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ABSTRACT OF THE DISSERTATION

Integrative Multiomics and Systems Biology of Pulmonary Arterial Hypertension

Jason Hong
Doctor of Philosophy in Molecular, Cellular, and Integrative Physiology
University of California, Los Angeles, 2021
Professor Xia Yang, Co-Chair

Professor Mansoureh Eghbali, Co-Chair

Pulmonary arterial hypertension (PAH) is a lung disease characterized by narrowing of
the pulmonary arteries causing hemodynamic resistance which eventually leads to right heart
failure and death. Current therapies mainly act through vasodilation but none reverse the
underlying vascular remodeling characteristic of PAH. A deeper understanding of the molecular
and cellular mechanisms of PAH is needed to bridge this translational gap. The goal of this

dissertation is to investigate the transcriptional alterations in PAH lungs using integrative



multiomics to identify and prioritize candidate genes, pathways, and cell types implicated in
PAH.

First, we identified reprogramming of genes and pathways in various cell types in the
lungs of two commonly used rat models of PAH, namely Sugen-hypoxia (SuHx) and
monocrotaline (MCT), using single-cell RNA sequencing (scRNAseq). We found that genes
dysregulated in SuHx nonclassical monocytes were significantly enriched for PAH-associated
genes and GWAS variants. We further identified candidate drugs predicted to reverse the
dysregulated gene programs. This study revealed the distinct and shared reprogramming of genes
and pathways in two commonly used PAH models for the first time at single-cell resolution and
demonstrated their relevance to human PAH and utility for drug repositioning.

Next, we dissected the human PAH lung transcriptome at the tissue level using an
innovative network and systems biology methods on a well-powered RNA sequencing dataset of
human PAH lungs. We discovered many DEGs and pathways in human PAH lungs at the tissue
level, and through integration with clinical data and PAH GWAS, our network analysis revealed
co-expressed gene modules that are not only associated with PAH diagnosis and severity, but
also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing
a comprehensive gene regulatory network of the human lung identified and prioritized candidate
genes. Furthermore, we integrated the tissue-level networks with scRNAseq to uncover the
specific cell types mediating the tissue-level gene programs.

Overall, this integrative multiomics and systems biology study revealed and prioritized
the dysregulation of many genes, pathways, and cell types in the lungs of PAH animal models

and patients, thereby opening new avenues for therapeutic targeting.
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CHAPTER 1

Introduction



Pulmonary arterial hypertension (PAH) is an important clinical problem

PAH is characterized by narrowing of the pulmonary arteries causing hemodynamic
resistance which eventually leads to right heart failure and death. Current therapies mainly act
through vasodilation but none reverse the underlying vascular remodeling characteristic of
PAH!. Therefore, PAH patients continue to suffer from a poor quality of life and face a grim
long-term prognosis?. To make significant gains in improving quality of life and survival, new
therapies targeting pathways central to disease pathogenesis are needed to counteract the
underlying disease process. However, many novel drugs while effective in PAH models have
failed to translate to the bedside®. A deeper understanding of the molecular and cellular

mechanisms of PAH is needed to bridge this translational gap.

Current state and gaps in PAH omics

Over the past decade, data-driven multiomics have emerged as powerful tools to uncover
novel genes and pathways involved in PAH pathogenesis. Transcriptomic studies of PAH lungs
have uncovered genes and pathways differentially expressed in PAH*>. However, whether such
findings are robust and causal in disease pathogenesis remain unknown since lung samples are
usually from limited numbers of advanced stage PAH patients and experimental follow-up of
findings is often lacking. Genetic studies including genome-wide association studies (GWAS)
have identified only a limited number of causal genes in PAH leaving greater than 80% of cases
genetically unexplained® . In addition to causal genes, the culprit cell types are also critically
important to understand the molecular underpinnings of PAH. Besides pulmonary vascular cells,
many other lung cell types including various immune cells have been implicated in PAH by prior

10-14

studies!®'4. A human PAH scRNAseq study was also recently published!® but was limited to



three diseased lungs and a focused analysis of a select few cell types. A more comprehensive and
integrated examination of the altered genes, pathways, and cell types in PAH lungs is needed to

advance our understanding of PAH mechanisms and help inform translational research efforts.

The dissertation

This dissertation investigates the transcriptional alterations in the lungs of PAH animal
models and patients using integrative multiomics to identify and prioritize candidate genes,
pathways, and cell types implicated in PAH pathobiology.

