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ABSTRACT OF THE DISSERTATION

Problems and Solutions: Machine Learning Approaches for a Dynamic Ocean

by

Joseph Leslie Walker

Doctor of Philosophy in Oceanography
University of California San Diego, 2023

Kaitlin Frasier, Chair

Advancements in observational methods and data collection techniques have empowered
oceanographers to gather extensive data on a wide range of oceanic phenomena. Optical imaging
systems have provided unprecedented insight into the microscopic world of marine plankton as
well as the structure, health, biodiversity, and ecological dynamics of coral reefs. Advances in
low-power autonomous acoustic recording devices have enabled continuous long-term

monitoring of marine mammals and ocean noise.
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These data-driven methods involve the collection, analysis, and interpretation of large
datasets to gain insights. Although machine learning offers the potential for automating the
analysis of large oceanographic datasets, its utilization in this context is accompanied by
challenges and problems due to the high spatiotemporal variability and noise inherent in these
datasets.

This thesis delves into an extensive exploration of state-of-the-art machine learning
techniques, specifically tailored to optimize the extraction of valuable information from dynamic
oceanographic datasets. To obtain a comprehensive understanding of the problem, instances of
dataset shift and noise are examined in three distinct case studies spanning the vision and
acoustic domains.

The first case study focuses on the problem of novelty detection and class imbalance in
the context of plankton image recognition using Images from the WHOI-Plankton dataset. The
second case study explores the problem of object detection when samples are collected from
different environments or under varying conditions. Lastly, the third case study aims to develop
multi-observational techniques to reduce dataset noise using a dataset of acoustic recordings
collected in the Santa Barbara Channel.

In each case, the core technical goal is the same: to train a convolutional neural network-
based system to learn a robust feature representation that generalizes to unforeseen
environmental conditions. To achieve this goal, techniques from the field of hard negative
mining, unsupervised domain adaptation, and multi-view learning are integrated into the
workflows. Ultimately, my overarching objective is to drive advancements in the development of

robust oceanographic data automation tools.
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Chapter 1 INTRODUCTION

The vastness of the world’s oceans presents an intricate web of interconnected processes,
making it a complex environment to understand. New technology platforms have resulted in an
exponential increase in the amount of collected oceanic data, resulting in more data collection on
the world’s oceans in the year 2018 than the cumulative data gathered throughout the entire
twentieth century (Tanhua et al., 2019). In fields such as underwater imaging, ocean acoustics,
and physical oceanography, oceanographic research has long revolved around the development
of physical models and their application in deducing properties of both the ocean environment
and objects within it. However, as we move into the era of “Big Data”, this paradigm is
beginning to change.

In ocean acoustics, sound event classification and localization methods have traditionally
relied upon signal processing techniques and signal/channel models. However, these techniques
often perform poorly in common scenarios where noise, reverberation, and multiple
simultaneously emitting sound sources are present (Blandin et al., 2012; Evers et al., 2020). In
underwater imaging, image processing tools such as Sobel convolution kernels, morphological
operations, and thresholding were used together with traditional statistical and rule-based
methods to perform classification and detection tasks. However, in situations where the data
demonstrates a considerable degree of intra-class variability and/or notable inter-class similarity,
these techniques frequently demonstrate subpar performance (Bishop, 2006).

While traditional methods in oceanography have provided valuable insights, the surge in
available data has opened exciting new avenues for exploration. For example, developments in
underwater imaging tools such as the Imaging FlowCytobot (IFCB) and the Scripps Plankton

Camera (SPC) have each collected billions of images of microscopic marine plankton (Olson and



Sosik, 2007; Orenstein et al., 2020, 2015). Similarly, advances in autonomous acoustic recording
devices such as the High-frequency Acoustic Recording Package (HARP) have collected
petabytes of passive acoustic data (Wiggins and Hildebrand, 2007). By leveraging recent
advances in data collection, machine learning, and parallelizable computing technology, we can
uncover hidden patterns, extract knowledge, and make accurate predictions. These technologies
have already revolutionized our understanding of the ocean and its dynamic ecosystems.

Machine learning refers to the use of algorithms and computational techniques to extract
meaningful information from data, without relying on predetermined equations or explicit
instructions (Bishop, 2006). It's important to note that while machine learning is a part of
artificial intelligence (Al), the latter encompasses a broader range of capabilities, including the
integration of machine learning with sensors, autonomous vehicles, and computer-based
reasoning. The most common application of machine learning in oceanography is the automation
of repetitive sorting of data, usually in the form of classification or detection (Bishop, 2006). In
underwater imaging, machine learning has emerged as the predominant technique for object
classification and detection. This development can be primarily attributed to the development of
automated image recognition architectures such as convolutional neural networks (CNNs). These
algorithms can detect and classify objects and organisms in underwater images with remarkable
accuracy, saving researchers significant time and effort.

CNNs have been used in applications ranging from the estimation of plankton and fish
population densities (Li et al., 2015), biodiversity monitoring of coral reefs (Jaisakthi et al.,
2019), unexploded ordnance detection(Czub et al., 2018), and detection of other man-made
objects (Olmos et al., 2002; Rizzini et al., 2015). In acoustics, CNNs have emerged as the

dominant approach for sound event detection and source localization. In the 2017 Detection and



Classification of Acoustic Scenes and Events (DCASE) challenge, a CNN achieved state-of-the-
art results in the sound event detection task (Mesaros et al., 2017). CNNs have also been used for
broadband direction of arrival estimation, obtaining competitive results with steered response
power phase transform (SRP-PHAT) beamforming (Brandstein and Ward, 2001).

Despite the numerous benefits offered by machine learning, challenges persist when it
comes to its application in oceanography due to the presence of noise. There are various sources
of noise that can affect oceanographic data, including instrumental errors, measurement
uncertainties, environmental disturbances, and data collection and processing artifacts. These
sources can introduce random or systematic errors, outliers, missing values, or inconsistencies
into the data.

Deploying machine learning-based models effectively is further complicated by the
presence of dataset shift, which refers to differences between the statistical properties of the
training and deployment data. This shift is problematic because machine learning models learn a
joint distribution between the input features and the target variable based on the training data.
One of the most common forms of dataset shift is covariate shift, which occurs when the
distribution of the input variables (covariates) in the training data is different from the
distribution of the covariates encountered during deployment. Other forms of dataset shift, such
as prior probability shift, are also prevalent.

Addressing dataset noise and shift has become a crucial challenge. To combat these
issues, some researchers have turned to the utilization of multi-view learning and unsupervised
domain adaptation techniques. Multi-view learning leverages multiple perspectives or

representations of data to enhance prediction accuracy and robustness. By incorporating diverse



representations of the same data, it becomes possible to capture a more comprehensive
understanding of the data, thereby mitigating the impact of noise and reducing biases.
Unsupervised domain adaptation, on the other hand, focuses on overcoming the covariate
shift problem. In underwater image classification, this can arise due to variations in lighting
conditions, water quality, or camera settings between different underwater environments.
Unsupervised domain adaptation aims to bridge this gap by learning domain-invariant
representations that can generalize well across different domains or underwater scenarios. By
leveraging unlabeled data from the target domain and aligning it with the labeled source domain,

the algorithm can effectively adapt and transfer knowledge, mitigating the effects of covariate

shift.

Enhancing the robustness of machine learning-based classifiers in the field of
oceanography holds great promise for advancing our understanding of the oceans. By improving
the robustness and accuracy of these classifiers, we identify complex patterns within the oceans,
ultimately deepening our knowledge of this crucial component of our planet. This knowledge
will enable us to make informed decisions, address environmental challenges, and strive towards
the sustainable management and conservation of our oceans.
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Chapter 2
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Improving Rare-Class Recognition of Marine Plankton with Hard Negative
Mining

Joseph L. Walker
Scripps Institution of Oceanography

jlwalker@ucsd.edu

Abstract

Biological oceanographers are increasingly adopting
machine learning techniques to conduct quantitative as-
sessments of marine plankton. Most supervised plankton
classifiers are trained on labeled image datasets annotated
by domain experts under the closed world assumption: all
object classes and their priors are the same during both
training and deployment. This assumption, however, is hard
to satisfy in the actual ocean where data is subject to dataset
shift due to shifting populations and from the introduction of
object categories not seen during training. Here we present
an alternative approach for training and evaluating plank-
ton classifiers under the more realistic open world scenario.
We specifically address the problems of out-of-distribution
detection and dataset shift under the class imbalance setting
where downsampling is needed to reliably detect and clas-
sify relatively rare target classes. We apply a hard negative
mining approach called Background Resampling to perform
downsampling and compare it to other strategies. We show
that Background Resampling improves detection of novel
particle classes while simultaneously providing competitive
classification performance under dataset shift.

1. Introduction

Marine plankton are a critical component of the bio-
geochemical processes that are responsible for regulating
the climate, supporting the aquatic food web, and produc-
ing oxygen [21, 1]. The innumerable ecological roles of
plankton make it imperative to monitor their populations
as a function of natural and anthropogenic environmen-
tal change. Quantifying the fluctuations of individual taxa
and the diversity of planktonic communities in response to
perturbations is fundamental to understanding planktonic
ecosystem dynamics. However, technological limitations
constrain our ability to obtain highly temporally resolved
time series of individual taxa.

Plankton ecologists are increasingly using in situ imag-

Eric C. Orenstein
Monterey Bay Aquarium Research Institute

eorenstein@mbari.org
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Figure 1. a) Using target and background training datasets, de-
noted as D{%7¢ and D, respectively, the parameters of a clas-
sifier, fo,, and background image weights, w, are jointly learned
using an alternative optimization approach. b) the background
dataset is downsampled by interpreting w as resampling probabil-
ities. c) the original target dataset and downsampled background
dataset is used to train a new classifier, fp,. d) testing is then per-
formed using target, novel, and dataset shift datasets with fg,.

ing and deep learning to make population estimates of
plankton. Numerous imaging systems have been developed
and deployed to study plankton in their natural environment
[4, 11, 9, 41]. One of the most widely used plankton im-
agers is the Imaging FlowCytobot (IFCB), which was de-
veloped at Woods Hole Oceanographic Institution (WHOI)
to study microorganisms within the 10-100 pm range [36].
The WHOI-Plankton annotated dataset is one of the largest,
best maintained labeled plankton image sets available [39].

Together with in situ imaging, advances in deep learn-
ing have enabled oceanographers to sample ocean popu-
lations with higher spatiotemporal resolution and provide
the opportunity to produce long, highly resolved time se-



ries of individual taxa. Convolutional Neural Networks
(CNNs), a family of deep neural network architectures, have
been shown to improve classification accuracy on marine
plankton imagery versus ensemble or margin-based meth-
ods [38, 16, 39]. CNNs obviate the need for defining hand-
crafted features by learning the feature extraction and clas-
sification process end-to-end. This training paradigm en-
ables the learning of feature representations with more dis-
criminative power [26, 25]. CNNs could therefore alleviate
the human cost of manually examining the collected data in
order to extract ecologically relevant information.

In many cases, biological oceanographers are only inter-
ested in identifying organisms that belong to a small set of
classes, referred to here as rarget classes. Some projects
are specifically formulated to reduce the number of target
classes: Harmful Algal Bloom (HAB) monitoring and par-
asite tracking to name a few [37, 14, 24, 35, 5, 10, 6]. The
annotation process requires a trained taxonomist to search
through a large set of images obtained from an experiment
or deployment and sort them into ecologically meaning-
ful classes. Either by design or due to circumstance, the
available data for classifier training will consist of labeled
images associated with the target classes and a large pool
of unlabeled data often simply called “other”. Classifier
training is thus often formulated as an N+ classification
problem, where there are N target classes and all other ob-
ject types are mapped to an additional background class.
The term background therefore refers to data that the clas-
sifier has been trained to distinguish from target examples,
whereas out-of-distribution (OOD) refers to data from novel
classes that the classifier has not been trained on and is only
exposed to during the testing stage or deployment.

