (M+l) -Tr T as the number of parameters used in fitting the 

surface to the data, and Tr T as the number of parameters held fixed by 

the TF constraint. The quantities AEi and A~k are found to be quite 

useful in practice for understanding how individual data points and 

data blocks influence a particular fit and for identifying the position 

and range of the smooth cut-off imposed by the TF. 
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VI. Iterative Minimization Scheme 

We now consider the problem of minimizing the full x2
-function 

(Eqs. (III.l), (III.7), and (IV.S» with respect to all of the free 

parameters, including A and q as well as the polynomial coefficients. e; e; 

We have found that this problem can be efficiently handled by an iterative 

procedure in which minimization at fixed values of Ae; and qe; as described 

above is alternated with full minimization of a quadratic approximation 

to X 
2 

Suppose that we have found a set of orthogonal polynomials, T (z,y) , . m 

satisfying (IV.IO) and a set of polynomial coefficients, aO
, satisfying 

m 

(IV.1I) for particular fixed values, A~and q~, of the normalization and 

momentum parameters. We now set, 

ctw\ - a! 1- Sa~ -
AE - A~ -+ d A~ (VLI) -
~" - ~: + ~ cz.E--

2 
and expand X to second order in oa , oA ,and Oq.. Define parameter and m e: -e;. 

derivative vectors, 

••• 
I 

T ___ I (~vZ. \V1. 

d2. - 2 ~. J.!LA.. J 
01\ 0 dAl. D 

(VL2) 

. l. 

••• J~ 
d~ 

I .aI:2.jl .. ..) 
o o~ " 
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and second-derivative matrices, 

\ --- 2 o 

(VI. 3) 

--
2 I 2 2 I Using dX/da =0 and ~d X Ida da =0 ,the second order expansion of mo . m no mn . 

x2 now becomes, 

(VI.4) 

where 

J=(~) J cS - (tJ I - D = (I~ Dll.) 
... D,:I" Dl.'2. 

(VI. 5) 

Minimization with respect to 0 gives, 

(VI.6) 

and we can take advantage of the special form of d and D to find that 

-- (VI. 7) 

(VI.8) 

For reference we give below explicit expressions for the derivatives 

that appear in d andD. Primes on ft:"" and s , denote differentiation with 
."'~ .£~ 
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respect to qt:. 

(VI. 9) 
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(f./~ '-Eo, 

+w:.., 
For most p.urposes terms proportional to A f ,-s ,d~, are sufficiently small 

£ £l. £l. c..l. 

to be safely neglected in the above expressions for the second derivatives. 

This has no effect on the final minimum, which occurs at d2=O, and does 

not degrade the convergence rate of the iterative procedure significantly. 

In particular, it is never necessary to compute the second derivatives 

n II 

f , and s , because they are contained in a term proportional to 
£l. £l. 

A f. ,-s ,d ,. 
£ £l. £l. £l. 

Our basic iteration scheme is to find a set of polynomials and 

coefficients at fixed values of A and q~, then shift A and q according 
£ c.. £ £ 

to Eq. (VI.7), find new polynomials and coefficients, etc. However, it is 

well known that the type of multi-dimensional Newton-Raphson approximation 

which led to Eg. (VI.7) ·can have serious instability problems, and we must 

modify this scheme somewhat to avoid these difficulties. At the outset 

of a minimization we start from initial values of A =1 and q =p , and hold 
£ £ £ 

q~ fixed, iterating with the a arid A parameters only, until a stable 
c.. m £ 

solution is found. The ~ variables are then released and the full iterative 

procedure is followed. The initial minimization at fixed q is necessary 
. £ 

2 because the momentum derivatives of X are poorly known during the initial 

iterative steps, and large, unstable, highly correlated 'shifts of the 

normalization and momentum variableS away from their input values can 
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occur if the full iterative scheme is applied at the outset. After each 

calculation of 0 it is useful to check that the adjusted parameters 

actually give a decrease in x2. This is done by evaluating x2 approximately 

to fourth order in 0, and comparing the result with the previous value. 
2 ' . 

- If it is found that X has actually increased, we replace 0 by Bo where 

the scale factor B is chosen to minimize x2. The fourth order evaluation 

of x2 results in a cubic equation for B which can be solved analytically. 

Sometimes x2 
will appear to decrease when 0 is chosen, but because the 

approximate fourth order evaluation is insufficiently accurate, it will 

2 '. 
be found that X has actually increased when an exact evaluation is made 

with new polynomials and coefficients in the next iterative step. In 

this case we multipiy 0 by a factor of 0.3 and try again. Failures 

requiring the scale factor B or the factor of 0.3 are often associated with 

unstable behavior of the interpolating surface rather than A and q , 
£ £ 

because the latter are directly constrained by w~nand w~n We can 

therefore often correct this behavior and move closer to the minimum by 
. ' 

temporarily holding the interpolating surface fixed as we shift A and 
£ 

-1 
q£, Le., by replacing Eqs.(VI.8} and (VI.7) with 0l=Oand 02=D22d2 • This 

replacement is also useful in the initial iteration"when A first departs 
£ 

from unity, and in the first step in which q£ is allowed to depart from p . 
, £ 

with these safequards against instability the iterative procedure usually 

converges in somewhat less than 40 full steps, Le., somewhat less than 

40 re-evaluations of the polynomials and their coefficients. 



30 

VII. Error adjustment 

The chi-squared ,confidence levels of fits obtained as described in 

the previous sections are often very small. This is due'to unknown 

experimental biases and errors in some of the data, and these effects 

will propagate into the amalgamated data unless they are explicitly 

removed. The nature of the problem can be clearly seen in histograms of 

the data point and data block confidence level distributions calculated 

on the assumption of Gaussian errors. Examples are shown in Fig. 1 of 

Ref. 2. Instead of being flat, the distributions are peaked at low 

confidence levels. These peaks are nearly always present though their 

heights and widths vary with momentum. The data block confidence level 

distribution is usually even more sharply peaked than that of the data 

points, indicating a fairly even scattering of bad data among the 

different blocks. 

