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Abstract

We present a series of numerical and statistical techniques for
interpolating and combining ("amalgamating") data from meson-nucleon
scattering experiments. These techniques have been extensively applied
to Tp elastic and charge~exchange differential cross section and
polarization data in the resonance region. The amalgamation is done
by fitting a momentum and angle dependent interpolating surface to the

‘data over a moderately narrow momentum range, typically ~150 MeV/c,

using the interpolating surface to shift data in a narrower central
momentum region into fixed angular bins at a predetermined central

" momentum, and then statistically combining the data in each bin. The

fitting procedure takes into account normalization errors, momentum
calibration errors, momentum resolution, electromagnetic corrections,
threshold structure, and inconsistencies among the data. The full
covariance matrix of the amalgamated data is calculated, including
contributions of statistical error, systematic error, and interpolation
error. Technigues are presented for extracting from the covariance
matrix information on the collective statistical fluctuations which
correlate the errors of the amalgamated data. These fluctuations are
described in terms of "correlation vectors" which facilitate the use

of the amalgamated data as input for resonance region phenomenology.

Prepared for the U.S. Department of Energy under Contracts
W-7405-ENG~48 and EY-76-02-3066, and for the U.S. National
Science Foundation under grant No. PHY76-21097.



I. Introduction

The best nodern measufements of two-body meson-nucleon scattering in
the resonance region have such high'statisfical precision.tnat.it is
important to take sysﬁematic errors carefullyvinto.account when the data
are used. Some sources of systematic error, such ns normalization error
and béam momentum calibration error, are routinely moniﬁored and documented
by experimentalists,bnt are not always taken info account by data analysts{
Other sources of_systematic error arisg frpm unknown experimental biases;

and show up only as discrepancies between the results of overlapping

. measurements, or as discontinuities between nearby measurements. Data
-analysis itself can introduce systematic biases not present in the original

~'data, e.g., by the common practice of binning together several measurements

made at slightly different angles and/or momenta.

+This paper describes techniques designed to deal with these problems
and to produce "amalgamated" differential cross-section and polarization |
daté inuén accuratejand economically usable form. The purpose is twofold:

first, to resolve many questions about systematic errors and discrepant

‘data at an early stage of analysis which. is essentially model independent,

and second, to summarize the content of an original data set which may
contain hundreds of data extending over a band of momenta by a fixed-
momentum dataset which will be smaller and more manageable when used in

subsequent stages of analysis. The second purpose is similar to that of a

more commonly employed procedure, which is to replace the actual data by a

set of "Legendre coefficients" or a similar set of parameters. We believe

our approach is superior, because the amalgamated data are a more direct

~and faithful representation of all the features of the original data.: The

statistical correlations between the amalgamated data are also smaller



and are more easily handled in a subsequent-analysis than are the correlations
between expansion coefficients.»

fhe general procedure begins by fitting the available déta of a given
type in a narrow momehtum range with a moﬁentum and angle dependent
ninterpplatihg surface".; The momentum range is chosen to be narrow enoth'
so‘that the interpolating surface can be taken to be quadratic in the
laboratory momentum. In practice, this fit often inVolves'maﬁy parameters
and many constraints. We have developed a fast and accurate fitting |
procedure using é_two—vafiable orthogonal polynomial technique tailored
to the comparatively simple structure of the relevant xz-function. Systematic
errors énd systematic discrepancies betwéen different measurements are taken
~into account during the fit of the interpoiating éurface, Once the surface
is determined, data in a narrower central mpmeﬁtum range (in pracﬁice}
about one-third as wide as the full range of the fit) where the Surface is
particularly well determined are shifted along the>surface to the nearesf
of é set of closely,spaced preselected anéles at.é preselected central
“'momentum., The shifted data in each angular "bin" -are then sfatistica;ly
‘combined ("amalgamated").

~The amalgamated data are-correlatéd through theif common dependencef
on the interpplating surface and on-the systematic errors of the original
input data, The covariance matrix of the amalgamated data can be célculated
directly from the errors of the input data using the two-variable
orthogonal.polynomials mentioned:above. We have found»that the ¢orrelation
properﬁies of the. amalgamated data,can be éccurately’represented in terms
of collective fluctuations characte;ized'by "correlation vectors". The use

v . R 2 . '
. of these correlation-:vectors simplifies the )X -function that one would use



in a fit to the amalgamated data, and they can also be used to correct
the data for the effect of collective fluctuations.
The techniques described here have been developed in the course of

an extensive TN partial wave analysisl, and have so far only been applied

to Tp elastic and charge-exchange cross-section and polarization dataz.

In most of the following description we use somewhat more general language

éppropriate to any elastic or two-body inelastic meson-nucleon cross-section
and polarization data. The generaiity of the description is somewhat'
illusory, however, because our methods are designed for situations in which

there is a large amount of high précision data, and this is presently true

‘of only'a few mesén—nucleon reactions. In principle, the téchnique could

also be extended to deal with other types of data such as spin-rotation
parémeter measurements in meson-nucleon scattering or measuremenfs with the
various combinations of polarized targets and polarized beams possible

in photbproduction or pp scattefiné, bﬁt we will not consider such

possibilities here.



II. Parametrization of the Interpolating Surface

The purpose of the interpolating surface is to accurately approximate
the true physical values of the measured quantities for which we.are
amalgamating data. We emphasize that this surface is only an intermediate
tool,”and is not to.ne tnought of as the final result. Before considering
its full energy and angular dependence,.let us discuss the angular
dependence of.the_interpolating surface‘at.fixed.energy. The differential
cross section at fixed energy, I, is a sum of squares of real andfimaginary
»parts’of invariant amplitudes all of which are functions of X (=cos8)
analytic tnroughout the_cut x-plane except for singularities along tne
-real axis. The pdlarization]itself is a quotient, but the pqlarized‘cross
section, IP, is avbilinear form in the real and imaginary parts of the |
invariant amplitudes multipiied by an overall kinematic factor of sine.'

It is the quantities I and IP/sinf. for which we actually form interpolating

surfaces in the fitting procedure describediin the following sections, and

their fi*ed energy;behavior can thus be‘represented by analytic functions
of x with singularities at the same locations as those of thevinvariant
amplitudes. Specifically, an interpolating surface for meson-nucleon

' scattering at fixed energy has right- and left-hand cuts starting at the

t~ and u-~channel thresholds and ﬁay have poles and dipoles corresponding
to baryon exchange (the same analyticity domain as that of the invariant
amplitude Re B); For an_elastic reaction, I and IP/sin6 also have a
singularity at x=1‘corresponding to Coulomb scattering, but we omit this
from the interpolating surface. Coulomb corrections are taken into account
separately and arevdiscussed in the foliowing section and in.Appendix A,

The parametrization we use to represent the angular dependence is a

®
£
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polynomial in the angular variable z of Cutkosky and Deo3. This variable

is defined in terms of two points on the real axis of the x-plane denoted

as x_ and —x_ which lie to the‘right and left, respectively, bf the

physical region (x,>1). The variable z. is then defined by the requirement

‘that it map the x-plane cut along (x+,w) and (¥m,—x_) onto the interior of

a unifogal ellipse with the cuts mapped onto the pgriphery, the interval
(-x_,x+) mapped onto the real axis( and the points x=*1 mapped onto z=%*1.
This mapping stretches the physical region‘in the forward and backward
peaks.while-compressing it in the wide-angle region, ﬁhus tending to

produce flatter structure in z than in x and to thereby reduce the number

~of terms required in a polynomial expansion for a good fit to the data.

As discussed in Ref. 3, the most rapidly convergent polynomial expansion
of a scattering amplitude is a sum of explicit pole terms and a’pélynbmial
in z with X, and.—x_.located at the tips of the physical t- and u~-channel
cuts. We adopt here a simpler and moré flexible version of the

parametrization in which we omit pole terms and treat X, and -x as

'phenomenological parameters representing "effective" cut positions_at which

~ the strengths of the right- and left-hand singularities (including poles)

first become appreciable. The reason for omitting explicit pole
contributions is twofold, first because it is more complicated to iﬁclude
pole contributions in observables than in amplitudes4; and éecond ﬁecause
thevfittihg problem we are dealing with here, unlike the problem of ‘
determining an amplitude from data, has no continuum ambiguity and the
éonstraining effect of the known residue of a bafyon-exchange pole is
consequently less important. The reason fér not réquiring the sfrict

optimal convergence prescription for X, and x_ is that it may happen that



the ﬁain features of the ahgular dependence of the data are contrpiled_by_
singularities which are sfronger'and more distant than those which determine
truly asymptotic convergénce rates. In‘ﬂN scattering, for example, the
right-hand cutibeginé at t=4mi, and is weak there, while the nearest
t-channel resonance exchange poles lie on unphysical sheets at
'£=(mpiin/2)2. We have found in.bractice that accgptabie fits can be
obtaihed with yalues of X, corresponding to intermediate values of
tw(mp—rp)z. For the left-hand cut, on tﬁe other hand, the strong'nuCIeOn
exchange in ﬂ+p elastic and'ﬂ'p,charge—exchange scattering must be taken
into account by using a value of X_ correspondihg.to u=m;, while for‘-
n—p elastic scéttering we can use uz(mA—FA)z. Aitypical exémple_of the
mapping for ﬂ+p scattering at 2_Gev/ci.i5ashown in Fig. 1.

Wevhave made several tests which vérify tﬁat tﬁe prescriptioﬁ for

%, is well matched to the characteristics of the data. In particular, in

+
tests in which we used x,=e (in which éase:z#x, so that our expansion is. -
eqﬁivalent to the usual one) our fits wére.generaily less satisfactory
and aLso réquired more terms. 'Choosing-x+ to correspond to t=4mi also:
tended to give less satisfactory results. .

The energy dependence of the surface is handled'ﬁore simply because .
. we always fit data over a rather narrow range. Thevenergy range is.always
chosen to be sufficiently nérrow so that quadratic interpolation ig

sufficient, and the surface is taken to be of quadratic (or lower) degree

in the laboratory momentum g. We introduce the normalized variable,

_y - ._3 | | .