Chapter 2 is a reprint of “Single-Cell Study of Two Rat Models of Pulmonary Arterial
Hypertension Reveals Connections to Human Pathobiology and Drug Repositioning”, which was
originally published in Am J Respir Crit Care Med. In this study, we used single-cell RNA
sequencing (scRNAseq) to determine and prioritize dysregulated genes, pathways, and cell types
in lungs of PAH rat models to assess relevance to human PAH and identify drug repositioning
candidates. We identified distinct changes in genes and pathways in numerous cell types in
Sugen-hypoxia (SuHx) and monocrotaline (MCT) lungs. We also found that genes altered in
SuHx nonclassical monocytes were significantly enriched for PAH-associated genes and genetic
variants, and candidate drugs predicted to reverse the changes were identified. Our study
revealed the distinct and shared dysregulation of genes and pathways in two commonly used
PAH models for the first time at single-cell resolution and demonstrated their relevance to
human PAH and utility for drug repositioning.

Chapter 3 dissects the PAH lung transcriptional landscape at the tissue level using a large
RNA sequencing (RNAseq) dataset of human PAH and control lungs. We identified many

differentially expressed genes and pathways at the tissue level in human PAH lungs. Through



integration with clinical data and PAH GWAS, our network analysis revealed modules of co-
expressed genes that are not only associated with PAH, but likely causal for disease severity and
disease risk. Furthermore, we integrated the tissue-level networks with scRNAseq to uncover the
specific cell types mediating the tissue-level gene programs. Thus, our findings implicate novel
genes, pathways, and cell types in PAH pathobiology.

Chapter 4 is a concluding summary of the dissertation and covers future directions for

integrative multiomics in PAH.
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CHAPTER 2
Single-cell Study of Two Rat Models of Pulmonary Arterial Hypertension Reveals

Connections to Human Pathobiology and Drug Repositioning
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Abstract

Rationale: The cellular and molecular landscape and translational
value of commonly used models of pulmonary arterial hypertension
(PAH) are poorly understood. Single-cell transcriptomics can
enhance molecular understanding of preclinical models and facilitate
their rational use and interpretation.

Objectives: To determine and prioritize dysregulated genes,
pathways, and cell types in lungs of PAH rat models to assess
relevance to human PAH and identify drug repositioning candidates.

Methods: Single-cell RNA sequencing was performed on the
lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and
control rats to identify altered genes and cell types, followed by
validation using flow-sorted cells, RNA in situ hybridization, and
immunofluorescence. Relevance to human PAH was assessed by
histology of lungs from patients and via integration with human
PAH genetic loci and known disease genes. Candidate drugs were
predicted using Connectivity Map.

Measurements and Main Results: Distinct changes in genes
and pathways in numerous cell types were identified in SuHx and
MCT lungs. Widespread upregulation of NF-«B signaling and
downregulation of IFN signaling was observed across cell types. SuHx
nonclassical monocytes and MCT conventional dendritic cells
showed particularly strong NF-«B pathway activation. Genes altered
in SuHx nonclassical monocytes were significantly enriched for
PAH-associated genes and genetic variants, and candidate drugs
predicted to reverse the changes were identified. An open-access
online platform was developed to share single-cell data and

drug candidates (http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/).

Conclusions: Our study revealed the distinct and shared
dysregulation of genes and pathways in two commonly used PAH
models for the first time at single-cell resolution and demonstrated
their relevance to human PAH and utility for drug repositioning.
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drug repurposing; monocrotaline; Sugen-hypoxia
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At a Glance Commentary

Scientific Knowledge on the
Subject: The cellular and molecular
landscape and translational value of
commonly used models of pulmonary
arterial hypertension (PAH) are poorly
understood. Single-cell transcriptomics
can enhance molecular understanding
of preclinical models and facilitate their
rational use and interpretation.

What This Study Adds to the Field:
Our study revealed the distinct and
shared dysregulation of genes and
pathways in two commonly used PAH
models for the first time at single-cell
resolution and demonstrated their
relevance to human PAH and utility
for drug repositioning.

