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ABSTRACT OF THE DISSERTATION 
 

Problems and Solutions: Machine Learning Approaches for a Dynamic Ocean 

 
by 

 

Joseph Leslie Walker 

 

Doctor of Philosophy in Oceanography 

University of California San Diego, 2023 

Kaitlin Frasier, Chair 
 

Advancements in observational methods and data collection techniques have empowered 

oceanographers to gather extensive data on a wide range of oceanic phenomena. Optical imaging 

systems have provided unprecedented insight into the microscopic world of marine plankton as 

well as the structure, health, biodiversity, and ecological dynamics of coral reefs. Advances in 

low-power autonomous acoustic recording devices have enabled continuous long-term 

monitoring of marine mammals and ocean noise. 
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These data-driven methods involve the collection, analysis, and interpretation of large 

datasets to gain insights. Although machine learning offers the potential for automating the 

analysis of large oceanographic datasets, its utilization in this context is accompanied by 

challenges and problems due to the high spatiotemporal variability and noise inherent in these 

datasets. 

This thesis delves into an extensive exploration of state-of-the-art machine learning 

techniques, specifically tailored to optimize the extraction of valuable information from dynamic 

oceanographic datasets. To obtain a comprehensive understanding of the problem, instances of 

dataset shift and noise are examined in three distinct case studies spanning the vision and 

acoustic domains.  

The first case study focuses on the problem of novelty detection and class imbalance in 

the context of plankton image recognition using Images from the WHOI-Plankton dataset. The 

second case study explores the problem of object detection when samples are collected from 

different environments or under varying conditions. Lastly, the third case study aims to develop 

multi-observational techniques to reduce dataset noise using a dataset of acoustic recordings 

collected in the Santa Barbara Channel.  

In each case, the core technical goal is the same: to train a convolutional neural network-

based system to learn a robust feature representation that generalizes to unforeseen 

environmental conditions. To achieve this goal, techniques from the field of hard negative 

mining, unsupervised domain adaptation, and multi-view learning are integrated into the 

workflows. Ultimately, my overarching objective is to drive advancements in the development of 

robust oceanographic data automation tools.
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Chapter 1 INTRODUCTION 
 

The vastness of the world’s oceans presents an intricate web of interconnected processes, 

making it a complex environment to understand. New technology platforms have resulted in an 

exponential increase in the amount of collected oceanic data, resulting in more data collection on 

the world’s oceans in the year 2018 than the cumulative data gathered throughout the entire 

twentieth century (Tanhua et al., 2019). In fields such as underwater imaging, ocean acoustics, 

and physical oceanography, oceanographic research has long revolved around the development 

of physical models and their application in deducing properties of both the ocean environment 

and objects within it. However, as we move into the era of “Big Data”, this paradigm is 

beginning to change.  

In ocean acoustics, sound event classification and localization methods have traditionally 

relied upon signal processing techniques and signal/channel models. However, these techniques 

often perform poorly in common scenarios where noise, reverberation, and multiple 

simultaneously emitting sound sources are present (Blandin et al., 2012; Evers et al., 2020). In 

underwater imaging, image processing tools such as Sobel convolution kernels, morphological 

operations, and thresholding were used together with traditional statistical and rule-based 

methods to perform classification and detection tasks. However, in situations where the data 

demonstrates a considerable degree of intra-class variability and/or notable inter-class similarity, 

these techniques frequently demonstrate subpar performance (Bishop, 2006). 

While traditional methods in oceanography have provided valuable insights, the surge in 

available data has opened exciting new avenues for exploration. For example, developments in 

underwater imaging tools such as the Imaging FlowCytobot (IFCB) and the Scripps Plankton 

Camera (SPC) have each collected billions of images of microscopic marine plankton (Olson and 
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Sosik, 2007; Orenstein et al., 2020, 2015). Similarly, advances in autonomous acoustic recording 

devices such as the High-frequency Acoustic Recording Package (HARP) have collected 

petabytes of passive acoustic data (Wiggins and Hildebrand, 2007). By leveraging recent 

advances in data collection, machine learning, and parallelizable computing technology, we can 

uncover hidden patterns, extract knowledge, and make accurate predictions. These technologies 

have already revolutionized our understanding of the ocean and its dynamic ecosystems. 

