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ABSTRACT OF THE DISSERTATION 

 

 

Integrative Multiomics and Systems Biology of Pulmonary Arterial Hypertension 

 

 

by 

 

 

Jason Hong 

Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology 

University of California, Los Angeles, 2021 

Professor Xia Yang, Co-Chair 

Professor Mansoureh Eghbali, Co-Chair 

 

 

Pulmonary arterial hypertension (PAH) is a lung disease characterized by narrowing of 

the pulmonary arteries causing hemodynamic resistance which eventually leads to right heart 

failure and death. Current therapies mainly act through vasodilation but none reverse the 

underlying vascular remodeling characteristic of PAH. A deeper understanding of the molecular 

and cellular mechanisms of PAH is needed to bridge this translational gap. The goal of this 

dissertation is to investigate the transcriptional alterations in PAH lungs using integrative 
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multiomics to identify and prioritize candidate genes, pathways, and cell types implicated in 

PAH.  

First, we identified reprogramming of genes and pathways in various cell types in the 

lungs of two commonly used rat models of PAH, namely Sugen-hypoxia (SuHx) and 

monocrotaline (MCT), using single-cell RNA sequencing (scRNAseq). We found that genes 

dysregulated in SuHx nonclassical monocytes were significantly enriched for PAH-associated 

genes and GWAS variants. We further identified candidate drugs predicted to reverse the 

dysregulated gene programs. This study revealed the distinct and shared reprogramming of genes 

and pathways in two commonly used PAH models for the first time at single-cell resolution and 

demonstrated their relevance to human PAH and utility for drug repositioning.  

Next, we dissected the human PAH lung transcriptome at the tissue level using an 

innovative network and systems biology methods on a well-powered RNA sequencing dataset of 

human PAH lungs. We discovered many DEGs and pathways in human PAH lungs at the tissue 

level, and through integration with clinical data and PAH GWAS, our network analysis revealed 

co-expressed gene modules that are not only associated with PAH diagnosis and severity, but 

also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing 

a comprehensive gene regulatory network of the human lung identified and prioritized candidate 

genes. Furthermore, we integrated the tissue-level networks with scRNAseq to uncover the 

specific cell types mediating the tissue-level gene programs.  

Overall, this integrative multiomics and systems biology study revealed and prioritized 

the dysregulation of many genes, pathways, and cell types in the lungs of PAH animal models 

and patients, thereby opening new avenues for therapeutic targeting. 
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Introduction 
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Pulmonary arterial hypertension (PAH) is an important clinical problem 

PAH is characterized by narrowing of the pulmonary arteries causing hemodynamic 

resistance which eventually leads to right heart failure and death. Current therapies mainly act 

through vasodilation but none reverse the underlying vascular remodeling characteristic of 

PAH1. Therefore, PAH patients continue to suffer from a poor quality of life and face a grim 

long-term prognosis2. To make significant gains in improving quality of life and survival, new 

therapies targeting pathways central to disease pathogenesis are needed to counteract the 

underlying disease process. However, many novel drugs while effective in PAH models have 

failed to translate to the bedside3. A deeper understanding of the molecular and cellular 

mechanisms of PAH is needed to bridge this translational gap.  

 

Current state and gaps in PAH omics 

Over the past decade, data-driven multiomics have emerged as powerful tools to uncover 

novel genes and pathways involved in PAH pathogenesis. Transcriptomic studies of PAH lungs 

have uncovered genes and pathways differentially expressed in PAH4,5. However, whether such 

findings are robust and causal in disease pathogenesis remain unknown since lung samples are 

usually from limited numbers of advanced stage PAH patients and experimental follow-up of 

findings is often lacking. Genetic studies including genome-wide association studies (GWAS) 

have identified only a limited number of causal genes in PAH leaving greater than 80% of cases 

genetically unexplained6–9. In addition to causal genes, the culprit cell types are also critically 

important to understand the molecular underpinnings of PAH. Besides pulmonary vascular cells, 

many other lung cell types including various immune cells have been implicated in PAH by prior 

studies10–14. A human PAH scRNAseq study was also recently published15 but was limited to 
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three diseased lungs and a focused analysis of a select few cell types. A more comprehensive and 

integrated examination of the altered genes, pathways, and cell types in PAH lungs is needed to 

advance our understanding of PAH mechanisms and help inform translational research efforts. 

 

The dissertation 

This dissertation investigates the transcriptional alterations in the lungs of PAH animal 

models and patients using integrative multiomics to identify and prioritize candidate genes, 

pathways, and cell types implicated in PAH pathobiology. 

 Chapter 2 is a reprint of “Single-Cell Study of Two Rat Models of Pulmonary Arterial 

Hypertension Reveals Connections to Human Pathobiology and Drug Repositioning”, which was 

originally published in Am J Respir Crit Care Med. In this study, we used single-cell RNA 

sequencing (scRNAseq) to determine and prioritize dysregulated genes, pathways, and cell types 

in lungs of PAH rat models to assess relevance to human PAH and identify drug repositioning 

candidates. We identified distinct changes in genes and pathways in numerous cell types in 

Sugen-hypoxia (SuHx) and monocrotaline (MCT) lungs. We also found that genes altered in 

SuHx nonclassical monocytes were significantly enriched for PAH-associated genes and genetic 

variants, and candidate drugs predicted to reverse the changes were identified. Our study 

revealed the distinct and shared dysregulation of genes and pathways in two commonly used 

PAH models for the first time at single-cell resolution and demonstrated their relevance to 

human PAH and utility for drug repositioning. 

Chapter 3 dissects the PAH lung transcriptional landscape at the tissue level using a large 

RNA sequencing (RNAseq) dataset of human PAH and control lungs. We identified many 

differentially expressed genes and pathways at the tissue level in human PAH lungs. Through 
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integration with clinical data and PAH GWAS, our network analysis revealed modules of co-

expressed genes that are not only associated with PAH, but likely causal for disease severity and 

disease risk. Furthermore, we integrated the tissue-level networks with scRNAseq to uncover the 

specific cell types mediating the tissue-level gene programs. Thus, our findings implicate novel 

genes, pathways, and cell types in PAH pathobiology. 

 Chapter 4 is a concluding summary of the dissertation and covers future directions for 

integrative multiomics in PAH.  

 

References 

1. Harvey LD, Chan SY. Emerging Metabolic Therapies in Pulmonary Arterial 

Hypertension. J Clin Med 2017;6:. 

2. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoon MD. An evaluation of 

long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL 

Registry. Chest 2012;142:448–456. 

3. Bonnet S, Provencher S, Guignabert C, Perros F, Boucherat O, Schermuly RT, Hassoun 

PM, Rabinovitch M, Nicolls MR, Humbert M. Translating Research into Improved Patient Care 

in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care 

Medicine 2017;195:583–595. 

4. Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in 

pulmonary hypertension. European Respiratory Journal 2016;48:229–241. 

5. Stearman RS, Bui QM, Speyer G, Handen A, Cornelius AR, Graham BB, Kim S, Mickler 

EA, Tuder RM, Chan SY, Geraci MW. Systems Analysis of the Human Pulmonary Arterial 

Hypertension Lung Transcriptome. Am J Respir Cell Mol Biol 2019;60:637–649. 



