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Abstract

A growing body of evidence suggests interplay between the gut microbiota and the pathogenesis 

of nonalcoholic fatty liver disease (NAFLD). However, the role of the gut microbiome in 

early detection of NAFLD is unclear. Prospective studies are necessary for identifying reliable, 

microbiome markers for early NAFLD. We evaluated 2487 individuals in a community-based 

cohort who were followed up 4.6 years after initial clinical examination and biospecimen 

sampling. Metagenomic and metabolomic characterizations using stool and serum samples taken 

at baseline were performed for 90 participants who progressed to NAFLD and 90 controls who 

remained NAFLD free at the follow-up visit. Cases and controls were matched for gender, age, 

body mass index (BMI) at baseline and follow-up, and 4-year BMI change. Machine learning 

models integrating baseline microbial signatures (14 features) correctly classified participants 

(auROCs of 0.72 to 0.80) based on their NAFLD status and liver fat accumulation at the 

4-year follow up, outperforming other prognostic clinical models (auROCs of 0.58 to 0.60). 

We confirmed the biological relevance of the microbiome features by testing their diagnostic 

ability in four external NAFLD case-control cohorts examined by biopsy or magnetic resonance 

spectroscopy, from Asia, Europe, and the United States. Our findings raise the possibility of using 

gut microbiota for early clinical warning of NAFLD development.

INTRODUCTION

Since the 1980s, the prevalence of obesity, insulin resistance, type 2 diabetes mellitus, 

and obesity-associated nonalcoholic fatty liver disease (NAFLD) has grown worldwide 

(1–3). The occurrence of these interconnected diseases is partly driven by consumption 

of high-energy food and a sedentary lifestyle, and these diseases are considered critical 

global health and socioeconomic problems (4). Apart from associations with liver-related 

diseases, epidemiological studies have associated NAFLD with increased risk of developing 

extrahepatic chronic diseases, such as type 2 diabetes, cardiovascular disease, and chronic 

kidney disease (5, 6). A recent cohort study showed that overall mortality risk increases 

progressively with worsening NAFLD histology, and even simple steatosis increases 

mortality risk by 71% (7), thus simple steatosis can no longer be considered as benign 
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as previously thought (8). Although NAFLD affects about 25% of the world’s population (9) 

and has a high disease burden, awareness of NAFLD is low. In a cross-sectional analysis (n 
= 2788) in four U.S. cities, NAFLD prevalence was 23.9%, whereas awareness of NAFLD 

was 2.4% in study participants with computed tomography (CT)–defined NAFLD (10). 

One important reason for low awareness is that most patients with NAFLD are largely 

asymptomatic in the disease course, where disease is mainly detected through an incidental 

finding of fatty liver on ultrasound or an imagining modality or routine laboratory testing 

(11, 12). Diagnosis by liver biopsy or imaging is reliable but difficult for large-scale 

screening and monitoring. Thus, the need to identify individuals who are at high risk of 

developing NAFLD or are at an early stage of the disease is urgent, as lifestyle interventions 

can reverse the disease when it is in the first stages (13). According to one study (14), weight 

loss and healthy diet might be sufficient to reverse simple steatosis, whereas intensified 

lifestyle intervention coupled with pharmacological treatment might be necessary for more 

advanced stages of liver diseases. Exercise programs (15), low-carbohydrate diet (16), and 

various types of gut microbiota–targeted treatments (17) have demonstrated their ability 

to prevent steatosis development and improve NAFLD outcomes in human or preclinical 

models. Early diagnosis and interventions to prevent NAFLD progression can also greatly 

reduce future health care cost, as most economic costs associated with NAFLD are incurred 

in advanced stages (18). Currently available methods (19–21) for early prediction of NAFLD 

are limited and use only a few clinical parameters or biomarkers that may not reflect 

the heterogeneity and complexity of NAFLD (22, 23). Thus, more convenient noninvasive 

alternatives are needed.

In the last 10 years, the gut microbiome has emerged as a major regulator of host energy 

homeostasis and substrate metabolism (24–26). The human gastrointestinal tract is colonized 

with 4644 bacterial species encoding 171 million genes (27). Therefore, it is not unexpected 

that abnormalities in gut microbiome structure and especially function might affect the 

brain, adipose tissue, muscle, and liver metabolism. Microbial components or metabolites 

such as lipopolysaccharides, secondary bile acids, dimethyl- and trimethyl-amines, and 

compounds derived from carbohydrate and protein fermentation appear to be strongly 

involved in the gut host-microbiome metabolic axis and the occurrence of metabolic diseases 

(28–31).

Human cross-sectional studies have delineated the role of gut bacteria in the development of 

NAFLD. An increased ratio of Bacteroidetes to Firmicutes phyla and a decrease in butyrate-

producing Ruminococcaceae are suggested to be involved in NAFLD progression; however, 

the data are not always consistent (32–35). Furthermore, whether NAFLD causes taxonomic 

and functional changes in the microbiome or the observed dysbiosis in patients with NAFLD 

leads to progression of the disease is not clear. For a possible causal role in NAFLD 

development, gut microbiota alteration should take place long before disease is diagnosed, 

which would suggest prognostic value in evaluating the gut microbiome in individuals 

with a high risk of developing NAFLD. To assess this potential value, we conducted a 

4-year prospective study in a community-based cohort of 2487 Chinese individuals. We 

profiled 180 matched case-control individuals who were NAFLD free at baseline using 

well-documented clinical information and comprehensive metagenomic and metabolomic 

analysis. We developed machine learning models integrating baseline microbial signatures 
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to classify individuals based on their NAFLD status 4 years after baseline (either remaining 

disease free or diagnosed with the disease). We also examined whether the selected features 

in the model were biologically relevant to NAFLD development by exploring the diagnostic 

power of the model in several case-control cohorts from Asia, the United States, and Europe.