7
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“Fig. 1. Conformal mapping of the x-plane onto the z-plane for ﬂ+p
scattering at 2 GeV/c. Nearby pole and branch-point singularities

in the t- and u-channels are shown, and the "effective" branch points,
*x , are indicated. The distortion of the physical region is shown
by a dashed line which is drawn with equal intervals of 0.1 in the
x-plane, and with the corresponding mapped intervals in the z-plane.
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where @ is a weighted average beam homentum for all of the input data.v
The parameter qo_is choseﬁ to match the‘amount of momentum dependent
curvature of the surface required_by.thévdata; for mp SCaﬁtéring qo
is usually about 300>MeV/c. The surface can now be represented in the

form,'

{:(Z Y)—ZY 'F( ) | - (I11.2)
k=0 | :
wherebfk(z) is a polynomial in z. - In principle the relation between z
and x is energy dependent, but we neglect this small effect within tﬁe
momentum range of a.single amalgamation, and use a fixed function z(x)
appfdpriaté to'thé:ééntral momentum. in the following discussion we allow
K to be either Q,l, or 2, although K=2 is by far the most common case
encountered in practice. The higher order coefficients of the polynomials
fk are constrained to be of comparable;magnitude by the.ﬁtruncation |
funétionﬁ of Eqg. (III:S). ‘Thus, for K=2, qo is the momentum range over -
whlch the surface develops a 1arge amount of angle—dependent curvature.
Threshold 51ngular1t1es are not 1ntroduced into the 1nterpolat1ng
éurface itself, but are handled in a manner similar to the Coulomb
corrections. This is discussed in the follow1ng section and in. Appéndlx B.
The only threshold that has been treated in detall so far is the nn
threshold at 687 MeV/c, but it should also be possible to include the wn

threshold at 1092 MeV/c.



ITI. Definition of the Xz-function'

The interpoiating surface is fit to experimental data by minimizing

the function,

Xl =’— | Xz + § | . | | (Iii.l)‘

where.x2 contains the constraints imposed by the data, and ¢ is a
"trunéation function" (TF)5 which'imposes a smooth‘truncation on the
number of parameters used in the fit. In this section we give detailed.
definitions 6f Xz and ¢.
The available world data of a ﬁarticular type in a narrow momenﬁum
range typically consists of several "blocks" of data from different
experiments covering various regions of scattering angle at different momenta.
We denote each data biock by a Greek subscript, and denote the ith_datum
. of block € as Dei' . The inverse sqﬁére statistical erroi qf Dai is called
Wesr and the value of the interpoléting surface f(zei'ye) at datum €i
vis aesighated by fEi' - (For the-moment we igno;e the finite momentum °
spread of the beam.':See Eq. (IV.2) for a more precise definition Qf fei'y
" Each data block has an overall normalizatién.error and a cgrrespohding
fitted scale factor. For later convenience, we chose to construct_x2
using the reciprocal of the normalization scale factor, Ae’ rather ﬁhan
the scale factor.itself. Thus theurenormaliéed datum €i is Dsi/ké; As
long as the normalization error is small compared to unity the error in AE
~ is the same as the original normalizatioh error. Each data block also has ‘ »
a measured Seam momentum p€ with a caliﬁration errdr, and a éorresponding
fitted beam momentﬁm qe. Note that.the definition of fei given above #ses

the fitted momentum q.- vNon-analytic effects (Coulomb scattering and/or
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threshold effects) which'are.hot allowed for in the interpolating Surface,
are taken into account by.caléulating an‘explicit correction terﬁ.for

each datum, Cpy? which inc1udes these effects;: The calculation”éf the
correction terms is described‘in Appendices A and B. They are. to be
subtracted from the renormalized input data.befbre thése are compared with
the interpolating sﬁrface in the xzefunction. Finally, as discussed in
the previous section, when dealing withlpolarization data we multiply by

a factor s_,, equai to.thévéorréspondihé cross—section:inferpoléting.
surface divided b¥ siheei,ﬁand.evaluated at Fhe fitteg‘momentum qe,- The

2 _. . ) . . .
X =function constructed in this manner is,

R

}\e \{-VG ‘Fei— Dﬂ-cel

PV . A
X Y Ser € ')\c- “ (II1.2)

LW 0D 0=+ W (B A) - 4y)

where s€i=1 for cross-section data. The matrices wén and wéﬁ are the

inverse covariance matrices of the normalizations and beam momenta,

respectively, with correlations taken into account by appropriate off-
diagonal elements.

A simpler, appfokimate'xz-functioh obtained'from Eq. (II1I.2) is much

more convenient for actual computations. Let,
o T » Ea— [ .
Jel»"" Del Cel : . o ' : “(III.3)

then the sum over individual da£é points in Xz can be rewritten as,



10

€\

(IT1.4)

+ W C:';(}\e" |)1_] .

which has the form of an expansion in quantities of order,

e = ]Cd\.(mrw\a\i%a%ion 'errbr_)‘l'_ (11 5)
el ~ (skatistical errar)e; - |
There is some arbitrariness in ;he correction terms, in that we can

include in them any analytié cont;ibﬁtions we like (as long as these
éontributions vary slowly eﬂéugh to-be well represented by the interpolating
surface), in additioh to the specifically noﬁ—ahalytic effects_that they
are intended to'fepresent. This'freedom can be used to keep |c€i| small,

and it is fairly easy to arrange that the quantity,.

-\Cei\/(sicahslcica\' error)ei  ame

is typically of order unity where non-analytic effects are important and
much smaller el;ewhere.v Thus for well nor@alized data eei is small, and
the second and third sums in'Eq,(III.4) will be'small compared to the first.
Furthermore, the summand in the seéond sum fluctuates in sign so we expect
a further reduction by a factof or order (total number of dat‘a)l/2

compared to the first sum. The weakest point in this line of reasoniﬁg

occurs for elastic differential cross-section data at very small angles,

J

Z [y% A ﬁifs"‘dﬂ M ;—Wﬂ%::-(&- )‘ Aefi™Seide;.

ars

a>
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where the Coulomb correction terms can in principle become arbitrarily

. large. However, it is difficult to make a measurement far into the
COulomb region without encountering backgrounds which also-make the
statistical error gron. In explicit checks wevhave.fodnd that even.

for the most forward available ﬂp-dota:G ”'seldom exceeds 0.3. 'Occasionel
data 901nts for which 9 >0 3 can be handled by artif101ally increasing
the statlstlcal error to keep 6

ei

this paper we will uSe.the X -fundtion{
X E We. )\ ﬁ‘ Se| Aéi_ o BNG + & 3%
€l
+ ;Welv ()\e "'D()\'q".' ‘)"'}:W::I .(g'e—#é)(;v —-)67)
€ _ | €7

small. Thus, in the. remainder of

The.advantage of this form over Eq.(III.Z) is that the correction terms
can‘now eimply be eubtracted from the data before fitting, as in'Eq.(III.3),
and do'not enter explicitly into the xz-function itself.

The free parameters to ‘be determined by fltting are the coefficlents
of the polynomials: f (z), ‘the scale parameters X , and the momenta 9.
The polynomlals fk(z)‘typlcally'have apprec;able coefflcients up to
" order 8 or higher, so that there ie no nell defined sharp cutoff point
for the number of polynomial coefficients retained. We therefore use the
TF ¢ to impose a smooth truncation on the higher powers of z. This is

done by minimizing x2+¢, rather than x2 alone, where

=20 i§> @

h=0



12

with the line_integral being taken around ﬁhe unifocal ellipse onto.
which the t- ana:u—chaﬁnei~cuts are;mapped by’the Cutkosky-Deo mapping.
The lengths of the semi-axes of.theQellipse are typically betWeen 2

and 6 (depending on tﬁe momentum)  so the higher poﬁers of z are magnified
With respect to the lowerxpowers on the boundafy of the.ellipse, and the‘ N
'addition of ¢ tovx2 cuts off these higher powers smoothly. The region in
which the'cﬁtoff becomes effective is controlled bf adjusting the constant

. The ellipse shrinks with increasiné energy so that & naturally_allows
-the number of effectively free parameters to increase with increasing

.energy éven if Q is held fixed. The particular weight function used in

thé integral is chosen ﬁecause ChebyShev polynomials.are orﬁhogonal Qith

v reépect to this‘weight and“ﬁhis faciliﬁates computation of ¢ as discussed

in the foli6wingAsectibn. | :

In our applications to Tp scattering we found that a single Valﬁe of
10v—7(mb/ster)-2 for Q gave genefally satisfactory results for both cross
sec£i§nsfand polarizétions thrcughout.the.resonancelregion. This value
was a:rived at in the usual way,.ﬁy decreasing until Xzaper degree of
 freedom stopped improving. In.a few cases where the data were‘particularly
épafse:and;the interpolating surface was poorly coﬁstrainedf we used;values as
1argé asz1076(mb/s£er)f2. There afe also some data sets with pronounced
structure Qhefe 2 -can be deéreased further'befqre x2 per degree of.freedom

stops improving. Although we are aware that some of this structure may

turn out to be spurious, we have usually attempted to accomodate it by ' ‘e
choosing a conservatively small vélue of Q, sometimes as small as

-8 -2
10 ~(mb/ster) .
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Iv.. Construction of Orthogonal Polynomials

As a prelimipary to the diséus#ion of the full minimization of.xz,
we coqsider.here the problem of mipimizing xz_with fixed values of the
normalization and moméntum parameters. This is a linear least squares
problem which can be solved'analftically. We fepresent.the fitted

surface as

'F(ZIY)::Z ame(E,Y) | | .1
m=o0 . : .

where the fuﬁc?ions Tm(z,y) are polynomials in z and y and the M+l
parameters a are variable coefficignts to be defermined.by ﬁinimizing
xz.f It is useful for'numerous aspeétévof the amalgamgtion proce@ure to
attack the problem of determining the cbefficients_am by first chdsing the
polynomials vato diagonalize the am—sector of,the‘second—derivative
matrix of xz, All of the difficulties of the fixed AE and_q€ minimization
problem are then coptained in the construction~of polynomialg Tm which
satisfy anvappropriate orthogonality condition (Eq.(IV.lO) below), and
‘once these polynomials‘are constrﬁcted the;determinétion of thevcoefficients
is trivial. This section is devoted.to the formulatioﬁ of the érthégonality
conditionvand to the construction of fhe polynoﬁials wﬁich satisfy:if.