We deal with this problem by doing the x2 
minimization in two passes. 

After the first pass error bars of data in the low confidence level peak 

are stretched as described below, and the data is then refit. After the 

second fit the stretchiIlg is done again, but at this stage the low 

confidence level peak has essentially disappeared so the effect is minor. 

The stretching algorithm is defined in terms of 

(VII .1) 

where Nd is the number of data points (including normalizations and momenta) 

and 

-- Nt! +Tr t - (M+\)- Ns (VII.2) 

,'" 
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is the effective number of degrees of freedom (N is the number of 
s 

normalization and momentum parameters contributing to X2). The 

quantitiesx2" and similarly defined quantities for the normalizations 
E:J. 

and momenta, are expected to be distributed approximately in a chi-

squared distribution for one degree of freedom if the errors ar~ truly 

Gaussian. The error e , of datum E:i is stretched according to the 
E:J. 

algorithm, 

if q2. < cz. 
J\" 61 00 

e · --t e · [1+<' -1)/~i - &oyJ .... if 
E-I Eo. I \ o. - ~o / 

(VII. 3) 

and a similar procedure is applied to the normalization and momentum 

, , h h' b·' h _2 d ~2 d covarJ.ance matrJ.ces. T us stretc J.ng egJ.ns w en XE:i excee 5 uo' an 

-2 2 
becomes extreme when XE:i exceeds 01; 00 and 01 are chosen to lie near the 

edge and the middle of the low confidence ·level peak, respectively. 

Typical values are 00=2 and °1=3.. About 10% of the errors are usually 

adjusted by this algorithm, and only about half of these are stretched by 

a factor of more than 1.5. 

Provision is also made for simultaneous stretching of all the error 

bars in data blocks that remain poorly fit after the above procedure is 

ca.rried out, but this is seldom necessary and the overall stretching 

factor is seldom larger than about 1.2. 
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VIII. Interpolation, Error Propagation, and Amalgamation 

The covariance matrix of ,the shifted data is obtained by calculating 

their response to fluctuations in the input data. These fluctuations 

are represented in terms of a statistical model of input data in which the 

data actually, used are considered to be a single sample point in a space 

of Gaussian random variables whose mean values are the true physical values 

of the measured quantities. The x2
-function corresponding to a general 

sample point in this space, in the same approximation as that of Eq. (III. 7) , 

is 

X; - ~ ~~i( Ae~i ~SEi DES-
+ L W~, (>-6 - At)(Ay-/\7) + r W:.,( 1,- f!)(~y- P,,) 

6~ . . E~ 

+ [ ~W\n (aM - A~) (a" - A",) (VIII.I) 
Ml"' 

The general sample point is here represented by the quantities 

DE-' D:i + S Df:; 
, --

Af: - !\t;+&AE -
Pe p; + cS p~ 

(VIII. 2) --
AWl - A':v. + S AWl -

which have the particular values d ., 1,. p, and 0, resPectively, in the 
El. E '. . 

actual fit. (The DEi in Eq. (VIII. 2) should not be confused with the DEi 

in Eqs. (III.2) and (III.3).) The quantities with superscript 0 in (VIII.2) 

represent the mean values of the random variables which are assumed to .be 

equal to the true physical values of the relevant quantities. The inverse 

.~ 
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covariance matrices of D " A, P , and A are taken to be wEl.' (diagonal), El. E E m 

wl , w2 , and T , respectively, where the matrices w, wl, and w2 are the En En rnn 

original matrices w, wl , and w
2 

as modified by error bar stretching, and 

T is the truncation matrix defined in Eqs. (IV.9). Inclusion of the 

quantities A with covariance matrix T-
l 

in the space of random variables 
m 

allows for fluctuations of the appropriate scale in the a priori values 

of the coefficients. 

The error propagation calculation does not take into account the effect 

of fluctuations in the input cross section data on the shifted polarization 

data through the factor s ,. We neglect this effect because the cross El. 

section data are generally considerably more precise than the polarization 

data. Tests have been made to check that the effect is in fact negligible. 

We also neglect fluctuations in the adjusted inverse covariance matrices 

-. w, 
_1. _2, " 
w , and w , and l.n ,the truncatl.on matrl.x, T • 

Our goal is now to calculate the covariance matrix of the fitted 

parameters that is implied by this prescription for the statistical 

nature of the input data. We denote the variable parameters as, 

a! T SaM 
A~ +~", 
~: +:~ ~& 

(VIII. 3) 

where the quantities with superscript zero are the values taken at the 

2 minimum of X for the case of mean value input data. In the following 
g 

we also use polynomials which satisfy'an orthogonality condition 

appropriate to the case of mean value input data, 
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L weiT:ei -r::i + t~", = bMn 
e-i 

(VIII. 4) 

- - (,0)2/ 0)2 o. h .. (4) 1 d where w .=w . 1\ (s. and T·· . 1.S t e quant1.ty 1.n Eq. IV. eva uate 
£1. £1. £ £1. m£1. 
o 0 - / - . .. f 2 ..' 0,0 at y =y =(q -q) q. The condit1.ons for a m1.n1.mum 0 X sat1.sf1.ed by am' I\~, 

££ £ 0 g c.. 

o 
and q are 

£ 

- \0 DO = \ W,i ,,& E:i TO 
L so. ~.E-i E; . ~I 

(VIII. 5) 

2 
Using these definitions and min.imum conditions we now expand X to second 

g 

order about its mean value minimum, Le., to.second order in the quantities 

OD ., oA , OP , OA ,oa ,0:\ , and oq. To simplify the notation we also 
£1. £ £ m m £ £ 

define the following quantities (where rand s take the values 1 and 2), 

J 

(VIII.6) 
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~ h'l: = ~ ~ i I b hlf: ::. ~ ~~ 
~ H't: = ~ 1\ ~ )~ H 2' = S P Eo 

~ & .... = [ IN~" ~Hr" + r.. ~:~ fr .. i 3 D~i 
. ", I ~I . 