RESULTS

Characterization of the study cohort

To develop a microbiome-based prognostic model for long-term development of NAFLD, 

we designed a nested case-control study within a community-based prospective cohort study 

of Chinese adults. About 2500 participants were screened in 2014 with ultrasonography, 

which is recommended as the first-line diagnostic test for NAFLD (36); 1216 participants 

were determined as NAFLD free using criteria proposed by the Asian Pacific Association 

for the Study of the Liver (37). Participant enrolment is outlined in fig. S1. Stool and serum 

samples were obtained from participants at baseline. At the follow-up visit in 2018, after a 

strict exclusion process, 90 participants (38 males and 52 females) were identified as having 

NAFLD (NAFLD−/+) (Fig. 1). The participants in the NAFLD−/+ group were matched with 

90 controls who did not have NAFLD at baseline or at the follow-up visit (NAFLD−/−). The 

two groups were matched in gender, age, and body mass index (BMI) at both the baseline 

and follow-up visits and 4-year change in BMI. There were no differences between the two 

groups in the prevalence of type 2 diabetes, hypertensive disease, metabolic syndrome, and 

medication usage at both baseline and follow-up in the cohort, apart from a significantly 

higher metabolic syndrome ratio in NAFLD−/+ at follow-up as expected (chi-square test, P < 

0.05; table S1).

Detailed baseline anthropometric parameters, glucose homeostasis parameters, serum liver 

enzymes and renal function, lipid profiles, and cytokines are shown in Table 1. No 

significant differences (t test, P > 0.05) were seen for most clinical parameters between the 

NAFLD−/+ and NAFLD−/− groups at baseline. Fasting insulin (FINS), homeostasis model 

assessment for insulin resistance (HOMA-IR), triglycerides (TGs), and high-sensitivity 

C-reactive protein (hs-CRP) in the NAFLD−/+ group were slightly higher than in the 

NAFLD−/− group (t test, P < 0.05); however, their mean or median values were within 

reference ranges in both groups (FINS: 5.1 to 11.2 uU/ml, HOMA-IR < 2.5, TG < 1.70 mM, 

and hs-CRP < 1 μg/ml) (38–41). Only TGs remained significantly different after adjusting 

for HOMA-IR (1.55 ± 0.90 mM versus 1.23 ± 0.61 mM; Table 1).

Modest but distinguishable differences in baseline gut microbiome between NAFLD−/+ and 
NAFLD−/− individuals

We assessed the gut microbiome structure of the NAFLD−/+ and NAFLD−/− groups at 

baseline via shotgun metagenomic sequencing, generating 1128 gigabase pairs of high-

quality reads with an average of 41,786,187 reads per sample (Fig. 1). Taxonomic profiling 

with MetaPhlAn2 (42) led to the identification of 405 species. Community alpha diversity 

measured as richness, and Shannon and Simpson indexes showed no significant differences 

(Wilcoxon rank-sum test, P > 0.05) at the species, genus, or family levels between the 

two groups (fig. S2A). Bray-Curtis, unweighted UniFrac, and weighted UniFrac distance 
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comparisons indicated that the NAFLD−/+ and NAFLD−/− groups did not have significant 

community dissimilarities [permutational multivariate analysis of variance (PERMANOVA), 

P > 0.05; fig. S2, B and C]. The same patterns were observed when using a metagenomic 

species approach (43) for the taxonomic annotation (table S2).

In addition, we sequenced the baseline gut microbiota from 66 participants who were 

diagnosed as NAFLD in both 2014 and 2018 (NAFLD+/+) and 34 participants who were 

diagnosed as NAFLD in 2014 but not in 2018 (NAFLD+/−). These two groups were also 

matched with the other two groups described above by age, gender, BMI, and 4-year change 

in BMI. A thorough comparison of microbiota alpha and beta diversity among the four 

groups at baseline indicated that the two non-NAFLD groups were distinguishable from 

the two NAFLD groups (P < 0.05, Wilcoxon rank-sum test for alpha diversity comparisons 

and PERMANOVA for beta diversity comparisons using Bray-Curtis distances) (fig. S3). 

Moreover, the gut microbiota of NAFLD−/+ subjects was different from that of NAFLD+/+ 

and NAFLD+/− individuals. This argues that the NAFLD−/+ group was not already diseased 

at the baseline because they clustered with NAFLD−/− subjects at baseline. Because our 

focus was to identify gut microbiota signatures in disease-free individuals suggestive of 

NAFLD predisposition, only the NAFLD−/− and NAFLD−/+ groups were further analyzed.

A compositional analysis found that several of the 10 most abundant genera and species 

(Fig. 2A) were significantly associated (envfit from R package vegan, P < 0.05) with 

observed variation in the taxonomic profile of the study participants (fig. S2, B and C). 