The combined abundance of objects from the target
classes is often much smaller than the prevalence of all other
objects that form the background, the so-called class imbal-
ance problem [27, 7, 6, 17]. The issue is exacerbated by the
size structure of particles in the ocean and design constraints
of imaging systems. There are orders of magnitude more
small objects near the lower resolution limit of any optical
imaging system. As a result, in situ optical imaging systems
will image more small indistinguishable objects than large
easy-to-identify particles [41, 36, 17]. Therefore, the back-
ground class will often be populated by many examples of
these small undifferentiated particles.

Training on imbalanced data will encourage a machine
learning based classifier to minimize its loss by accurately
and reliably classifying majority class examples at the price
of diminishing recall of minority class examples [33]. A
widely adopted strategy for addressing the imbalance prob-
lem is to upsample the minority classes via data augmenta-
tion and downsample the larger classes via random down-
sampling [40, 7]. However, random downsampling is likely
to lose crucial information regarding the distribution of pos-

sible features that are associated with objects belonging to
the background class.

Developing effective machine classifiers for plankton
imagery is further complicated by the diversity and con-
stant flux of novel taxa present in the sampling environment
[20, 44]. N+1 classifier training implicitly assumes the clas-
sifier’s learned representations are robust enough that any
and all future objects that do not belong to the set of target
classes will be mapped to the background class. But this
kind of generalization is not explicitly enforced or encour-
aged when the classifier is trained and evaluated on datasets
that share the same set of labels; a common practice in
plankton ecology studies [35, 38, 16, 17,9, 12].

When a classifier is tasked with labeling unlabeled data,
another assumption is made: that the class priors and dis-
tribution of features characterizing the classes are unchang-
ing. Changes in these distributions are broadly referred to as
dataset shift, and have been shown to impact classifier per-
formance. This problem has received a significant amount
of attention in both the plankton ecology [40, 19, 2] and
machine learning [34, 54, 18] communities.

Plankton recognition in the open ocean is a particularly
challenging endeavor because incoming data is almost guar-
anteed to be imbalanced, composed of novel classes, and
subject to dataset shift. In this work, we present an effec-
tive solution to this integrated recognition task for the case
where the goal is to identify images belonging to relatively
uncommon plankton groups. We examine how the con-
struction of the background class training set via downsam-
pling can impact out-of-distribution detection and dataset
shift classification performance. We use a hard negative
mining approach called Background Resampling to opti-
mize the downsampling procedure to preserve information
regarding the set of features associated with the background
class. Our study makes the following three particular con-
tributions:

1. We present a new framework for training and evalu-
ating plankton classifiers that addresses the challenges
that are encountered in an open ocean deployment, pri-
marily OOD detection and dataset shift.

2. We show that downsampling via hard negative min-
ing can endow models with greater generalization abil-
ities across a range of challenging test scenarios where
other approaches are inconsistent.

3. We benchmark a contemporary OOD detection tech-
nique on a fine-grained OOD detection problem.

2. Related Work
2.1. Out-of-distribution detection

Out-of-distribution (OOD) detection methods seek to
train a classifier to successfully recognize data that does not
belong to the set of target classes. In the case of marine



plankton classification, OOD data would present as novel
object classes. Outlier Exposure (OE), a popular new ap-
proach for OOD detection, leverages the fact that deep net-
works produce an estimate of the posterior class distribu-
tion. OE measures the entropy of the posterior class dis-
tribution to estimate the likelihood that a given data point
is OOD [23]. This is implemented with a softmax network
layer, which models the probability of an input z being rec-
ognized as class 7 as

exp (wlg (z;0) + b;)

Plile) = Z;V=1 ezp (w]'g (z;0) + b;)

(O]

where i € {1,2,..., N} indexes one of the IV target classes.
g(z;0) denotes the embedding of example z in feature
space as a function of network parameters 6. w; and b;
denote the weight vector and bias terms for class j respec-
tively. The classifier is trained to output a high entropy
(i-e., uniform) distribution P(i|z) for background exam-
ples, and a confident low entropy distribution for examples
from the target classes. For OE, classification is performed
by thresholding the softmax scores, where the threshold 7"
is determined empirically from a validation set and cali-
brated to provide a desired recall on the target classes. If
T < maz; P(i|z) then the classification is upheld, other-
wise, the example is classified as non-target.

OE has been shown to generalize well to OOD examples
that come from an entirely different domain [23, 28, 15].
This inspired a wave of OOD detection models which build
from the OE concept. [15] introduced Objectosphere loss
which aims to minimize the magnitude of g(z; @) for back-
ground data, which naturally results in low confidence soft-
max outputs. [30] incorporated scaling and input prepro-
cessing to further increase the softmax output disparity be-
tween target and background data. However, these methods
are typically tested using OOD and target data from com-
pletely separate domains. This is unlike many real-world
applications, where OOD data is from the same domain as,
and looks very similar to, target class examples. In the case
of marine particle classification, particle classes can be vi-
sually very similar, which makes OOD detection a challeng-
ing problem [12, 48, 32, 55].

2.2. Hard negative mining

Hard negative mining (HNM) approaches seck to iden-
tify a set of negative (or background) examples that are
likely to generate a false positive [45, 13, 53]. Focusing
classifier training on these hard examples has been shown to
improve classification performance relative to other down-
sampling methods [13, 29]. While similar techniques have
been applied to datasets consisting of hand-crafted features
to predict phytoplankton blooms, to our knowledge, they
have not been applied to plankton image classification [49].

3. Dataset

We use the WHOI-Plankton dataset!|for all experiments
[52]. This fully annotated dataset is comprised of 103
classes totaling over 3.5 million grayscale IFCB images,
ranging from millions to as few as four examples per class.
The bulk of the images belong to the mix category which
corresponds to small unidentifiable particles. This dataset
was amassed over 9 years (2006-2014) from nearly contin-
uous sampling at the Martha’s Vineyard Coastal Observa-
tory. An expert taxonomist labeled all images collected in
two randomly selected, non-consecutive, single hour time
points from each two-week period. Each hour thus repre-
sents a complete, independent sample of the plankton pop-
ulation at that point in time. The image data is sorted into
subfolders reflecting the image acquisition year.

4. Methods
4.1. Background resampling

Background Resampling (BR) is a HNM approach
which aims to ameliorate the class imbalance problem while
improving OOD detection [29]. BR assigns each back-
ground training image a weight that is proportional to the
confidence with which the image is classified as one of the
target classes. Then a subset of the background images is
sampled according to the image weights which are inter-
preted as resampling probabilities. This downsampled set is
then used to train a new classifier. BR is from the family of
OE methods for OOD detection and therefore requires both
background and target training datasets, denoted as D{%

train
and D!*79 respectively. D%, and D}*"9 are used to train
the parameters 6, of a classifier, denoted as fy, , to output
high and low entropy distributions over the softmax outputs
(eq. 1) respectively. The BR procedure can be broken into
two distinct phases:
Phase (1): Using Dy, and D,  learn the back-
ground image weights w and 6, with the alternative opti-

mization

0?) = argmin [Ltarg (61) + aLout(61; w(t'l))] )
6

w® = argmaz [Liurg00) + 0Loue(00)]  3)
w

where Ly, is the cross-entropy classification loss term
used to penalize incorrect classifications for target class
data. L, is the loss term that penalizes overly confident
predictions on background examples and is defined as the
Kullback-Leibler divergence between the uniform distribu-
tion and the softmax outputs. The solution to this system
of equations is approximated using a differential relaxation
(stochastic gradient descent) and batches of images from

1doi:10.1575/1912/7341



both D%, and D79 . w(® is defined as the set of im-
age weights that maximize the associated loss at time step
t, where t denotes the batch number. This ensures that the
reweighting algorithm will assign high weight values to im-
ages from D¢, that are difficult to classify, guaranteeing
that the resampling process selects challenging background
images that are visually very similar to the target class ex-
amples. The adversarial nature of the iterative process —
classification vs selection of difficult examples for the clas-
sifier — is critical to accurately learning the boundary be-
tween target and background classes. The hyperparameter
« controls the trade-off between learning to output confi-
dent and low-confident predictions for target class and back-
ground examples respectively. For all experiments, we set
a =0.5 in accordance with the standard OE default [23, 29].

Phase (2): A resampling percentage -y is empirically set
and will typically reflect the degree of imbalance between
the background and target classes. Using the learned back-
ground image weights, the background class is downsam-
pled to «y percent of its original size. This is done by select-
ing each background image z;, associated with weight w;,
independently with probability p; = min (1, gz—DE%“;w,-).
Once the background image weights are obtairjlcd, fo, is
discarded. The downsampled background dataset and full
target training dataset are then used to train another classi-
fier, denoted as fj,. Testing is then performed with fg,. For
all experiments, we use v = 0.05. A schematic diagram of
the entire process is shown in Fig. 1.

4.2. Experimental setup

Our experiments were designed to simulate a scenario

where a biological oceanographer is interested in tracking
the prevalence of a few relatively rare plankton groups. The
abundance of these groups can fluctuate over a very large
background class whose images are not of interest. We con-
struct subsets of the WHOI-Plankton dataset to perform our
experiments:
Target Data. The classes to be detected, or target classes,
are Ceratium, Dinobryon, Pleurosigma and Ephemera. All
the available data for these four classes is denoted as D79,
Both the Dinobryon and Ceratium genus are associated
with algal blooms. The Pleurosigma genus is of interest
in biomedical applications because they are believed to pro-
duce rare but important organic compounds [3, 56]. The
Ephemera class is taxonomically ambiguous, but previous
studies have identified it as difficult to classify because of its
visual similarity to other organisms in the WHOI-Plankton
dataset [55]. Images from these four classes were drawn
from each year of the WHOI-Plankton dataset but capped
at 900 examples per class. This was to prevent significant
class imbalance within the set of target classes and to pro-
vide a realistic amount of data that could be obtained rela-
tively easily from a low-budget data annotation campaign.

Target Class Test Examples 00D Test Examples
Dinobryon Parvicorbicula Socialis
- 9,7 S R
= - Ny —=> jer=re -
=7 iz 7 |k IR
3
Ephemera - Pseudochattonella farcimen o
Pleurosigma B ==— Amphidinium sp. -
—_— - ~an= —a—

Figure 2. Three examples, selected by a human annotator, from
classes in D{27? (left column) and D3%¢ ., (right column) showing

the morphological similarity between specimen of these classes

Training Data. 55% of data from D**"9 (1783 images) was
randomly selected (stratified by class) to serve as a training
set for the target classes and is referred to as D;*? . The
background training dataset, denoted as D§; | consists of
all images from the year 2006 (totaling 134,293 images)
that do not belong to the target classes.