 

 
 

5 

6. Rhodes CJ, Batai K, Bleda M, Haimel M, Southgate L, Germain M, Pauciulo MW, 

Hadinnapola C, Aman J, Girerd B, Arora A, Knight J, Hanscombe KB, Karnes JH, Kaakinen M, 

Gall H, Ulrich A, Harbaum L, Cebola I, Ferrer J, Lutz K, Swietlik EM, Ahmad F, Amouyel P, 

Archer SL, Argula R, Austin ED, Badesch D, Bakshi S, et al. Genetic determinants of risk in 

pulmonary arterial hypertension: international genome-wide association studies and meta-

analysis. Lancet Respir Med 2019;7:227–238. 

7. Germain M, Eyries M, Montani D, Poirier O, Girerd B, Dorfmüller P, Coulet F, Nadaud 

S, Maugenre S, Guignabert C, Carpentier W, Vonk-Noordegraaf A, Lévy M, Chaouat A, 

Lambert J-C, Bertrand M, Dupuy A-M, Letenneur L, Lathrop M, Amouyel P, Ravel TJL de, 

Delcroix M, Austin ED, Robbins IM, Hemnes AR, Loyd JE, Berman-Rosenzweig E, Barst RJ, 

Chung WK, et al. Genome-wide association analysis identifies a susceptibility locus for 

pulmonary arterial hypertension. Nature Genetics 2013;45:518–521. 

8. Zhu N, Pauciulo MW, Welch CL, Lutz KA, Coleman AW, Gonzaga-Jauregui C, Wang J, 

Grimes JM, Martin LJ, He H, Hirsch R, White RJ, Simon M, Badesch D, Rosenzweig E, Burger 

C, Chakinala M, Thenappan T, Elliott G, Simms R, Farber H, Frantz R, Elwing J, Hill N, Ivy D, 

Klinger J, Nathan S, Oudiz R, Robbins I, et al. Novel risk genes and mechanisms implicated by 

exome sequencing of 2572 individuals with pulmonary arterial hypertension. Genome Medicine 

2019;11:69. 

9. Gräf S, Haimel M, Bleda M, Hadinnapola C, Southgate L, Li W, Hodgson J, Liu B, 

Salmon RM, Southwood M, Machado RD, Martin JM, Treacy CM, Yates K, Daugherty LC, 

Shamardina O, Whitehorn D, Holden S, Aldred M, Bogaard HJ, Church C, Coghlan G, Condliffe 

R, Corris PA, Danesino C, Eyries M, Gall H, Ghio S, Ghofrani H-A, et al. Identification of rare 



 

 
 

6 

sequence variation underlying heritable pulmonary arterial hypertension. Nature 

Communications 2018;9:. 

10. Hong J, Arneson D, Umar S, Ruffenach G, Cunningham CM, Ahn IS, Diamante G, 

Bhetraratana M, Park JF, Said E, Huynh C, Le T, Medzikovic L, Humbert M, Soubrier F, 

Montani D, Girerd B, Trégouët D-A, Channick R, Saggar R, Eghbali M, Yang X. Single-cell 

Study of Two Rat Models of Pulmonary Arterial Hypertension Reveals Connections to Human 

Pathobiology and Drug Repositioning. Am J Respir Crit Care Med 

2020;doi:10.1164/rccm.202006-2169OC. 

11. Huertas A, Phan C, Bordenave J, Tu L, Thuillet R, Le Hiress M, Avouac J, Tamura Y, 

Allanore Y, Jovan R, Sitbon O, Guignabert C, Humbert M. Regulatory T Cell Dysfunction in 

Idiopathic, Heritable and Connective Tissue-Associated Pulmonary Arterial Hypertension. Chest 

2016;149:1482–1493. 

12. Perros F, Dorfmüller P, Souza R, Durand-Gasselin I, Mussot S, Mazmanian M, Hervé P, 

Emilie D, Simonneau G, Humbert M. Dendritic cell recruitment in lesions of human and 

experimental pulmonary hypertension. Eur Respir J 2007;29:462–468. 

13. Florentin J, Coppin E, Vasamsetti SB, Zhao J, Tai Y-Y, Tang Y, Zhang Y, Watson A, 

Sembrat J, Rojas M, Vargas SO, Chan SY, Dutta P. Inflammatory Macrophage Expansion in 

Pulmonary Hypertension Depends upon Mobilization of Blood-Borne Monocytes. The Journal 

of Immunology 2018;200:3612–3625. 

14. Hoffmann J, Yin J, Kukucka M, Yin N, Saarikko I, Sterner-Kock A, Fujii H, Leong-Poi 

H, Kuppe H, Schermuly RT, Kuebler WM. Mast cells promote lung vascular remodelling in 

pulmonary hypertension. European Respiratory Journal 2011;37:1400–1410. 



 

 
 

7 

15. Saygin D, Tabib T, Bittar HET, Valenzi E, Sembrat J, Chan SY, Rojas M, Lafyatis R. 

Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension. 

Pulm Circ 2020;10:. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CHAPTER 2 

 
Single-cell Study of Two Rat Models of Pulmonary Arterial Hypertension Reveals 

Connections to Human Pathobiology and Drug Repositioning 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

9 

 

ORIGINAL ARTICLE

Single-Cell Study of Two Rat Models of Pulmonary Arterial
Hypertension Reveals Connections to Human Pathobiology and
Drug Repositioning
Jason Hong1, Douglas Arneson2, Soban Umar3, Gregoire Ruffenach3, Christine M. Cunningham3, In Sook Ahn2,
Graciel Diamante2, May Bhetraratana4, John F. Park3, Emma Said3, Caroline Huynh2, Trixie Le3, Lejla Medzikovic3,
Marc Humbert5, Florent Soubrier6, David Montani5, Barbara Girerd5, David-Alexandre Trégouët7, Richard Channick1,
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Cardiométabolisme et Nutrition, Paris, France; and 7Bordeaux Population Health Research Center, University of Bordeaux, National
Institute of Health and Medical Research Joint Research Unit 1219, Bordeaux, France

ORCID ID: 0000-0001-8036-3079 (S.U.).

Abstract

Rationale: The cellular and molecular landscape and translational
value of commonly used models of pulmonary arterial hypertension
(PAH) are poorly understood. Single-cell transcriptomics can
enhancemolecular understanding of preclinicalmodels and facilitate
their rational use and interpretation.

Objectives: To determine and prioritize dysregulated genes,
pathways, and cell types in lungs of PAH rat models to assess
relevance to human PAH and identify drug repositioning candidates.

Methods: Single-cell RNA sequencing was performed on the
lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and
control rats to identify altered genes and cell types, followed by
validation using flow-sorted cells, RNA in situ hybridization, and
immunofluorescence. Relevance to human PAH was assessed by
histology of lungs from patients and via integration with human
PAH genetic loci and known disease genes. Candidate drugs were
predicted using Connectivity Map.

Measurements and Main Results: Distinct changes in genes
and pathways in numerous cell types were identified in SuHx and
MCT lungs. Widespread upregulation of NF-kB signaling and
downregulation of IFN signalingwasobserved across cell types. SuHx
nonclassical monocytes and MCT conventional dendritic cells
showed particularly strong NF-kB pathway activation. Genes altered
in SuHx nonclassical monocytes were significantly enriched for
PAH-associated genes and genetic variants, and candidate drugs
predicted to reverse the changes were identified. An open-access
online platform was developed to share single-cell data and
drug candidates (http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/).