Despite advances in the management of
pulmonary arterial hypertension (PAH), it
remains an incurable and progressive
disease characterized by severe pulmonary
vascular remodeling, poor quality of life, and
guarded long-term prognosis (1). Notably,
current therapies focus on relieving
symptoms and do not reverse vascular
remodeling, the key pathological feature of
PAH. The lack of therapies targeting
underlying mechanisms in PAH may be in
part because of our limited understanding
of the pathogenic cell types and their
specific molecular pathways. It has been
increasingly recognized that in addition to
pulmonary vascular cells, other cell types in
the lung, including various immune-cell
populations, may also play an important
role in PAH and other pulmonary diseases
(2-7). However, to our knowledge, a
comprehensive evaluation to systematically
compare these various cell types has not
been undertaken in the most widely used
preclinical models of PAH, namely the
monocrotaline (MCT) and Sugen-hypoxia
(SuHx) rat models. Given that numerous
novel therapies tested in PAH animal
models have not translated to the bedside
(8), a more comprehensive understanding
of the cellular and molecular landscape
of these models is needed to unravel
mechanistic insights and enhance the
ability of preclinical work to predict drug
efficacy in humans (9).

In this study, we performed lung single-

11 T . T
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and SuHx rats to investigate altered cell
types, genes, and pathways and further
integrated the findings with human genetics
to assess human relevance. We then
identified potential drug-repurposing
candidates through computational
screening of drug transcriptional profiles
against the dysregulated transcriptional
programs revealed by scRNA-seq. Lastly, to
facilitate dissemination of the data and
findings, we offer an open-access online
platform for the wider research community
(http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/). Some of the results of
these studies have been previously reported
in the form of an abstract (10).

Methods

The main methods are below with
additional details provided in an online
supplement.

Animals

Adult male Sprague-Dawley rats (250-350
g) were used for all animal experiments,
which were approved by the University of
California, Los Angeles, Animal Research
Comnmittee. For the SuHx model, rats were
injected subcutaneously with Sugen 5416
(20 mg/kg) followed by being kept in
hypoxia at 10% O, for 21 days and then
by being kept in normoxia for 14 days.
For the MCT model, rats were injected
subcutaneously with MCT (60 mg/kg)
followed by being kept in normoxia for 28
days. Age-matched control rats were kept
in normoxia for 28 days. Echocardiography
and right heart catheterization were
performed. Lungs were then harvested and
enzymatically dissociated into single-cell
suspensions, which was followed by
scRNA-seq (11) (n = 6/group).

scRNA-seq Analysis
Expression data was normalized, filtered,
and clustered using the Seurat R package (R
Foundation for Statistical Computing) (12).
Cell types were identified on the basis of
known cell-type marker genes. Cell-type
proportions were quantified and compared
between PAH models and control animals,
as previously described (13). Global
transcriptomic shifts between groups were
assessed using a Euclidian distance method
(14). Differentially expressed genes (DEGs)
were determined for each cell type between
' leither SuHx or MCT rats using

Hong, Arneson, Umar, et al.: Single-Cell Analysis in PAH Animal Models
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MAST (Model-based Analysis of Single-
Cell Transcriptomics) (15). To annotate
DEGs for biological pathways or PAH
relevance, gene-set enrichment analysis was
performed using hallmark pathways from
the Molecular Signature Database (16) as
well as using human PAH-associated gene
sets obtained from DisGeNET (17) and
the Comparative Toxicogenomics Database
(18).

scRNA-seq Validation in Rat and
Human Lung Tissues

The identities of select cell types were
validated using bulk RNA-seq on cells
purified by fluorescence-activated cell
sorting (FACS) from the lungs of an
additional set of rats (n=4/group).

Select scRNA-seq DEGs from SuHx

and MCT rats were validated by RNA

in situ hybridization (ISH) and
immunofluorescence using rat lung sections
(n=>5-6 rats/group). The same DEGs were
further evaluated by RNA ISH on human
lung sections from patients with PAH
compared with control patients (n=7-8
subjects/group).

Integration of Rat PAH Single-Cell
DEGs with Human PAH Genome-
Wide Association Study

To evaluate the relevance of the rat DEGs to
human PAH, we assessed the human
orthologs of rat DEGs for enrichment of
genetic variants associated with PAH from a
human genome-wide association study
(GWAS) (19) using marker set enrichment
analysis in the Mergeomics R package (20).