The terms in X2 which are bilinear in the coefficients are thoée
containing fzi and those coming ffom ®. The quantit& fsi is the average
of the fitted surface over the spectrum of the GFh beam. .If the beam

resolution function is Be(q) we have6,

=<z, = [ B9, 1) [(42.8,8) e
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Since f(z,y) is at most quadratic'iniy,»fei can be evaluated completely
in terms of the average momentum <q>é, which we take to be the fitted
momentum I and  the mean'squared”deviation’<(q-<q>€)2>55b§.v Using

the decomposition of Eq.(IV.l) we have,

ﬂi-—:z: am Tmé‘i - - (1v.3)
- m=zo o
where

Toai= Ton (20,10 +4 £ Els 0 2e)

be/%o , Ye = ( Z’e - i)/%o

"The TF has been designed to take-advahtage of the orthogonality

(1IV.4)

'property o0f Chebyshev polynomials on unlfocal elllpses For any ellipse

w1th foc11 at z=+l we- have,

2| p@p (=T,
Ns .év»z&o + R’.'Ra-‘*- R

. . . 7 = : . .
where R is the sum of the semi-axes of the ellipse .  To use this relation

(IV.5)

we represent the polynomials Tm'asn

Tez=) ] DaR@Y* s

z-o Asa | ~ |
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where (L+1) (K+1)=M+1. Comparing with Eq. (II.2) we find

 4@= ] a.0np@

(IvV.7)
mz0O 2=0
Thus the TF can be expressed as,
e _ » ‘
M
é - E - § Tmn am an (Iv.8)
ms30 n=0 '

where the "truncation matrix" T is,

| T Z E wza Dm Du,

- f=0 &=0

'._4-'Cl).e;&=ﬂNx R o

We now have all the notation necesSary to write down the coefficient

sector .6f the second derivative matrix of x2 and the orthogonality

- condition to be imposed on the T

% bam aanl L “T”“"T ,+Zmem Du. gmn

(L)e( Wei A / - -

When this condition 1svsatlsf1ed the values of the coefficients which

m’ This is,

&0

.

minimize X~ are easily found to be,

‘am = Z X ¢ Tm ei

€l o N | (v1i)
Kei = Wei}\écoei/sei' -
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The actual construction of the orthogonal polynomials can be
carried out by a recursion method which is a .generalization of the familiar

recursion relation Qn=(Anx+Bn)Qn_l+CnQ for orthogonal polynomials

n-2
Q. in a real variable x. The lowest order polynomial is . chosen to be

a constant,

...|/z_

T (Z Y) = Doo Zwe' + woo _ (IV..1.2) .

Higherbérder polynomials are generated by expressing them as a linear
combination of éll lower order polynomials, plus a linearly independeht

"leading term", Lm.

Ton (2,9 = Com L, ) +ZC.,...T(,3 Y) , m>0

n=0
(Iv.13)
For the first K polynomials with m>0 we define Lm'to introduce higher

pdwers of y. For m>K we consecutively introduce higher powers of z in

" groups of K+l linearly independent terms. Specifically,

YTma ), O<meK
ETa(®Y) , m>K

where m=m- (K+1). For example, if K=2 new powers of z and y are

L (Z,Y)=

(1Iv.14)

introduced in the following order: 1, vy, y2, z, 2y, zyz, z2, zzy, zzyz,

z3,... From Egs. (IV.13) and (IV.14) we'immgdiately find that

D;;t =0 iof m<(K"'|)£+}£ (1Iv.15)

€5

']
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Note'ﬁhat unlike'the familiar real-variable recufsion relation, we
¢ahnot truncaté the lower_side of the sum in (IV.13) at some small Qalue
éf m-n. Thisvis bécause the TF is a sqélar—product type of iﬁtegral
over complex yalﬁés of 2z, and as:aA;esuit Lm willbin géneral not be
orthogonal to any of the polynomials T with n<m. |

We hust now solve for the coefficients cmn by imposing the
orthogonality relation (IV.10) on the representatidn (IV.13). For the
first sﬁm in the orthogonality relation we neéd the representation

correspbnding to (IvV.13) for the "eValuated" polynomials Tmei' This is,

- , | me=| ' |
Tme'l = C"‘"‘ L.-'“éi +Z: CmnTne'\
C o - N=0 o

, m>0
(Iv.16)
where 3
Liei = Ye -Bei K > O

/7 | | |
L 2. v |
Laci=YeTiei + Cu A Toet, K=2  wan
Lmei=Zei Taei, m>K
For the second sum we will need the analog 6f Eq. (IV.lé) for the

coefficients DE Making a decomposition similar to Eq.(IV.6) for the

X

" ‘ | L (2:¥),

o L K S
. | L','“('Z',\/) ZE A':" (Z)Y ) wmn>0 (was
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we obtain -
. w1 _ |
{44 - W Co _ n
D‘A - Cm". Axh‘kzc\mn D‘h ) mwm?2> o (1Iv.19)
' . . neo

. m
The qogff1c1ents A&,k

(IV.17) of the L and the relation

vanish when (K+1) L+k>m, and by using the definition .

2 P,Q(i') =-%-_( BH () + B_. (2‘)) ) L2z (_I\'r.zo‘i

we can express all the A-coefficients with (K+1)£%+k<m in terms of
D~-coefficients corresponding to lower values of m. These relations are
_ given below, where we use integers A and K defined by the decomposition

m=(K+1)A+K’with.AZp and 0<k<K.
N Jr=o
Do,)g-_-'l f /4&2‘ . . _

o I

WA
Ace
th

FAYSY

ATh = |

A=%Dl k<K ) |

Aoa = O“ )£>H )\=2_ : (Iv.21)
'n = Doa N : | '

ATa = %D |

Nox
AV
AYa
JAY1Y

i
Sy

29
et

3

wn

XY |
Dox :ﬁa>h" A
; 222
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Don =% D%
ATh = D2+ & Dfa

JAY T Y %(Dz-«h Dz-vl, ) 25 A-3 | >4
Avan= % (D;-;,:. + D;-\,;.) ke C A
A, a= % DRs 0 ,Q >N |

w =% D?—-\,h | ; ,Q..)\"'l, _

The procedure‘for solving the recursion relations is now straight-
forward. Suppose thgt we have detefmined all the qgantities Cnn" Tnei’ and
Dzk for n<m, n'<m. The next stage of the process is to substitute Egs.
(Iy.16)'and‘(IV.19) into (IV.10), and impose-orthogonality:between Tm(z,y)

and all'Tn(z,y) with n<m., This gives,

Cow | ,_ - e
C ——Zweil-msi—n\e'\ —; Wep A,u, D,u. ) n<m

v (1v.22)
whlch, w1th the help of (Iv.17) and (IV 21), ‘expresses the ratios
Cmn/cmm in terms of prev1ously calculated quantltles. Imp051ng the

normalization condition expressed by'Eq.(IV.lO) with m=n we obtain

M;| 2 "'/1-
Cmm= Zwél(l""e') +2: wl.’a (Aﬂh) Z C
& | o mm/

(1Iv.23)
which is also in terms of previously calculated quantities. Tmsi and

m
Pox

proceed to index m+l. The polynomials Tm(z,y) themselves can either

can now be calculated from Eqs.}IV.lG) and (Iv.19), and one can

be calculated recursively using the coefficients Cmn' or directly using

. . m
the coefficients Dzk'
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V. Effects of Individual Coefficients and Cohstraints

'~ In the previous section we solved the problem of minimizing X
when the normalization and momentum parameters are fixed. wé now show

that the orthogonal polynomial:formalism developed there allows us to

make quite specific statements about the effect of individual coefficients

and constraints on the resulting value of X at minimum. The part of

X2 which involves the coefficients directly is

2

X Z: e >‘ 'Feu e i +§» | -

and we can use thé results of the previous section (particularly Egs.

(IvV.3) and (IV.8)-(IV.1ll)) to rewrite this as

T wadi-2Tdar L ab o
€\ ' M m

The effect of an individual coefficient a, on the minimum value of xi

is now clear. The minimum value is,

Z ' = Jd5| &él am ' (V.3)
a min m '
' AT th = - : .
and the result of omitting the m term from the sum (Iv.1l) is to
increase xi min by Si without changing the valués of the remaining
’ . .

coefficients.

To describe the effects of individual constraints we rewrite Xa as

)
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_ 2 |
X: = xei + Z ¢2k ' | (v.4)

. . '» ) ’2_
X =8 Nefar = Seic
e "'S?- € lei SeiGVei
: vb . (v.5)
bu = waa (L A Dy
e~ RR\ T s
and .consider the efféct of omitting one of the constraining terms, i.e.,

setting one of the w_, or w, to zero. The resulting decrease in x2 .
v ei 1k ‘ o . Ta,min

- can then be calculated by reminimizing and will generally be greater than
the corresponding value of Xii or ¢zk at the original minimum.
Suppose we omit the constraint corresponding to datum nj, and .

denote quantities in which this datum ié omitted by primés. Then,
:Eg:,gg - :jg::CI - jx:'173
. (v.8)
/ 2 Z:
- :E:: \ﬁvaéi Ci&;{ ._,;2'2 t’ CZ'V\ T f;nan Ao Clv\
€l L

where o i
.tyhn = Zjiun <?(17J -r:vrvg
S = Euna = W5 Tores Tm

Minimizing X;2 we obtain

(v.7)



Al = (5"
amm- Z Wél et 'lDTS.-‘bA

where we'have converted to matrix notation. The inverse of S is,

mn = Omn ""/\7' wir) | nyj (V.9)

(v.8)

where

Ny = Wry; Z T - (V.10
It is easily verified that the fitted value of the surface correséonding‘
to datum nj, - |

—

144

is changed by an amount

= T __ /\75 T S'n
.F7j —‘ ‘ij - ‘-— A‘y:’ Iy ‘Fv:’ (V.12)

by the reminimization and that the decrease in the mlnlmum value of x is

X:,min—.Xavmn . 7C’/a/(l /\74) (v.13)

where Yz. is the value of x at the origi al minimum.
nj n3 n*

Vf),

/

i




23

If we omlt the "TF constraint corresponding to wzk a similar

calculation glves equations analogous to (V. 12) and (v.13).

Z(a )le /\RA Z D,QA (V. 14)‘

w wA

. | " — v |
X:,\MW\-. ’a,vv\ln = ¢£;/(|- AI,&) | (v.15)

where
/\Rh = U-)Lk g (D;:;t) ' B w.18)

It is clear from Egs. (V.12)-(V.15) that the quantity Aei'(orvAzk)
is a measure of the "pull" of constraint €i (or Lk) on the fitted
parameters a_ and on the value of X2 ...» . The sense in which this is

m a,min .

true can be made more precise by not;ng that the orthogonality relation

'implies that,

z Ae|+ z /\Iaﬁ. = M +) . (vl
e Ak | o
Thus it is natural to identify Ae (or A ) with the effective number

- of parameters used in fitting constraint €i (or gk). Eq.(V.17) can

be rewritten in terms of the truncatioﬁ matrix defined in Eqs;(IV.9) as,

; /\ei=(M*i:.\)"’Tr T | | (&.1_8)
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We iaentify (M+1)-Tr T as the number of parameters used in fitting the
surfacé to the data, and Tr T as the number of parameters held fixed by -
the TF constraint. The quantities Aéi and'Alk are found to be quite
useful in practicé for understanding how individual data points and
data Slocks inflﬁencg a paf£§cular fit:aﬁd for identifying the'pdsition

and range of the smooth éut—off imposed by the TF.