Conclusions: Our study revealed the distinct and shared
dysregulation of genes and pathways in two commonly used PAH
models for the first time at single-cell resolution and demonstrated
their relevance to human PAH and utility for drug repositioning.
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drug repurposing; monocrotaline; Sugen-hypoxia

(Received in original form June 7, 2020; accepted in final form October 6, 2020 )

*Co–senior authors.

Supported by NIH/NHLBI grant T32 HL072752 (J.H.), an American Lung Association Catalyst Award (J.H.), NIH/NHLBI grant R01HL147883 (X.Y.), and
NIH/NHLBI grants R01HL129051 and R01HL147586 (M.E.).

Author Contributions: J.H., D.A., M.E., and X.Y. contributed to the conception and design of the research and interpretation of the data. J.H. conducted or
helped with all experiments, analyzed the data, made the figures, and wrote the manuscript. S.U. performed the animal experiments. G.R. and C.M.C.
contributed to staining. G.R. contributed to the bulk RNA sequencing experiment. I.S.A. and G.D. performed the single-cell experiments. C.M.C. and M.B.
contributed to lung dissociation experiments. C.H. analyzed drug data. C.H. and E.S. analyzed images. T.L. and E.S. prepared lung sections for staining. J.F.P.
analyzed echo data. M.H., F.S., D.M., B.G., and D.-A.T. provided the genome-wide association study data. X.Y., M.E., L.M., R.C., and R.S. provided intellectual
input.

Correspondence and requests for reprints should be addressed to Jason Hong, M.D., Division of Pulmonary and Critical Care Medicine, David Geffen School of
Medicine at University of California Los Angeles, 200 UCLAMedical Plaza, Suite 365-B, Box 951693, Los Angeles, CA 90095. E-mail: jasonhong@mednet.ucla.edu.

This article has a related editorial.

This article has an online supplement, which is accessible from this issue’s table of contents at www.atsjournals.org.

Am J Respir Crit Care Med Vol 203, Iss 8, pp 1006–1022, Apr 15, 2021
Copyright © 2021 by the American Thoracic Society
Originally Published in Press as DOI: 10.1164/rccm.202006-2169OC on October 6, 2020
Internet address: www.atsjournals.org

1006 American Journal of Respiratory and Critical Care Medicine Volume 203 Number 8 | April 15 2021

 



 

 
 

10 

 
 

Despite advances in the management of
pulmonary arterial hypertension (PAH), it
remains an incurable and progressive
disease characterized by severe pulmonary
vascular remodeling, poor quality of life, and
guarded long-term prognosis (1). Notably,
current therapies focus on relieving
symptoms and do not reverse vascular
remodeling, the key pathological feature of
PAH. The lack of therapies targeting
underlying mechanisms in PAH may be in
part because of our limited understanding
of the pathogenic cell types and their
specific molecular pathways. It has been
increasingly recognized that in addition to
pulmonary vascular cells, other cell types in
the lung, including various immune-cell
populations, may also play an important
role in PAH and other pulmonary diseases
(2–7). However, to our knowledge, a
comprehensive evaluation to systematically
compare these various cell types has not
been undertaken in the most widely used
preclinical models of PAH, namely the
monocrotaline (MCT) and Sugen-hypoxia
(SuHx) rat models. Given that numerous
novel therapies tested in PAH animal
models have not translated to the bedside
(8), a more comprehensive understanding
of the cellular and molecular landscape
of these models is needed to unravel
mechanistic insights and enhance the
ability of preclinical work to predict drug
efficacy in humans (9).

In this study, we performed lung single-
cell RNA sequencing (scRNA-seq) in MCT

and SuHx rats to investigate altered cell
types, genes, and pathways and further
integrated the findings with human genetics
to assess human relevance. We then
identified potential drug-repurposing
candidates through computational
screening of drug transcriptional profiles
against the dysregulated transcriptional
programs revealed by scRNA-seq. Lastly, to
facilitate dissemination of the data and
findings, we offer an open-access online
platform for the wider research community
(http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/). Some of the results of
these studies have been previously reported
in the form of an abstract (10).

Methods

The main methods are below with
additional details provided in an online
supplement.

Animals
Adult male Sprague-Dawley rats (250–350
g) were used for all animal experiments,
which were approved by the University of
California, Los Angeles, Animal Research
Committee. For the SuHx model, rats were
injected subcutaneously with Sugen 5416
(20 mg/kg) followed by being kept in
hypoxia at 10% O2 for 21 days and then
by being kept in normoxia for 14 days.
For the MCT model, rats were injected
subcutaneously with MCT (60 mg/kg)
followed by being kept in normoxia for 28
days. Age-matched control rats were kept
in normoxia for 28 days. Echocardiography
and right heart catheterization were
performed. Lungs were then harvested and
enzymatically dissociated into single-cell
suspensions, which was followed by
scRNA-seq (11) (n= 6/group).

scRNA-seq Analysis
Expression data was normalized, filtered,
and clustered using the Seurat R package (R
Foundation for Statistical Computing) (12).
Cell types were identified on the basis of
known cell-type marker genes. Cell-type
proportions were quantified and compared
between PAH models and control animals,
as previously described (13). Global
transcriptomic shifts between groups were
assessed using a Euclidian distance method
(14). Differentially expressed genes (DEGs)
were determined for each cell type between
control and either SuHx or MCT rats using

MAST (Model-based Analysis of Single-
Cell Transcriptomics) (15). To annotate
DEGs for biological pathways or PAH
relevance, gene-set enrichment analysis was
performed using hallmark pathways from
the Molecular Signature Database (16) as
well as using human PAH-associated gene
sets obtained from DisGeNET (17) and
the Comparative Toxicogenomics Database
(18).

scRNA-seq Validation in Rat and
Human Lung Tissues
The identities of select cell types were
validated using bulk RNA-seq on cells
purified by fluorescence-activated cell
sorting (FACS) from the lungs of an
additional set of rats (n= 4/group).
Select scRNA-seq DEGs from SuHx
and MCT rats were validated by RNA
in situ hybridization (ISH) and
immunofluorescence using rat lung sections
(n= 5–6 rats/group). The same DEGs were
further evaluated by RNA ISH on human
lung sections from patients with PAH
compared with control patients (n= 7–8
subjects/group).

Integration of Rat PAH Single-Cell
DEGs with Human PAH Genome-
Wide Association Study
To evaluate the relevance of the rat DEGs to
human PAH, we assessed the human
orthologs of rat DEGs for enrichment of
genetic variants associated with PAH from a
human genome-wide association study
(GWAS) (19) using marker set enrichment
analysis in the Mergeomics R package (20).

Identification of Drugs Predicted to
Reverse Rat Disease Signatures
Using Connectivity Map
Signatures of MCT and SuHx DEGs for each
cell type were queried against the full
Connectivity Map (CMap) (21) database of
compound expression signatures induced
in human cell lines to prioritize those with
highly matching or opposing signatures.
Pattern-matching algorithms scored each
reference perturbagen profile for the
direction and strength of enrichment
with query scRNA-seq DEG signatures.
Perturbagens with positive or negative
connectivity scores have similar or opposite
signatures to that of the query (i.e., genes
that are increased in the scRNA-seq DEG
query are decreased by the perturbagen or
vice versa).

At a Glance Commentary

Scientific Knowledge on the
Subject: The cellular and molecular
landscape and translational value of
commonly used models of pulmonary
arterial hypertension (PAH) are poorly
understood. Single-cell transcriptomics
can enhance molecular understanding
of preclinical models and facilitate their
rational use and interpretation.