Validation data. 22% of data from D**"9\ D79 (311 im-
ages), referred to as D!®79, was randomly selected to be
used to learn the OOD detection decision threshold 7'
Testing Data. We construct three different testing datasets
to assess classification performance on target examples,
novel object classes, as well as a dataset shift scenario
where the prior probabilities of the classes in Dg“;  are
subject to change. The remaining 78% of data from
Dtr9\ D9 (1125 images) was selected for testing tar-

rain
o . t
get class classification and is referred to as Djoaf -

There are 13 classes in the WHOI-Plankton dataset that
are not present in D¢ U Dg“t. . These classes were used
to form a hold-out set of novel classes to test OOD detec-
tion performance. This hold-out set is referred to as D%
(totaling 1112 images). Many of the classes in D% , look
remarkably similar to the classes in D}’7?, underscoring the
difficulty of OOD detection in plankton imagery (Fig. 2).
For OOD detection testing, we utilize datasets D;*7? and
Dgut . Since they are approximately the same size, test-
ing on the combination of these sets implicitly assumes that
the number of target class and OOD examples is similar.
This may be realistic if the novel classes are relatively rare,
but in practice the target examples are often rare compared
to non-target examples. Therefore, we test classifier perfor-
mance using several ratios of target to OOD examples using

out

subsamples from D279 and the full D24, set.

While we wish to develop classifiers that reliably detect
novel examples, it is important that improved OOD detec-
tion does not diminish classifier performance on other im-
portant aspects of plankton recognition, such as recognition
under dataset shift. To simulate a real world deployment,
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each day’s worth of data from the WHOI-Plankton 2014 im-
age directory is used to test each classifier under a dataset
shift scenario, where the classes are the same as D%, |
but the prior probabilities and appearance of the background
classes are subject to change. This testing dataset is denoted
as Dt (totaling 329,835 images). For dataset shift test-

ing, each day’s worth of data from D!, is combined with

a random 75% sample of D}*’?, ensuring that the back-

ground and target classes are subject to dataset shift.

4.3. Models and training

The dataset size ratio Di79 : Do is approximately
1:75. For the class with the fewest examples in D:*79 | de-
noted as D79 the ratio DT Dot is approx-
imately 1:400. Training on data with this degree of imbal-
ance typically results in poor detection for minority class
examples [7,'49, 50]. Instead, it is common to downsample
the majority classes and upsample the minority classes to
improve results [51, 31, 47]. Using our downsampling per-
centage 7y = 0.05, the ratio D!*"%-™":y Dout. " is approxi-
mately 1:20. To fully balance the classes, we upsample the
four target classes using random image rotations.

It is possible that all images of a rare background object
class are lost when using random downsampling. This in-
creases the risk that the classifier trained on the randomly
downsampled data will assign examples of that class to one
of the target classes. In the case where the images in D%, .
are assigned their true class label, Dg;  can be downsam-
pled by taking an even number of examples from each class
within D{%. | referred to as class-balanced downsampling.
This guarantees that every class is represented in the down-
sampled dataset, therefore maximizing the feature diversity
in this new downsampled set. For this reason, we consider
the scenario where a fine-grained labeled image set is avail-
able and class-balanced downsampling is possible. In this
setting, images associated with the background meta-class
are assigned their true class label, but still trained as one

class.

All classifiers are fine-tuned ResNet-18 models [22],
pre-trained on ImageNet [46]. Three downsampling meth-
ods are used to train the classifiers and compared. Each
classifier uses the same training procedure, using D'*"¢ but
a different subset of Dg,

1. Resampled: Trained on a subset of images from

Dy, of approximate size YDt = that was selected
according to the resampling probabilities described in
Sec. 4.1.

2. Random: Trained on a subset of D%, of approxi-
mate size YD, drawn randomly. This represents
the standard downsampling approach and therefore
serves as a baseline for comparison.

3. Manual (class-balanced): Each subclass within the
background meta-class is downsampled by capping the
number of examples at 196. This upper limit was de-
termined empirically to yield a downsampled back-
ground meta-class of approximate size yD{%; . Note
that this mode of downsampling is only possible if la-
beled data is available for background examples. Us-
ing this classifier as a baseline, we seek to determine
whether BR is beneficial when labeled data is available
for background examples.

For each phase (defined in Sec. 4.1), we used image
batch sizes of 64 from both D¢, and D¢ . The weight
learning optimization is performed until the loss associated
with the background image weights (eq. 3) fails to decrease
for 10 epochs. For phase 2 training, each classifier was
trained on its respective subset of D%, = for 50 epochs, us-
ing an initial learning rate of 0.0003 which was reduced by
a factor of 0.5 after every 10 epochs.

Predetermining the number of epochs is common for
studies involving OE [23, 28, 29, 42] since the validation
set is used to learn the decision threshold 7" rather than to
perform early stopping. The values for all other hyperpa-
rameters used during training are those of [29]. After train-
ing, a decision threshold is calculated for each classifier as
the largest threshold that allows for 95% recall of examples

targ
from D, ;7.
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4.4. Performance metrics

We use two metrics to assess model performance:

1. F1 score is a metric for binary classification, defined
as the harmonic mean of the precision and recall for a
given class. The F1 score is calculated for each class,
by treating all other classes as a single class. The F1
scores are then uniformly averaged over each class.

2. Accuracy (overall precision) is the fraction of cor-
rectly classified images from the four target classes and
background class.

Using these two metrics, we benchmark each classifier on
an OOD detection task (Sec. 5.2) and dataset shift scenario
(Sec. 5.3).

4.5. Alternative target classes

To test the generalization of BR, we repeated all ex-
periments for five different sets of four target classes.
These classes were randomly selected but were restricted
to classes with 600-10,000 examples. This restriction was
added to preserve the D/®7¢ : Dgu*. ratio across all sets of
target classes. For all target classes considered, the number

of examples per class was capped at 900.

5. Results
5.1. Downsampling analysis

Based on the class frequency distribution, BR draws dis-
proportionately more examples from the minority classes
compared to random downsampling (Fig. 3). While man-
ual downsampling also samples disproportionately from the
minority classes, it creates a class distribution that is radi-
cally different than the natural population distribution.

To visualize difficult OOD samples, we drew examples
from the background class that were classified into one of
the target labels with high confidence (Fig. 4). These “hard
negatives” reveal that the classifier confused background
examples from more than just a select few classes. Four
background classes are represented in these hard negatives
more than others: Dictyocha, detritus, Skeletonema, and
pennate. We refer to these as “hard background classes”.

The daily average image weight values associated with
the hard background classes vary substantially between
classes and over time (Fig. 5). This information allows
us to determine whether examples within the hard classes
were consistently ascribed higher weight values or if hard
negatives are outlier examples for those classes.

11
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5.2. OOD testing

Testing is done using k-fold cross-validation where the
number of folds reflects the desired imbalance ratio. We
consider D!279:D2u | ratios of {1:400,1:50,1:10,1:1}
where classifier performance is averaged over each fold
(Fig. 6). The ratios considered here are designed to re-
flect sampling environments that a plankton ecologist may
encounter during deployment. The 1:400 ratio represents
the most extreme case of population flux, where the de-
ployment environment consists overwhelmingly of novel
classes. This is akin to taking a classifier trained on data
from the North Atlantic and using it to detect the same four
classes in the Tasman Sea. The 1:10 and 1:50 ratios rep-
resent a more amenable scenario, where the model is de-
ployed in a similar environment where target class organ-
isms are not as rare. The 1:1 ratio produces a balanced test-
ing set, and assumes an even number of novel and target
class examples in the deployment environment.

5.3. Dataset shift testing

When background class population statistics remain
roughly constant throughout deployment, the training
dataset generated by BR may produce a classifier that
is biased against identifying the more common classes.
This is because training is disproportionately focused on
rare/abnormal examples under the BR procedure (Fig. 3).
To assess model performance under a variety of deployment
scenarios, we test and average the performance of each clas-
sifier over each day’s worth of data in D%}t 7 combined with
randomly drawn target class examples (Table 1). This as-
sessment measures the classifiers ability to classify under
changes in prior distributions and dataset shift. No novel
classes were used in this testing scenario.

5.4. Alternative target class testing

For the different sets of target classes, the relative
performance among the classifiers was similar to the results
shown for the target classes considered in Sec. 4.2.

OOD testing. BR brought the largest performance gains

Random ¢+ Manual b)
[ ]
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® .
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g 07 s
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w
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$
1072 10! 10°
test
¢ 1 ratios of

Method Accuracy | FI Score

Resampled | 88 + 1.4 94.1 + .23
Random 85+ 1.3 939 + .12
Manual 797+£28 | 792+£1.5

Table 1. Dataset shift testing results (in % including + Std Dev.).

when the target and OOD classes were visually very
similar. All OOD detection results are reported for the 1:1
testing ratio. For accuracy, the Resampled classifier on av-
erage outperformed the Random and Manual classifiers by
5.1% and 0.2% respectively. For F1 score, the Resampled
classifier on average outperformed Random and Manual
classifiers by 4.7% and 0.0% respectively.

Dataset shift testing. For accuracy, the Resampled clas-
sifier on average outperformed the Random and Manual
classifiers by 0.9% and 9.8% respectively. For F1 score, the
Resampled classifier on average outperformed the Random
and Manual classifiers by 0.1% and 7.1%.

6. Discussion

We have shown that when downsampling is required,
OOD detection performance can be improved by selecting
an optimal subset of background training images. In each
testing scenario, BR slightly outperformed its nearest com-
petitor. However, BR was the only downsampling method
to perform well in both testing scenarios, whereas the per-
formance of the other two downsampling methods varied
significantly in each regime. This was observed for the al-
ternative target classes as well. This finding underscores the
efficacy of BR since an automated plankton classifier de-
ployed on real-time data is almost guaranteed to experience
both novel classes and dataset shift.

For some hard background classes, the distribution of
image weights appears to have a seasonal dependence (Fig.
5). The image weights associated with the detritus class
(Fig. 5b) are comparatively low, suggesting that only occa-
sional instances of detritus will possess physical attributes
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that pose a challenge to the classifier. This makes sense con-
sidering the large range of shapes and textures that objects
described as “detritus” can have. This differs from classes
like Dictyocha, Skeletonema, and pennate whose images
are assigned comparatively larger weight values. However,
these three classes show seasonal, and even daily, with-in
class variability as indicated by the standard deviation of the
image weights (Fig. 5d). This variability suggests that an
optimal background training set for OOD detection has to
be curated at the example level - randomly sampling from
harder background classes may not produce adequate dis-
crimination between the background and target classes. BR
optimizes the downsampling strategy by deliberately select-
ing hard negatives that are very close to the target classes
(Fig. 4).

The F1 score from each test set suggests that the 1:10
and 1:50 imbalance ratio produces greater performance dif-
ferences (Fig. 6a). Despite the relatively higher accuracy
obtained by the Resampled and Manual classifiers, the tar-
get classes become so polluted by false positives that abso-
lute and relative performance — as measured by F1 score —
degrades significantly with increasing imbalance ratio.

Overall, BR provides competitive or even slightly better
OOD detection performance than the class-balanced down-
sampling used to train the Manual classifiers (Fig. 6).
The improved performance can likely be attributed to the
fact that class-balanced downsampling, while drawing from
each class disproportionality, still performs random down-
sampling within each class. BR, in contrast, selects dis-
proportionately from each class, while simultaneously se-
lect challenging examples from within each class. This may
be particularly valuable for taxonomic groups where organ-
isms can express different phenotypes as they go through
different life stages.