CK - [."" (A +[ Wit ~f TO cD o W\ - . lJ~" 0 n . 50. W\~i o. E-i 
~ Eo.. 6-. 

The result of the second order expansion is then, 

. x;= (X;t + 2 -=: + ~ w.;(~D~dl. 

+ LW;.., ~ Hr~ b Hr., + [ t ..... ~A ... SA .. 
r~, M~ 

. . 

- 2 L ~aW\ &KWl - 2f. &hrES G-r"E- (VIII. 7) 
M r~ 

where 

(VIII. 8) 
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+ 

All terms in 3 contain factors proportional to the deviation of the mean 

value input data from the corresponding fitted quantities. Assuming 

that the parametrization has been appropriately chosen, we expect these 

factors to be first-order in magnitude and to fluctuate in sign. This 

results in a suppression of the linear terms in 3 relative to the second-. 

2 
order part of X which is positive definite, and a further suppression 

g 

of the quadratic terms in 3 which will actually be of third-order 

magnitude. On this basis we neglect 3 in the following calculations. 

Out next step is to obtain the fitted values of oa, 01.. , and oq 
m £ £ 

in t.erms of 00 ., 01\. , OP , and OA. Minimizing the expression (VIII. 7) 
£1 £ £ m 

for x2 (with 3 neglected) gives the following relations, 
g 

-- ~K~ -L. 
re 

--
(VIII. 9) 

where the barred quantities indicate va~ues at minimum. Converting to 

matrix notation these equations become, 

So;=~K~Pdh 
n bh = ~(,.' - pT da (VIII.lO) 
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The solution is, 

--

where 

aK = ~K- p..n.-I~6-
a 6= = ~ 6- - pT ~ K 

A =\ -P..n-' pT 
B :'n.- pT~ 

For later use we note the relation, 

which may be obtained as follows: 

1\' = Al (A -t ~12.-1 ~r) ;: , + A-I (p.n.'" B)B- l ~T 

= '-t Al (A~) B- 1 ~T = \ + ~ B-\ ~T 

(VIII .11) 

(VIIL12) 

(VIII .13) 

(VIIL14) 

We can now use relations (VIII. 11) to express the fluctuations in 

the shifted data in terms of the fluctuations in the input data. A 

shifted datum, Db ., which is original~y the ith data point of data block 
E:l. 

E: and is shifted to central bin b at the central momentum q is defined 
c 
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to be, 

(VIII. IS) 

where sb and c
b
· are defined similarly to s . and c ., rb . is unity for 

£ l. . e: 1 £ 1 

cross~section data and is (sin8b )/(sin8 .J for polarization data, and 
£1 

(VIII.16) 

Thus renorrnalized cross-section data are shifted parallel to the fitted 

surface while the deviations of renorrnalized polarization data from the 

fitted polarization are modulated by sin8. To exhibit the fluctuating 

part of the shifted datum we rewrite it as, 

. (VIII.17) 

where 

o 
Db . Eo, 

-- - £&) +C 
. ~D b. 

.)e-i 

(VIII.18) 

--
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Expanding Db .-DbO . we find that the fluctuating part of Db . is, to 
E1 E1 E1 

first order, 

f:::,. . = Ibii (c 0 . - ~ (\. _ f2.fi (q) 
b61 \0 0 ~I \0 a "E SO . "lfE, 

f\E I\E· ~i 

(VIII. 19) 

Following the same argument that we used to neglect ~, we expect that 

the approximation 

is .accurate to first order. h f 1 Do./,o. We can t ere ore rep ace A 1n 
E1 E 

(VIII. 19) 

and obtain, 

-
where 

(VIII. 20) 

(VIII. 21) 

.• 
Equations (VIII.20) and (VIII.11) express ~b . asa linear function . E1 

of the fluctuations in the input data which have the prescribed 

covariances, 
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< b Dl.i& D~j) = ~l.i/"~ / W~ i 
(~Hr~ ~HS'I> = brs (V;r):~ 

( ~ Aw. hAV\ > = 1;'~r\ 

Using these we can calculate the covariance of two shifted data, 

The following are useful intermedia·te steps in the calculation, 

(~Dfi ~ KV\) = 'A°e TV\O&i /5:, 
(~DE-a ~ (;-$") = ~E'" FSEi / S~i 
<aK~ aK~ > = ~~~ 

. (~6-,." ~ G-S"1 > = n iE~ S., 

.. (~K ... ~ 6-s.,) :: P~s'J . 

, . 

(VIII.22) 

(VIII.23) 

(VIII. 24) 

<~DEi ~it)= -S~ ['tr: 1::; - [. (~if')n re F;eiJ 
fi r. I 

(~DEi ~~'1):: t:J&E'1fs~i- A~~ filM,aJ:°ei] 
<6KW\ &Kn>= AMVl 
<~ &r~ ~ &s..,> = BrEI S",' ' 

(aK. ~~"1) = -(pn-IB)MIS~ 

(VIII. 25) 

'. 

. . 
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(VIII. 26) 

The last three entries of Eqs. (VIII. 26) make up the covariance matrix of 

the fitted parameters. We denote this matrix as a whole as, 

u --- (VIII. 27) 

U is proportional to the inverse second derivative matrix of X
2 

with 
g 

terms contained in 3 neglected. To make an explicit comparison with the 

second derivatives displayed in Eqs. (VI.9), we introduce a superscript 0 

on the matrices D
12

, D
22

, and D which denotes (1) evaluation at the mean 

.0000 value minimum, (2) neglect of terms proport10nal to A f .-s .D ., and 
E E1 E1 E1 

(3) replacement of all input weight matrices by their stretched versions, 

i.e., w .+W ., etc. Then it is ea,sily verified that, 
E1 E1 

D~1. = ,~ 
D~l. =.n. 
(DO)-I=U 

The covariance matrix of the shifted data can now be obtained 

(VIII. 28) 
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directly from Egs. (VIII. 20) and (VIII.26). The result is, 

(VIII. 29) 

Although the formal derivation of (VIII. 29) has been facilitated by 

expanding about a point corresponding to the true physical values of the 

relevant quantities, it is of course impossible to use these values in 

a numerical evaluation of V. In practice we make the replacements 

a°-+a ,'A°-+~ , q0-+q, TO .-+T ' . where the barred quantities are the values 
m m £ ££ £ n£l. n£l. 

at minimum for the particular fit under consideration. These replacements 

are no less accurate than the various other first-order approximations 

involved in the derivation of (VIII.29). 