What This Study Adds to the Field:
Our study revealed the distinct and
shared dysregulation of genes and
pathways in two commonly used PAH
models for the first time at single-cell
resolution and demonstrated their
relevance to human PAH and utility
for drug repositioning.
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Data Availability
The scRNA-seq data set and lists of cell
type–specific marker genes and disease
DEGs are available online at http://
mergeomics.research.idre.ucla.edu/
PVDSingleCell/CellBrowser/. Connectivity
scores of the entire panel of perturbagens
from the CMap analysis are available at
http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/CMap/.

Results

scRNA-seq Identifies Diverse Cell
Populations in the Rat Lung
The PAH phenotype in MCT and SuHx
rats was confirmed by echocardiography
(see Figures E1A, E1B, and E2B–E2L in the
online supplement), immunohistochemistry
(Figure E1C), and right heart catheterization
(Figure E2A). The scRNA-seq of 18 lungs
(6/group) profiled 33,392 cells (Figure 1A)
after quality control (Figures E3A–E3D,
E4A, and E4B), with even representation of
groups (Figures E4C and E4D). After
clustering on the basis of transcriptomic
similarity, we identified 28 distinct cell
types expressing established markers for
epithelial, stromal, lymphoid, and myeloid
cell populations and rare populations,
including conventional dendritic cells
(cDCs) and regulatory T cells (Tregs)
(Figures 1B, 1C, and E5). Batch
correction did not further optimize
clustering and cell-type identification
(Figure E4E) (12). Each cluster included
cells from each group (Figures 1D and 1E).
Compared with control animals, we
observed a significant increase in the
normalized cell fractions of interstitial
macrophages (iMFs) in MCT rats and
alveolar macrophages (aMFs) in SuHx rats
(Figure 1E).

FACS and Bulk RNA-seq Validate
scRNA-seq Cell-Type Identities and
Proportions
To validate the rare lung cell types identified
from scRNA-seq, namely cDCs and Tregs,
and their corresponding gene signatures, we
performed bulk RNA-seq on FACS-purified
cells and subsequent deconvolution using
our scRNA-seq signatures as a reference

(Figure 2A). We used canonical markers to
isolate cDCs (CD642 CD11b/c1, RT1B1)
and Tregs (CD41, CD251, CD2781) by
FACS (Figures 2B and 2C). Deconvolution
of FACS-purified transcriptomes showed
strong enrichment for the correct cell
types as identified by scRNA-seq, thus
validating the accuracy of scRNA-seq
cell signatures (Figure 2D). Furthermore,
FACS-determined relative cell proportions
between disease models and the control
model showed a pattern similar to that
from scRNA-seq (Figures 2E–2H).
Specifically, both scRNA-seq and FACS
showed significantly increased cDCs in
MCT rats, but not in SuHx rats, and Tregs
did not change in either model compared
with the control model.

scRNA-seq Reveals DEGs with
Cell-Type Specificity in PAH Models
A total of 4,724 and 2,324 DEGs were
identified in MCT and SuHx rats (false
discovery rate, 0.05), respectively, across 17
cell types (Figure 3A). There were 1,511
DEGs common in both models, of which 921
were regulated in the same direction. aMFs,
the largest cell cluster, had the most DEGs,
likely due to high statistical power. We also
assessed changes on a transcriptome scale
within each cell type using a Euclidean
distance-based approach that is less
influenced by cluster size (14) (Figure 3B).
Despite MCT rats having more DEGs, aMFs
and nonclassical monocytes (ncMonos) from
the SuHx model demonstrated the strongest
global transcriptomic shifts from the control
model.

A closer examination of DEGs revealed
genes whose differential expression was
model and cell-type specific (Figure 3C). In
total, there were 2,088 and 574 DEGs
specific to one cell type in MCT and SuHx
rats, respectively. For example, Il6st, which
encodes a signal transducer that mediates
IL-6 signaling, was upregulated exclusively
in a subpopulation of endothelial arterial
type 1 (EA1) cells from SuHx; Il6 was
specifically upregulated in SuHx ncMonos
and MCT neutrophils, suggesting model-
specific differences in IL-6 signaling.
Gpr15 was exclusively upregulated in
SuHx Tregs and encodes an orphan G

protein–linked receptor implicated in Treg
homing (22).

Furthermore, we identified 19 and 8
DEGs that were differentially expressed
in the same direction in at least five cell
types in either MCT or SuHx rats, among
which 6 (Nfkbia, Scgb1a1, Ifi27, Slfn3,
Mt-cox3, and AY172581.24) were altered
across various immune cells in both models
(Figure 3D). For example, Ifi27, which
encodes IFNa–inducible protein 27 and
plays a role in apoptosis and vascular
response to injury (23, 24), was
downregulated across cell types in both
models and in human PAH lungs (Figure
E6) (25).

scRNA-seq Reveals Pathways with
Cell-Type Specificity in PAH Models
Pathway enrichment of DEGs revealed cell
type–specific dysregulation of many
pathways (Figure 4A). The most distinct
difference between models was a strong
downregulation of IFN signaling across
multiple cell types in the MCT model
that in the SuHx model was weaker or
in the opposite direction (Figure 4B).
The relevance of IFN downregulation to
human PAH was demonstrated in EA1
cells as an example (Figures 4C and 4D).
The most notable commonality between
models was a widespread upregulation of
TNFa/NF-kB signaling across cell types,
most notably in SuHx ncMonos (Figure 4E
and 4F).

Validation of Select DEGs by RNA ISH
and Immunofluorescence
Given the importance of ncMonos,
suggested in our analyses above, we
validated a DEG from ncMonos by RNA
ISH on both rat and human lung sections
(Table E1). We defined ncMonos as positive
for both CD16 and Mal. Mal is the top
marker for ncMonos in our scRNA-seq
(Figure 1C) and is involved in the
MyD88 pathway, important in human
lung ncMonos (26). We validated the
upregulation of Ccrl2, a top SuHx ncMono
DEG, encoding a chemokine receptor–like
protein whose function is unknown but is
upregulated during monocyte-to-MF
differentiation (Figure 5A) (27). We also
validated the upregulation of Fabp4, a top

Figure 1. (Continued ). cluster. The cell-type cluster referred to on the y-axis is defined as the total number of cells of a cell type from the control model and
either the MCT or SuHx model (but not both models). A significant increase in proportions of iMFs in MCT and aMFs in the SuHx model were noted
relative to the control model. Wilcoxon rank-sum test: *P,0.05 and **P, 0.01. DEG=differentially expressed gene; NK=natural killer cell.
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Abstract 

The pathological hallmark of PAH occurs inside the lungs where the pulmonary arteries 

undergo irreversible remodeling. Therefore, studying the changes in gene expression that occur 

inside the lungs of PAH patients is critical to advance our understanding of underlying disease 

mechanisms. Well-powered RNAseq combined with systems analysis at the tissue-level can 

capture the collective and coordinated activity of a diversity of cell types that make up a complex 

tissue, insights that may otherwise be lost when analyzing gene expression in individual cells. In 

this study, we dissected the human PAH lung transcriptional landscape at the tissue level using 

an innovative network and systems biology methods on a large RNAseq dataset of human PAH 

lungs. We discovered many dysregulated genes and pathways in human PAH lungs at the tissue 

level, and through integration with clinical data and PAH GWAS, our network analysis revealed 

modules of co-expressed genes that are not only associated with PAH diagnosis and severity, but 

also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing 

a comprehensive gene-gene regulatory network of the human lung identified and prioritized 

candidate genes. Furthermore, we integrated the tissue-level networks with scRNAseq to 

uncover the specific cell types mediating the tissue-level gene programs. Thus, our findings 

implicate novel genes, pathways, and cell types in PAH pathobiology.  