Sy
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VI. Iterative Minimization Scheme

We now conéider the éroblem of minimiéing the full Xz—function
(Egs. (I1I.1), (III{7), and (IV;S)) with‘respect to all of the free
parameters, including..)w€ gn@ qe as Qell as the polynomial qoefficients.
We have found that this problem can be efficiently handled by an iterative
prodeéure'in which minimization at_fixed values 9f Ae and q. as described
above is alternated: with fuli minimization of a quadratic approkimation'
to X°." | |
Suppose that we have found a set of orthogonal polyﬁomlals, T (z,y),

satlsfylng (IV 10) and a set of polynomlal coeff1c1ents, a ’ satlsfylng

(Iv.11) for-particular fixed values, ke and qe, of the normalization and

. momentum parameters. We now set, -

Am ___.:.a'o“__‘_ 5am .
>\6‘ = )\e + 5)\5 . (VI.1)
e =% + 0%,

. 2 -
‘and expand X to second order in Gam, er,«and qu, Define parameter and

derivative vectors,

&= (6ao,5a., Sam)
§=(8N 8N, 88, 8%, ) o

A= L(3X] 2K, 2K7, 3K ...
VI YV A ) W AT 22 A T
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and second-derivative matrices,

"'\ aX |
Bdee = 3 Sam 3G o

(VI.3)

e
D“')'““ B 2. 2(8)w 380 o

Using 8X2/3a | =0 and %3 X /Bamaan|o=6mh, the second order expansion of.

xz.now becomes, ' : , ' o
X*-X2 --ZOQTS + 8 D6 +O(63) o
where. ' S | .
J___ O v , 5= él ) D=- In Dn. 5)
di , 62 | Dn. DJ.?.
Minimization with respect to 8 gives, » : . .
6' »="'D-‘ J - . (vx.le)
and we can take advantage of the special fdrm of a and D toffind that
52_ - (D’zz - D:. Dn.")dl 'Ja. EEET | 3(\'/1.7)
6| == DlL 62., o S (vx..e'n :

For reference we give below explicit'expressions for the derivatives

' hat appear in d and ‘D. Primes on ﬁei:and Sey denote differentiation with
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1 aX | =Z _W_ﬂ__s._rh'_t_ﬁ_f_(z_)\ Tei — Jﬂ> (VI.9)

iaamaz@ =) Vdde [* fe'( Toei = nge. =

—_Seicpéi< Tonet —_ﬂgg%!# +>\e € -E""i]

bk s () e e

| L ax{ﬁ _,ge,, [}’_ M—’ﬂ( ——fu)(zxe i~ o?)]
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% ai%g.e = O¢y Z '—ﬂ'&' (A fen B Se. GQH

'Fe” - 2 feiSei * fei Sei + ‘Fes; (Sei) ) +)\ ﬁ. quu)z |
€|

‘ - Se | - el
¥ X
' ~*ﬁ \fVﬁsj,

For most purposes terms proportlonal to )\efel--seidei are‘sufficiehtly small
to be safely neglected_;n the above express1ons_fo: the second derivatives.
This has no effect on the final minimum, which occurs at d,=0, and does’
not degrade the convergence rate of the itérative procédure significahtly.
In particular,.it is never necessary to compute the second derivatives

"

w o : ’ )
v fEi and Sei because they are contained in a term proportional to

Aefei %%y |

, Our basic iteration scheme is to find a set of polynomials and
coefficients at fixed values of Ae and qef then shift Xe and q€ adcording
ﬁo Eq.(Vi.?),'find new polynomials and coeffidients, etc. However, it is
well known that the type of multi—dimensional'Newton-Raphson.approximatioh
‘which led to Eq. (VI.7) can have serious insfability problems,vana we must
modify this scheme Somewhét to avoid these'difficultiéé. At the outset.
of a minimization we start from initial vqlués of X€=1vand q€=p€; aﬁd hold
q fixed, iterating with the'am and Ae.parameters only, until a stable
solution is found. The qe Qariables a?e then réleaéed and the full iterative
procedure is followed. The initiai_miniﬁization at fiicedqe is necéssary
because the momentum derivatives of_vx2 are poorly known during the initial
iéerative steps, and large, unstable, hith? correlated shifts of the

normalization and momentum variables away from their input values can

ey
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occur if the full iterative scheme is applied at the outset. After each
calculation of & it is usefui to‘check that the adjusted parameters
actually give a decrease in X2. This is done by evaluating X approximately

to fourth order in §, and comparing the result Qith the previous value.

. o 9 - _ o - _
" If it is found that X~ has actually increased, we replace § by RS where

the séale féétor B is chosen to miﬁimize ng ‘The fourth order evaluation
of X° results in a cubic eQuétién for B which can bé.solved analytically.
Sometimes X2 will appéar to decreaée when.G is chosén,.but bécaﬁée the
approximate foﬁrth oraer evaluation is insufficiently accurate, it Wili

be foﬁnd that X2 hasuactuéll§ increésed when én exact evéluation is made
with.new.polyhoﬁiais and coefficients in the next iterative étep. In

this cése we mﬁltip;y 8§ by a faétdr of 0.3 and try ééain.‘ Failures
requiring the scale factor B or the facﬁor of 0.3 are often associated with
unstabie behavior of the interpolatingﬁsurface rather than Xe and Qe

because the latter axé directly constrained by wén'and wzn. We can

therefore often correct this behaviof and move closer to the minimum by

temporarily holding the interpolating surface fixed as we shift‘Aé and
1l

‘qe, i.e., by replacing-Eqs.(VI.B)'and (v1.7) with'61=0 and §.=D_.d.. This

2 2272

replacement is also useful in the initial iteration when AE first departs
from unity, and in the first étep in which q. is allowed to depart from ps.
With these safequards against instability the iterative pfocedure usually

converges in somewhat less than 40 full steps, i.e., somewhat less than

40 reQévaluationsyof the'polynomiéls and their coefficients.
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VII. Error adjustment

The chi—squared‘confidence lévels of fits obtained as déscribed in
the. previous sectiops are often very small. fhis is due to unknown
experimental biases aﬁd errors in some of the data, andvthese effects »
will propagate into the amalgamated data unlesé they are.expliciﬁly' i g
removéd. The nature of the problem can be clearly seen in histogfams of
the data point and dafa block confidence level distiibutions calculated
onvtﬁe assumption of Gaussian errors. Examples are shown in Fig. 1 of
Ref. 2.‘ Instead of being flat, theadistribgtions are_peaked at léw'
confidence 1eveis.‘ These peaks are nearly always present'though théii
heights and widths vary with momentum. The data block confidence level
distribution is uSualiy even more sharply peaked thén'that of the data
points, indicating a fairly even scattering of bad data.among the.
different blocks.»
We deal with this problem by dbingbthe X? minimiéation in two passes.
Aftér thé first_pass error bars of data in the low confidence 1e§ei peak -
- are stretched as described Below, and the déta.is‘then refit. After the
second fit the»stretching is done again, but at this stage the‘low
éonfidence level peak has essentially disappeared so the effect is minor.

The stretching algorithm is defined in terms of

Xéi = Nd xe./[\]{_ - (VII.1)

where Ny is the number of data points (ihcluding normalizations and momenta) :

g

and

N‘F=NJ+T\'T—(N\+”—NS (VII.2)
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is the effective number of degrees of freedom (Ns_is the number of
normalization andvmomentum parameters contributing to XZ). The
quantities’izi} and similarly defined quantities for the normalizations
and momenta, are expected to be distributed approximately in a chi~-
squared distribution for one degree of freedom if the errors are truly
Gaussian. The error ey of datum €i is stretched according to the
algorithm,
. . - 22 2
. . ’
Cei thhaniea if xei <8o
' (VII.3)
~2 é; 2 ~ %
, w— . . 2_
€7 €1+ (51 JS : F Xa >§,
: v ' 1~ Qo . '

and a similar procedure is applied to the normalizafion and momentum

. . . s ~ 2
covariance matrices. Thus stretching begins whenvxzi exceeds 60, and

. - 5 , .
becomes extreme when XZi exceeds 61; 60 and Gl‘are chosen to lie near the

edge and the middle of the low confidence level peak, respectivély.

.Typical values are 60=2 and 61=3, About 10% of the errors are usually

adjusted by this algorithm, and only aboﬁt half of these are stfetched by
a factor of more than 1.5.

Provision is also made for simultaneous stretching of all the‘error
bars in data blocks that reméin poorly fit after the above.proceduQe isg
carried out, but this is seldom'neéessary and the overall stretéhing

factor is seldom larger than about 1.2.
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VIII. Interpolation, Error Propagation, and Amalgamation

The covariance matrik‘ofdthe shifted data is obtained by calcula?ing
their response to flﬁctuations_in the input data. These fluctuations
are represented in tefms of a statistical model of-inputxdata invwhich the
data actuélly~used are consideréd to be a singie sample. point in a space
of Gaﬁssian random variables whose mean values are the truevphysical values
of the measured quantities. The Xz—function corregponding to a géneral

sample point in this space, in‘the same approximation as that of Eq. (III.7),

isz—z: We, | \Z

+ 3 Wiy Ovem Adlhr-Ad) + L Wer (3,-R)(3,-F,)
+2; 'tmn (am.""Am)(an"’An) | | o (\7_111.;')

The general sample point is here represented by the quantities .