Machine learning refers to the use of algorithms and computational techniques to extract 

meaningful information from data, without relying on predetermined equations or explicit 

instructions (Bishop, 2006). It's important to note that while machine learning is a part of 

artificial intelligence (AI), the latter encompasses a broader range of capabilities, including the 

integration of machine learning with sensors, autonomous vehicles, and computer-based 

reasoning. The most common application of machine learning in oceanography is the automation 

of repetitive sorting of data, usually in the form of classification or detection (Bishop, 2006). In 

underwater imaging, machine learning has emerged as the predominant technique for object 

classification and detection. This development can be primarily attributed to the development of 

automated image recognition architectures such as convolutional neural networks (CNNs). These 

algorithms can detect and classify objects and organisms in underwater images with remarkable 

accuracy, saving researchers significant time and effort.  

CNNs have been used in applications ranging from the estimation of plankton and fish 

population densities (Li et al., 2015), biodiversity monitoring of coral reefs (Jaisakthi et al., 

2019), unexploded ordnance detection(Czub et al., 2018), and detection of other man-made 

objects (Olmos et al., 2002; Rizzini et al., 2015). In acoustics, CNNs have emerged as the 

dominant approach for sound event detection and source localization. In the 2017 Detection and 
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Classification of Acoustic Scenes and Events (DCASE) challenge, a CNN achieved state-of-the-

art results in the sound event detection task (Mesaros et al., 2017). CNNs have also been used for 

broadband direction of arrival estimation, obtaining competitive results with steered response 

power phase transform (SRP-PHAT) beamforming (Brandstein and Ward, 2001). 

Despite the numerous benefits offered by machine learning, challenges persist when it 

comes to its application in oceanography due to the presence of noise. There are various sources 

of noise that can affect oceanographic data, including instrumental errors, measurement 

uncertainties, environmental disturbances, and data collection and processing artifacts. These 

sources can introduce random or systematic errors, outliers, missing values, or inconsistencies 

into the data.  

Deploying machine learning-based models effectively is further complicated by the 

presence of dataset shift, which refers to differences between the statistical properties of the 

training and deployment data. This shift is problematic because machine learning models learn a 

joint distribution between the input features and the target variable based on the training data. 

One of the most common forms of dataset shift is covariate shift, which occurs when the 

distribution of the input variables (covariates) in the training data is different from the 

distribution of the covariates encountered during deployment. Other forms of dataset shift, such 

as prior probability shift, are also prevalent. 

Addressing dataset noise and shift has become a crucial challenge. To combat these 

issues, some researchers have turned to the utilization of multi-view learning and unsupervised 

domain adaptation techniques. Multi-view learning leverages multiple perspectives or 

representations of data to enhance prediction accuracy and robustness. By incorporating diverse 
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representations of the same data, it becomes possible to capture a more comprehensive 

understanding of the data, thereby mitigating the impact of noise and reducing biases.  

Unsupervised domain adaptation, on the other hand, focuses on overcoming the covariate 

shift problem. In underwater image classification, this can arise due to variations in lighting 

conditions, water quality, or camera settings between different underwater environments. 

Unsupervised domain adaptation aims to bridge this gap by learning domain-invariant 

representations that can generalize well across different domains or underwater scenarios. By 

leveraging unlabeled data from the target domain and aligning it with the labeled source domain, 

the algorithm can effectively adapt and transfer knowledge, mitigating the effects of covariate 

shift. 

 

Enhancing the robustness of machine learning-based classifiers in the field of 

oceanography holds great promise for advancing our understanding of the oceans. By improving 

the robustness and accuracy of these classifiers, we identify complex patterns within the oceans, 

ultimately deepening our knowledge of this crucial component of our planet. This knowledge 

will enable us to make informed decisions, address environmental challenges, and strive towards 

the sustainable management and conservation of our oceans. 
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