 

Introduction 

The pathological hallmark of PAH occurs inside the lungs where the pulmonary arteries 

undergo irreversible remodeling. Therefore, studying the changes in gene expression that occur 

inside the lungs of PAH patients is critical to advance our understanding of underlying disease 

mechanisms. Advances in sequencing have enabled more expansive molecular profiling of 
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tissues which combined with rapidly evolving bioinformatic methods have led to major 

biological discoveries. However, such technological and methodological advances remain 

relatively unexploited in studying the lungs of PAH patients, who do not routinely undergo lung 

biopsies and rarely undergo lung transplantations. Thus, relatively small sample sizes have 

limited prior molecular studies of PAH lungs.  

The Pulmonary Hypertension Breakthrough Initiative (PHBI) is a consortium of 13 

academic centers that maintain a biorepository of lung specimens from PAH patients undergoing 

lung transplant and from donors to serve as control. A recent study by our collaborators at PHBI 

analyzed the transcriptomes of 58 PAH lungs1, the largest to date, but was limited by use of 

microarray which requires a predefined probe set to detect gene expression. To our knowledge, 

PAH lung studies have yet to leverage RNA sequencing (RNAseq) which is more 

comprehensive and sensitive than microarray profiling. While single-cell RNA sequencing 

(scRNAseq) is now available, well-powered bulk RNAseq of a large sample size combined with 

state-of-the-art systems biology and multi-omic integration at the tissue level can capture the 

collective and coordinated activity of a diversity of cell types that make up a complex tissue, 

insights that may otherwise be lost when analyzing gene expression in individual cells. In this 

chapter, we employ bulk RNAseq leveraging a large biorepository of PAH and healthy control 

lungs to perform an in-depth and well-powered investigation into the tissue-level alterations of 

genes and pathways. We further integrate bulk RNAseq with scRNAseq to deconvolute the 

contribution of individual cell types and cell-cell interactions in PAH lungs.  

 

Materials and Methods 

Bulk RNAseq dataset and quality control 
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Through collaboration with Mark Geraci, MD and Bob Stearman, PhD at PHBI, we 

obtained bulk RNAseq from explanted lungs of 96 patients with pulmonary hypertension (94 

with WHO Group 1 PAH) and 52 failed donor (FD) lungs which did not have an appropriate 

recipient but still met physiologic standards to serve as control1. We mapped raw reads to the 

reference human genome (hg19) and assembled transcripts with HISAT2 and StringTie2, 

respectively. We then performed hierarchical clustering and principal components analysis 

(PCA, Fig. 3) to identify potential outliers for removal and technical batch effects for correction 

using ComBat3. We focused on WHO Group 1 PAH (n=94) in downstream analyses given the 

likely significant differences in the underlying pathophysiology compared to WHO Group 4 

(n=2). 

 

Differentially expressed genes (DEGs) 

We determined DEGs between PAH and control using DESeq24. While the analysis will 

focus on WHO Group 1 PAH versus control, we will also perform pairwise analysis to assess for 

differences between PAH subgroups including idiopathic (IPAH, n=41), pulmonary veno-

occlusive disease (n=7), familial (n=8), connective tissue disease (n=11), congenital heart 

disease (n=19), and drug-induced (n=8).  

 

Co-expression networks 

We performed Weighted Gene Co-expression Network Analysis (WGCNA)5 to identify 

modules of co-expressed genes likely controlled by the same transcriptional regulatory program, 

functionally related, or members of the same pathway6.  
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Clinical integration 

The PHBI subjects were deeply phenotyped enabling us to correlate the first principal 

component (PC) of WGCNA modules with clinical data such as disease status (i.e. PAH vs 

control), mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), cardiac 

output, six-minute walk test (6MWT), degree of hypoxemia (i.e. PaO2/FiO2 ratio), prostacyclin 

use, pulmonary function tests (i.e. DLCO) and PAH subgroup.  

 

Pathway enrichment of DEGs and coexpression modules 

We evaluated the functional role of DEGs and WGCNA modules by testing for 

enrichment in known biological pathways using Gene Set Enrichment Analysis (GSEA)7. 

 

PAH GWAS integration 

To assess for causal molecular links between risk of PAH and advanced-stage PAH 

lungs, we tested DEGs and WGCNA modules for enrichment in single-nucleotide 

polymorphisms (SNPs) from PAH genome-wide association studies (GWAS) using 

Mergeomics8, a computational pipeline developed by our lab that integrates multi-omics data for 

mechanistic discoveries. To evaluate for consistency across methods and across GWAS cohorts, 

we a) implemented two other GWAS enrichment approaches: MAGMA9 and GSA-SNP210 and 

b) utilized four independent GWAS cohorts as well as their meta-analysis totaling 2,085 PAH 

and 9,659 control subjects11 obtained from our collaborator Christopher Rhodes, PhD with 

approval from key stakeholders in UK, US and France. We mapped GWAS SNPs to genes using 

two approaches: a) chromosomal proximity to transcription start sites (20 kilobases) and b) 

eQTLs derived from 1626 human lungs12,13. 
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Bayesian networks (BNs) 

A complementary approach to co-expression networks are BNs which model gene-gene 

regulation and can flexibly incorporate various types of information such as genetic causality, 

expression quantitative trait loci (eQTL), and transcription factor (TF) binding to model 

directional gene regulatory networks14–20. The combination of these two network types is 

particularly powerful in uncovering novel biological insights, as co-expression networks offer a 

more global view of gene co-regulation and BNs provide granular and directional regulatory 

relationships. Therefore, we routinely construct and utilize these complementary networks based 

on multi-omics data14–16,21–32. We constructed and took the union of three distinct human lung 

BNs derived from 148 PHBI, 577 GTEx12, and 1,343 GSE2354613 samples to build a 

comprehensive gene regulatory network of the human lung. BNs were constructed using 

Reconstructing Integrative Molecular Bayesian Network (RIMBANet)19. For this method, 1000 

networks were generated from different random seed genes using continuous and discrete 

expression data as well as cis eQTL and transcription factor data as priors. Then, the final 

network was obtained by taking a consensus network from the 1000 randomly generated 

networks whereby only edges that passed a probability of >30% across the 1000 BNs were kept. 

We projected WGCNA modules associated with PAH onto this regulatory network and 

performed weighted Key Driver Analysis to identify hub genes of PAH8. We then constructed 

and  performed differential network analysis on separate PAH and control networks using 

DyNet33 to find genes and subnetworks most rewired in PAH.  

 

Statistical power 
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A minimum of 5 samples per group is needed for adequate power to detect DEGs based 

on a variety of RNAseq datasets34 and 100 total samples are needed for network analyses18. To 

maximize power, we included 94 WHO Group 1 PAH and 52 FD lungs.  

 

Results 

Bulk RNAseq samples met quality control for downstream analyses 

Prior to performing integrative multiomics and network analyses (Figure 3.1), RNAseq 

samples were checked for quality control. Principal components analysis (PCA) of bulk RNAseq 

samples showed that the majority of samples clustered together. When colored by disease status, 

PCA revealed global differences between PAH and FD samples as a whole (Figure 3.2). 