The first term of V is primarily due to the errors of the original 

data while the remaining terms represent errors of interpolation, 

renormalization, and momentum shifting. These latter errors are generally 

somewhat smaller than, but comparable to, those of the original data. 

The final step of our procedure is the construction of the amalgamated 

data and their covariance matrix. The amalgamated datum in bin b is a 

linear combination of the shifted data in that bin, 
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b 

L--- (VIII. 30) 

E; 

with normalized coefficients, 

(VIII. 31) 

The covariance matrix of the amalgamated data is, 

(VIII. 32) 

We choose the coefficients Yb£i to minimize the variance of Db subject 

to the normalization constraint (VIII.3l), i.e., we require 

(VII!.33) 

whereiJ 1s a Lagrange multiplier. This yields, 

(VIII. 34) 

b 
where w is the inverse of the submatrix of V pertaining to bin b. 
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IX. Correlation vectors 

The amalgamated data, D , obtained in Sec. VIII are intended to be 
b . 

useful as precise input data for fitting programs, such as partial wave 

analysis programs. They are more complicated than "raw" experimental 

data, however, because they have highly correlated errors as expressed 

by their covariance matrix, C
bd

' The correlations arise through the 

mutual dependence of the amalgamated data on the interpolating surface 

and on the systematic errors of the original input data. Most of the 

error correlation corresponds to collective fluctuations with rather 

smooth angular variation, although more compl'icated correlations also 

occur. Although the matrix C
bd 

contains complete information on the 

error correlations, including their collective aspects, this information 

is not expressed in a particularly transparent way. In this section 

we show how to extract from C
bd 

a simple, quantitative description of the 

collective fluctuations. One result of this will be the ability to 

perform a fit to the am~lgamated data with a x2-function which involves 

only single sums over the data points, rather than a double sum over all 

the matrix elements of Cbd • A more important result will be the ability 

to extract from a particular fit, fitted amplitudes for the collective 

fluctuations. These amplitudes can be used to perform collective 

adjustments to the data, ina direct generalization of the cornmon 

procedure of renormalizing data using a fitted scale factor. 

Before embarking on a general discussion of fluctuation-affected 

data, we will consider a particular simple example by way of ~ntroduction. 

The example is a set of data, Db' with independent "statistical" errors, 

±e
b

, for each data point, and an overall normalization error of in. 
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More precisely, we represent Db by a statistical model in which 

(IX.l) 

where the random variables A and db have means 1 and db' respectively, 

and have the following covariance matrix: 

where 

( ( ~ ~)2. > :::: n ~ 

< ~Jb ~&, > = c5""c e~ 
(~A c5J .. > = 0 

~A= \-, 
Sd~=d~-~ 

Expanding Db to first order in O.A and Od
b 

we obtain, 

""'" . ""'" Db = &~ + SDb 

~1Jb= £&'0 + J" ~.~ 
The covariance matrix of the normalization-error-affected data is, 

(IX.2) 

(IX.3) 

(IX.4) 

(IX. 5) 

Now suppose that we wish to approximate the covariance matrix, 

~d' of some actual amalgamated data, Db' by a parametrization of the 

type obt~ined in Eq. (IX.5). We need to choose values for db' e
b

, and n. 
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There is no unique way to do this, but after testing several approaches 

we have settled on the following method. For db we use the fitted value 

corresponding to bin b, 

(IX.6) 

The error e
b 

is chosen by requiring that the diagonal elements of C and 

C be equal. This gives e
b 

in terms of n, 

(IX.7) 

Finally, to determine n its(3lf we define the residual correlation matrix, 

-- (IX.B) 

and the sum of squares of its off-diagonal elements, 

r = L (~P. l 
\,<c be 

n is chosen to minimize r, giving 

(IX.9) 

.-~ 1\2.)-1 &" cXc. 
C. C (IX.lO) 

It~ . CC 

2 
Note that nothing in Eqs. (IX.7) and (IX.lO) guarantees that eb>O and 

2 
n >0. This depends on whether the amalgamated data really do have the 

statistical character o·f normalization-error-affected data so that the 

parametrization embodied in C is adequate to provide a good approximation 

to C. 
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Once we have determined an approximate error matrix we may consider 

using it in a fit to the amalgamated data. We would then do the fit 

by minimizing the approximate x2
-function, 

(IX.H) 

where Fb is the value of the fitting function at bin b. The inverse of 

Cis, 

-- - (IX.12) 

where 

~2. = (I -'2. )-1 + n'l. [ eN!! 
e~ b 

(IX.13) 

So 
"'2 
X reduces to, 

,.....,2. . 

X = (IX.14) 

where 

-- -- (IX.15) -
-2 

Thus X has the property of involving only single sums over the data points. 

It is of interest to consider the rather peculiar looking x2
-function 

of Eq. (IX.14) further, and to interpret it in terms of our statistical 
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model of normalization-error-affected data. Returning to the model, 

suppose we have a set of data, Db' and the associated covariance mat~ix, 

C
bc

' which we want to fit with some,fitting function, F
b

• Let us try 

to devise a way to fit the "normalized" variables, db' and the normalization 

variable, A, simultaneously, even though we only have data on the 

combination Ad
b

• The obvious procedure is to represent the normalized 

variables by, 

(IX.16) 

and to introduce an auxiliary normalization parameter to represent A. 