However, their relative abundances were not significantly different (zero-inflated Gaussian 

mixture model, P > 0.05) between NAFLD−/+ and NAFLD−/− groups. Nevertheless, the 

relative abundances of 8 and 21 less-abundant genera and species, respectively, were 

significantly different (zero-inflated Gaussian mixture model, P < 0.05) between the two 

groups (fig. S2D). Methanobrevibacter [false discovery rate (FDR) = 0.01] was decreased in 

NAFLD−/+ compared to NAFLD−/− (a reduction in Phascolarctobacterium was insignificant 

at FDR = 0.2). Lower abundances of these two genera have been observed in cohort studies 

in obese individuals compared to lean individuals (44, 45). Slackia has been reported to 

be more abundant in individuals with moderate-to-severe fibrosis than in individuals with 

absent-to-mild fibrosis (46), and this genus was increased in the NAFLD−/+ compared to 

the NAFLD−/− group (FDR = 0.06). The relative abundance of Dorea formicigenerans, a 

species that is highly abundant in people with obesity (47), was higher in the NAFLD−/+ 

than the NAFLD−/− group (FDR = 0.17). Differences in the relative abundances of 

Methanobrevibacter, Phascolarctobacterium, Slackia, and D. formicigenerans between the 

two study groups remained significant even after adjusting for age, gender, BMI, and 

HOMA-IR (zero-inflated Gaussian mixture model, P < 0.05). Because the NAFLD−/+ and 

NAFLD−/− groups had no difference in BMI and in the aforementioned cohort studies, the 

liver status of the obese individuals was not evaluated, and our prospective design suggested 

that Methanobrevibacter, Phascolarctobacterium, Slackia, and D. formicigenerans could be 

signatures of NAFLD risk in addition to being obesity-related signatures.

We used HUMAnN2 (48) for functional profiling of the microbial communities 

and identified 458 pathways. Likewise, the taxonomic profile and the microbiota 

functional potential could not differentiate between NAFLD−/+ and NAFLD−/− groups 
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by alpha and beta diversity (fig. S4, A and B). Four of the most abundant pathways 

detected, uridine monophosphate biosynthesis I, uridine diphosphate–N–acetylmuramoyl-

pentapeptide biosynthesis I and II, and peptidoglycan biosynthesis I (Fig. 2A), were 

significantly associated with observed variation in the functional profiles of study 

participants (envfit from R package vegan, P < 0.05; fig. S4B). These pathways 

were proposed to be discriminatory for NAFLD cirrhosis against control groups in a 

recent U.S. cohort study (49); however, their relative abundances were not significantly 

different (zero-inflated Gaussian mixture model, P > 0.05) between the NAFLD−/+ and 

NAFLD−/− groups in our prospective study. Nevertheless, we found 19 biosynthetic 

pathways significantly different in relative abundance between the two groups (zero-inflated 

Gaussian mixture model, P < 0.05) (fig. S4C). We observed a significantly higher relative 

abundance of geranylgeranyl diphosphate biosynthesis and the mevalonate pathway in the 

NAFLD−/− group. These pathways are dysregulated in mice and humans with nonalcoholic 

steatohepatitis (NASH) (50). Two genes encoding enzymes involved in these pathways, 

hydroxymethyglutaryl–coenzyme A (CoA) reductase (EC 1.1.1.34) and mevalonate kinase 

(EC 2.7.1.36), were significantly enriched in the NAFLD−/− group (zero-inflated Gaussian 

mixture model, P < 0.05; table S3). Methanobrevibacter smithii was the major contributor of 

gene expression abundance of hydroxymethyglutaryl-CoA reductase (95%) and mevalonate 

kinase (40%). In contrast, the NAFLD−/+ group had a higher relative abundance of 

phosphatidate metabolism and cholic acid degradation. Cholic acid is a primary bile 

acid that decreases substantially in rats on a Western diet and is proposed as an early 

marker of NAFLD development (51). Genes encoding phospholipase D (EC 3.1.4.4) 

and bile-acid-7-alpha-dehydratase (EC 4.2.1.106) were also significantly enriched in the 

NAFLD−/+ group (zero-inflated Gaussian mixture model, P < 0.05, table S3). The four 

significant pathways above (geranylgeranyl diphosphate biosynthesis, mevalonate pathway, 

phosphatidate metabolism, and cholic acid degradation) remained significantly different 

(zero-inflated Gaussian mixture model, P < 0.05) between the two groups after adjusting for 

age, gender, BMI, and HOMA-IR, except for cholic acid degradation that was marginally 

significant (P = 0.050).

Metabolite enrichment and metabolic shifts in NAFLD−/+ versus NAFLD−/− groups

We next performed targeted metabolomic analysis of serum samples collected at baseline 

to interrogate whether differences in species and pathway abundance of gut microbiota led 

to distinct profiles of microbial metabolites in the NAFLD−/+ and NAFLD−/− groups. We 

detected 123 metabolites grouped into nine metabolite classes (Fig. 2B). We performed 

enrichment analysis to identify metabolite classes that were significantly overabundant or 

underabundant in the NAFLD−/+ or the NAFLD−/− group, and found amino acids were 

significantly elevated in the NAFLD−/+ group (Wilcoxon rank-sum test, P < 0.05; table S4). 

We further analyzed the untargeted metabolomic data of a European case-control cohort 

(MICROBARIA) involving 52 obese women including 26 with biopsy-confirmed NAFLD 

and 26 non-NAFLD (52). Two amino acids positively correlated with NAFLD-related liver 

enzymes, including the branched-chain amino acid valine with alanine transaminase (ALT) 

(P < 0.05, Spearman correlation) and the aromatic amino acid tyrosine with aspartate 

transaminase (AST) (P < 0.05, Spearman correlation). Our findings in the Asian prospective 

and European cohort–based datasets are further supported by recent metabolomic-based 
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studies, suggesting that perturbations in amino acid metabolism are involved in NAFLD and 

NASH pathogenesis (53–55).