Hierarchal clustering revealed two outliers, a 55 year-old Hispanic female FD and a 13 year-old 

White male with PAH, which we removed for downstream analysis (Figure 3.3). 
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Figure 3.1. Overall study design for integrative multiomics and network analyses of bulk 

RNAseq. 



 

 
 

53 

 

 

Figure 3.2. Lung RNAseq samples cluster by disease status. PCA of 148 lung RNAseq samples. 
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Figure 3.3. Two lung RNAseq sample outliers identified by hierarchal clustering. Dendrogram 

showing hierarchal clustering of 148 lung RNAseq samples. Horizontal red line represents the 

heigh above which outliers were removed. 

 

Many genes are altered in PAH lungs 

Differential expression analysis comparing PAH and FD lungs revealed 2719 upregulated 

and 2534 downregulated in PAH with a total of 5253 dysregulated genes (FDR < 0.05) (Figure 

3.4).  Top upregulated genes included HBA2, HBB, LAMP5, HBA1, and MFAP4. Top 

downregulated genes included SIGLEC10, PI3, SAA2, SLC36A1, and ALPP.  
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Figure 3.4. Differential gene expression analysis shows many genes dysregulated in PAH lungs. 

Volcano plot showing genes differentially expressed where red (upregulated) or green 

(downregulated) dots correspond to genes with FDR < 0.05 and grey dots represent genes not 

statistically significant. Select top upregulated and downregulated genes are labeled. FDR = false 

discovery rate; FC = fold change.  
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Many pathways are altered in PAH lungs 

Pathway enrichment analysis revealed that many pathways are dysregulated in PAH 

lungs as compared to FD (Figure 3.5). Top upregulated pathways included epithelial 

mesenchymal transition, hedgehog signaling, and apical junction. Top downregulated pathways 

included mTORC1 signaling, G2M checkpoint, and MYC targets. 
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Figure 3.5. Many pathways are dysregulated in PAH lungs. Red dots indicate upregulated 

pathways. Blue dots indicate downregulated pathways. Larger dots indicate stronger statistical 

significance. NES = normalized enrichment score derived from GSEA; pval = p value.  

 

Distinct modules of co-expressed genes identified in PAH lungs 

WGCNA analysis revealed 20 distinct co-expression modules with the largest being the 

turquoise module at 5391 genes and the smallest being the orange module at 42 genes, with a 

median size across modules of 140.5 genes (Figure 3.6). Pathway enrichment analysis for each 

WGCNA module as determined by GSEA identified many pathways up- and downregulated 
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(Figure 3.7). The top upregulated pathway was TNF alpha signaling via NFkB in the lightcyan 

module and the top downregulated pathway was MYC targets v1 in the black module. 

 

 

 

Figure 3.6. Distinct modules of co-expressed genes identified in PAH lungs. Dendrogram 

showing clustering of genes, with dissimilarity based on topological overlap as determined by 

WGCNA analysis. Module color assignments for each gene is also shown.  

 

   



 

 
 

59 

 
 

Figure 3.7. Various pathways are involved in lung modules of co-expressed genes. Dots 

represent statistically significant pathways enriched in WGCNA modules with FDR < 0.01 that 

also had the strongest NES scores (>2 or <2) where red signifies upregulation and blue signifies 

downregulation. NES = normalized enrichment score.  
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WGCNA lung modules associated with PAH diagnosis and severity 

Correlation analysis of the first PC of WGCNA modules with clinical data revealed that 

the pink, royalblue, salmon, and black modules positively correlate with both PAH diagnosis and 

PAH severity (mPAP and PVR) (Figure 3.8). The pink module was also negatively correlated 

with cardiac output (CO) which also suggests correlation with more severe PAH. Pink and 

royalblue were also positively correlated with FVC/DLCO suggesting worse diffusion 

impairment relative to forced vital capacity, and thus more severe disease. Salmon and royalblue 

were negatively correlated with PaO2/FiO2 suggesting more severe hypoxemia and thus more 

severe disease. When repeating the same analysis but with the 5253 PAH DEGs as its own 

module, only PAH diagnosis was correlated with the DEG module. The other clinical traits 

related to disease severity were not correlated with the DEG module. GSEA analysis of PAH vs 

FD DEGs with WGCNA modules as the gene sets showed that the modules that were positively 

or negatively correlated with PAH diagnosis were also positively or negatively enriched for PAH 

DEGs by GSEA. Out of all the modules, the pink module had the strongest positive enrichment 

for PAH DEGs.  
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Figure 3.8. WGCNA lung modules associated with PAH diagnosis and severity. Dots represent 

statistically significant Pearson correlation between clinical data and the first PC of WGCNA 

modules (P value < 0.05). Red represents positive correlation and blue represents negative 

correlation. Dots with larger size denote stronger statistical significance. Pval = p value. 

 

WGCNA lung modules associated with PAH genetic risk 

To infer causal roles of the PAH-associated DEGs and WGCNA modules, we assessed 

the enrichment of DEGs and modules for PAH GWAS signals using three distinct approaches. 

Mergeomics Marker Set Enrichment Analysis (MSEA) revealed that the black module was 
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significantly enriched for PAH GWAS in multiple cohorts (PHAAR, PAHB, and GWAS meta-

analysis of all 4 cohorts) using two different approaches to mapping SNPs to genes (20 kilobase 

chromosomal proximity to transcription start site and lung eQTLs). The pink module was also 

significantly enriched for PAH GWAS using two other GWAS enrichment methods (MAGMA 

and GSA-SNP2) across multiple different GWAS cohorts (PHAAR, PAHB, and BHFPAH). 

Using GSA-SNP2, the PAH-associated DEG module totaling 5253 genes showed statistically 

significant enrichment in GWAS signals in the BHFPAH cohort and GWAS meta-analysis, as 

well as relatively high enrichment in the other cohorts (though not statistically significant after 

multiple testing correction). PAH-associated DEGs were not enriched in GWAS signals using 

the MAGMA approach and were not included in the Mergeomics analysis (default maximum 

module size of 500 genes was used). 
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Figure 3.9. WGCNA lung modules associated with PAH risk. Dot plots showing GWAS 

enrichment of WGNCA modules across GWAS cohorts and GWAS enrichment methods. Colors 

represent corresponding WGCNA color modules. Horizontal dashed lines represent statistical 

significance threshold. “Dist 20kb” signifies SNPs were mapped to genes if within 20 kilobases 

of the transcription start site. “Lung eqtl” signifies that SNPs were mapped to genes if they were 

also lung eQTLs to the corresponding gene.  

 

Bayesian network analysis reveals key genes implicated in PAH 

To identify potential regulators of the PAH-associated DEGs and coexpression modules, 

we performed weighted key driver analysis (wKDA) using Bayesian networks (BNs). We first 

constructed and took the union of three distinct human lung BNs derived from 148 PHBI, 577 

GTEx12, and 1,343 GSE2354613 samples to build a comprehensive gene regulatory network of 

the human lung consisting of 22,444 nodes and 62,151 edges (Figure 3.10). We projected PAH-

associated DEGs and WGCNA modules onto this regulatory network and performed wKDA to 
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identify hub genes of PAH8 (Figure 3.11). We also projected known human PAH-associated 

gene sets obtained from DisGeNET 35 and Comparative Toxicogenomics Database 36 onto the 

lung BN to see how they would localize with respect to WGCNA modules.  
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Figure 3.10. Schematic of Bayesian gene-gene regulatory network construction for the human 

lung.  
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Figure 3.11. WGCNA modules projected onto Bayesian gene-gene regulatory network of the 

human lung.  