While the Manual classifier yields satisfactory detection
on novel classes (Fig. 6), this classifier significantly un-
derperforms on natural population changes compared to the
other classifiers (Table 1). This is likely because class-
balanced downsampling produces a background class dis-
tribution that is significantly different from the background
class distribution encountered during deployment. The clas-
sifiers trained on randomly drawn subsets perform com-
paratively well in the dataset shift scenario, likely because
the background class distribution generally resembles the
class priors encountered during testing. BR will typically
draw relatively more examples from the minority classes
and fewer examples from the most abundant classes as com-
pared to the Random training set (Fig. 3). But BR’s dis-
proportionate subsampling is not as extreme as the class-
balanced downsampling. The fact that BR preserves a sig-
nificant amount of information regarding the class priors is
perhaps why it performs better than class-balanced down-
sampling for natural population distributions

7. Comments and recommendations

In order to adequately simulate the deployment of a clas-
sifier, our testing procedure involved the use of data from
training and novel classes as well as shifting prior distribu-
tions. We believe this to be the most rigorous form of testing
and hope that this study can serve as a framework for future
plankton classifier benchmarking. The high visual similar-
ity between the target and OOD examples makes this a chal-
lenging detection problem. Most of the methods introduced
in the OOD literature, including BR, test using OOD exam-
ples that come from an entirely separate domain. This study
is one of the first studies to benchmark the performance of
a contemporary OOD detection method on in-domain OOD
data. It is our hope that these results will facilitate the devel-
opment of new tools for HAB species monitoring and early
detection systems. The reduced false positive rates demon-
strated in our experiments make the output of the algorithm
more amenable to quality control for verification.

The BR procedure can be used to improve classification
systems that incorporate an ensemble of “one-versus-all”,
which are popular within the plankton ecology community
and have been used for HAB species monitoring [8, 43].
This could be done by training each one-versus-all classi-
fier using a subset of background images that is optimized
to produce the best discrimination for the class that each
classifier is trying to detect.

We note that the utility of the background weight learn-
ing mechanism is not limited to HNM approaches. It can
in and of itself be used to communicate potential failure
modes to a human supervisor. For example, by examin-
ing the background images that were assigned large weight
values, a human user could learn prior to deployment which
non-target classes are likely to produce false positives. With
this knowledge, they may decide to train the model to detect
these tough classes as well.

We have shown that obtaining class labels for back-

ground objects for the purpose of class-balanced downsam-
pling does not improve OOD detection performance. There-
fore, we conclude that for any future plankton classifica-
tion campaigns similar to this experimental setup, all human
annotation efforts should be focused on the target classes.
Instead of random or class-balanced downsampling, auto-
matic procedures such as BR should be used to optimally
resample the ‘other’ category.
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Underwater Object Detection Under Domain Shift

Abstract

There is increasing interest in using deep learning-based object recognition algorithms to
perform automatic labeling of underwater imagery from marine surveys. However, underwater
object detection is a particularly challenging problem due to changes in scattering and absorption
of light, and spotty data collection efforts, which rarely capture the broad variability of the
marine environment. Using deep learning-based object detection systems for long-term or multi-
site marine surveying is further complicated by shifting data distributions between training and
testing stages. Using data from the 100 Island Challenge, we investigate how object detection
performance is impacted by changes in site characteristics and imaging conditions. We
demonstrate that the combined use of data augmentation and unsupervised domain adaptation
techniques can mitigate performance drops in the presence of domain shift. The proposed
method is broadly applicable to observational datasets in marine and terrestrial environments

where a single algorithm needs to adapt to and perform comparably across changing conditions.
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1. Introduction

Optical imaging has remained an indispensable tool in oceanographic studies, as it offers
detailed descriptions that are easily interpreted by humans. As a result, a myriad of systems have
been developed for acquiring optical images in almost every oceanographic context.
Autonomous underwater vehicles (AUVs) and unmanned underwater vehicles (UUVs) equipped
with optical cameras have been used for the exploration and mapping of the seafloor [1], [2]
monitoring invasive species [3], and fisheries management [4]. Imaging systems for in-situ
studies of plankton and other marine particles have also been developed [5]-[8]. The rising
popularity of these tools have led to an explosion in underwater optical data collection [9]. This
increase in data has driven the need to develop object detection systems that can automate the
analysis of underwater digital imagery.

Object detection is a computer vision task concerned with locating and classifying objects
in images or videos. The most significant advancements in object detection can be attributed to
the use of deep convolutional neural networks. Currently, one of the most popular architectures
for object detection is the Faster R-CNN [10]. The Faster R-CNN consists of three modules: (1)
a feature extractor convolutional neural network to extract features from the entire image, (2) a
region proposal network which is trained end-to-end with the rest of the detection network to
propose regions of interest in the feature map produced by (1), and (3) two fully-connected
networks for classification and bounding box regression.

Underwater object detection is a particularly challenging problem as images are typically
of lower quality compared to out-of-water images due to light scattering and absorption. The

lack of precise control over the relative imaging depth and orientation to objects in underwater
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environments can produce high variability in their features. Despite these challenges, numerous
applications of underwater object detection exist, ranging from the estimation of plankton and
fish population densities [11], biodiversity monitoring of coral reefs [12], unexploded ordnance
detection [13], and detection of other man-made objects [14], [15].

A fundamental challenge in incorporating deep learning technology in oceanography (and
most other real-world applications) arises from the fact that models tend to overfit to the training
data distribution. Differences in the training and testing dataset distributions, referred to as
dataset shift, have been shown to contribute to diminished model performance [16]-[18].
Changes in the sampling location or methodology can produce dataset shift by altering image
appearance (shifts in illumination, color, noise, etc.), background features, or statistical
differences in object class features (e.g. new phenotypes or morphologies of species of interest).
The specific term used to describe the statistical changes in input features is known as domain
shift [18]. Other forms of dataset shift include prior probability shift, which is where the
predicted variables prior probabilities differs between training and testing [19]-[22].

For applications of deep learning in oceanography, model deployment is almost always
limited to the same study site and data collection protocol as the training data. However,
oceanographic data are most often collected in multiple locations with varying environmental
conditions, making application of a model built in a single context insufficient to achieve high
performance across use cases. One solution for producing a more generalizable model is to
annotate data from all environments in which the model is deployed. However, data annotation is
extremely costly and serves as the primary bottleneck in incorporating deep learning in long-
term or multi-site studies. It is therefore desirable to develop adaptive deep learning models that

can scale to many study sites even when annotated data is limited to a single site.
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Data augmentation is often used to artificially increase the volume of available training
data [23]. This process involves defining a set of augmentation functions that alter the
appearance of the training data while preserving the class label, effectively synthesizing new data
examples from existing data. Commonly used augmentation functions include image flipping,
cropping, translation, and noise addition. These augmentations are often treated as universal, as
they are used across a range of image recognition applications. In some cases, it may be possible
to design specialized augmentation functions that address known sources of variability to
improve model generalizability. For example, if future data is expected to be collected using an
imaging system with higher illumination intensity, then illumination synthesis could be used to
simulate the difference between collected and future data. However, this approach may require a
priori knowledge of the variability and well-defined augmentation functions that accurately
model the variability.

The problem of domain shift has received a significant amount of attention in recent
years primarily for the development of autonomous driving. In this context, collecting and
annotating data from enough environments, weather conditions, and sensor configurations to
ensure that future data is not outside the training distribution may be prohibitively costly or
impossible. In practice, it may only be possible to collect labeled data from a single source
domain, however, acquiring unlabeled data from the testing, i.e., target, domain may be more
attainable. In such circumstances, it has been shown that by leveraging both labeled data from a
source domain and unlabeled data from a target domain can help achieve better performance on
data from the target domain [24]-[27]. This technique is referred to as unsupervised domain

adaptation (UDA).
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Prior works in underwater object recognition under domain shift have largely focused on
using domain generalization techniques [28]-[30]. Unlike UDA, domain generalization methods
aim to build models that can generalize well across multiple target domains without accessing
unlabeled target domain data during training [31]. Domain generalization techniques are
particularly beneficial in object detection applications in video streams or other scenarios where
the data arrives continuously and needs to be processed in real-time. However, in cases where
real-time annotation is not required and unlabeled target data is available during training, UDA
has been shown to outperform domain generalization [32], [33]. We describe two commonly

used classes of UDA methods in sections 1.1 and 1.2.

1.1. Adversarial feature learning

First introduced in the context of image classification, adversarial feature learning
involves the use of a domain classifier to adversarially train the model to learn domain invariant
features [25]. Source and target images are given a domain label of 0 and 1 respectively and the
domain classifier is tasked with categorizing images from their respective domains. During
backpropagation, the weights of the domain classifier are updated, then the gradients are pushed
through a gradient reversal layer before being applied to the weights of the convolutional layers.
This results in the learning of features that fool the domain classifier, i.e., are domain-

independent.

1.2. Image-to-image translation

Another more intuitive approach to adaptation is to match the appearance of the source

domain images to that of the target domain (or vice versa). Image-to-image translation reduces
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the domain discrepancy in the pixel domain, which has the advantage of utilizing human visual
inspection for quality assessment. Many contemporary image-to-image translation techniques

borrow directly from, or use ideas similar to, the CycleGAN models [34].

1.3. Contributions

The goal of this study is to train a Faster R-CNN model using labeled data from one
source environment that can scale to many target environments. To do this, we use a
combination of data augmentation and UDA techniques to minimize domain shift between
environments. We summarize our primary contributions as follows:

e We present a new underwater object detection dataset for domain adaptation
experimentation.

e We present a framework for developing robust underwater object detectors that are more
resilient to dataset shift.

e For our task, we show that existing state-of-the-art UDA techniques can be improved by
incorporating data augmentation.

e In the case of limited training data (as in our case), we show that the HM-MVGD-HM
[35] color-matching algorithm can produce better image-to-image translation results than
more sophisticated methods such as CycleGAN.

e Our dataset and code are publicly available and will be used to augment data collection
for the 100 Island Challenge project (described in section 2.1) and other projects

requiring robust underwater object detection.
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2. Material and methods

2.1. Dataset

The 100 Island Challenge (100IC) is an ongoing collaborative effort based at Scripps
Institution of Oceanography, UC San Diego, to digitally archive and monitor coral reefs across
the globe. Using tools of large-area imaging, high resolution images have been collected and
collated to form comprehensive digital mosaics and three-dimensional reconstructions from
multiple coral reef sites at each of over 100 islands across the globe. These detailed maps enable
the study of benthic dynamics at an unprecedented spatial scale. The 100IC has incorporated the
use of Smart Underwater Imaging Telemeters (SUITs) to facilitate in-situ environmental data
collection to complement visual surveys of coral reefs [36]. The 100IC has produced a unique
dataset of this standardized object (the SUIT) that has been imaged across multiple study sites
and imaging conditions. This dataset, consisting of a single annotated class, is therefore

particularly well suited for the study of binary underwater object detection under domain shift.
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Fig. 1. Sampling locations, dates, methodology, and a SUIT. a) Data was collected from two
regions (red boxes) in the tropical Pacific Ocean. b) Study sites from the Tuamotu archipelago
region, which include the islands Takapoto (TAK), Rangiroa (RAN), and Huahine (HUA).
Sampling date for each study site is reported as MM/YYYY. c¢) Study sites from the Palmyra
Atoll, which include sites in the southern (PS), southwest (PSW), and northwest (PNW) parts of
the island. d) For each study site, a survey plot (100m? or 200m?) is defined and is imaged by

divers in a grid pattern. €) Photo of the SUIT.
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In this study, we consider the subset of 100IC image data that was collected from two
regions in the tropical Pacific Ocean. The data come from the islands Huahine (HUA), Takapoto
(TAK) and Rangiroa (RAN) in the Tuamotu archipelago region as well as three sites around the
Palmyra Atoll, which include sites in the southern (PS), southwest (PSW), and northwest (PNW)
parts of the island. The location and sampling date of these sites as well as an illustration of the
data collection procedure and SUIT are shown in Fig. 1. Example images from each of the six
sites are shown in Fig. 2. The number of bounding box annotations per study site and bounding
box size distribution statistics are listed in Table 1. We identify two types of variability across

the images which make detection of the SUITs challenging:

2.2. Variability in low-level features.

In the context of image processing, low-level visual information may include brightness,
texture, color distribution and noise. In the 100IC imagery, these features can change according
to various physical phenomena that influence the image formation process. Due to the large
spatiotemporal range of the sampling, it is likely that the inherent optical properties of the
seawater are inconsistent across sampling periods. This can lead to different degrees of color
distortion and contrast loss. The ambient light field is also subject to change according to
weather conditions leading to inconsistent scene illumination. Caustic patterns on the seafloor,
especially visible in Fig. 2d, can create bright white regions that are similar to the white pixels of
the SUIT display. Lastly, some images have been color corrected while others have not. In cases
where color correction is applied, broad assumptions (such as constant scene depth) are made.
Therefore, there is high variability among the color corrected images including noticeable depth-

related artifacts.
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We provide a quantitative measure for low-level feature similarity between the
environments by comparing the image features extracted from a VGG16 [37] encoder. For each
of the eight study sites, a centroid is calculated by averaging the extracted image features. The
pairwise distances between the centroids are used to calculate similarity between the study sites

using a cosine similarity measure. The pairwise similarity values are reported in Table 2.