Identification of Drugs Predicted to
Reverse Rat Disease Signatures

Using Connectivity Map

Signatures of MCT and SuHx DEGs for each
cell type were queried against the full
Connectivity Map (CMap) (21) database of
compound expression signatures induced
in human cell lines to prioritize those with
highly matching or opposing signatures.
Pattern-matching algorithms scored each
reference perturbagen profile for the
direction and strength of enrichment

with query scRNA-seq DEG signatures.
Perturbagens with positive or negative
connectivity scores have similar or opposite
signatures to that of the query (i.e., genes
that are increased in the scRNA-seq DEG
query are decreased by the perturbagen or
vice versa).
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Figure 1. Single-cell RNA sequencing identifies diverse lung cell types in rat models of pulmonary arterial hypertension. (A) Schematic of study design for
single-cell RNA sequencing analysis on the lungs of monocrotaline (MCT), Sugen-hypoxia (SuHx), and control rats (n = 6/group). (B) Uniform manifold

approximation and projection plot showing lung cells from 18 rats with clusters labeled by cell type. (C) Dot plot highlighting log,o average expression of
select marker genes used to identify cell clusters. The dot size corresponds to the percentage of cells expressing a gene in a given cluster. (D) Uniform
manifold approximation and projection plot showing lung cells colored by disease condition: MCT in red, SuHx in blue, and control in gray (n =6/group).
(E) Bar table showing relative contributions of cells from disease models (MCT in red and SuHx in blue) versus the control model (gray) within each cell-type
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Data Availability

The scRNA-seq data set and lists of cell
type-specific marker genes and disease
DEGs are available online at http://
mergeomics.research.idre.ucla.edu/
PVDSingleCell/CellBrowser/. Connectivity
scores of the entire panel of perturbagens
from the CMap analysis are available at
http://mergeomics.research.idre.ucla.edu/
PVDSingleCell/CMap/.

Results

scRNA-seq Identifies Diverse Cell
Populations in the Rat Lung

The PAH phenotype in MCT and SuHx
rats was confirmed by echocardiography
(see Figures E1A, E1B, and E2B-E2L in the
online supplement), immunohistochemistry
(Figure E1C), and right heart catheterization
(Figure E2A). The scRNA-seq of 18 lungs
(6/group) profiled 33,392 cells (Figure 1A)
after quality control (Figures E3A-E3D,
E4A, and E4B), with even representation of
groups (Figures E4C and E4D). After
clustering on the basis of transcriptomic
similarity, we identified 28 distinct cell
types expressing established markers for
epithelial, stromal, lymphoid, and myeloid
cell populations and rare populations,
including conventional dendritic cells
(cDCs) and regulatory T cells (Tregs)
(Figures 1B, 1C, and E5). Batch

correction did not further optimize
clustering and cell-type identification
(Figure E4E) (12). Each cluster included
cells from each group (Figures 1D and 1E).
Compared with control animals, we
observed a significant increase in the
normalized cell fractions of interstitial
macrophages (iM®s) in MCT rats and
alveolar macrophages (aM®s) in SuHx rats
(Figure 1E).

FACS and Bulk RNA-seq Validate
scRNA-seq Cell-Type Identities and
Proportions

To validate the rare lung cell types identified
from scRNA-seq, namely cDCs and Tregs,
and their corresponding gene signatures, we
performed bulk RNA-seq on FACS-purified
cells and subsequent deconvolution using
our scRNA-seq signatures as a reference

(Figure 2A). We used canonical markers to
isolate cDCs (CD64~ CD11b/c*, RT1B")
and Tregs (CD4", CD25", CD278") by
FACS (Figures 2B and 2C). Deconvolution
of FACS-purified transcriptomes showed
strong enrichment for the correct cell
types as identified by scRNA-seq, thus
validating the accuracy of scRNA-seq

cell signatures (Figure 2D). Furthermore,
FACS-determined relative cell proportions
between disease models and the control
model showed a pattern similar to that
from scRNA-seq (Figures 2E-2H).
Specifically, both scRNA-seq and FACS
showed significantly increased ¢cDCs in
MCT rats, but not in SuHx rats, and Tregs
did not change in either model compared
with the control model.

scRNA-seq Reveals DEGs with
Cell-Type Specificity in PAH Models

A total of 4,724 and 2,324 DEGs were
identified in MCT and SuHXx rats (false
discovery rate < 0.05), respectively, across 17
cell types (Figure 3A). There were 1,511
DEGs common in both models, of which 921
were regulated in the same direction. aM®s,
the largest cell cluster, had the most DEGs,
likely due to high statistical power. We also
assessed changes on a transcriptome scale
within each cell type using a Euclidean
distance-based approach that is less
influenced by cluster size (14) (Figure 3B).
Despite MCT rats having more DEGs, aM®s
and nonclassical monocytes (ncMonos) from
the SuHx model demonstrated the strongest
global transcriptomic shifts from the control
model.