For later convenience we will actually use a normalization parameter, 

~, which represents OA/n. Since the '!normalized" variables have independent 

errors ±e
b 

and OA/n has unit error we are led to guess that the following 

2 f .. . X - unct10n 1S appropr1ate. 

(IX.17) 

where 

---- - (IX.l8) -
"'2 

Minimizing ~ with respect to ~ gives, 
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----
(IX.19) 

--
2 ,-2 

This shows two things. First, our guessed X -funct~on, ~ , is indeed 

b r.-' 1" d ~2 , 'd t' l' f t-2 
correct . ecause, once S ~s e ~m~nate , T, ~s ~ en ~ca ~n orm 0 X 

m~n 

which was explicitly constructed from the correct error matrix for the 

model 'data. Second, when the fit is completed and Fb has been determined 

by minimizing ~2, , we are able to construct explicitly the fitted value 
m~n . 

of A, which is 1+n3. We can then return to the original data and 

construct renormalized data, 

in which the effect of normalization fluctuation has been suppressed. In 

an application to actual amalgamated data with C approximated by C we 

interpret 

-- (IX.21) 

as renormalized data. The renorrnalization procedure is especially 

useful in a highly constrained fit with X2 entering as one contribution 

to a total x2
-function which includes contributions from many other data 

besides Db. To the extent that the normalization of Fb is overconstrained 

by the other data, the fitted value of 3 in such a case may provide a 

particularly accurate measure of the normalization of Db. 

The above formalism is not only illustrative, but actually provides 
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a useful first approximation to the description of the correlated error 

structure of amalgamated data. In most cases a significant amount of 

correlation does arise from· uncertainties in overall n~rmalization. 
2 

However, this parametrization employs only one free parameter, n , to 

describe all the off-diagonal elements of C, and it is not sufficiently 

precise for general use. We next develop a more flexible parametrization 

which allows the detailed structure of the specific fluctuations affecting 

a particular dataset 'to be extracted from its covariance matrix. 

'" . 
Consider a statistical model of fluctuation-affected data, Db' 

specified in terms of random variables ~ and ~n as 

N 

0 .. = d" + ~~n K~ = ~ +ai\ 
where 

&b =:(J., + ~&~ 
~=O 
<b&.,~dc>=~bC e~ 
(~~.~~) = &",'wi 
<SeRb ~V\)= 0 

(IX.22) 

(IX.23) 

The "correlation vectors" K
n 

describe the profiles of N statistically 

independent fluctuations whose amplitudes are given by the random variables 

S. We will require that the correlation vectors be linearly independent, 
n 

and will impose this condition by requiring them to satisfy the following 

orthogonality relation: 

..... 
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L K"" KIM 
b b -- o if n¥=rn (IX.24) 

b 

The particular form of the orthogonality relation is chosen for later 

convenience. The choice involves no significant loss of generality 

because, in practice, the orthogonality .. conditions always represent a 

small number of relations between a large number of free parameters. 

The covariance matrix of the fluctuation-affected data is, 

(IX.25) 

If we now wish to approximate an actual covariance matrix using 

this parametrization we must choose values for a large number of free 

parameters (the diagonal errors e
b 

and the elements of N orthogonal· 

correlation vectors). We have found that a practical way to do this is 

to require equality of the diagonal elements of C and C, and to 

minimize r, defined as in Eq. (IX. 9), by varying the correlation vectors 

one at a time. This constrained minimization procedure is described in 

Appendix C. An indication of the accuracy of the approximation of C by 

C is given by the final value of 2r/N (N -1) where N is the number of 
000 

occupied bins. This is the mean square value of OPbc and it should be small 

compared to unity. However, it is important to realize that although we 

have found minimization of r to be a particularly stable and simple way 

to fit C with the parametrization embodied in C, the final value of r 

itself is a rather arbitrary measure. of the accuracy of this approximation. 
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Other quantitative measures are given below, and these are also used in 

as'sessing the accuracy of approximation. In our applications we have 

obtained adequate accuracy with one or two correlation vectors. The 

best accuracy is usually attained by choosing N=2, but the addition of 

a second vector does not always lead to significant improvement so we 

sometimes choose N=l. OccasionallY'it even happens that no improvement 

is possible over the simple normalization-error parametrization, so We 

use N=l with Kl given by Eq. (C.16). 

The approximate X2
-function for a fit to the amalgamated data with 

the approximated error "matrix is of 'the same form as Eq. (IX.ll), but with 

-- - (IX.26) 

where 

[ ( 

f"\ )2.. ] -, p~ = \ + ~ ~: . (IX.27) 

-2 
So X reduces to, 

-- (IX.28) 

where 

~ --n [ (IX.29) 

b 
--1 

The particularly simple form of C is a result of our choice of the 
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orthogonality relation for the correlation vecotrs. "'2 We interpret X 

by returning to the statistical model of Eqs. (IX.22) and (IX.23). To 

fit the random variables db and sn simultaneously, using only data on 

the combination given by D
b

,- we introduce auxiliary parameters ~n to 

represent the fluctuation amplitudes S , and construct the quantities 
n 

(IX.30) 

to represent the "unfluctuated" variables db. We are thus led to the 

2 f . . 
X - unct1on, 

where 

~ _ Qla [~(-
--n - I-'n el. D~ - F\») 

b D 
Minimization with respect to ~n gives, 

--- -n 

(IX.3l) 

~~ 
~~: 

(IX.32) 

(IX.33) 

"'2 As with Eqs. (IX.l9) these results vindicate our choice of ~ , and provide 

us with explicit formulas for the fitted values of the fluctuation 
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amplitudes. In an application to amalgamated data with C approximated 

by C we interpret 

-n K'" b 
(I~. 34) 

as adjusted data in which the effects of fluctuations have been suppressed. 

The adjusted data will be particularly accurate when F
b

, and hence 2n' 

are over constrained by other data besides Db. The collective fluctuation 

amplitudes, 2 , represent primarily the effects of the normalization and . n 

momentum calibration uncertainties of the original data. The fit"ted 

normalizations and momenta of different data sets are correlated, but 

they are not completely determined. Uncertainties in the interpolating 

surface also contribute to the collective fluctuations. 