Dei =D& +6Dei

Ne =Ne+§Ahe o
Pe =Pc +6P. o
Aw = Au + §Am |

which have the particular . values dei' l,,pe,vanq Q,Vrespgctively, in the

actual fit. (The Dy in Eq.(VIII.2) should not be confused with the D.;
in Egs.(III.2) and (1II.3).) The quantities with superscript O in (VIII.2)
represent the mean values of the random variables which are assumed to be

equal to the true physical values of the relevant quantities. The inverse

»
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covariance matrices of Deif Aé, Ps, and Am are taken to be %Ei (diagonal),
Wl , Wz , and T , respectively, where the matrices W, W, and_W2 are the
£n en mn . .
original matrices w, wl, and w2 as modified by error bar stretching,and
T is the truncation_métrix‘defined in Eqgs. (Iv.9). Inclusion of the
quantities L with covariance.maﬁrix T_l in thé space of random variables
allows for fluctuations of the appropriate scale in the a priori values
of the coefficients. '

The error propagation calculation does not take into account'the effect
of flucfuations in thé input cross section data on the shifted polarization
data tﬁréugh the factorvsei. We neglect this effect because the cross
section data are génerally considerably more precise than the polarization
data; Teété.ﬁave'beéh made to check that the effect is in fact negligible.
We also neglect fluctuations in the adjusted inverse covariance matrices

W, WL;”and W?, aﬁd in the truncation matrix, T.
Our’ééalaié now fo calculate the covariance matrix of the fitted

parameters that is implied by this prescription for the statistical

nature of the input data. We denote the variable parameters as,

Awm = Om + b4 |
o ‘ :
>\€-'= )\6 + 5>\é (VIII.3)
=% +8F, |
« " e 9% |

where the qﬁantitiés‘with superscript zero are the values taken at the
minimum of Xz for the case qf mean value input data. In the following
we also uge'polYnomials which satisfy;an'ortﬁogonality condition

appropriate to the case of mean value input data,
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. -o S o o | o -
Z &jé'l Tmei T::.’ + ltwm = 6mn | (VIII.4)
el : : ‘

~ o~ 0,2 o .2 o . . .
where wei—wei(le) /(sei) and Tmei is the quantity in Eq. (IV.4) evaluated

- ’ ' . s : 2 R :
at y€=yz#(q:-q)/qo. The conditions for a minimum of Xg satisfied by a:, Ao,

€

o
and q€ are

a& = ~ W )\6 Dél Tme. +Z ._/tnvm.Ai

(VIIT 5)

Z“/V(———”Cfixﬂ D +pr,<A -Ay) =

VZ\Neu (_Fﬂ)_ﬁ__(é.ul )\-F ---.S;;D6 +ZW,,(%7 P7) O

. e e .. s 2
Using these definitions and minimum conditions we now expand Xg to second
order about its mean value minimum, i.e., to second order in the quantities
8D oy 6A€, 6P , 6A R Ga ’ GXE, and Gq To simplify the notation we alSO‘

define the following quantities (where r and s take the values 1 and 2),

eri= ; y; eri.:)\o ('Fen) -Fé‘ Sﬂ

€l

ﬂre,sv = érs We’] + 6&‘7 Z W“ (iré")f;“i
’ ' €i

i .
Bm,ré Z Tmel F\"ﬂ (VIII.6)

i

.“.‘.°



She=8he, Shi= 8%
SHi’é = gl\e , éHze 5Pe—

SG\-@ = Z. W:’I éHrv +§:— %ﬂ- Fl’el 8De-|

§Ko= L Tun$A +L Meihe 72 g
v : wmn Nn - So' : WA & V&
n €l €i o
The result of the second order expansion is then, '

Xy = (X2 E 4L War (5Da)*

+ 1 Wy $Hre SHry + L T SA S

~2 L $0u8Kn =2 L Shre §6rp ommn
* L (50 +2 T Buyre Saum Shre

| +r§;7 Qresy Shee Sh,,

= =- Z Wey (5 = A7) S =L &2y (%2- pua

— Wi _
| Z 'UM,\ (a. Aw )8A\M + ; (Sﬁ) (Xéfﬂ Seu Déi)

{"“ S:i SDéi + Z_ Tmoe‘ éam 6)\5. .(VII¥.8)
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+X’e§. (Toei )~ T'“‘,‘S:‘l San §% + %aisasxé_

€i

)\ n D l(f&l) (SSe|) ""fe; ig_ + Z'F(é-t (S) (éz,é)

All terms in E contain factors proportional to the deviation of the méan
- value input data from the correquhding fitted quantities. Assuming
that the parametrization has been appropriately chosen; we expect theég
factors to be first-order in maénitude and to f;uctuate ip‘sign. ‘This
resuits in a Suppreésion of the linear terms iﬁ % relative to the secbnd—,_
order part of xé whiéh is positive definite, and_a further suppressidn
“of the qﬁadfatic £érms iﬂ g whigh will actually be of third-order .
magnitude.. On this basis we neglect Z in the fbllowing calculaﬁions.
Out next step is t0»obtain thg fitted values of Gam,b6A€, and Gqé
in terms of GDgi, 6A€, 6P€, and GAm. Minimizing the expression (VIII.7)

2 o . i .
for Xg (with Z neglected) gives the following relations,

éS Qm = éS }(vv\ 2:: F?hﬂ re é;»1|-e

(VIII 9)

Zﬂr‘e s°7 ghsv éé"re | Z Bm re éam

where the barred quantities indicate values at minimum. Converting to

matgixvnotation these'eQuatibns bgqome,
$a = SK-BSh . | S
-— . : ) P ' _ (VIII.1O0)
Ns§h=38C-P 43 - |

N

3
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The solution is,

Y]

= A sK
Sh=8 5@-’ |
SR = K- BO7'S 6
$G =56~ BSK

P
- 4

1-Fn BT
-ﬁ"fﬁ”

. A—l = ‘-\-— PB-l ﬁT ‘ (VIII.13)
K'= N'(A+BO7'BT) = [+ A" (PR'B)B™ BT
= |+ A" (AIB)B"I3 \+BB"BT

We can now use relatlons (VIII.1ll) to express the fluctuations in

©
H

(VIII.14)

the shifted data in terms of the fluctuations in the input data. A

" shifted datum, Dbai’ which is originally the ith data point of data block

€.and is shifted to central bin b at the central momentum 9. is defined



38

to be,

.F
Dy = s: bei \ %,

where s, and c, are defined similarly to s , and ¢_,, r_. ., is unity for
b b : 51 €i i

_-\-Y"

(VIII.15)

=
_,._v‘ll,_h !
—
0
o

cross—-section data and is (sin@b)/(Sineeij for polarization data, and

w Lok

e———

il
Ql

v—

O

mei

Tonb = (Zb,Y)

| | 2 N- . . |
Tows = Tul(ze %)+ 4 £ LlmlZeide)
/T aye |

Thus renormalized cross-section data are shifted parallel to the fitted

L
2;

"(VIII.16)

surface while the deviations of renormalized polarization data from the
fitted polarization are modulated by sinf. To exhibit the fluctuating

part of the shifted datum we rewrite it as,

!

o - |
Db‘e;’_ bei *.Abei | | | - (VIII.17)

where

)
s ]
|
d
e
~
oy

+cC,

(V1i1r.18)
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Expanding D .—Do we find that the'fludtuating part of D

bei “bei s, to

bei

first order,

M O

A, =Ygy — D&t 7 _Faei 7 )
bei | )\e SDel . Aoe é}‘e , :f, 53&
‘ I.‘!Lb. — T-hﬁij:v:gj_) _ (VIII.19)
" g | S‘? Set . 63, : -

Following the same argqument that we used to neglect Z, we expect that

the approximation

0
é\ ~ :Ei_L

[
)\e B

is accurate to first order. We can therefore replace D:i/kg in (VIII.1l9)

and obtain,

'Abel = r;c-u 8)1\2 - ";L"' Zr: Fré; S—re'—'l;a: Er-n: 'L/b:g 65.,

(VIII.20)
where .

A o SE| | S
Tbei"".Tmle‘u»” Y‘els TmL : (VIII.21)

Equations (VIII.20) and (VIII.1ll) express Abei as. a linear function
of the fluctuations in the input data which have the prescribed

covariances,



| <6Dei 'SD‘?Z\): Sei,ﬂ//v:l’ei | o
<S‘Hr‘e 8H$7-> = Srs (Wr):,, | (VIII;22) -
(SAw SAWY = TL,

Using these we can calculate tbe covariance of two shifted data,

Vbe'wQ’lJ = (Boei Dars) )

The following are useful intermedi at steps in the calculatiqn,

(éDél SKV\> )\ Tneu /Seu

<SDet gG‘sv) $ev FSel/Sen

<5Kws éKn> Swm R A - (VIrz.a2d)
| <86'r9665v>=ﬂre;s’7 | | |
o t,<8Kwy56'sv> = Igm,s’z

, '<sbe. SR.)= - : [x Tne.-Z(Bﬂ' Fm]

(806 85, >=—-—[ Zﬁm e

<SK SR > AMV\ a | (VIII.25)
| (66re 86’57) Bre sy " | |
(§Ka §650) = -—(ﬁn"B)M sy
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(8D, sa..->.=4: XL Ao T~ L8,
(8D gh,,, 5° Z B,m = - xj};we")w,,,rmzi,
<6a-m 8&'-.)2 A-\:vm | : | . (VIII.26)

<5hre 5‘%7) Bre sy
<Sam shs"l):"(ﬁB-')m,sn

The last three entries of Egs.(VIII.26) make up the covariance matrix of

the fitted perameters. We denote this matrix as a whole as,

= [ A—‘ | —(BB") » | |
U -‘,( BB-—\)T . B—l (VIII.27)

. . ' . . . X 2,
. U is proportional to the inverse second derivative matrix of Xg with
_terms contained in B neglected. To make an explicit'comparison with the
second derlvatlves dlsplayed in Egs. (VI.9), we 1ntroduce a superscrlpt 0

on the matrices D , and D which denotes (l) evaluation at the mean

12’ D22

A%e° -s° p°., ana

value minimum, (2) neglect of terms proportional to s
. _€€l€€l

(3) replacement of all input weight matrices by their stretched versions,

i.e., w€i+§€i, etc. Then it is easily verified that,

[>ﬁL =B | - | - |
’Du. = ﬂ ' , (VIII.28)
(0°)'=U

The covariance matrix of the shifted data can now be obtained
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directly from Egs.(VIII.20) and (VIII.26). The result is,

\/bel a7) = Se‘ 7 T_é\ /Wéi ()\e)

_Yeei V3 T 55 5% Tow Toud
Se- S‘/J ; Unm nei T " Sb Sa T;e‘a TJ‘IJ |

\o ZUH,F"IT:\ea Fl""l.) -‘- —LO- Z Un reTv\‘n F

’Inr’ | ' € nr

' (VIII.2_95
Z Ure 5% Fr‘eu Fs‘y,') } | |

>\e >\"7 rs

Although the formal derivation of (VIIi.29) has been facilitated by
expanding about a point corresponding to the true physical values of the’
relevant quantities, it is of course impossible to use these values in

a numerical evaluation of V. In practice we make the replacements

o .- ",0.T O, o .= . e
a—+*a ,A*A , g3, T _.»T ., where the barred quantities are the wvalues
m m' e € %e %’ "nei "nei _ ,
at minimum for the particular fit under consideration. These replacements
are no less accurate than the various other first-order approximations
involved in the derivation of (VIII.29).

The first term of V is primarily due to the errors of the original
data while the remaining terms represent errors of interpolation,
renormalization, and momen tum shifting. These latter errors are generally
somewhat smaller than, but comparable to, those of the original data.