2.3. Variability in SUIT scale.

Another source of variability is created by changes in structural features associated with
the SUITs themselves, caused by changes in scale and orientation. The data used in this study
was collected using a Nikon D780 or Nikon D7000 camera used in combination with a 24mm
and 18mm wide-angle lens respectively. This affects the apparent size of the SUITs in the
images. Variability in the distance between the camera and the seafloor can make the SUITs
appear to be differently sized. Topography is also highly variable across the environments. In
environments with highly textured benthic surfaces, the SUITs are more likely to be imaged at an
angle. For each of the eight sampling locations, we calculate the average bounding box size and
compute the magnitude of the pairwise differences between each of the averages. We divide
these differences by the largest difference to scale the values to be between zero and one, and
then subtract each of the values from one to calculate the similarity. All pairwise similarity

scores are reported in Table 3.
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Fig. 2. Example images collected from the six study sites. The bounding boxes containing the

sz

A8 d) PNW

SUITs are shown in orange.

Site name Abbreviation Num. Avg. Std. Dev.
boxes box area  box area
Huahine island, French Polynesia HUA 351 0.8% 0.7%
Rangiroa atoll, French Polynesia RAN 153 1.0% 0.5%
Southwest Palmyra atoll, USA PSW 239 1.0% 1.0%
South Palmyra atoll, USA PS 81 4.8% 3.0%
Northwest Palmyra atoll, USA PNW 450 0.2% 0.1%
Takapoto atoll, French Polynesia TAK 835 0.7% 0.4%

Table 1. Dataset statistics for each study site. Average and standard deviation of bounding box

sizes are reported and expressed in terms of fraction of total image area, where all images are

500x751 pixels.

HUA RAN PSW PS PNW TAK
HUA 1.0 094 088 0.88 095 0.96
RAN 094 1.0 09 084 09 0.91
PSW  0.88 0.9 1.0 094 088 0.85
PS 0.88 0.84 094 1.0 0.86 0.85
PNW  0.95 0.9 0.88 0.86 1.0 0.88
TAK 096 091 0.8 0.85 0.88 1.0
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Table 2. Image feature similarity between study sites. Similarity scores have been rescaled
linearly between [0,1] where 1 indicates mean size is identical, and O represents the largest

observed dissimilarity.

HUA RAN PSW PS PNW TAK
HUA 1.0 094 011 096 0.89 0.99
RAN 094 1.0 0.17 0.98 0.83 0.94
PSW 0.11 0.17 1.0 016 0.0 0.11
PS 096 098 016 1.0 089 095
PNW 089 0.83 0.0 0.89 1.0 0.9
TAK 099 094 011 095 0.9 1.0

Table 3. SUIT size similarity between study sites. similarity scores have been rescaled linearly
between [0,1] where 1 indicates mean size is identical, and O represents the largest observed

dissimilarity.

2.4. Progressive domain adaptation

We use UDA techniques to mitigate performance drops caused by image feature
differences. Specifically, we use the progressive domain adaptation (PDA) method proposed by
Hsu et al. [27]. PDA involves a two-stage procedure for aligning the features from the source
and target domains. First, a synthetic image dataset is generated by mapping the source images to
the target domain using a CycleGAN. In the first stage, the features of the source and synthetic
domains are aligned using adversarial feature learning. In the second stage, the features of the
synthetic and target domains are aligned using adversarial feature learning.

The original PDA method uses a CycleGAN to produce the synthetic dataset [38].
However, CycleGANS typically require large amounts of training data to produce quality image
mappings. For the experiments in Hsu et al. [27], the authors used between 3,475 to 41,986

training examples to train the CycleGAN models. This amount of data is often not available for
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many oceanographic applications where data collection and annotation is difficult. For this study,
only 81 to 835 examples were collected from each study site. In our initial experiments using
CycleGAN, we found that almost all the translated images contained significant distortions and
failed to preserve features of the SUITs. For this reason, we replaced the CycleGAN with the
HM-MVGD-HM color-matching algorithm [35]. The HM-MVGD-HM algorithm uses an
analytical solution to a Multivariate Gaussian Distribution (MVGD) color transfer equation in
addition to classical histogram matching. Example synthetic images using CycleGAN and HM-
MVGD-HM are shown in Fig. 6. We also compare object detection performance using

CycleGAN and HM-MVGD-HM in Table 4.

Fig. 3. Data augmentations. a) An example image from the TAK study site. Images b)-f) show

the output of the translation, rotation, perspective transformation, cropping, and distance image

augmentation functions respectively using the image in a) as input.

2.5. Augmentation functions
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To address variability in SUIT object size, we implement five data augmentation
techniques, each designed to simulate a potential source of variation (Fig. 3). The (x,y) pixel
coordinate of the SUIT center in an image is arbitrary, and is determined only by the SUIT’s
placement relative to the transect during image collection. To prevent the models from learning
irrelevant patterns related to the position of the SUITs, we simulate different SUIT placements
by applying random image translations and rotations. We define this set of placement
transformations as Tp = {translation, rotation}. The distance between the camera and the bottom
will affect the apparent size of the SUIT. Simulating imaging at closer range can be
approximated by using random cropping. However, imaging at greater distances involves
simulating the effects of resolution and contrast loss. To simulate these effects, we created an
augmentation function which performs downsampling followed by contrast reduction. The
subsequent image is then zero-padded to the original image size. Because symmetrically padding
the image would bias SUIT placement towards the image center, padding is followed by a
random translation. We refer to this augmentation as distance. To simulate different imaging
angles, we adopt an approach similar to Huang et al. [39] by applying perspective
transformations to the images. Because perspective transformation, cropping, and distance
augmentations can distort the apparent size of the SUIT, we refer to this set of transformations as

Ts = {perspective, cropping, distance}. Fig. 4 shows examples of all five augmentations.
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Synthetic First stage

First stage
alignment ’

HM-MVGD-HM

feat,

Second stage -[
= "=

Source Target
a) PDA+CM+DA overview b) Alignment process

Fig. 4. a) Overview of our augmented version of the progressive domain adaptation method,
using the HM-MVGD-HM color-matching algorithm and data augmentation (PDA+CM+DA). A
source image (blue oval) and target image is drawn from the source and target study sites
respectively. A synthetic image is generated by color-matching the source image to the target
image using the HM-MVGD-HM algorithm. The synthetic and target images are then
augmented, producing the images seen in the green and red ovals respectively. Black arrows
represent the feature alignment steps. b) Illustration of the adversarial feature alignment process.
In the first stage of training, features are extracted from the labeled source image and unlabeled
synthetic image, denoted as feat. and featy respectively. Supervised object detection is
performed using only feat.. Adversarial feature learning is performed by passing both feat. and
featy to the domain classifier, whose gradients are reversed during backpropagation when passed
through the gradient reversal layer (GRL). In second stage training, features are extracted from
the labeled synthetic image and unlabeled target image, where labels for the synthetic image are

inherited from the source image.
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2.6. Models
All models use a Faster R-CNN architecture with a VGG16 [37] backbone. We consider five
different models:
1) baseline: Faster R-CNN trained without PDA or data augmentation. Models are trained
on data from a single study site and applied directly to a target site.
2) DA: Same as baseline, but trained using data augmentation.
3) PDA: Faster R-CNN trained according to the PDA method using the HM-MVGD-HM
color-matching algorithm.
4) PDA+DA: Faster R-CNN trained according to the PDA method using the HM-MVGD-
HM color-matching algorithm and data augmentation.
5) PDA+CGAN+DA: Faster R-CNN trained according to the PDA method using a
CycleGAN (CGAN) and data augmentation.
Note that all models trained using the PDA method (PDA and PDA+DA) use the HM-MVGD-
HM color-matching algorithm to perform the image-to-image translation step. Only the
PDA+CGAN+DA model uses the CycleGAN for image-to-image translation.
2.7. Experimental Setup
All models are trained and tested according to a leave-one-in cross validation approach -
models are trained on labeled data from one source study site and all other study sites are
individually treated as the target domain. All study sites with at least 400 images are used as
source and target environments. Study sites with fewer examples are used as target domains
only. For models using data augmentation, one augmentation is selected randomly from both 7p

and Ts (Defined in Section 2.5). The transformations are applied only during training to both
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source and target images. During testing, no augmentations are applied. A batch size of one is
used during training and the images are resized to 500x751. All other hyperparameter values for
models using PDA are the same as Hsu et al. [27]. All experiments were run using a Tesla P100

GPU and Intel Xeon 6126 CPU.

3. Results

baseline DA PDA PDA+DA

Fig. 5. Region proposals (red) from four different models for an example image from the target
study site of two adaptation experiments: a) Using TAK as source and PSW as target, b) Using

PNW as source and PS as target. Ground truth bounding boxes are shown in yellow.

Model Adaptation (source — target)
TAK — HUA | TAK — RAN | TAK — PSW | TAK — PS | TAK — PNW | TAK — TAK
baseline 90.0 90.5 53.7 73.5 70.9 -
DA 86.2 88.5 90.8 62.4 76.6 -
PDA 90.9 90.7 73.5 90.6 80.9 -
PDA+CGAN+DA 89.7 89.2 99.7 89.2 80.7 -
PDA+DA 90.7 91.0 98.9 90.9 86.5 -
PNW — HUA | PNW — RAN | PNW — PSW | PNW — PS | PNW — PNW | PNW — TAK
baseline 72.6 24.6 1.1 1.2 - 47.0
DA 88.0 90.1 66.7 40.0 - 90.4
PDA 79.9 66.3 0.3 69.5 - 69.6
PDA+CGAN+DA 89.9 88.7 74.3 90.4 - 86.7
PDA+DA 89.9 90.9 80.2 89.6 - 90.5
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Table 4. Leave-one-in cross validation results. Each of the five models is trained using a single
source study site (X) where all other study sites are individually treated as a target domain (Y).
The adaptation of a source study site to a target study site is expressed as X—Y. Two source
study sites, TAK and PNW, are considered individually. Results are reported in terms of
classification accuracy (higher is better). Best performing model for each adaptation is shown in

bold.