We close this section by considering measures of the accuracy of 

approximation of C by C other then the rms value of OP
bc

• Consider the 

x2
-function for a set of amalgamated data Db with respect to their own 

mean values, Db. 

Dc) (IX.35) 

Now since 

(IX.36) 

by definition, we have 

-- Tr (-Ie -- (IX.37) 
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Using the relation (valid for Gaussian statistics), 

(IX.38) 

we find similarly that, 

(IX.39) 

Thus we reproduce the well-known results that the mean and central variance 

2 
of X are Nand 2N , respectively. To judge the accuracy of C for· 

o 0 

practical applications we calculate the mean and central variance of 

-- (IX.40) 

for comparison with the ideal values of Nand 2N. Using Eqs. (IX.36) 
o 0 

and (IX.38) one finds that, 

(~') = T. r-\ c 
«X~)l.)-<f,1/2.=2 Tr (-'e C-'C 

(IX.41) 

It is important to monitor these two quantities in practice, because it 

is quite possible to achieve a small value of 2r/N (N -1) accompanied 
o 0 

by bad values of the mean and central variance. This can usually be 

corrected by stopping the minimization of r somewhat short of an absolute 

minimum. Typical values of these quantities that we obtain in 

applications with N=2 are less than 0.1 for the rms value of OP
bc

, 

--1 
order unity for the bias Tr C C - N., and 2.0 N to 2.4 N for the 

000 

central variance. 
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x. Conclusions 

We have presented techniques for amalgamating data from two-body 

meson-nucleon scattering experiments. The techniques take account of 

statistical experimental errors, known systematic experimentai errors, 

unknown experimental biases which appear as inconsistencies·between 

overlapping or neighboring data sets, and errors of interpolation. The 

resulting amalgamated data are highly correlated. We are able to 

parametrize the correlations in terms of collective fluctuations using 

one or two correlation vectors. 

The techniques described herein have been applied to a collection 

of all existing 'IT±P elastic and 'IT-p charge-exchange differential cross 

section and polarization data.between 349 and 2055 MeV/c. We have 

produced amalgamated data for these reactions at 35 momenta from 429 to 

1995 MeV/c, in angular bins cif 30 spacing. Some of these results are 

described in Ref. 2. We believe that these data will be particularly 

useful for partial wave analysis and other resonance-region phenomenology. 

A description of our own partial wave analysis using these data is 

given in Ref. 1. The data will shortly be made available to interested 

users. The computer program developed for this project runs on the 

LBL CDC-7600, and could be modified for use with data on various two-body 

reactions. The program will also be supplied to interested users. 

Inquiries should be directed to one of the authors. . 
." 
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Appendix A. Electroma2netic Corrections 

The electromagnetic (EM) part of the correction c . (defineQ in 
e:~ 

Sec. III) for an elastic differential cross section datum consists of 

pure Coulomb scattering and Coulomb-nuclear interference contributions. 

That is, if we write the scattering amplitudes as sums of EM and nuclear 

parts, 

f=fEM +fN 
~ = ~eM + ~N 

the corresponding correction term is 

8 
We use the amplitudes of Tromberg et al. for fEM 

the manner described in Sec.II~C of the following 

(A.I) 

(A.2) 
and gEM' calculated in 

I paper . 

General expressions for the nuclear amplitudes are given in Eqs. (II.32) 

of the following paper, but in applications to TIp data amalgamation we 

have modified these somewhat. First, rather than multiplying each partial 

wave by the appropriate Coulomb phase factor, we muitiply by an average 

2ia3 overall phase factor, e , where a
3 

is the non-relativistic Coulomb 

phase shift for F waves. We have verified that a
3 

is a reasonable average 

of ~JS (see Ref.l) for D, F, G, and H waves in the relevant energy range. 

Sand P waves are omitted from the average because the Coulomb phase 

shift is small compared to typical statistical errors in the phases of 

these waves. Second, because we are most interested in accurately 

reproducing the single photon excnange pOle contribution, we renormalize 

the real part of e-2ia3 f to enforce agree)llent with forward dispersion 
N 
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relation determinations of the real part at '0°. We also ignore the 

energy dependence of the empirical partial waves used in constructing 

fN and gN' and use fixed values obtained by linear interpolation to 

the central momentum q. This is necessary because of the erratic energy 
c 

dependence of empirical partial wave amplitudes. The error introduced 

in the EM corrections at momenta different from qby this choice of 
c 

amplitudes is a smooth function of momentum which is compensated by 

the interpolating surface. The parametrization of fN and gN is thus" 

(A. 3) 

, 0 
where Re f (0 ) is the dispersion relation calculation for the forward real 

D 

part evaluated at p , and f , g are the standard part'ial wave sums for 
£' P P 

f , g evaluated at q without Coulomb phase factors. The identification 
N NC 

of Re fD (0
0

) with the "Coulomb-phase-free" version of "fN is discussed in 

Sec.II-D of the following paper~ In our applications to TIp scattering 

we have used the dispersion relation predictions of Engelmann and 

9 10 Hendrick , and the partial wave amplitudes of Ayed • 

EM corrections, and the threshold corrections discussed in Appendix B, 

have been applied to differential cross section data only. These 

corrections are unimportant for polarization data because of their lower 

statistical precision. since the,corrections are made before fitting they 

must be made at the measured momenta, p , rather than the fitted momenta, 
£ 

q. This is acceptable for EM corrections which show little energy variation 
£ 

over ranges corresponding to typical momentum calibration errors. This 
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point is more delicate for threshold corrections, and is discussed further 

in Appendix B. 

With EM effects removed in the manner described, the interpolating 

o 
surface at 0 represents the forward nuclear differential cross section. 