A closer examination of DEGs revealed
genes whose differential expression was
model and cell-type specific (Figure 3C). In
total, there were 2,088 and 574 DEGs
specific to one cell type in MCT and SuHx
rats, respectively. For example, II6st, which
encodes a signal transducer that mediates
IL-6 signaling, was upregulated exclusively
in a subpopulation of endothelial arterial
type 1 (EA1) cells from SuHx; II6 was
specifically upregulated in SuHx ncMonos
and MCT neutrophils, suggesting model-
specific differences in IL-6 signaling.
Gprl5 was exclusively upregulated in
SuHx Tregs and encodes an orphan G

protein-linked receptor implicated in Treg
homing (22).

Furthermore, we identified 19 and 8
DEGs that were differentially expressed
in the same direction in at least five cell
types in either MCT or SuHx rats, among
which 6 (Nfkbia, Scgblal, 1fi27, Slfn3,
Mt-cox3, and AY172581.24) were altered
across various immune cells in both models
(Figure 3D). For example, Ifi27, which
encodes IFNa-inducible protein 27 and
plays a role in apoptosis and vascular
response to injury (23, 24), was
downregulated across cell types in both
models and in human PAH lungs (Figure
E6) (25).

scRNA-seq Reveals Pathways with
Cell-Type Specificity in PAH Models
Pathway enrichment of DEGs revealed cell
type-specific dysregulation of many
pathways (Figure 4A). The most distinct
difference between models was a strong
downregulation of IFN signaling across
multiple cell types in the MCT model

that in the SuHx model was weaker or

in the opposite direction (Figure 4B).

The relevance of IFN downregulation to
human PAH was demonstrated in EA1l
cells as an example (Figures 4C and 4D).
The most notable commonality between
models was a widespread upregulation of
TNFa/NF-kB signaling across cell types,
most notably in SuHx ncMonos (Figure 4E
and 4F).

Validation of Select DEGs by RNA ISH
and Immunofluorescence

Given the importance of ncMonos,
suggested in our analyses above, we
validated a DEG from ncMonos by RNA
ISH on both rat and human lung sections
(Table E1). We defined ncMonos as positive
for both CD16 and Mal. Mal is the top
marker for ncMonos in our scRNA-seq
(Figure 1C) and is involved in the

MyD88 pathway, important in human
lung ncMonos (26). We validated the
upregulation of Ccrl2, a top SuHx ncMono
DEG, encoding a chemokine receptor-like
protein whose function is unknown but is
upregulated during monocyte-to-M®
differentiation (Figure 5A) (27). We also
validated the upregulation of Fabp4, a top

Figure 1. (Continued). cluster. The cell-type cluster referred to on the y-axis is defined as the total number of cells of a cell tvoe from the control model and
either the MCT or SuHx model (but not both models). A significant increase in
relative to the control model. Wilcoxon rank-sum test: *P < 0.05 and **P < 0.01
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Figure 3. Single-cell RNA sequencing reveals differentially expressed genes (DEGs) in individual cell types of pulmonary arterial hypertension models.
(A) Jitter plot showing changes in gene expression for each cell type due to monocrotaline (MCT) (top) or Sugen-hypoxia (SuHx) (bottom) conditions
compared with the control condition. Each dot represents the differential expression MAST (Model-based Analysis of Single-Cell Transcriptomics) z-score
of a gene. Dots indicating a false discovery rate (FDR) < 0.05 are in color. The gray dots indicate values that were not significant (ns). (8) Dot plot showing
shifts in gene expression on a whole-transcriptome scale within each cell type for MCT (red) and SuHx (blue) models compared with the control model
using a Euclidean distance (E.d.)-based statistical approach as previously described (14). The x-axis shows the log ratio of observed-to-null E.d. The
alveolar macrophages and nonclassical monocytes from the SuHx model demonstrated the strongest global shifts in gene expression from the control
model. (C) Dot plot comparing DEGs across cell types and disease models shows genes whose differential expression was specific to a disease model
and a particular cell type. For example, Gpr15, which encodes an orphan G protein-linked receptor believed to be important in regulatory T cell (Treg)
homing (22), was exclusively upregulated in Tregs from SuHx rats. (D) Dot plot showing DEGs consistent across immune-cell types. For instance, /fi27,
which encodes IFNa-inducible protein 27 and plays a role in apoptosis and vascular response to injury (23, 24), was downregulated across cell types in
both models. (C and D) The horizontal dashed line for each gene represents zero logFC. (B-D) Gray dots indicate values that were ns, and the size of the
dots corresponds to —logso(P) values (B) and —log:o(FDR) values (C and D). logFC =log fold change.