Table 4 shows that in all adaptation scenarios, PDA+DA trained using either a
CycleGAN or the HM-MVGD-HM algorithm outperformed or performed very similarly to the
best performing model. Performance of baseline varied significantly across the adaptation
experiments. Table 2 and Table 3 indicate that the TAK—HUA and TAK—RAN adaptations
have relatively high image feature and SUIT size similarity. For both adaptations, baseline
performed comparatively well with the other three models providing little improvement. For
adaptation instances with relatively low image feature similarity but similar SUIT size similarity,
which includes TAK—PS, TAK—PNW and PNW—PS, PDA outperformed DA and baseline.
This supports the hypothesis that UDA techniques are most effective for bridging differences in
low-level features.

For adaptation instances with low SUIT size similarity, including every scenario in which
study site PNW is used as source, DA outperformed PDA except in the case of PNW—PS. We
note that this case also exhibits low image feature similarity and that DA still brought significant
improvements compared to baseline. As is shown in Fig. 5, baseline is restricted to predicting
regions that are of a similar size to the bounding box annotations of the source dataset. The

added augmentation functions allow the model to consider a greater range of bounding box
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predictions. This supports the hypothesis that data augmentation techniques may be more
effective for bridging apparent structural differences in the objects of interest.

The PNW—PS and PNW—PSW adaptations are assumed to be the most difficult as they
exhibit low image feature and SUIT size similarity. This difficulty is evident by the very low
performance of baseline in both cases. Despite the large shift in data distributions, the best

performing model was able to improve performance on the target domains dramatically.

¢) HM-MVGD-HM synthesized image d) CycleGAN synthesized image

Fig. 6. Qualitative comparison of image-to-image translation methods using images from TAK
and PS as source and target respectively. a) A random image drawn from TAK to be translated to
PS. b) An example image from PS. ¢) The TAK image is color matched to the target image using
the HM-MVGD-HM algorithm. d) The TAK image is translated to the PS environment using a

CycleGAN model.
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Transforming images from the source domain to the target domain using the HM-
MVGD-HM algorithm requires no additional training. Generating all 10 synthetic datasets for
the 10 adaptation experiments took approximately 40 minutes or approximately 0.5 seconds per
image. Generating the synthetic images using a CycleGAN required significantly more memory
allocation and increased training time. CycleGAN training took about 5-6 minutes per epoch or
16.6-20 hours in total for each source/target pair. As seen in Table 4, the trainable CycleGAN
generally did not provide improved performance compared to the HM-MVGD-HM algorithm.
We believe that the relatively small dataset used in this study was insufficient for training a
CycleGAN but similar works to this study with larger available datasets may be able to benefit

from the flexibility of a trainable image-to-image translation model.

a) TAK-HUA b) PNW-PSW
(similar mean SUIT size) (dissimilar mean SUIT size)
90.7 90.5

87.8 90.7

81.7 80.2

80 80

=
o

60

Accuracy

N
=)

40

20 20

0.3 0.2 0.0 0.0 0.0
+per. +crop. +dist. PDA+DA PDA  +trans. +rot. +per. +crop. +dist. PDA+DA

PDA  +trans. +rot.

Fig. 7. Ablation on the five augmentation functions: translation (trans.), rotation (rot.),
perspective (per.), cropping (crop.), and distance (dist.). a) Ablation results using TAK as source
and HUA as target. b) Ablation results using PNW as source and PSW as target. Performance of
PDA, which uses no data augmentation, is shown in green. Performance of PDA+DA, which
uses all five augmentations, is shown in red. The ablation applies each one of the five

augmentations individually together with PDA.
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We performed ablation on the five data augmentation functions for adaptations
TAK—HUA and PNW—PSW and show the results in Fig. 7. These two adaptations were
selected for ablation due to their representation of extreme cases, where SUIT size similarity is
either very small or very large (Table 3). The results of the ablation reveal that the
performance contribution of each of the five augmentation functions is strongly dependent on the
variability in apparent size. In cases where there is little to no difference in apparent object size
between the source and target study sites, the incorporation of any amount of data augmentation
can negatively impact performance (see Fig. 7a). However, if the difference in apparent object
size is large, the choice of augmentation functions can have a substantial impact on performance
(see Fig. 7b).

The results suggest that in the case where it is known a priori that the target domain
objects will appear much larger/smaller, then the best results may be achieved by limiting the set
of augmentations to a set of function(s) that exclusively model this difference. Both Fig. 7a and
Fig. 7b suggest that incorporating augmentation functions that do not directly relate to the
sources of variability may negatively impact performance. However, we note that the cases
studied in the ablation represent the extreme cases, and that in the absence of a priori knowledge
of the object variability, PDA+DA (trained using all augmentations) still performs the best on
average and therefore we conclude that using the entire set of augmentations is a strong default

choice.

4. Discussion
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Developing generalizable object detection models is complicated by shifts in data
distribution. We have shown that domain shift can greatly impact detection performance.
However, we demonstrate that by combining data augmentation with existing UDA techniques,
performance drops can be significantly reduced. This is a significant finding, as the results
provide the possibility for broad spatiotemporal surveying even when annotated data is limited to
one study site. We further show that models can be trained to be robust against other sources of
variability including color correction and object scale.

Overall, the results of the cross-validation experiments are intuitive - source and target
study sites with low visual differences produced higher baseline performance and, in these cases,
more sophisticated models produced marginal improvements. However, in many cases, study
sites with significant visual differences benefited tremendously from the combined use of UDA
and data augmentation. An alternative approach to bridging differences in data distributions
could involve the use of light attenuation models that are specific to each environment. However,
this would require accurate measurement and prediction of the ambient light field and inherent
optical properties of the water column. This approach is likely most appropriate when target
domain image data is unavailable during training, which may include real-time detection tasks.
In these cases, a priori knowledge of future imaging conditions should be leveraged to
synthetically generate the training dataset. If target data is available during model training, we
propose that the main advantage of using the techniques developed in this study is that they
require no prior knowledge of light field or water column properties. Instead, environment
agnostic features can be learned through the combined use of image translation and adversarial

feature learning. This data-first approach also has the advantage of scaling to many sources of
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visual variability beyond water column properties which can be difficult to model, including
different cameras or lenses, or illumination patterns (e.g. shadows or caustics).

There is growing interest in using video to conduct oceanographic surveys [41], [42],
however, directly applying still image-based object detection models to video presents unique
challenges. These challenges include increased computational costs as well as motion blur and
video defocus. In addition, the methods outlined in this study assume that target domain data is
available during training, however, applications of real-time object detection and live target
searching may be incompatible with this assumption. In these cases, the models must be able to
scale to multiple target domains using source data alone. We conclude that domain
randomization techniques remain as the best possible solution when target domain data is
unavailable [43]-[45].

In many real-world applications of machine learning, including in oceanography, the
available annotated data is insufficient for training models with large parameter spaces, and
could result in overfitting [40]. Fig. 6 shows that CycleGAN produced synthetic images of lower
visual quality compared to the HM-MVGD-HM color-matching algorithm. This was likely due
to a relatively low training dataset size. We conclude that in data limited cases, PDA may be
improved by replacing the CycleGAN with HM-MVGD-HM or a similar algorithm with few

trainable parameters.

5. Conclusion

Two major present-day obstacles hindering advances in the analysis of oceanographic

data include (1) challenges in developing analysis tools that are robust across different
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conditions, equipment, and locations; and (2) costs associated with trying to collect and annotate
variable datasets from which effective models can be trained. Our results indicate that the
procedures developed in this study may be a viable solution for improving model robustness
while reducing the human data annotation effort. We view this as a critical step for maximizing

utility and cost effectiveness of oceanographic field campaigns.

Data availability

All data used in this study are available on the project’s GitHub repository

(https://github.com/JosephL Walker96/underwater-object-detection).
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ABSTRACT

The potential for exploiting oceanic vessel noise as a sound source of opportunity to estimate
ocean sound speed profile is investigated. A deep learning-based inversion scheme, relying upon
the underwater radiated noise of moving vessels measured by a single hydrophone, is proposed.
The dataset used for this study consists of acoustic recordings of commercial vessels transiting
through the Santa Barbara Channel between January of 2015 through December of 2017. To
obtain descriptors of the vessels, the recordings have been paired with Automatic Identification
System data. The acoustic recordings and vessel descriptors are used as predictors for regressing
sound speed for each meter in the top 200 meters of the water column, where sound speeds are
most variable. Daily sound speed profiles were obtained from the California State Estimation
Short-Term State Estimation model and were used to train and test the models. Multiple
(typically ranging between 4-10) transits were recorded each day, therefore, this dataset provides
an excellent opportunity for investigating whether multiple acoustic observations can be

leveraged together to improve inversion estimates. We compare existing multi-view late fusion
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methods against our approach, which generates a salience ranking of the transits to perform a

weighted sum over the learned transit features.

. INTRODUCTION

Acoustic inversion is frequently employed in oceanography for the purpose of inferring ocean
sound speed profile (SSP): a parameter that characterizes the dependence of the speed of sound
on the temperature, salinity, and pressure of water (Chen e al., 2018; Lovett, 1978). Reliably
estimating sound speeds is critical due to the profound effect of these profiles on acoustic
propagation. Knowledge of local SSPs is important for improving the performance of underwater
acoustic systems such as sonar and for various oceanographic studies involving ocean currents,
internal waves, and underwater topography. Oceanic SSPs can be directly measured using
autonomous underwater vehicles or surface vessel-based instruments, such as a conductivity-
temperature-depth (CTD) sensor. The CTD sensor is lowered into the water column recording
the temperature, salinity, and pressure at regular intervals on both the descent and ascent path.
The recorded variables are then related to sound speed using a polynomial expression such as the
Chen and Millero equation (Chen and Millero, 1977). These direct measurements are typically
conducted during periodic field efforts. Hindcast models are used to spatially and temporally
interpolate between these local measurements, ingesting observations to estimate oceanographic
conditions across a region or period of interest. These models use observational data

(opportunistic in situ measurements, satellite observations, and buoy data) and detailed physical

46



oceanographic models, often developed for a specific region of interest (Stammer et al., 2002;

Zaba et al., 2018).

In conventional acoustic inversion studies, an active source is employed in conjunction with
vertical hydrophone arrays to conduct the inversion process. However, this type of recording
setup is costly and requires dedicated facilities to house the systems. In addition, repetitive and
high intensity sound waves produced in active acoustics can disturb and potentially harm marine
organisms that rely on sound for communication, navigation, and foraging (Richardson et al.,
2013; Southall et al., 2019). To address these limitations, there is a need for inversion strategies

that can make use of more readily available single sensor passive acoustic recordings.

The introduction of the Automatic Identification System (AIS), which provides precise locations
of large commercial vessels, has made it possible to use vessel traffic noise as a source of
opportunity. Using vessel traffic noise as a source of opportunity has three main advantages: 1)
large vessels produce low frequency noise that can be detected at long distances, 2) commercial
vessels are found in almost all areas of the ocean, making them an easily accessible source of
data, 3) the regular and frequent movement of commercial vessels makes them a consistent and
reliable source of data for long-term studies. Numerous studies have demonstrated the use of
propeller noise from passing vessels received by seafloor hydrophones as acoustic sources of
opportunity for estimating characteristics of the ocean environment and seafloor through which
the signals have traveled (Gemba et al., 2018; Gervaise et al., 2012; Koch and Knobles, 2005;
Tollefsen et al., 2020). This strategy has been used to estimate the waveguide invariant property,

which represents the dispersive characteristics of the waveguide under variable oceanographic
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conditions as well as for geoacoustic parameter inversions (Park et al., 2005; Stotts et al., 2010;
Verlinden et al., 2017). To the best of the authors' knowledge, the utilization of vessel traffic

noise as a source of opportunity to directly estimate ocean SSPs has not been investigated.