Of the 15 significantly different metabolites between the NAFLD−/+ and NAFLD−/− groups 

at baseline (generalized linear model, P < 0.05; fig. S5A) and the metabolites that were 

significantly associated with the observed metabolomic variation (envfit from R package 

vegan, P < 0.05; Fig. 2C), several are reported to be involved in NAFLD in case-control 

human or animal studies. For example, 3-chlorotyrosine, arachidonic acid, and oxoglutaric 

acid are markers, respectively, of liver damage and NAFLD development in mouse (56) 

and rat (57) models and a human NAFLD study (58). Tryptophan was also significantly 

associated with the metabolome variation (envfit from R package vegan, P < 0.05; Fig. 2C) 

in our cohort, and aromatic amino acids have been associated with NAFLD (54). These 

metabolites were higher in the NAFLD−/+ group than the NAFLD−/− group. Concentration 

of a gut microbiota–regulated fatty acid, 8,11,14-eicosatrienoic acid, linked to obesity and 

insulin resistance (59, 60), was also significantly higher (generalized linear model, P < 0.05; 

fig. S5A) in the NAFLD−/+ group in our prospective study. Phenyllactic acid, produced by 

lactic acid bacteria and suggested to reduce reactive oxygen species production in rodents 

(61), was significantly higher in the NAFLD−/− group (generalized linear model, P < 0.05; 

fig. S5A). On the contrary, the direction of concentration differences in the two study 

groups for isovaleric and docosahexaenoic acids (both higher in NAFLD−/+) (generalized 

linear model, P < 0.05; fig. S5A) was inconsistent with proposals in the literature from 

case-control NAFLD studies about the possible roles of these compounds (62–64). These 

agreements and discrepancies in metabolite abundances in our prospective study with case-

control cohort and mouse studies in the literature should help to narrow the metabolic 

marker possibilities for NAFLD progression. The concentrations of additional fatty acids 

were significantly different between the NAFLD−/+ and NAFLD−/− groups (fig. S5A), but 

the functional significance of these metabolites in NAFLD is relatively unknown. Last, the 

concentrations of measured serum metabolites such as 3-chlorotyrosine and phenyllactic 

acid were significantly associated with gut microbiota species composition (Mantel test, P < 

0.05; fig. S5B and table S5).

A machine learning prospective model to detect early signatures of NAFLD

We built a noninvasive risk assessment model (random forest algorithm) to classify healthy 

subjects based on their NAFLD status after 4.6 years, using a combination of baseline 

metagenomic and metabolomic features. A leave-one-out iterative approach was applied 

to build and evaluate our model due to the relatively small cohort size (n = 180). We 

built a prospective model using 14 taxonomic, functional, and metabolomic features of the 

study participants at baseline that enabled classification based on their NAFLD status 4.6 

years later with an area under the receiver operating characteristic curve (auROC) of 0.72 

(Fig. 3A). The performance of the model was significantly improved to an auROC of 0.79 

(DeLong test, P value for difference < 0.05) with the addition of only two more noninvasive 

clinical features (Fig. 3B). We then slightly improved our model by also including the most 

accessible anthropometric parameters, BMI and age, to obtain our final model (auROC, 

0.80; Fig. 3C and fig. S6).
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We evaluated the biological relevance of the selected features by testing the diagnostic 

ability of components of our model to distinguish between healthy individuals and patients 

with NAFLD in two publicly available independent external Asian case-control cohorts; 

one cohort was diagnosed by biopsy and the other was diagnosed by magnetic resonance 

spectroscopy (MRS). This allowed us to further explore whether the patient diagnosis 

method had an impact on the model performance. We built a new prospective model using 

only nine features from the final model that were available in these external cohorts (fig. S6). 

The new model derived based on our study cohort discriminated healthy and NAFLD groups 

in the two external cohorts with auROCs of 0.78 and 0.72 (Fig. 3, D and E), showcasing that 

the features we identified were closely related to NAFLD development or pathophysiology. 

Besides the Asian cohorts, we further validated our prospective model in other case-control 

cohorts of different ethnicity. In the European cohort FLORINASH (54), the model (with the 

same nine features as in the Asian cohorts) reached an auROC of 0.76 (Fig. 3F), whereas in 

a U.S. cohort (49), the validation auROC (with seven available features) was 0.78 (Fig. 3G). 

Taking into consideration that only no more than half of features in our original prospective 

model were available in the external cohorts, we expect that the true accuracy may be higher.

Previous clinical prospective NAFLD studies demonstrated that fibroblast growth factor 21 

and BMI (FGF21 + BMI), fatty liver index (FLI), and TG and glucose index (TyG) predict 

NAFLD development from 3 up to 9 years before diagnosis (auROCs of 0.71 to 0.82) 

(19–21). We compared the performance of our prospective model with FGF21 + BMI, FLI, 

and TyG to predict NAFLD occurrence in our cohort with matched baseline characteristics. 

The performance of our final model (auROC, 0.80) was significantly better than all three 

clinical models (auROCs of 0.58 to 0.60, P values for difference < 0.01; Fig. 3, H to J). 

To confirm the importance of metagenomic and metabolomic information in prospective 

NAFLD prediction, we added metagenomic and metabolomic features from our final 

prospective model to the clinical models (fig. S6) and observed significant improvements 

in all (auROCs of 0.73 to 0.75, P values for difference < 0.05; Fig. 3, H to J); however, none 

of the models reached the auROCs of our final model.

In total, 18 features were used in the final model: two genera, three pathways, nine 

metabolites, and four anthropometric and clinical parameters (Fig. 4, A and B). Our analysis 

revealed that the most important feature of our risk assessment model was phenyllactic acid 

(Fig. 4A). By analyzing the untargeted metabolomic data from the European MICROBARIA 

cohort (52), we found that phenyllactic acid negatively correlated with ALT, AST, and 

gamma-glutamyl transferase (correlation coefficients = −0.35, −0.45, and −0.45; P = 0.004, 

0.14, and 0.053; Pearson’s correlation adjusted for age, BMI, fasting glucose, and insulin).