" The final step of our procedure is the construction of the amalgamated

data and their covariance matrix. The amalgamated datum in bin b is a

linear combination of the shifted data in that bin,
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Db = Z X[,e.i Db.é"\ , | (VIII.30)

€i

with normalized coefficients, _ :
Z Xbei = I '. _ (VIII.31)
The covariance matrix of the amalgamated data is,

on - Z Z: Xbél X&?J \/be‘ A?J ' ‘(VIII.32):

We choose the coefficients Ybéi to minimize the variance of Db subject

to the normalization constraint (VIII.31l), i.e., we require

e -
Sg;: CBB ""/MZ b/béi =O | (VIII.33)

€t

where Uis a Lagrange multiplier. This yields,

b

: (vIII.34)
Ja '7.) ﬂ’l, 74

bel | Z-We‘ 74

b .- L .. .
where w is the inverse of the submatrlx of V pertaining to bin b.
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IX. Correlation Vectors

The amalgameted data, Db' obtainedlin Sec._VIII are intended to be
useful as'precise input data for fiiting programs, such as partial wave
analysis programs. Tney are nore complicated than "raw" experimental
data, however, becauSe they have highly correleted errors as expressed
by their cevariance matrix, de. The correlations arise through the
mutual dependence of the amalgamated data en the interpolating snrface
and on the systematic errors of the original input data. Most of the
error correlafion corresponds to collective fluctuations with raeher
smooth angular variation, althongh more c0mpiicatéd Conrelations also
oceur. Although the matrix de contains cemplete informatien.on the
errot correlanions, including_theiy_collective aspects, this information
is not expreseed in a particuiar;y transparent way. In this seCtion
we show how to extract from de a simple, quantitative.description of the
collective fluctuations. One result of fhis will be the ability to
perform a fit to the ameigémated data Qith_e xz—funCtien which involves
>0nly single sums over the data_points, rather than a double sumbover all

the matrix elements of C ‘A more important result will be the ability

bd "
to extract from a particular fit, fitted amplitudes for the collective
fluctuations. These amplitudes can be used te performvCOllective
adjustments to the deta, inia direct generalieation ef the common
procedure of renormalizing data nsing a fitted scale factor.

Before embarking on a general discussion of fluctuation-affected
data, we will consider a particular simple example by way of introduction.

~

The example is a set of data, Db,-with independent "statistical" errors,

te for each data point, and an overall normalization error of #n.

bI

r
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~

More précisely, we represent Db

5&,: >\CQL ' o - (IX.1)

where the random variables A and d, have means 1 and d

by a statistical model in which

b’ respectively,

N = o ,
| <6£b SGVC> = gbc e: ‘ ‘ (IX.2)
A §dh? =0

where

SANE N |

. , Ny (IX.3)
- édy'—'—' OQ&'—CQb
Expanding Sb to first order in 6A and Gdb we obtain,
~~ - -
Db - &b + éDb
| (IX.4)

D=4+, S\

The covariance mafrix of thébnormalization-error—affected data is,
- =Scer+ndd
Cbc <8D56Dc> Sbc 65 N p A (1X.5)

Now supposebthat we wish to approximate the covariance matrix,

de, of some actual amalgaméted data, D

b’ by a parametrization of the

type obtained in Eq.(IX}S). We need to choose values for 5 , and n.

b’ b
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There is no unique way to do this, kut after testing several approaches

we have settled on the following method. For db we use the fitted value

corresponding to bin b,

Jb-=?b/sb _ o - - | (IX.6)

' The error eb is chosen by requiring that the diagonal elements of C and

¢

C be equal. This gives e _ in terms of n,

b .
2 -2 | o |
eb = C bb nl Jb | C | (1T

_Finally, to determine n itself we'define the residual correlation matrix,

' | | (1X.8)
_ "JCBB Ccc . , :

and the sum of squares of its off-diagonal elemehts,
=1 (§£)° ‘ '
p— A ] _ - (IX.9)
Y Tbe |
b<c | - | |

n is chosen to minimize I', giving

— — 1 - 2 -,'
nz-___._ CchQ»_A)c | dh Jc
‘ g;c | CbbCCC Lgc CBL Ccc

Note that nothing in Egs. (IX.7) and (IX.10) guarantees that e2>0 and

(1X.10)

b

3

2 . o L
n >0. This depends on whether the amalgamated data really do have the
statistical character of normalization-error-affected data so that the
parametrization embodied in C js adequate to provide a good approximation

to C.
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Once we have determined an approximate error matrix we may consider
using it in a fit to the amalgamated data. We would then do the fit

by minimizing the approximate Xz—function,
~2 N - | . _ :
X = bZ: Cbc (Fb—Db)(FC-—DC) (1x.11)
: c

where F, is the value of the fitting function at bin b. The inverse of

Lo~

b
C is,
/""' S 2 2 J J | : |
C = ._LQ._- Nn- =te (IX.12)
where

-]
(Ix.V13)

gr= (140 T
b

~

2
So X reduces to,

- — \
y R — —
= Z: "E——"Zb- - ‘ | | (IX.14)
b €, P , |

where

:-:.— = ﬁzZ -D—d;.h. (D\,—F\,) : (IX.15)
b €

~2
Thus X has the property of involving only single sums over the data points.
It is of interest to consider the rather peculiar looking xz—function

of Eq. (IX.14) further, and to interpret it in terms of our statistical
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model of normalization-error-affected data. Returning to the model,

~

suppose we have a set of data, D _, and the associated covariance matrix,

b

~

Cbc, which we want to fit with some. fitting function, Fb. Let us try
"to devise a way to fit the "normalized" variables, db, and the normalization
variable, A, simultaneously, even though we only have data 6n the

combination de. The obvious procedure is to represent the normalized

variables by,

DA=D-A N

and to 1ntroduce an aux111ary normallzatlon parameter  to represent A.

For later convenience we willvactually use a normalization parameter,

£, which represents SA/n. Since the "normalized" variables have independent
errors ieb and SA/n has unit error we are led to guess that the following

2 . . .
X —-function is appropriate.

~2 | ~ - | 2—
Y = _ E_D"eﬁ;ng"_g) + gz‘_

(IX.17)

i—f:-ﬁt,z ﬂ_:h. ~._.F) | | (IX.18)
C et( S 3 -

c i s e . .
Minimizing Y™ with respect to & gives,

3



§in;1\ =é fgii
T.- T (BB~ ()
e, B

WAL
. . s 2 . 2 ..
This shows two things. "First, our guessed X -function, ¥7, is indeed

(1X.19)

b

~

= - 2 .. . . ~2
correct because, once £ is eliminated, wmin is identical in form to ¥
which was explicitly constructed from the correct error matrix for the

model data. Second, when the fit is completed and Fb has been determined

A~

e e s 2 . ; .
by minimizing wmin' we are able to construct explicitly the fitted value

of A, which is 1+n%. We can then return to the original data and

construct renormalized data,

(5b)rnr = '\D’b/("\' V‘\"Z—) 2'/ AD'E"' N a;_;;f (IX.20)

in which the effect of normalization fluctuation has been suppressed. In

an application to actual amalgamated data with C approximated by C we

interpret

(Db)rnr = D}b./(“'i'n E) sz" na; E v(.Ix.21)

as renormalized data. The renormalization procedure is especially

~

useful in a highly constrained fit with X2 entering as one contribution
2 . . S
to a total Y -function which includes contributions from many other data

is overconstrained

b

besides Db' To the extent that the normalization of F

by the other data, the fitted value of E in such a case may provide a
particularly accurate measure of the normalization of Db.

The above formalism is not only illustrative, but actually provides
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a useful first_approximation to the description of the correlated error

structure of amalgamated.data. In most cases a significant amount of

correlation does-arise from‘uncertaipties-in qvgralivhérmalization. -
However, this_parametfization employs'on1y one free parameter, n2, to
describe all the off-diagonal elements of C, aﬁd it is ﬁot sufficiently
precise for general use. We next develop a more flexible parametrization
which allows tﬁé detailea structure of the specific fluctuations affecting‘
a partiéular dataset to be extracted from its covariance matrix.

s s

Consider a statistical model of fluctuation-affected data,'Db,

specified in terms of random variables 65 and C as

D.=d, +Z:§ K" +5D

_dib =’ab + 8505

S.=0 | o |
<8605 Sd > = ébc Et (IX.23)
(8nSm?= 8w

(s S2=0O

The "correlation vectors" Kn.describe the profilés of N statisticaily
independent fluctﬁations’whosé amplitﬁdes are givén by the random Variables
Cn. We-will requiré that the chrelation vectors be lipeatly independent,
and willlimpose this condition by réquiring thém to sétisfy the following

orthogonality relation:
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n wm R _ - :
Ke K O
Z-—L—S—'—:O if Nn#m (IX.24)
b e | | |

The particular form éf the‘orthogonality relatipn is chosen for later
convenience; The_choice involves no significaﬁt loss of generality
becauée, in practiée, the orthogonality. conditions always rep;esent a
small number of relations between é large nqmber_of free parameters.

The covariance matrix of the fluctuationeaffected data is,

. C’bc..: < 865 55&>= 8Bc e: + ZNZK: K: (IX.25)

n=i

If we now wish to approximate an actual covariance matrix using
this parametrization we must choose values for a large number of free

parameters. (the diagonal errors e_ and the elements of N orthogonal -

b
corfelation vectors). We have. found that_a practical way to do this is

'to require equality df the diagonal elements of C aﬁa E, ané tq

minimize I', defined as in Eq. (IX.9), by varying the correlgtion vectors

one at a timei This constrained minimiz;tion procedure is described in
Appendix C. Anvindiqation of the éécuracy of - the app:oximationAéf C by

C is given by the finalrvalué of ZF/NO(NOfl) where N is the numbef of
occupied bins. This is the mean square value of prc and it should be small
compared to unity. However, it is important to realize that although we
have found minimizatiog of_T to be a particulafly stable and simple way

to fit C with the paramétrizatioﬁ embodied in C, the final value of T

itself is a rather arbitrary measure of the accuracy of this approximation.
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Other quantitative measures are given below, and these are also-ﬁsed in
aéSessing the accuracy of appfoximafion. In oﬁr applications we have
obtained adequate accuracy with one or two correlation vectors. The
best accuracy is usually attained by choosing N=2, but the adaition of
“a second ﬁector does not alWayé lead to significant impfovement so we
sometimes choose N=1. Occasiéhally=it even happens that novimp:ovement
is possible ovér.the simple normaliz;tion—error parametrization, so we
use N=1 with Kl inen by Eq.(C.16).