Using uncontrolled, opportunistic vessel traffic noise as an acoustic source oceanographic
applications poses several challenges. Two of the main challenges are: 1) signal variability: The
acoustic signal produced by vessel traffic is highly variable and dependent on factors such as the
size of the vessel, speed, load, and environmental conditions. Some of these factors are knowable
from AIS, but transit-dependent factors such as load and actual draft are not. Incomplete
information can limit our ability to explain observed acoustic variability, 2) background noise:
The underwater environment is inherently noisy, and vessel traffic noise can be masked by other
sources of noise such as natural sounds from marine life, wind, and waves. Recording systems
can also differ in their self-noise characteristics. These challenges are exacerbated when a single
hydrophone is employed to sample the acoustic signal, as is typically done in long-term (month

to year-long) observational passive acoustic monitoring.

When the underwater radiated noise (URN) of a moving ship is recorded in a shallow water
environment, the signal contains characteristic interference patterns when viewed in the time-
frequency domain (D’Spain and Kuperman, 1999). Prior works have linked these striation
patterns with interference between propagative modes and exploited them to perform
geoacoustic inversion (Gervaise et al., 2012). These works relied upon conventional signal
processing tools to extract the dispersion patterns. However, these algorithms require a high

signal-to-noise ratio in order to be reliably extracted.
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In recent years, machine learning approaches have been shown to outperform conventional
signal and image processing techniques in a wide range of spectrogram processing applications
(Ferguson et al., 2018; Kirsebom et al., 2020; Liu et al., 2021; Tréboutte et al., 2023). One of the
advantages of using deep learning for acoustic inversion is that it can learn relationships between
the input data and the output properties, even when those relationships are highly nonlinear and
difficult to model using traditional methods. Multi-view learning, a machine learning approach
that leverages multiple sources of information (i.e., views), can be integrated to learn more
robust and accurate models. In the context of acoustic inversion, multi-view learning could
theoretically be used to combine multiple recorded transits from the same day to improve the

estimation of daily SSPs.

In this study, we investigate whether passive recordings of transiting commercial vessels from a
single hydrophone can be used together with deep learning to estimate local SSPs. We
summarize our findings and contributions as follows:
1) We show that passive recordings of transiting vessels can be used as sound sources of
opportunity to perform ocean acoustic inversion.
2) We show that SSP estimates can be improved by leveraging multiple transits.
3) We present a novel approach for leveraging multiple transits for acoustic inversion and
compare performance against existing multi-view learning techniques.
4) We present a newly curated dataset comprising 5,865 real underwater recordings of
transiting vessels. These recordings were collected over 899 sampling days,

encompassing diverse sea states and noise levels.
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II. MATERIALS AND METHODS

A. Study site

The dataset used in this study consists of acoustic recordings of commercial vessels transiting
through the Santa Barbara Channel (SBC) between January of 2015 to December of 2017. The
shipping lane outside the SBC is approximately 20 nautical miles wide, extending from Point
Conception in the north to the Long Beach Harbor. The SBC experiences a high volume of
vessel traffic throughout the year, with container ships making up approximately 60% of all
transits. Vehicle carriers, bulk carriers and tankers each constitute about 10% of the transits and
cruise ships, tugs, research vessels, law enforcement and military vessels combined make up less

than 10%.

34°N

33.75°N

34.75°N

34.5°N

34.25°N

[
-120.5°W -120°W -119.5°W -119°W

Figure 1: Map of the Santa Barbara Channel. Traffic separation scheme is shown as black lines
and HARP location is shown with white pentagram. The white circle around the HARP denotes

the 6 km boundary at which ship transits were considered.
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B. Automatic identification system dataset

Vessels have been identified through Automatic Identification System (AIS) records, collected at
onshore stations located at Coal Oil Point (34.411N 119.877 W) from April 2014 to present and
Santa Ynez Peak (34.029 N 119.784 W) from August 2016 to present. The received AIS
messages were time-stamped and continuously logged with an on-site computer. All AIS-derived
information relevant to understanding vessel signature variability was used in this study. These

variables are listed in Table 1.

Predictor Variable Abbreviation Description

Ship Design

Length LOA total length of ship in meters

Type TYP numerical value that represents the general
category of the vessel’s type or purpose

Operational

Draught DRT depth of a vessel below the waterline

Heading HDG direction that a vessel’s bow is pointing

Course over ground COG actual direction of progress of a vessel
relative to the Earth’s surface

Speed over ground SOG speed of a vessel relative to the Earth’s surface

Closest point of approach  CPA point at which the distance between the ship

Oceanographic

Month MTH month of the year

Table 1. Description of predictor variables used in statistical models.

C. Vessel noise dataset

An existing database of 5,865 recordings of identified ships transiting through the Santa Barbara
Channel (SBC) between January of 2015 to December of 2017 was used for this study. Acoustic
recordings were collected in the SBC using a High-frequency Acoustic Recording Package

(34°16.53 N 120°1.11 W; Figure 1) (HARPs; Wiggins and Hildebrand, 2007), which is a
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bottom-mounted recorder with a hydrophone buoyed 10 m above the seafloor (580 m bottom

depth).

The audio was sampled at 200 kHz, which was then decimated by a factor of 20 resulting in a 10
kHz sampling rate, and a Nyquist frequency of 5 kHz. The data were low-pass filtered with an
8th order Chebyshev Type I IIR filter to prevent aliasing during decimation. Each transit
recording was clipped to only consider the time period in which the ship was within 6 km of the
recording station. These audio clips were converted into spectrograms using 10,000-point short
time Fourier transform with no overlap, resulting in a frequency resolution of 1 Hz and time
resolution of 1.0 s. Spectrograms were cropped to limit the frequency range under consideration
from to 10 to 300 Hz, the range over which local vessel URN is typically the dominant signal in

this dataset, and interference patterns are most apparent.

D. Hindcast dataset

Estimating the near surface region of the sound speed profile is challenging because it
experiences the highest level of variability. For this reason, daily sound speed profiles were
obtained for the top 200 meters of the study region using the California State Estimation Short-
Term State Estimation (CASE-STSE) model output (Zaba et al., 2018). This model utilizes
hindcast data and integrates the Massachusetts Institute of Technology general circulation model
(MITgcm) through a least-square fitting solution. The data used in the integration includes
profiles from Spray gliders, High-Resolution expendable bathythermographs, Argo, and satellite

measurements of sea surface height and temperature.
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E. Models

1. Baseline model

Oceanic sound speed profiles typically manifest seasonal patterns, primarily due to their
significant dependence on temperature. Therefore, we first propose a model for sound speed
profile estimation that computes seasonal averages from previous years to estimate the sound
speed profile for all days within that specific season. This approach does not utilize any of the

AIS or acoustic data. This model is from here onwards referred to as the baseline model.

This baseline model is used to provide context for the neural network-based model performance.
All neural network-based models used in this study use the same information as the baseline
model (i.e. season) in addition to the transit data. Therefore, we can evaluate the informativeness
of the transit recordings by comparing the performance of the neural network-based models with
the baseline. If the transit data contains additional information regarding the local sound speed
profile, we would expect incorporation of the transit data to improve the sound speed profile
prediction estimate. Conversely, if the transit data is uninformative, we expect the estimation

performance to remain unchanged.

2. Single-transit model
We designed a neural network-based model to produce an estimate for sound speed profile from
each of the recorded transits using the spectrograms and vessel descriptors. This model is from

here onwards referred to as the single-transit model.
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The data used to train the single-transit model is denoted as Xs, and can be formulated as

1 1 1 7 n n ; o
follows. The data corpus X = {(x( ) vyl ))7 cee (X( vyt ))}, where x and v
are the spectrogram representation of the audio recording and the vessel descriptors respectively

for the ith recorded transit.

We seek to lean a model / © (X, V) =Y that maps input variables x and v to ¥ € RO
where ¥ is a vector containing the sound speed estimations for each meter in the upper 200
meters of the water column (Fig. 2A). We conceptualized [ as comprising two functions that are
applied in sequence: first an encoder function E and then a regression function R. The encoder
function £ : (X, V) — z maps input variables X and v to a hidden variable z € R'***", The
regression function R:z—y produces the sound speed profile estimate from z (Fig. 2C).
Because the input variables are of different modalities (spectrogram image and AIS data), we
divide E into two sub-encoders. Spectrograms are encoded using a convolutional neural
network, denoted as Es, while vessel descriptors are encoded using a fully connected network,
denoted as Ey. Each encoder returns a vector that is then concatenated together (Fig. 2B). The

encoder function E refers to this integrated process of joint encoding and concatenation.

Our proposed method hinges on leveraging recorded vessel noise in conjunction with AIS data to
estimate sound speed profile. To validate that our model genuinely learns pertinent features
related to sound speed from the combined modalities and avoids relying on any spurious
correlations that might exist between AIS data and ocean sound speed, we introduce a modified

version of the single-transit model, referred to as single-transit (noAudio). In this variant, we
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set all spectrogram values to zero, effectively removing the vessel noise data while retaining only

the AIS data.

(A) Single-transit ‘ y (B) Encoder networks: £y, and Eg 4 (C) Regression network (R)
model summary

/ Ey: Vessel descriptor encoder N Es: Spectrogram encoder
{ Features: 128x1
Vessel descriptors: 8 x 1 Spectrogram: 100 x 100 [
| Dense:512fully connected

|

[Bense:STafuly connected ____ | =
§ BatchNorm + Dropout(p=0.2) + ReLU § BatchNorm +RelU 4 BatchNorm + opout(n—oz) +RelU
§ BatchNorm + Dropout(p=0.2) + ReLU 1 BatchNorm +ReLU 4 BatchNorm + Dropout(p=0.2) + RelU

Encoder | Dense: 200 fully connected
E, — ;
networks | =5 | E 4 BatchNorm + Dropout(p=0.2) + ReLU BatchNorm +ReLU Jilinear

1 [ | Dense: 64 fully connected | _ Moo
anmEn nan | BatchNorm + Dropout(p=0.2) + ReLU BatchNorm +RelU
Output: 64x1
..-‘32"'- ‘l “ BatchNorm +ReLU
Regression R
network B Dropout(p=0.2) + ReLU

1 ]
SSP. [ [« features 2) + RelU
Output: 128x1 | Output: 64x1 |
4

Regression network (R)

Figure 2: Single-transit model architecture. (A) Summary of the single-transit model. (B) The
spectrogram and vessel descriptors are encoded separately using a convolutional neural network
Es and fully connected network Ey respectively. Both encoder networks output a vector which
are concatenated. (C) The concatenated vector is then forward propagated through a fully
connected regression network R which produces an estimate for sound speed for each meter in

the upper 200 meters of the water column.



3. Multi-transit models

dot product

A f

softmax

4

dot product

4

linear
layer

4

feature token
matrix

(2,

Figure 3: Our fusion method. Features Zy are passed through a linear layer and a dot product is
performed against a learnable token. Orange boxes indicate learnable values. Green box indicates

features from encoder E. Blue boxes indicate fixed mathematical operation.