SHapley Additive exPlanations (SHAP) (65) analysis also revealed that Methanobrevibacter 
was associated with NAFLD−/−, and Slackia was associated with NAFLD−/+ (Fig. 4, A 

and B). These genera were differentially abundant in our two study groups (fig. S2D). 

Furthermore, 8,11,14-eicosatrienoic acid, hydrocinnamic acid, and oxoglutaric acid are 

associated with type 2 diabetes, obesity, insulin resistance, and NAFLD (58, 60, 61, 66), 

and our model revealed similar trends (Fig. 4, A and B).
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The feature set contribution was also computed by summing the SHAP values per 

category. Metabolites were the most important in the model, contributing 44.6% to model 

performance, followed by the microbiome and nonmicrobiome features, with contributions 

of 31.2 and 24.1%, respectively (Fig. 4C).

Dependence plots were built to reveal the nonlinear correlations of features and risk of 

NAFLD. The optimal thresholds of each feature were identified (fig. S7). We found 

that high-density lipoprotein (HDL) was associated with NAFLD occurrence after 4.6 

years when <1.39 mM, which is close to the diagnostic criteria for metabolic syndrome 

when HDL was <1.0 mM (male) or <1.3 mM (female) (67). We also examined the 

dependence plots of microbial metabolite phenyllactic acid, hydrocinnamic acid, and 

8,11,14-eicostrienoic acid (Fig. 4, D to F). Phenyllactic acid was associated with protection 

against NAFLD at a concentration of >0.25 μM. The concentration of 8,11,14-eicosatrienoic 

acid increased the risk of NAFLD at >51.5 μM, and hydrocinnamic acid was associated 

with NAFLD at a concentration of <0.39 μM. Visual inspection of the dependence plots did 

not indicate any differences by sex. We converted the features into binary variables (≥ or < 

thresholds) according to their optimal threshold and found that 12 of 18 features showed 

significant association with NAFLD progression (chi-square test, P < 0.05; table S6). 

These results demonstrated the importance of including an interpretable machine learning 

framework, such as SHAP, to provide insights when analyzing microbiome data.

We further examined whether the features of our risk assessment model could be used to 

classify subjects of the NAFLD−/+ group based on different degrees of steatosis. We initially 

divided the NAFLD−/+ group based on their liver fat percentage at the time of diagnosis 

(4.6 years after enrolment). Subsequently, using the values of the 18 features at baseline, we 

built a model classifying mild and severe steatosis cases. This new random forest model had 

an auROC of 0.78 (fig. S8A). Similarly as above, we attempted to confirm the biological 

relevance of the selected features by testing the diagnostic power of our prospective model 

in an independent external case-control cohort from the United States (49). Despite the lack 

of absolute quantification of metabolomic data, our model showed an accuracy of 71.4% to 

correctly identify severe steatosis cases with only gut microbial and clinical features.

Previous work has demonstrated the value of gut microbiome-based diagnostic tests for 

advanced fibrosis (68). The participants in our cohort were unlikely to develop advanced 

fibrosis after 4 years, starting as NAFLD free at baseline. Nevertheless, the prospective 

design of our study enabled us to explore whether the baseline microbiota is associated 

with the change or deterioration of fibrosis. Grouping our NAFLD−/+ participants by the 

change of fibrosis 4 (FIB-4) index from 2014 to 2018, we built a new risk assessment 

model using five gut microbiota functional pathways, classifying subjects by the fibrosis 

deterioration with an auROC of 0.72 (fig. S8B). In a U.S. case-control cohort (49), the 

pathway with the highest importance in our model, phosphopantothenate biosynthesis, was 

significantly higher (zero-inflated Gaussian mixture model, P < 0.05) in the cirrhosis group 

than in non-NAFLD controls. Methanobrevibacter, which was the top taxonomic feature in 

the prospective model, was also significantly lower (zero-inflated Gaussian mixture model, 

P < 0.05) in patients with cirrhosis.
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DISCUSSION

NAFLD prevalence has rapidly increased over a short time, especially in China (69). China 

is projected to have the largest number of liver-related deaths among the most economically 

developed countries by 2030 (70). Accumulating evidence suggests that the gut microbiome 

may emerge as an active player in NAFLD development (71). Human studies demonstrated 

different gut microbiota profiles among individuals with NAFLD and those without, as well 

as in individuals at different stages of NAFLD (68, 72). In the recently proposed concept 

of metabolic-associated fatty liver disease (MAFLD) that extends beyond NAFLD (23), 

gut microbiota is suggested to be a major factor related to the heterogeneous phenotype 

of MAFLD. In both NAFLD and MAFLD, the disease complexity and heterogeneity may 

be better resolved by the inclusion of omics technologies that integrate patient clinical 

phenotypes and molecular phenomics and gut microbial features. This approach has shown 

its potential in the classification of hepatic (73) and, more recently, extrahepatic diseases 

including ischemic heart disease (74) and coronary artery disease (75). Both studies 

of cardiovascular diseases suggested that major alterations of the gut microbiome and 

metabolome might occur earlier than clinical onset of disease, suggesting the utility of 

gut microbiota–based risk assessment. A recent prospective study extended cross-sectional 

evidence and demonstrated that gut microbiota composition is predictive of incident type 2 

diabetes after 15.8 years (76). Our study comprehensively characterized the gut microbiome 

of Chinese participants using stool samples taken 4.6 years before the NAFLD diagnosis and 

matched controls. We assessed the ability of metagenomic and metabolomic features as a 

risk assessment tool of NAFLD occurrence within 4.6 years and developed a random forest 

machine learning model that distinguished individuals at risk for NAFLD from controls with 

a performance of 0.80 auROC. The final model consisted of 18 features of mainly bacterial 

genera, pathways, and metabolites, with two clinical and two anthropometric parameters. 