We have included in our cross-section data sets (both elastic and charge-

exchange) predictions (with errors) for this quantity obtained by using 

the total cross sections and the optical theorem, along with the 

dispersion-theo~y predictions for the real parts of the amplitudes as 

calculated by Engelmann and Hendrick
9

• These predictions help to 

determine the shape of the interpolating surface near the forward 

direction, . and also help to determine the normalization parameters of 

the other data sets. However, ~e do not include these 0
0 

predictions in 

forming the amalgamated data by the method described in Sec. VIII. 
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Appendix B. Corrections for Threshold Structure 

We begin with a review of the effect of an inelastic threshold on 

a communicating open channel. Consider the S-matrix for N two~body 

channels with definite values of all conserved quantum numbers .J, P, etc. 

We examine the behavior of S when the first N-I channels are open, and 

the Nth is an S-wave channel near threshold. Let q be the cm momentum 

th ' . 
in the N channel so that SMN ex: vq (M<N) and SNN-I ex: q near q=O. The 

general form of S to lowest non-trivial order in q is, 

s -- 50 + 5, ~. 
'i{28Tii (B.I) 

where So and slare symmet:r;ic (N-I)x(N-I) matrices, B is an (N-I)-component 

vector, and A is a scalar. We require that S be unitary above threshold 

(q>O), and that So+Slq be unitary below threshold (q=ilql). After some 

algebra one finds that this leads to the following relations among the 

parameters of S, 

So s! = \ 
5. :: - B BT 
A = - BTB 
B = vs: Bo J I W\ 80 --

In particular this implies that for M<N, 

SMN ::. i.J2 BM -.JCb. 
SMM = (SD)MM -B! ~ 

(B.2) 

o 

(B.3) 
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Eliminating BM we obtain 

(B.4) 

which is the basic relation between an opening production channel and 

the corresponding elastic channel. 
2 

The term ~(SMN) produces a square-

!:i root cusp in SMM becauseq ~ (s~Sth) • For N=2 the S-rnatrix reduces to 

5== 
e2i~( /- B:~) 

i {i Boe;~~ 
i.ff BQeib'[i­

/- Bo2..Z-
(B.5) 

Eq. (B.5) displays the simple relation between the elastic phase shift at 

threshold and the phase of the production amplitude which is characteristic 

of the two-channel case. 

-We now specialize to 7T p scattering near the nn threshold at 1488 MeV 

(687 MeV/c), and letS be the IJP=!:i~- S-rnatrix. It is assumed that 

the above description in terms of N two-body channels is adequate for our 

purposes" although multi-body channels account for nearly all of the 

inelasticity at this threshold. The production cross section near threshold 

is, 

-- 2 -3 
(B.6) 

-where ~ and ~ are the cm momenta in the 7T p and nn channels, respectively, 

and 

--- -- Ltv • (B.7) 

i.h 
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This determines IB I in terms of the slope of the production cross-section TIN 

at threshold. 
I 11 

The measured value of a is 2l.2±1.8 ~b/(MeV/c). Using n 
(B.3) and (B.7)we find that the elastic T-matrix'element near threshold 

is, 

T --- li. rr..l-e,:1' e3.to< ~ 
B-rr 1r, i: \<\ , ~ 

(B.8) 

where a is the phase of B
TIN

• 12 
Bhandari and Chao have determined a to be 

41
0

±6° by fitting the backward TI-p elastic differential cross section 

13 
data of Debenham et al. • The TIN Sll amplitude is fairly elastic near 

the nn threshold (n - 0.9), so it is not surprising th<;lt a is consistent 

with the threshold value of the elastic phase shift, 0-390
. 

Consider now the problem of amalgamating TI-P elastic or charge-

exchange differential cross section data in a range of lab momenta, 

P2>P >Pl' which includes 687 MeV/c. We will construct correction terms, 
. lab 

contributions to c ., which represent the interference between the cusp 
. £~ 

term in Eq. (B.8), and the regular part of the f amplitude at threshold. 

As discussed in Sec. III, we are free to modify Eq. (B.8) by adding 

analytic terms which can be fit by the interpolating surface, e.g., we can 

add a quadratic polynomial inPlab. This freedom can be used to control 

the magnitude of the correction terms away from the immediate vicinity of 

threshold. Thus we parametrize T as, 

T=T;, + Tc - T~ (B.9) 

where TC contains the cusp contribution, T is a quadratic approximation 
, ,Q 

to T , and T is a constant to be determined. It is convenient to C . 0 
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introduce a new variable, 

X= (B.lO) 

which varies from-l 1::0 1 as Plab varies from I>l to P2 · We choose TC to 

be proportional to Ix-x
th

, and to be normalized to agree with the square­

root singularity in Eq. (B.B). This gives, 

(B.ll) 

where the square root is positive for xth<x<l and positive imaginary for 

-l<x<x . The constant Dis, 
th 

~1.. O:/(.fo .. --AIY"(&~; )\/L 
11',-1;\0\ .. " 2 ') J-folo. b tl1 

a rT L = 2 me rYl n rY'l, V'Q"/-kh" 
( 

11 q ;- ) " (B.l2) 

& 1;,4., -t:h (M" + VY1~)2.. 
For TQ we construct a quadratic function of x which approximates Ix-x 

th 

in the range Ixl<l, 

2-

hex) -- L. h. ~(x) (B.13 ) 

1.=0 

th 
where p~ is the ~ Legendre polynomial and 

I 

h - 2.e-t- IS Jl .,J ", 
R - 2. . _I aX .X- X-I;II ~(x) . (B.l4) 
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Tis now given by, 
Q 

(B.lS) 

The constant T is determined by linear interpolation of the cusp-free 
o 

quantity T- (TC-T
Q

) to threshold, using, the. empirical Sli partial wave 

amplitudes of Ref. 10 for T. 