The approximate Xz-function for a fit to the amalgamated data with

the approximated errorlmatrix is of the same form as Eq.(ix.ll), but with

Cbc = éebz- ez. 2: B K K  (1x.26)

where

| ‘ o \2 1| | .
B: - \ -+ Z AN -X | | (IX.27)
T\NE/

~2 ¥
So X reduces to,

=g L(gr) e

where
—n = Pn }: —K‘b{ (Db"Fb), - (1X.29)

The particularly simple form of C'-l is a result of our chbice of the
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orthogonality relation fqr'thehco;relation vecotrs. We interprgt ;
by returning to the ‘statistical model of Egs. (IX.22) and (IX.23); To
fit the r;ndom variables db and Cn $imultaneously, using only data on
the combination given.by:55h_we iptroduce auxiliary parameters En to

represent the flﬁbtuatioﬁ amplitudes Cn' and construct the quantities

D, — 2 B Ky o mw

to represent the'"unfluctuated" variables 4 We are thus led to.the

b

2 s
X ~function,

(TX.31)
_— -

ih = :\- Zb_-_ %%(6; - Fb) .(IX.32)

Minimization with respect to En gives,

g?
. -
n,vnqn

Z

N

|

(IX.33)

"'i' ’__ F: - [} | e 1
q)min Zb: s eb | 2;\: Fn

As with Egs. (IX.19) these results vindidate our choice of Wz, and provide

us with explicit formulas for the fitted Qalues of the’fluctuatidn



54

amplitudes. In an application to amaléamated data with C approﬁimated

by C we interpret

JORPE RS N

as adjﬁsfed data in which the effects of fluctuations have been suppressed.
The aﬁj?sted data will bevparticularly‘accurate wheﬁ Fb, and hence En'
are overconstrained by‘othér data besides Db. The.colléctive fluctuation
amplitﬁdes,_En, represent primarily the effects of the normalization and
momentum calibration uncertainties of the original data. ‘The fitted
normalizations and momenta of differeht data sets are correlated, but
~they are not coﬁpletely determined. Uﬁcertainties.in the interpolating
surface also contribute to‘the collective fluctuations. |

We close this sectioﬁ,by‘considering:ﬁeasureé of the accuracy of
approximation of C by'E other then the rms Value of Gobc. Consider the

2 ' ' . ' .
X —-function for a set of amalgamated data Db with respect to their own

" mean values, Db.

X = Zc (D, — D)(D ~D) e

Now since

((D\,"' D.b) (Dc——ﬁc)>= vac | | (va.3§)

by definition, we have

@I=TeC'C=N,  =n
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Using the relation (valid for Gaussian statistics),

(DT )(De=De)(Da=Da)(De - De)>
"Cbc CAe"'CbJCce"’Cbe CcoQ

we find 51m11ar1y that,

<(Xz)z>= Nol +2‘N° | - (IX.39)

Thus we reproduce the well-known results that the mean and central variance

(1X.38)

of_x2 are N_o and 2No, respectively. .To judge the accuracy of C for-

practical applications we calculate the mean and central variance of
=) Co (D,-D)(D.-D.) arao
be | .

for comparison with the ideal values of NOvand 2No. Using Egs. (IX.36)

and (IX.38) one finds that,

< =Tr C’“ -
(- X)*=2T-C'c &'C

It is important to monitor these two quantities in practiée, because it

(IX.41)

is quite possible to achieve a small value of 2T/N0(No-l) accompanied
by bad values of the mean and central variance. This can usually Ee
corrected by stopping the minimization of f somewhat short of an absolute
minimum. Typical values of these quanﬁities that we obtain in -
appliqatigns with ﬁ=2 are less than 0.1 for the rms value of prc'
order unity for the bias Tx e - N, and 2.0 N £o 2.4 N_ for the

central variance.
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X. Conclusions
We have:preSented teqhnidues for amalgamating data from two-body

meson-nucleon scattering expgriments. The techniques take account of
statistical experimenfal etrors, known systematic.experimental efrdrs,
unkﬁown experimental biases which appear as inéoﬁsistenéiesibetween
overlépping or neighboring déta sets, and errors of interpolation. The
resulting amalgamated data are highly correlated, .We are able to
parametrize thevcofrélations in terms of collective fluctuations using
one or th.correlation)vecﬁors. |

. The techniques described herein have been app;ied to a collection
of all existing ﬁip elastic and ﬂfp charge-exchanée differential cross
section and polarization daté.betWeen 349 and - 2055 MeV/c. We have
produced amalgamated data for these reactions at 35 moménta from 429 to
1995 MeV/c,'in angular bins.of 3o épacing.' Somé of these results are
described in Ref. 2. We believe thatrthese data_will be particularly
useful for partial_wave analysis and other resoﬁaﬁce—region phenomenology.
A description of our own partial wave analysis using these data is
‘ given in Ref. 1. The data will sh;rtly be_maae aQailable to interested'
users. The computer program developed for_thié project runs on the
LBL CDC-7600, and coula be mOdified for use with data on various two—bOdy'.
reactions. ' The progrém will also be supplied to interested users}.

Inquiries should be directed to one of the authors.
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Appendix A. Electromagnetic Corrections

The electromagnetic (EM) part of the correction s (defined in.

Sec.III) for an elastic differential cross section datum consists of

pure Coulomb scattering and Coulomb-nuclear interference contributions.
That is, if we write the scattering amplitudes as sums of EM and nuclear

parts,

'F=-FEM +‘FN
9= dem+ I

(A.1)

the corresponding correction term is

[fem |+ 1 Feml*+ 2 Re (Fem ) +2 Re (Tem 32
€ : EM ' E\Tem TN e eman)

’ . 8 ' (n.2)
We use the amplitudes of Tromberg et al. for fEM'and gEM' calculated in
the manner described in Sec.II-C of the following paperl.

General expressions for the nuclear amplitudes are given in Egs. (II.32)
of the following paper, but in applications to Tp data amalgamation we
have modified these somewhat. First, rather than multiplying each partial
wave by the apprdpriate Coulomb phase factor, we multiply by an average

103

overall phase factor, e2 , where 0_ is the non-relativistic Coulomb

3

phase shift.for F waves. We have verified.thét 03 is a reasonablé average
of ZJS (see Ref.1l) for D, F, G, and H waves in the relevant energy.range.
S and P anes are omitted frém the average because tﬁe Coulomb phase
sbift.is small cémpared éo typical Statisficél errors in‘therphases éf
these waves. Second, bécaﬁse we are most interested in accurately

reproducing the single photon exchange pole contribution, we renormalize

-2i ' . . -
the real part of e lo3fN to enforce agreement with forward dispersion
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relation determinations of the real part at 0°. We also ignore the
energy dependence of the eﬁpiricai partial waQes used in constructing
fN and I’ and use fixed values obtained by linear interpolation to ‘ ‘ | -
the central momentum q . This is necessary because of the erratic energy’
dependence of empirical partial'wane amplitudes. Tne error introduced

_in the EM corrections at momenta different from qc'by this choice of

amplitudes is a smooth function of momentum which is compensated by

the interpolating surface. The parametrization of f and g is thus,

£u(6) = €3 [Re £, (0)Re ﬁ(e)/ke 0 Iomf,(6)]
u(6)= e’-""ae(e) .

wherfaRe f (O ) is the dispersion relation calculation for the forward real
part evaluated at pe, and fP, gP are the standard partial wave sums for
fN, Iy evaluated:atxgé without Coulomb phase factors. The identification
ofI&éfD(Oo) with‘the "Coulonb—phasleree“ version of'f is discussed in

' Sec.II—D of tne followingvpaper; In our applications to Tp scattering

we have used the dispersion relation predictlons of Engelmann and
Hendrickg, and the partial wave amplitudes of Ayed 10,

EM‘corrections, and the_threshold corrections discussed in.Appendix B;
have been.applied to differential crossvsection data only.. These |
corrections are nnimportant for bolarization'data because of their lower
statistical precision. Since thevcorrections are made before fitting they
must be made at the'measured.momenta,:ps; rather tnan the fitted momenta,
qe. Tnis-is acceptabie for‘EM corrections which‘show little energy variation.

over ranges corresponding to typical momentum calibration errors. This
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point is more delicate for threshold:corrections, and is discussed further
in Appendix B.

With EM effécts removed in fhe manner'aescribéd, the interpolating
surface at Oo‘represeﬁts the’fqrward nuclear differential cross section.
We have included in our cross-éection data sets (both elastic and.charge—
exchange) predictions‘(with errors) for this quantity obtained by using
the ﬁotal cross sections and the optical theorem, élong with the.
dispersion—theory’predictions for.tbe real parts of the amplitudes as
calculafed by Engelmann and Heﬁdrickg; These-pfedicﬁions help to
determine the shape of the interpqlating surface néar the forward
directioh,,and aléo help to detgrmine the nbrﬁalizationvparameters of
the other data sets. However, Qe dé nbt includé these 0° predictions in

forming the amalgamated data by the method described in Sec. VIII.
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Appendix B. Corrections for Threshold Structure

We begin with a review of the effect of an inelastic threshold on
a communicating open channel. Consider the S-matrix for N two-body
channels with_definite values of all conserved quantum numbers J, P, etc.
We examine the behavior of S when the first N-1 channels are open, and

h .
the N h is an S-wave channel near threshold. ILet g be the cm momentum
. th _ ' /o ' o
in the N channel so that sMN < vq (M<N) and SNN—l % g near g=0. The

general form of S to lowest non-trivial order in q is,

<= So+S, T iVZBVE)
N TV HZBHE [+AF

where So and S

(B.1)

l-axe symmetric (N-i)x(N?l) matriées, B is an (N-1)-component

vector, and A is a scalar. We require that S be unitary above threshold
{(g>0), and that So+siq be unitary below threshold (q=i|q|). After some
algebra one finds that this leads to the following relations among the

parameters of S,

| Seo 5:""
-:A',..g‘z-_..BBT | | N
A=-RtB | o (8.2)
B=\r§;Bo/IMBo=O |
San = iVZ Bu V%
SMM'; (So)MM"‘B/;V\z' . -'(3.3)

148

.
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Eliminating BM’we obtain

(So)mm +’l2: (SMN)Z (B.4)

which is the basic relation between an opening production channel and
: ' 2
the corresponding elastic channel. The term %(SMN) produces a square-

root cusp in SMM because q & (quth)%' For N=2 the S-matrix reduces to

28/, p2 . ié
S = e**(1-85 %) 42 B.e'’+% -
e . . B.
iVZB.e®%  I-B*% |
Eq. (B.5) displays the simple relation between the elastic phase shift at

threshold and the'phase of the production amplitude which is characteristic

of the two-channel case.