Using subsets of those features available in external case-control cohorts also showed good 

ability (auROC of 0.73 to 0.78) to classify individuals with and without NAFLD, including 

in cohorts with the biopsy-confirmed present/absence of NAFLD and of different ethnicities, 

supporting the biological relevance and generalizability of our prospective model.

Diagnosis of NAFLD requires evidence of hepatic steatosis, either by histology or imaging. 

Liver biopsies have a risk of severe complications, and the sampling procedure may leave 

some people with NAFLD undiagnosed if they have unevenly distributed histological lesions 

(13). Steatosis evaluation based on imaging such as MRS, CT, or ultrasonography has 

limitations in clinical practice such as high price, radiation exposure, and limited sensitivity. 

Numerous research efforts have searched for other reliable, cost-effective, non-invasive 

diagnostic approaches, including using features that are clinical (age, gender, diabetes, 

and BMI), biochemical (aminotransferases, bilirubin, and ferritin), metabolic (glycated 

hemoglobin, insulin, and HOMA-IR), or lipid (TG and cholesterol) parameters or other 

markers such as FGF21 and adiponectin (77–79). A few prospective studies have also 

attempted to predict the development of NAFLD over the long term (19–21). However, 

the predictive power of these models was evaluated in study groups with unmatched 

baseline characteristics, which may have led to overestimation of model performance. In 

our community-based prospective study, these models showed limited performance (auROC 
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in the range of 0.58 to 0.60) when our nested case-control design included matching for 

gender, age, BMI, and 4-year BMI change. This matching is particularly important for 

removing confounding effects and to uncover microbiome-related risk factors for NAFLD 

development, given that obesity is a major risk factor for NAFLD. Our microbiome-based 

model demonstrated a good performance (auROC of 0.72) for predicting the NAFLD status 

of NAFLD-free individuals after 4.6 years.

Our study has limitations. The classification of patients into two groups was not based on 

liver biopsy, which remains the gold standard for NAFLD diagnosis. However, this method 

is impractical in a community study with thousands of participants, as in our study, and 

is unethical for participants who do not show any sign of the disease (matched controls). 

Moreover, according to guidelines from the European Association for the Study of the 

Liver, European Association for the Study of Diabetes, and European Association for the 

Study of Obesity, ultrasound is the first-line diagnostic test for NAFLD (36), especially for 

large-scale screening studies. This diagnostic criterion has been extensively used in previous 

studies, such as the Rotterdam cohort (80), the Golestan cohort (81), and the Kangbuk 

Samsung Health Study (82). We note that our cohort is of high quality, with relatively 

comprehensive indexes acquired in a large population. For example, in the measurement of 

glucose metabolism, oral glucose tolerance tests were conducted for all participants. This 

test is usually replaced by fasting glucose or FINS tests in many population-based studies. 

Second, we could not predict the development of more severe outcomes such as fibrosis 

because of their low incidence. This was mainly due to the nature of our community-based 

epidemiological investigation. However, using baseline microbiota, we were able to classify 

subjects by fibrosis deterioration with an auROC of 0.72.

Furthermore, serum ferritin was not measured in our study, although several studies have 

indicated its relevance in NAFLD (83–85). Therefore adding ferritin in our prospective 

model could potentially enhance performance. The predictive power of our prospective 

model (auROC of 0.80) was an advance compared to existing clinical models (auROCs 

of 0.58 to 0.60). However, further improvements, for example, integrating additional 

biochemical parameters, will be necessary for clinical applications. Our metabolic signatures 

and their taxonomic drivers revealed by our prospective model imply but do not prove 

causality; thus, additional studies are required to clarify the molecular mechanisms involved 

in NAFLD development.

Integrating bacterial species and functions in machine learning models for predicting 

host response to treatment or lifestyle interventions and disease progression has shown 

great potential (86–89). For NAFLD and its complications, gut microbiota changes can 

independently predict the risk of short-term hospitalizations (90 days) in patients with 

cirrhosis with an auROC of 0.83 (90). Elucidating the importance of the gut microbiome as 

a long-term risk assessment tool in NAFLD is important because of the current limited 

therapeutic landscape for NAFLD and findings that early detection can substantially 

improve outcomes for patients with NAFLD (91, 92). Our proof-of-concept study identified 

a microbiome signature in participants at risk of developing NAFLD in the next 4 years 

and points to the potential of noninvasive diagnostic tests to complement existing clinical 

screening tools for NAFLD. Moreover, identifying microbiome signatures also opens a 
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window of opportunities for microbiome-based prophylactic and therapeutic interventions 

such as the utility of propionic acid as a potent immunomodulatory supplement to multiple 

sclerosis drugs (93), which is not offered by a clinical predictive model built upon only a few 

clinical parameters or other features. Evaluation and further improvement of our NAFLD 

risk assessment model using larger prospective studies that are heterogeneous for ethnicity 

and lifestyle patterns will increase the model’s generalizability and obtain more refined 

estimations of its accuracy.