 
 

Focusing our attention on modules associated with PAH diagnosis, severity, and risk, we 

found PDE7B to be the most central gene in the pink subnetwork by KDA (Figure 3.12). 

PDE7B encodes the phosphodiesterase 7B protein which hydrolyzes the second messenger 

cAMP. Many known PAH genes were also connected to pink subnetwork including BMPR2, the 

most well-established causal PAH gene. PDE7B was also a key driver gene of PAH-associated 

DEGs. 
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Figure 3.12. PDE7B as the top key driver gene in the pink subnetwork. Pink subnetwork of the 

lung BN where pink nodes represent genes in the pink module, grey nodes represent genes not in 

the pink module but connected to the pink subnetwork, red nodes represent known PAH genes 

connected to the pink subnetwork, and red and pink nodes represent known PAH genes that are 

also members of the pink module. Larger size nodes correspond to stronger statistical strength of 

the gene as a key driver of the pink subnetwork. PDE7B is highlighted by a green circle and 

BMPR2 is highlighted by a blue circle. 
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We then constructed and performed differential network analysis on separate PAH and 

control BN using DyNet33 to find genes and subnetworks most rewired in PAH. We found that 

the most rewired node whose expression is also upregulated in PAH lungs was MELTF-AS1, a 

long non-coding RNA increasingly recognized as an important pathogenic driver in many 

cancers37–39 but never before implicated in PAH (Figure 3.13 and Figure 3.14).  In KDA using 

the lung BN, MELTF-AS1 was also a central hub gene of the black WGCNA module which is 

associated with PAH diagnosis, severity, and PAH.  
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Figure 3.13. MELTF-AS1 was the most rewired node in PAH whose expression is also 

upregulated in PAH lungs. Dot plot showing DyNet rewiring score of genes between PAH and 

FD lung networks. Red and green indicate up- and downregulation in PAH, respectively. X-axis 

represents genes ordered by fold change. MELTF-AS1 highlighted by a blue box. ns, not 

significant; FC = fold change.  
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Figure 3.14. MELTF-AS1 subnetwork in which most regulatory connections to other genes are 

only present in the PAH network. White nodes were present in both PAH and FD networks. Red 

nodes were only present in the PAH network. Red and green edges were present only in the PAH 

or FD networks, respectively. 
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scRNAseq integration identifies cell types involved in tissue-level networks 

Enrichment testing of WGCNA modules with cell type-specific PAH signatures from our 

previously generated rat scRNAseq PAH DEGs40 revealed specificity in which cell types may be 

mediating the genes co-expressed in each WGCNA module (Figure 3.15). For example, the pink 

module was enriched for the monocrotaline (MCT) PAH smooth muscle cell (SMC) signature 

and Sugen-hypoxia (SuHx) PAH signatures of fibroblasts (Fb), SMC, and endothelial cells. 
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Figure 3.15. Rat lung scRNAseq integration infers cell types mediating human lung WGCNA 

modules. Dot plot showing upregulation (red) or downregulation (blue) of human orthologs of 

Rat lung scRNAseq DEGs in lung WGCNA modules as determined by GSEA. Dots represent 

FDR < 0.05 with larger size corresponding to stronger statistical significance. NES = normalized 

enrichment score; pval = p value; aMΦ = alveolar macrophages; AT1 = alveolar type 1 cells; 

AT2 = alveolar type 2 cells; cDC = conventional dendritic cells; cMono = classical monocytes; 

EA1 = endothelial arterial 1; EA2 = endothelial arterial 2; EC = endothelial capillary; Fb = 

fibroblast; ILC2 = innate lymphoid cell type 2; iMΦ = interstitial macrophages; Meso = 

mesothelial; ncMono = non-classical monocytes; NK1 = natural killer 1; NK2 = natural killer 2; 

pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil; pMΦ = proliferating 

macrophages; SMC = smooth muscle cell; T_prolif = proliferating T cells; T_reg = regulatory T 

cells. 

 

As an alternative approach to infer which cell types may be coordinating the activity of 

lung co-expression modules, we first deconvoluted each bulk RNAseq sample using 

CIBERSORT41 to estimate relative cell proportions. To ensure rigorous deconvolution estimates, 

we curated 7 distinct single-cell datasets totaling over 500,000 cells from 154 human lungs42–48 
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and integrated them using Seurat49 to generate a high-confidence cell type reference map for the 

human lung (Figure 3.16). We identified similar cell types using this approach as compared to 

our rat scRNAseq integration. For example, using deconvolution, we found the pink module to 

be most strongly correlated with myofibroblasts (MyoFb), which express both SMC and 

fibroblast markers, and endothelial cells (Figure 3.17).  
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Figure 3.16. Generating a cell type reference map for the human lung. A) Schematic of 

construction of a high-confidence cell type reference map for the human lung for deconvolution. 

B) Uniform manifold approximation and projection (UMAP) plot showing integration of 7 

distinct single-cell datasets totaling over 500,000 cells from 154 human lungs42–48 . AM = 

alveolar macrophages; AT1 = alveolar type 1 cells; AT2 = alveolar type 2 cells; AT2 = alveolar 

type 2 transitional cells; cDC = conventional dendritic cells; cMono = classical monocytes; 

EndoArt = endothelial arterial; EndoVein = endothelial vein; EndoBronch = endothelial 

bronchial; EndoCap = endothelial capillary; Fb = fibroblast; ILC = innate lymphoid cells; IM = 

interstitial macrophages; MyoFb = myofibroblast; ncMono = non-classical monocytes; NK = 

natural killer; pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil; 

MacProlif = proliferating macrophages; SMC = smooth muscle cell; Treg = regulatory T cells; 

PNEC = pulmonary neuroendocrine cells.  
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Figure 3.17. Deconvolution using human lung scRNAseq infers cell types mediating human 

lung WGCNA modules. Dots represent statistically significant Pearson correlation between 

estimated cell type proportions by deconvolution across samples and the first principal 

component of WGCNA modules across samples (p value < 0.05) where red indicates positive 

correlation, blue indicates negative correlation, and larger dot sizes indicate stronger statistical 

significance. AM = alveolar macrophages; AT1 = alveolar type 1 cells; AT2 = alveolar type 2 

cells; AT2 = alveolar type 2 transitional cells; cDC = conventional dendritic cells; cMono = 

classical monocytes; EndoArt = endothelial arterial; EndoVein = endothelial vein; EndoCap = 

endothelial capillary; Fb = fibroblast; ILC = innate lymphoid cells; IM = interstitial 

macrophages; MyoFb = myofibroblast; ncMono = non-classical monocytes; NK = natural killer; 

pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil; MacProlif = 

proliferating macrophages; SMC = smooth muscle cell; Treg = regulatory T cells; PNEC = 

pulmonary neuroendocrine cells. 
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Discussion 

In this chapter, we conducted a well-powered bulk RNAseq analysis of PAH and healthy 

control human lungs utilizing a variety of integrative multiomics and systems biology 

approaches to uncover the tissue-level alterations of genes, pathways, and cell types in PAH 

lungs. We uncovered thousands of genes to be dysregulated in PAH lungs and found that these 

genes are involved in pathways known to be reprogrammed in PAH such as mesenchymal 

transition. Grouping genes into modules based on how they co-express with each other, we found 

specific modules to be associated with PAH diagnosis, severity, and risk. Integrating these 

modules with a gene-gene regulatory network of the human lung, we found hub genes likely 

playing a central role in mediating the functions of these PAH modules. Finally, integration with 

scRNAseq revealed which cell types might also be involved in the PAH modules.  