The last set of models we consider are designed to combine and/or contrast information from
multiple transits to improve SSP estimation. The methodologies we examine are inspired by, or
are direct implementations of, existing multi-view machine learning techniques. For our
application, all transits recorded on the same day are considered as distinct “views” which

contain information about the same sound speed profile.
To train the multi-transit models, we organize the acoustic dataset into daily collections denoted

as Cv, where each collection consists of multiple transits. Notably, all transits within a collection

share the same sound speed profiles, as they were recorded on the same day. This corpus is
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denoted as tm = {(Cg/l)v y(l))a R (Cg/N)= y(N))} where each collection CZ{/ consists of all
spectrogram and vessel descriptor pairings that were recorded on the ith day and N = 899 is the
number of sampling days. Hence, we reformulate the modeling task as
f:Cy—y|Cy={xv (xv . (x v)(TV)},

(v)

where (X, ¥) represents one audio recording and vessel descriptor pair ¥V € {1,...Tv} and
Tv denotes the number of transits in collection Cv which is variable across the collections. All

variables in X are the same as the single-transit data collection X,

The simplest way to leverage multiple transits is to average the estimations for each of the
transits in a collection using the single-transit model. We refer to this approach as single-transit
(avg). However, this approach is not able to leverage complementary information or weigh
saliency differences from multiple transits to improve prediction accuracy. To address these
concerns, we evaluate three “late fusion” techniques for combining information across the
transits within each collection. Late fusion is a technique in multi-view learning that allows the

combination of learned features from multiple views at a later stage in the learning process.

Two existing late fusion approaches we consider are: (1) late fusion (max): max value is
calculated for each of the features across the transits, and (2) late fusion (concat): a fixed
number of feature vectors are concatenated.(Seeland and Méder, 2021) Lastly, we implement a

novel late fusion technique referred to as late fusion (token) that is described below.

The forward propagation of a transit collection Cv into encoder E produces a matrix Zv whose

columns are the feature vectors of length D = 128 from each transit in the collection.
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Zy = [z(l); e ;z(TV)] = BE(Cy) € RP*Tv
For late fusion (max), an element-wise maximum operation is applied for each of the D features
which produces the vector

Zy = max Zy € RP*!
v

For late fusion (concat), we concatenate k columns in Zy to form a vector

2y = [20,... 2] € RO

If k < Tv we subsample the transits by randomly selecting / columns without replacement. If

k> Ty we up-sample the transits by randomly selecting k — Tv columns with replacement to
duplicate and concatenate all features vectors. We set the value of & = 8 for all experiments, as

it was determined to yield the highest performance on a validation set.

Late fusion (token) combines ideas from Scaled Dot-Product Attention and prompt tuning with
the goal of automatically weighting more informative transits (Jia et al., 2022; Vaswani et al.,

2017). A weight matrix W € R"P is used to project the features in Zv into a lower dimension

of size h = 64. The projected features are then compared against a learnable token 4 € R g
The similarity values are then normalized using the softmax function. The normalized values are
then used to compute a weighted sum of the original features
W'z,
VD

A model trained with this multi-view approach will reduce its loss by learning to assign larger

2y = softmax( )-ZL e R

weights (i.e. large similarity with 4) to transits that produce more reliable sound speed estimates.

An illustration of the late fusion (token) method is shown in Fig. 3.
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For all the aforementioned late-fusion methods, the fused feature vector Zv is forward

propagated through R to regress sound speed profile.

F. Experimental set-up
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Figure 4. Illustration of the 4-fold cross-validation approach for the baseline and neural network
models. For each fold, models are tested on data from a single season in 2017 shown in orange.

Note that time regions with mixed colors indicate that data was used to train both models.

Our partitioning of the training and testing data was deliberately crafted to emulate a real-world
scenario, where the model is trained on historical data and subsequently deployed on future data.
Data from the year 2017 was divided into four distinct testing sets, each corresponding to a
specific season. These testing sets were created to ensure non-overlapping periods and were
defined as follows: winter (January to March), spring (April to June), summer (July to

September), and fall (October to December). This partitioning allowed for the assessment of
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model performance in relation to the different seasons of the year. We then perform 4-fold cross-
validation where for each fold, one season from 2017 is used for testing and the remaining data is

used for training.

The multi-transit models were trained using a two-stage approach: 1) for first-stage training, the
encoder network and regression network are trained to estimate sound speed profile from each
transit, i.e. trained exactly as the single-transit model, 2) for second-stage training, the layers of
the encoder network are frozen, and the parameters of the multi-view learning mechanism (if
applicable) and the regression network are trained. For all neural network-based models, 25% of
each training set was allocated for validation-based early stopping with a patience of 30 epochs.
Optimization was performed with the ADAM optimizer using a learning rate of 1e-4 and a
scheduler that decays this learning rate by a factor of .75 every 10 epochs. Regression loss is

computed as root mean square error (RMSE).

III. RESULTS

The proposed single-transit model provided an average error reduction of about 36% compared
to the baseline model across the testing folds. We attribute the observed performance
improvement to the inclusion of the acoustic data, as its exclusion (noAudio model) led to a
performance level comparable to the baseline model, with predictions akin to historical
averaging. We note that the performance improvement of the single-transit model was variable
across the folds. Specifically, during the summer and fall testing seasons, the single-transit model

achieved substantial reductions in estimation error, with improvements of 44% and 43%
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respectively. In contrast, its performance improvement was relatively modest during the spring

testing season, with only a 13% reduction in error observed (Table 2).

Test fold baseline | single-transit | single-transit Multi-transit
(noAudio) single-transit | late fusion | late fusion | late fusion
(avg) (max) (concat) (token)

Jan. - March 24 243 1.69 1.59 1.59 1.58 1.52
April - June 2.11 2.07 1.71 1.48 1.52 1.52 1.47
July - Sept. 2.84 2.1 1.58 1.45 1.55 1.55 1.48
Oct. - Dec. 3.83 391 2.18 2.04 1.93 1.69 1.72
Average 2.8 2.63 1.79 1.64 1.65 1.59 1.55

Table 2. Model performance of sound speed profile estimation across the four test seasons.

Performance is reported in terms of root-mean-square error (m/ 9). The best performing model

for each season is shown in boldface.

Despite the inherent seasonal regularity, oceanic sound speed profiles can manifest year-to-year
variability. The reconstructed hindcast profiles at the study site reflect this variability, and is
particularly noticeable comparing profiles from the year 2015 to other years (Fig. 5). We
hypothesized that the presence of annual variability in the data would result in estimation bias in
both the baseline and single-transit models. Although both models exhibited estimation bias, the
scatter plots in Fig. 5 indicate that the deep learning-based approach experiences comparatively
less estimation bias than the baseline model. For example, in Fig. 5D, the distribution of points
from the two models generally follow the same shape, but the estimations from the single-transit

model are centered more along the blue line than the baseline.
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Table 2 indicates that model error can be reduced by an additional 8% by averaging estimates
obtained from multiple transits. The best performing multi-transit model was late fusion (token),
which provided an average error reduction of 13.5% compared to the single-transit model and a

5.5% error reduction compared to the single-transit (avg) model.
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Figure 5. Comparison of single-transit and baseline model predictions. Left: Test set sound
speeds to be predicted. Center: Predictions from the single-transit model vs. hindcast values
(black dots) plotted against each other, such that perfect predictions would fall along the
diagonal (blue line). Right: Predictions from the baseline model plotted against the hindcast
values. Prediction bias is visible when points fall primarily to one side of the diagonal. RMSE
values in units of m/s summarize the average root mean squared difference between predictions

and hindcast values, with higher values indicating poorer predictions.
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Figure 6. Performance on testing data of late fusion (concat) model with varying transit sampling

number k.

IV. DISCUSSION
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The relatively lower estimation bias of the neural network models compared to the baseline
suggests that the neural network is able to learn relevant patterns and relationships that can
generalize across the seasons. The estimation error was found to be highest in the near-surface
regions of the sound speed profile. In order to mitigate these errors, we propose that future work
should explore the integration of additional observational modalities, such as satellite-derived sea

surface temperature estimates.

As indicated by the performance of single-transit (avg), averaging multiple estimates helps to
mitigate the effects of random errors or outliers by simply leveraging a larger sample. However,
calculating an average considers all estimates to have equal weight in the final average and
provides no mechanism for leveraging complimentary information or discard outliers. Multi-

view learning techniques provide the opportunity for extracting such information.

Our results using the traditional multi-view techniques (max and concat) were similar to Seeland
and Méder (2021), where the multi-view methods with learnable solutions provided the best
results. However, using feature concatenation is complicated in this application because the
number of transits is variable. This means that a fixed number, k, of transits need to be sampled,
which introduces the trade-off: if k is too small, there is less information to leverage, but if & is
too large, the number of trainable parameters grows potentially leading to over-fitting. This
produces a U-shape error curve with variable & where the optimal value for & needs to be found

through experimentation (Fig. 6).
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Our proposed token learning method has the advantage of scaling to arbitrary input size while
maintaining a fixed and relatively small number of trainable parameters, which may improve
generalizability. Moreover, in this application, we hypothesize that employing a weighted sum,
where all features within the transit receive the same weight, rather than using feature-specific
fusion, is more ideal. Most multi-view models are developed under the implicit assumption that
each observation is uniquely informative regarding the object/event of interest. In other words,
each observation contains predictive information that the other observations do not contain (e.g.
consider two images of the same plant, one image captures the detail of the leaf and the other
captures the flower). For our application, it is unlikely that different transits contain this kind of
complementary information. Instead, some transits exhibit higher saliency compared to others,
and the goal of leveraging multiple observations is to rank the salience, in contrast to pooling
information across the transits. This approach may have broad applicability in oceanographic
acoustic observing problems involving large amounts of weakly-curated data in which feature
salience is variable in time and space, particularly if the salience of relevant features is difficult
to estimate a priori. If multiple sensors were available, fusion approaches could be used to

incorporate simultaneous views.

An important limitation of this approach is the availability of sound speed profile estimates for
model training. Although quarterly in situ measurements were available from a nearby CalCOFI
station and periodic local glider transits, these were determined to be too infrequent for training,
therefore this study used data assimilative hindcasts for training. Agreement between these
regionally-specific hindcasts, and the available in situ measurements, was high for this well-

sampled, highly-studied region. Further experimentation is needed to evaluate whether this
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approach could be used to refine or improve hindcast estimates, particularly in under-sampled
regions. Additionally, the proposed method represents a preliminary exploration aimed at
evaluating the feasibility of extracting sound-speed relevant features from single sensor acoustic
recordings. Further development will be required to adapt this method for use across different

recording environments.

V. CONCLUSION

In this paper, a neural network-based model, which uses acoustic recordings of URN of
transiting ships and their transit metadata, is proposed to predict SSP. Additionally, we propose a
data fusion strategy suitable for large observational acoustic datasets, in which data are weakly-
curated and feature salience differs between observations used for prediction. Our results show
that the addition of vessel transit recordings markedly improved the estimation of SSP compared
to the use of historical averages. We show that multiple transit recordings can be leveraged
together to improve SSP estimation and compare multiple techniques for combining available
information. We note that this work serves as a first approach in estimating oceanic sound speed
profiles from vessel URN, and there still exist sources of error in the estimations of the best
performing model. We believe that future work incorporating other data modalities and

alternative hydrophone configurations can help further reduce this estimation error.
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