MATERIALS AND METHODS

Study design

The aim of this study was to identify potential predictive signatures for early clinical 

warning of NAFLD and to develop a prognostic risk assessment model for long-term 

NAFLD development. For this purpose, we conducted a nested case-control study within 

a 4.6-year prospective study in 2487 Chinese individuals, and we profiled 180 individuals 

from 1216 NAFLD-free participants at baseline, including 90 that were diagnosed with 

NAFLD in the follow-up visit (NAFLD−/+), which were matched with 90 controls without 

NAFLD (NAFLD−/−) by gender, age, BMI, and 4.6-year BMI change. We performed 

comprehensive metagenomic and metabolomic analyses using stool and serum samples 

taken at baseline, including taxonomic diversity and profiles at family, genus and species 

levels, microbial enzymes, metabolic pathways, and metabolites. An interpretable machine 

learning model integrating baseline microbial signatures was built to predict NAFLD 

development after 4 years. The biological relevance of selected features in the model to 

NAFLD development was further validated in external cohorts, including three cohorts with 

the biopsy-confirmed presence/absence of NAFLD. New models were built for validation, 

given that some features were not available in the external cohorts. All validation models 

were trained on our cohort and tested in the external cohorts. Further materials and methods 

details are available in the Supplementary Materials.

Study participants

All participants were from the Nicheng Diabetes Screening Project (also called the 

Shanghai Nicheng Cohort Study) previously described (94, 95). This population-based, 

prospective study was designed to assess the prevalence, incidence, and factors related to 

cardiometabolic diseases among adults in Nicheng County, a suburb of Shanghai, China. 

On the basis of the project, we designed a nested case-control study to explore the 

potential causal role of the gut microbiome in NAFLD in three randomly selected Nicheng 

communities (involving 2487 participants). Figure S1 outlines study enrolment. Of 2487 

participants, 1216 were identified as not having NAFLD at baseline; among them, 524 

completed a follow-up visit 4.6 years after baseline and were screened by ultrasonography. 

Incident cases of NAFLD (n = 146) were identified at the 4.6-year follow-up visit, of 

which 90 participants were eligible for this study involving gut microbiota, according to the 

following criteria to exclude participants: existed fatty liver, acute infectious disease, biliary 

obstructive diseases, alcohol abuse (more than 140 g of ethanol/week for men or 70 g of 

ethanol/week for women), acute or chronic cholecystitis, acute or chronic viral hepatitis, 

cirrhosis, diarrhea, known hyperthyroidism or hypothyroidism, chronic renal insufficiency, 
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heart failure, presence of cancer, pregnancy, stroke in acute phase, receipt of any antibiotic 

treatment within 2 weeks or receipt of any probiotic or prebiotic within 1 week before 

sample collection, and suffering from chronic or acute gastrointestinal diseases (including 

diarrhea, gastrointestinal infection, and inflammatory bowel disease) in recent 1 month 

before sample collection. Controls (n = 90 for a case-control ratio of 1:1) were chosen from 

the remaining participants who did not develop NAFLD by the follow-up visit. To control 

for the risk profiles in patients who developed NAFLD and those who did not, controls were 

matched for age (±3 years), sex (male and female), BMI (±3 kg/m2) at both baseline and 

follow-up, and BMI change (±0.5 kg/m2). The study was approved by the ethics committee 

of the Shanghai Sixth People’s Hospital (approval no: 2014–27), following the principles of 

the Declaration of Helsinki. Written informed consent was obtained from all participants.

Evaluating the diagnostic ability of the model in external cohorts

To our knowledge, no similar studies have conducted long-term follow-up of NAFLD 

development in healthy individuals using a combination of gut metagenome, metabolome, 

and clinical features as a risk assessment tool. Thus, we were unable to test our prospective 

model directly in an external cohort. Instead, we used external case-control cohorts to 

examine the ability of our final prognostic model to classify correctly NAFLD and healthy 

participants. Four cohorts were used, including two cohorts of Chinese: (i) 78 patients 

with NAFLD and 10 controls without NAFLD, as diagnosed with biopsy (BioProject ID: 

PRJNA732131), and (ii) 111 MRS-diagnosed NAFLD patients and 8 controls (BioProject 

IDs: PRJNA703757 and PRJNA414688); and two biopsy-diagnosed cohorts of other 

ethnicity: (iii) a European cohort of 46 patients with NAFLD and 10 controls (54) and 

(iv) a U.S. cohort of 26 cirrhosis patients and 54 controls (49). For further additional data 

(e.g., anthropometric and/or available clinical data) for the two Chinese validation cohorts 

besides grouping information, please contact the corresponding author.

Because some selected features included in the final model were not available in the external 

cohorts, we were unable to test our model directly. Instead, we built a new prognostic model 

based on the NAFLD−/+ and NAFLD−/− groups using a subset of the 18 selected features 

that were available in the external cohorts. In the model for the two Chinese cohorts and 

the European cohort, 9 of the 18 selected features were used: two genera, three pathways, 

two anthropometric parameters, and two noninvasive clinical metadata; whereas 7 of the 18 

selected features were used in the model for the U.S. cohort: two genera, one pathway, two 

anthropometric parameters, and two noninvasive clinical metadata. Performances of models, 

including ROC curves, precision-recall curves, and confusion matrices (generated with the 

optimal probability cutoff of the ROC curve), were produced by applying the model to the 

unseen external cohort data.

Statistical analysis

Statistical analyses of clinical data were performed with SAS version 9.4 (SAS Institute 

Inc.). Normally distributed data were expressed as means ± SD. Data that were not normally 

distributed, as determined using the Kolmogorov-Smirnov test, were logarithmically 

transformed before analysis and expressed as median with lower and upper quartiles. 

Student’s t test and chi-square tests were used to assess differences between two groups 
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for continuous and categorical variables, respectively. In addition, analysis of covariance was 

used for continuous variables to assess the difference between the two groups after adjusting 

for HOMA-IR.