The pink module of 266 co-expressed genes was one of the 20 modules most strongly 

associated with PAH diagnosis, disease severity, and disease risk. This module was not only 

positively correlated with mPAP and PVR, both well-established hemodynamic parameters of 

PAH severity measured by right heart catheterization, and FVC/DLCO, a proxy for disease 

severity measured by pulmonary function testing, but the pink module was also the only module 

negatively correlated with cardiac output. Reduced cardiac output in PAH patients is due to RV 

failure seen in the most severe cases. These findings suggest that patients who had stronger 

expression of the pink module genes in their lungs had worse disease. Interestingly, the pink 

module was the only module associated with PAH that was also negatively correlated with 

epoprostenol, which is the most effective therapy currently available for PAH that has also been 

shown to improve survival. In other words, PAH patients whose lungs had stronger 

transcriptional activity of the pink module were less likely to be on epoprostenol treatment. This 
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raises the question of whether epoprostenol is somehow protective of the gene programs 

associated with the pink module. The most strongly upregulated pathway in the pink module 

genes was the Hallmark pathway of “epithelial mesenchymal transition” which encompasses 

endothelial mesenchymal transition (EndMT) and was also the top pathway enriched in the 

transcriptome-wide DEG analysis.  EndMT is widely known to be a critical process by which 

pulmonary arteries undergo vascular remodeling in PAH50 further supporting the importance of 

the pink module.  

Given that the RNAseq was performed on explanted lungs of patients undergoing lung 

transplantation and were thus likely advanced stage PAH, we performed GWAS enrichment 

analysis to assess for a causal molecular link between the risk of PAH and advanced-stage PAH 

lungs. We found the pink module to be significantly enriched for PAH GWAS in multiple 

GWAS cohorts using two distinct GWAS enrichment methods. This suggests that the pink 

module genes are not merely just associated with severe disease but also likely causal in PAH 

pathogenesis.  

Key driver analysis utilizing a comprehensive gene-gene regulatory network constructed 

from over 2000 human lungs identified PDE7B, a gene that encodes the phosphodiesterase 7B 

protein which hydrolyzes the second messenger cAMP, as a central hub gene of the pink module 

but has never before been implicated in PAH aside from a finding from one study that its 

expression was upregulated in the lungs of MCT rats51. However, PDE7B has been implicated in 

cancer, which is increasingly recognized to have similarity to PAH in the dysregulation of many 

biological processes such as cell survival and proliferation52. For example, one study implicated 

PDE7B as a drug target in chronic lymphocytic leukemia53. In PAH lungs, while PDE7B may be 

playing a central role in the pink module, understanding which cell types are involved is also 
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critically important. Using two distinct and novel approaches to scRNAseq integration, we found 

that endothelial cells, SMCs, and fibroblasts/myofibroblasts likely mediate the pink module 

genes, consistent with EndMT as the most upregulated pathway in this module.  Further 

supporting this finding, a recent PAH human lung scRNAseq study found that PDE7B had 

increased expression in endothelial cells, fibroblasts, and pericyte/SMCs54.  

The strengths of this study include the large sample size and cutting edge multiomic 

methods utilized to uncover new biological insights into PAH pathogenesis. Although these lung 

samples derived from advanced stage PAH lungs, we were able to establish a casual molecular 

link to PAH pathogenesis using innovative GWAS enrichment methods. Another potential 

limitation is that the RNAseq data was at the bulk tissue level. However, we were able to infer 

cell types of relevant co-expression modules using two novel scRNAseq integration methods.  

Overall, this integrative multiomics and systems biology study of human PAH lungs 

revealed the dysregulation of many genes, pathways, and cell types in PAH lungs at the tissue 

level. This study further identified and prioritized new candidate PAH genes such as PDE7B and 

the potential cell types it acts in, which warrant further investigation as novel therapeutic targets. 
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This dissertation investigated the transcriptional alterations in the lungs of PAH animal 

models and patients using integrative multiomics to identify and prioritize candidate genes, 

pathways, and cell types implicated in PAH pathobiology. We identified reprogramming of 

genes and pathways in various cell types in SuHx and MCT lungs. We also found that genes 

dysregulated in SuHx nonclassical monocytes were significantly enriched for PAH-associated 

genes and GWAS variants. We further identified candidate drugs predicted to reverse the 

dysregulated gene programs. This rat study revealed the distinct and shared reprogramming of 

genes and pathways in two commonly used PAH models for the first time at single-cell 

resolution and demonstrated their relevance to human PAH and utility for drug repositioning.  

We then dissected the human PAH lung transcriptional landscape at the tissue level using 

an innovative network and systems biology methods on a well-powered RNAseq dataset of 

human PAH lungs. We discovered many DEGs and pathways in human PAH lungs at the tissue 

level, and through integration with clinical data and PAH GWAS, our network analysis revealed 

modules of co-expressed genes that are not only associated with PAH diagnosis and severity, but 

also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing 

a comprehensive gene-gene regulatory network of the human lung identified and prioritized 

candidate genes. Furthermore, we integrated the tissue-level networks with scRNAseq to 

uncover the specific cell types mediating the tissue-level gene programs. Thus, our findings 

implicate novel genes, pathways, and cell types in PAH pathobiology.  

While our rat single-cell study demonstrated connections to human pathobiology of PAH, 

direct comparison to our human PAH lung study is challenging given the different resolution 

(cell vs tissue) and different analytical methods (i.e. using cell type-specific rat DEGs vs human 

tissue-level WGCNA co-expression modules). The relative timing of lung sampling with respect 
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to the disease course could also be very different between the rat and human studies and the 

dysregulated pathways could be quite different earlier vs later in the disease course. For example, 

inflammatory pathways were prominently upregulated across a number of cell types in both PAH 

rat models. However, such pathways were downregulated in the overall lung tissue from our 

human dataset, which could reflect that these patients had advanced disease requiring lung 

transplantation. Obtaining human lung samples from patients earlier in their disease course 

would be difficult since lung biopsies are not routine. Thus, other approaches are needed to link 

molecular alterations from advanced disease to disease risk and pathogenesis, such as GWAS 

integration as implemented in this study. A comprehensive human lung single-cell study in PAH 

employing such integrative methods will facilitate a more direct comparison to and further 

validation of findings from our rat single-cell study, such as the importance of non-classical 

monocytes. 

Future directions include single-nucleus RNAseq and spatial transcriptomics of human 

PAH lungs, as well as experimental validation of candidate genes. Single-nucleus RNAseq 

enables use of archived frozen tissues while retaining similar cellular resolution and gene 

coverage as scRNAseq. Spatial transcriptomics will localize the key genes and pathways within 

the lung cellular architecture which as of yet has never been performed in PAH. Furthermore, 

genetic perturbation in relevant cells in vitro will elucidate the functional role of candidate genes 

in PAH pathogenesis. Such state-of-the-art omics and experimental studies will unravel new 

causal insights into the specific dysregulation of genes and pathways within the diseased PAH 

lung. 

 