We now specialize to T p scattering near the nn threshold at 1488 Mév
(687 Mev/c), and let S be the IJP=¥%— S-matrix. It is assumed that
thé above'description in terms of N two-body channels is adequate for our
purposes, although multi~body channels account for nearly‘all of the
inelasticity at this threshold. _The production cross section near threshold
is, |
. _ 2 . ) _
O ""'"" |S l=0'; (B.6)
T™p2>7n - 3 2_ TN, 7N 7 77
where 9 and qn are the cm momenta 1p‘the w—p and“ng channels, respectively,

and

0;, = (:90;"?""7" = -_.__71:_.. | B“_N\ " (8.7)
' c;??;é’ -t»i' 53 i;ﬁr-th
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This determines IBﬂN' in terms of the slope of the production cross-section
. ]
at threshold. The measured value of On is 21.2%1.8 ub/(MeV/c).ll Using

(B.3) and (B.7) we find that the elastic T-matrix element near threshold

Y

is,

o= Sw | —' ‘ — 3'| 2 | Vaukd 2i o
T= E?N B Ten * g EnG €5
: (B.8) .

where 0 is the phase of BWN'. Bhandari and Chao{12 have determined o to be

4l-°if6o by fitﬁing the backward ﬂ—p elastic differential cross séction

3

data of Debenham et al.l . _The TN S amplitude is fairly elastic near

11
-the nn threshold (h~f0.9), so it is not surprising that o is consistent
- with the fﬁreshold value 6f.the elastic phaSe shift, 6”’390.

Consider now the prdblem of amalgamating ﬂ-p elastic or charge-
.exchange differential cross section data in a range of lab momenta,
>P1ab>Pl' Which includes 687'Mev/é; We will-construct correction terms,

contributions to Ceyr which represent the interference between the cusp -

Py

term in Eq.(B.8), ahd the regular part of the f amplitude at threshold.

Aé discussed in Sec. III, we are free to modify ﬁq.(B.S) by adding
analytic termsvwhich can be fit by the intérpolating surface, e.g., we can
add a quadratic polynomial in‘plab. This freedom can be uéed to-control
the magnitude of'the cor;ectiqn ferms away frém the immediate viciﬁity of »

threshold. Thus we parametrize T as,

T=T+T-Ta  o»

where Tc contains the cusp contribution, TQ is a quadratic approximation

to TC' and To is a constant to be determined. It is convenient to
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introduce a new variable,

X = Z-;bmb ﬁz ﬂn o . -TV(B.10)
X

which:varies from -1 to 1 as Plab varies from Py to P,- Wg choose TC to

be proportional to Vx4xth, and to be normalized to agree with the square-

root singularity in Eq.(B.8). This gives,

T’ | AL ’ | -
a—y—“— . .

c = D e X~ Xiwn | (B.11)
where the square root is positive for x, <x<1 and positive imaginary for

“th

: -l<x<xth. The constant D is,:

‘ - , Y r \/2.
=2 a0 (258 (925,
| #\ab +h

' 2 (B.12)
d %z : Z YY'\£ ™Mn Yﬂy V\ab th
r 5
A hiav Jin (ma+my)
For T _ we construct a quadratic function of x which approximates Vxéxth

Q

in the range lx|<l,

h(x) = Z h (x) '<B.1_3>

220

where PQ is the Kth Legendre polynomial and

hz '-‘-"— _Z__{;\"_L dx 1 ,X""}xth B(X) | (B.14)

!l
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2

vTQ = iD el'\“ h(X) S | (B.15)

The constant To is determined by linear interpolatioﬁ of the cusp-free

Note that h, is in general complex. 'TQ-is now given by,

quantity T—(TE—TQ) to threshold, using the empirical Sli'partial wave
amplitudes of Ref. 10 for T.

Correction terms are now constructed from the f amplitude,

= | -.K_ . (B.16)
' 'F -Fa_+ % (-T:: Ta) L .

where fo is the partial wave sum for f with the S amplitude replaced by

11
the quantity Td'cbnstructed above, and with the other partial waves
evaluated at threshold by simple linear interpolation. K is the isospin
factor for thé reaction undér considera£ion;w2/3 for'ﬂ'péﬂfp;and -/2/3
for T p*T°n. Thé correction term is, | '

"2""& Re 'F;* (Tc - TQ) | - (B.17)

%

This must be evaluated at (cosG)€i and integrated over the momentum
spectrum of data block € béfqre<being added to Ceys ' The momentum averaging
is particularly important when P, is close to 687 Mev/c. CIf thé‘spectralv
shape is a‘poiynomial in Piab' and we neglect the weak momentum dependence
of fo/qﬂ, the integral can be done exactly by Gaussian integration in the
variable |/§:§:;[ over appropriate sub-ranges. For most ﬂ_p data we

have used a rectangula? momentum spectrum for this integration. For the

13,14

data of Debenham et al. we use a triangular shape appropriate to the

T

o,

§o
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conditions of that experiment.
We finally consider the problems associated with making the above

corrections at the measured momenta, PE’ rathe: than the fitted momenta,

q

- ‘This is not really justified for threshold effects, and a better

procedﬁre would be to adjust the correction terms iteratively as the qc
are being determined so that they end up being evaluated at the fitted
momenta. In our present applications, however, we have followed the
simpler procedure for two reasons. First, much of the existing ﬂ-p

data near 687 MeV/c afe taken at too widely spaced momenta and/or are
insufficiently precise for cusp effec;s_tovbe clearly preSent. The
complicétion of evéluating-céivat 9 rather thanlps is gnwarrantéd

for these data. Second, the data of Débenham et al., whichbdoes display
prominent cusp effects, has a momentum specﬁrum with a 1.2% full width at

half maximum, and a momentum calibration error of *0.1%. Thus the

difference between pé and q8 is completely washed out by the momentum

bite integration. . Similar, though less extreme, mismatches between

momentum bite and calibration error are present in the other existing

high precision data sets near the nn threShold.
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N

Appendix C. Determination of the Correlation Vectors

We consider the problem posed in Sec. IX of approximating a given'
covariance matrix Cbc by the parametrization given in' Eq. (IX.25) subject
to thé'orthogonality constfaiht of Eq. (IX.24). Our approach will be to
requlre equallty of  the dlagonal elements of C and C and to minimize

I', defined as in Eq. (IX.9), by varying the correlation vectors one at a

time. To describe the procedure we introduce the following notation, -
dv=Ciw /et
KNG
fc=Ch/Cu Ccc | Sbc/c?b-\- Z V\, Vc
fic = Coe /VCu Cee e
églﬁzc /ﬁac: /clc; | | | |

Now suppose we want to iterate vector 1, holding the rest fixed. We-

introduce the matrix a,

n E wn -ébc Vg e

A= e 5 M Ve d. ViVe 44
H ‘ b . . ‘

which has known matrix elements given by pbc and the fixed véctors._ It is

also useful to simplify the orthogonality conditions by replacing the vector

1 . . '
elements Vb with new 1ndependent variables,

_ Vb
X, = = .
b Cgb\/;r catb-- (\/L):L

(C.3)

where the latter equality follows from the-requirement that dpbb=0. The

problem is now to vary X so as to minimize
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b<c b<c

F‘ Z (5 bc.) '—Z (abc. -V, v‘“)z- 1--.(C'4)

" where

\/L 221;(-;('\[,‘1'"['0“ - /) | v (c.%)}

 subject to the constraintS‘

| EX\,V\‘: =0 for n>| (.6)

We do this by an iterative Newton-Raphson minimization of the quantity _

ﬂ F’*'ZZK (X\/“) | e

n>\

~ where the Kn are Lagrange multipliers and we are_u51ng vector notation
for the sum over bins. Denote the derivative vector and second-derivative

matrixvof I at gb=x§ by

\ |
“ T e e
2K,
B = 1T
be 2 X, e lo

and expand {§ to second order about x;

_cz=_a°-z( 5 R0 ) g+ (6)TB (%)

"l (C.9)

- (C.8)
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where

Sx=X=Xo ew

Minimization of ! determines the increment in x to be,

SX = ﬁ—' Z: Hh V ) | (C.11)

n>\
) . v . . ‘i
The starting vector x is assumed to satisfy the orthogonality conditions,

so the Lagrange multipliers are determined by requiring that

(V“)f(é)() - (V“) B"d: Z: Ra )‘f = O Ccan)

m>\

where : | |

. f o | . o . ) .
Qnm = (V") P v!“ . (€.13)
Thué,‘

Kn Z Qnm (VM) ﬁ 0( | (C.14)

wm>|

where § is the submatrix of Q obtained by deletiné the first row and

column. The Step from 20 to x results in a‘decrease in T given by,
| o t p-I E | &
r""'r' = &« p A = &nm HnHW\ €13
nwA S '

In applications of the correlation vector barametrization we have

obtained adeéuate accuracy by always choosing N=1 or N=2. 1In either case-
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we begin with a single correlation vector appropriate to'no:malization

" fluctuations,

Kb : n'Fb /Sb ‘ - o ~ (c.16)
where: n2 is given by Eq. (IX.10), and then vary Kb to minimize T. If
N=2 it is important to construct a fairly good guess for the second
vector before beéinning the Newﬁon-Raphson ifarafion. To desaribe this,
let a be defined as.in Eq.ké.Z); excapt fhat v? is now the variable vector

with v held flxed. We calculate the quantltles,

Z-- Qg aac. (1- Sea)(1- Sca)
= Vb vc. Z: (VA) ("" 556\)“-‘8“,\)*6(610)

(€.17)

-t Zabcsbc(' ébc.)
(v:)"Z_'(v v,,) (n-s.,c)(n &a)(: ~5a)*0(8P)

2
and our initial guess for v is,

[ oV )5 WY
Vz__ _ZSCB Z(V) V

b - LB 'Cv a¢c c a:c (c.18)

where B is the value of b for which tb is a maximum. The second term in
Eg. (C.18) approximately orthogonalizes vz to vl. Now we‘go through an

iteration in which we alternatively scale V2 by the factor

Vo -
X Gbc\/., Z <v v’-))  caw

b<c ' b(c :
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which minimizes F,‘and theh rebléce'vz by vz-avl where
-\ B

b2 0 ¢\ ‘ X T Ty 1

x=(C ANV LAWM)+22 (4, vy V)
b o | ‘,'L - L ‘ (c.20)

is chogehbto orthogonélize v.1 and vzlté first order. Duri;g thié iteration
limits must be imfosedlbn ﬁhe sizelbf eac£‘element of‘v2 td eﬁsﬁre that
abb>(vi)2. The process convérges wﬁen 0 becomes vanishingly smali, andAthe
full minimization procedure with all elemehts bf v2 varying independently
can then begin. Alternafive variation of vl and v2 is coﬂtinued until
convergencefis'achieved,- Instabilities of the Newton—Raphson method

sometimes occur, but they!cah’usualiy be avoided by temporérily switching

to a simple steepest descent minimization. -

X3

v
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