Metagenomic data, including taxonomy and functional data, and metabolomic data were 

analyzed in R software version 3.6.3. Metagenomic data were analyzed with the zero-

inflated Gaussian mixture model, using the function fitZig from R package metagenomeSeq 

(96) with the default settings; metabolomic data were analyzed using the generalized 

linear model with inverse gamma distribution. Wilcoxon rank-sum tests were used to test 

for significant differences in alpha diversity. PERMANOVA was used to analyze beta 

diversity with adonis function from R package vegan. A Mantel test, implemented in mantel 

from R package vegan, using Spearman’s correlation coefficient was used to analyze the 

associations between microbiome and metabolites. Bray-Curtis dissimilarity matrices based 

on taxonomic relative abundance and Euclidean dissimilarity matrix for each metabolite 

were computed to perform this test. The auROCs of different models were compared with 

the DeLong test, using the roc. test function from R package pROC (97). Data were 

considered statistically significant at P value < 0.05. The Benjamini-Hochberg procedure 

was applied to calculate the FDR to adjust P values for multiple hypothesis testing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MTBLS2615. The data used to generate main and supplementary figures are in data file 

S1. Further information and requests for resources and reagents should be directed to G.P. 
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Fig. 1. Overview of the prospective study design.
A graphical representation summarizing the study design, data collection, and the 

methodologies of data generation and analysis. Further details of the study design can be 

found in fig. S1.
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Fig. 2. Global characteristics of gut microbiome and serum metabolome.
(A) Relative abundance of the 10 most abundant genera, species, and pathways for the 180 

participants at baseline, grouped by NAFLD status at the follow-up visit. Anthropometric 

characteristics of the participants at baseline are also shown. Abundance values are 

normalized to the range of 0 and 1. (B) Changes of metabolites (μM) in metabolite classes 

containing at least 10 metabolites. Each point represents a metabolite and its z score from 

Wilcoxon rank-sum test comparing the two groups (negative indicates higher abundance in 

NAFLD−/−; positive indicates higher abundance in NAFLD−/+). Dotted lines at −1.96 and 

1.96 denote the significance threshold. Colors indicate comparisons between z scores of 

metabolites in a metabolite class against the z scores of metabolites in all other classes. 

Box plots show median, lower/upper quartiles, and whiskers (the last data points 1.5 times 
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interquartile range from the lower or upper quartiles). (C) Principal coordinates analysis 

for 180 participants based on Bray-Curtis distances using baseline serum concentrations 

of 123 metabolites. For each metabolite class, the top 3 (or fewer) metabolites that were 

significantly associated with the metabolome variation in the study cohort are shown. PC, 

principal coordinates.
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Fig. 3. Predictive performance of machine learning models in the study cohort and diagnostic 
performance of the final model in external cohorts.
(A to C, in blue) Performance of leave-one-out iterative machine learning models 

discriminating between NAFLD−/+ and NAFLD−/− groups using features of the following: 

(A) metagenomics + metabolome, (B) metagenomics + metabolome + 2 clinical parameters 

(HDL and fasting insulin), and (C) metagenomics + metabolome + 2 clinical parameters 

(HDL and fasting insulin) + anthropometrics (BMI and age). (D to G, in purple) 

Diagnostic performances of a model built based on subsets of the selected features to 

discriminate between participants who were healthy or had NAFLD in four external cohorts: 

(D) a Chinese cohort in which NAFLD diagnosis was determined with biopsy, (E) a 

Chinese cohort in which NAFLD diagnosis was based on MRS, (F) a biopsy-diagnosed 

European NAFLD cohort, and (G) a biopsy-diagnosed U.S. cirrhosis cohort. (H to J, 

in peach) Leave-one-out iterative machine learning performance to discriminate between 

NAFLD−/+ and NAFLD−/− groups in models of: (H) FGF21 + BMI clinical model, 

with and without metagenomics + metabolome features; (I) FLI clinical model, with 

and without metagenomics + metabolome features; and (J) TyG clinical model, with and 

without metagenomics + metabolome features. (H to J) Models without metagenomics and 

metabolome features were trained by logistic regression (dotted lines); models including 

metagenomics and metabolome features were trained by random forest (solid lines). 
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Confusion matrices in (F) to (H) are from models with metagenomics and metabolome 

features. The figure colors represent the purpose of the model: blue, model construction; 

purple, external validation in cohorts of different ethnicity; peach, testing performance of 

previous clinical models in our cohort. Further details of the overall machine learning 

analysis framework can be found in fig. S6. auROC, area under the receiver operating 

characteristics curve; auPRC, area under the precision-recall curve; TPR, true-positive rate; 

FPR, false-positive rate.
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Fig. 4. SHAP-based model interpretation.
(A) Bar plot of selected features and their contribution in the NAFLD prediction model. 

Features are in descending order by contribution (also known as importance) in the model. 

Blue bar, higher value of the feature for association with NAFLD−/−; red bar, higher value 

of the feature for association with NAFLD−/+. Details of associations are shown in (B) a 

bee swarm plot in which each point represents a participant (n = 180). Color indicates the 

value of the feature, with red higher and blue lower. Negative SHAP value indicates the 

feature attribution for prediction of NAFLD−/−; Positive SHAP value indicates the feature 

Leung et al. Page 28

Sci Transl Med. Author manuscript; available in PMC 2022 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



attribution for prediction of NAFLD−/+. (C) Feature category contribution calculated by 

summing the SHAP values per set. (D to F) Examples of SHAP dependence plots, showing 

the effect the feature has on model prediction. Each point represents a participant (n = 180). 

Color indicates sex with blue for male and red for female. X axis is the feature value, and y 
axis is the SHAP value for the feature. The optimal thresholds for features are indicated by 

the vertical dotted lines.
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