Correction terms are now constructed from the f amplitude, 

f -- (B.16) 

where fo is the partial wave .sum for f with the Sll amplitude replaced by 

the quantity T constructed above, and with the other partial waves 
o 

evaluated at threshold by simple linear interpolation. K is the isospin 

factor for the reaction under consideration; 2/3 for 7r-p-+1T-p and -12/3 

- 0 for 7r p+7r n. The correction term is, 

(B .17) 

This must be evaluated at (cos8) , and integrated over the momentum 
El. 

spectrum of data block E before being added to c " The momentum averaging El. 

is particularly important when p is close to 687 MeV/c. If the spectral 
E 

shape is a polynomial in P1ab' and we neglect the weak momentum dependence 

of fo/~' the integral can be done exactly by Gaussian integration in the 

variable I/x-Xthl over appropriate sub-ranges. For most 7r p data we 

have used a rectangular momentum spectrum for this integration. For the 

d f 
13,14 . ata 0 Debenham et al. we use a trl.apgular shape appropriate to the 
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conditions of that experiment. 

We finally consider the problems associated with making the above 

corrections at the measured momenta, p , rather than the fitted momenta, 
£ . 

q£. This is not really justified for threshold effects, and a better 

procedure would be to adjust the correction terms iteratively as the q 
. £ 

are being determined so that they end up being evaluated at the fitted 

momenta. In our present applications, however, we have followed the 

simpler procedure for two reasons. First, much of the existing TI-p 

data near 687 MeV/c are taken at too widely spaced momenta and/or are 

insufficiently precise for cusp effects to be clearly present. The 

complication of evaluatingc£i at q£ rather than p£ is unwarranted 

for these data. Second, the data of Debenham et al., which does display 

prominent cusp effects, has a momentum spectrum with a 1.2% full width at 

half maximum, and a momentum calibration error of ±O.l%. Thus the 

difference between p£ and q£ is completely washed out by the momentum 

bite integration. Similar, though less extreme, mismatches between 

momentum bite and calibration error are present in the other existing 

high precision data sets near the nn. thr~shold . 
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Appendix C. Determination of the Correlation Vectors 

We consider the problem posed in'Sec. IX of approximating a given 

covariance matrix C
bc 

by the parametrization given in Eq. (IX.25) subject 

to the orthogonality constraiht of Eq. (IX.24). Our approach will be to 

require equality of the diagonal elements of C and C, and to minimize 

r, defined as in Eq. (IX.9), by varying the correlation vectors one at a 

time. To describe the procedure we introduce the following notation, • 

&b = C"b /e~ 
V~=K~/-JCbb 
Kc = E:\Jc. / -VC"., ecc 
~c. = Cbc/-VCbb CCc. 
~~c = f.oc - 1{c. 

(C .1) 

Now suppose we want to iterate vector 1, holding the rest fixed. We 

introduce the matrix a, 

--
which has known matrix elements given by P

bc 
and the fixed vectors. It is 

also useful to simplify the orthogonality conditions by replacing the vector 

1 
elements Vb with new independent variables, 

-- (C.3) 

where the latter equality follows from the requirement that OPbb=O. The 

problem is now to vary ~ so as to minimize 
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r = L(iJf..J2. = L (abC. - v~ v~). Z. (C.4) 

.,<c b(c. 
, where 

(C.5) 

subject to the ~onstraints 

fer n,>\ (C.6) 

We do this by an iterative Newton-Raphson minimization of the quantity 

(C.7) 

where theK are Lagrange multipliers and we are using vector notation 
n --

for the sum over bins. Denote the derivative vector and second-derivative 

matrix of r at ~=~ by 

• 

0( = _J..~r I 
b 2ax~ 0 

p, _ .La2.r \ 
"e - 2 dX,- d)(c; 0 

(C.S) 

and expand n to second order about ~, 

.n = no -2. (0/- E Xro (VVlt)- O~ + COX)'"PC!JX) 
\ n>\ ' (C.9) 
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where 

(C.10) 

Minimization of Q determines the increment in x to be, 

(C.ll) 

The starting vector X
O 

is assumed to satisfy the orthogonality conditions, 

so the Lagrange multipliers are determined by requiring that 

-- o (C.12) 

where 

-- (C.13) 

Thus, 

-- (C.14) 

"'-
where Q is the submatrix of Q obtained by deleting the first row and 

column. 
o The step from x to x results in a decrease in r given by, 

(C.1S) 

In applications of the correlation vector parametrization we have 

obtained adequate accuracy by always choosing N=l or N=2. In either case-
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we begin with a single correlation vector appropriate to normalization 

fluctuations, 

K ~ = n t 1st> (C.16) 

where n2 is given by Eq~(IX.lO), and then vary,~ to minimize r. If 

N=2 it is important to construct a fairly good guess for the second 

vector before beginning the Newton-Raphson iteration. To describe this, 

let a be defined as in Eq.(C.2), except thatv2 is now the variable vector 

with ,,l held fixed. We calculate the quantities, 

(C.17) 

-l:. \t = ~ Q~e 5.,c (1- $I>e) 

=-(y:)Z.~ CVe2- V': t"(I- ~ .. e)(I-!Jcd)(I-&i~)+cr(bf) 
and our initial guess for v2 is, 

(C.18) 

where B is the value of b for which tb is a maximum. The second term in 

( 18) , 1 th I' 21 hr h Eq. C. approx1ma te y or ogona 1zes v to v. Now we go t oug an 

iteration in which we alternatively scale v 2 by the factor 

(C.19) 
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'.'. . 2 2 I 
which minimizes r, and then replace'v by v -av where 

0( = (~ dl" V~ V~)(t &. (V~t-t 2f (d" V~ V: i'JI 
, . . " . (C.20) 

I 2' 
is chosen to orthogonalize v and v to first order. During this iteration 

2 . 
limits must be imposed on the size of each element of v to ensure that 

The process converges when a becomes vanishingly small, and the 

2 full minimization procedure with all elements of v varying inde.pendently 

can then begin. 
, .' I 2 

Alternative variation of v and v is continued until 

convergence is achieved. Instabilities of the Newton-Raphson method 

sometimes occur, but they, can usually be avoided by temporarily switching 

to a simple steepest descent minimization. 

'. ' 
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