MCT aM® DEG, encoding a fatty
acid-binding protein involved in lipid
metabolism and inflammation (Figure 5B)
(28). We further demonstrate similar
upregulation of both proteins by
immunofluorescence in rat lungs (Figures
5C and 5D).

Integrative Analysis of Rat scRNA-seq
DEGs with Human PAH Genes
Supports the Relevance to Humans
We curated genes implicated in PAH
from DisGeNET and the Comparative
Toxicogenomics Database (Figure 6A) and
demonstrated that the top pathways

enriched in these public gene sets

(Figure 6B) were also highly enriched in
our rat scRNA-seq (Figures 4A and 4E).
When directly testing rat DEGs for
enrichment of these PAH genes, we noted a
marked upregulation in SuHx ncMonos in
particular (Figures 6C-6E).
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Figure 4. Single-cell RNA sequencing reveals pathways in individual cell types of pulmonary arterial hypertension models. (A) Heatmap showing cell
type—specific pathway enrichment of gene signatures of monocrotaline (MCT) (left) and Sugen-hypoxia (SuHx) (right) models compared with the control model
using gene-set enrichment analysis (GSEA) (P < 0.05) and hallmark pathways from the Molecular Signatures Database on the y-axis. The dot size corresponds
to —logso(P), and color represents the normalized enrichment score (NES) from GSEA, indicating upregulation (red) or downregulation (blue). TNFa/NF-xB
signaling was significantly upregulated across many cell types in both disease models. (B) Dot plot showing NES of IFNa (black text) and IFNy (green text)
response pathways across cell types in the MCT (red) and SuHx (blue) models, in which the size and color tint of dots represent strength of —log;o(P) values.
A strong downregulation of IFN pathways was seen across cell types in the MCT model. (C) Dot plot showing MAST (Model-based Analysis of Single-Cell
Transcriptomics) z-scores of leading-edge genes accounting for the MCT EA1 downregulation of IFN+y response as determined by GSEA from the MCT (red)
and SuHx (blue) models, in which the size and color tint of dots represent the strength of —log1o(P) values. Gene labels highlighted in yellow represent human
pulmonary arterial hypertension-associated genes from either (black text) or both (red text) of the Comparative Toxicogenomics Database and DisGeNET
databases. (D) Boxplots showing RNA expression of human orthologs of select IFN leading-edge genes shown in C derived from a public microarray (Gene
Expression Omnibus series 70456) in which primary human pulmonary arterial endothelial cells were transfected with control (gray) or BMPR2 (purple)
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Figure 4. (Continued). siRNA (n=4/group from 4 donors). P values were determined by using the limma R package: ****False discovery rate

(FDR) < 0.05. (E) Dot plots showing all (left) and top 30 (right) cell type—specific pathways in descending order on the y-axis by NES in which positive
scores indicate upregulation. Red (MCT) and blue (SuHx) dots met the FDR < 0.05 criterion, and gray dots were not significant (ns). The dot size indicates
the strength of the FDR. The number of significant cell type—specific rat signatures by disease model is shown in the lower right (FDR < 0.05). In the left
plot, dots on opposite sides of an NES of O for a given row represent opposite directionalities of cell type-specific enrichment of MCT and SuHx models.
Many more cell type—-specific pathways were significant in the MCT model compared with the SuHx model, but TNFa/NF-kB signaling in SuHx
nonclassical monocytes (ncMonos) was the most prominently upregulated pathway overall (right). Cell-type colors correspond to those as labeled in
Figure 1B. (F) Dot plot showing MAST z-scores of leading-edge genes accounting for the SuHx ncMono upregulation of TNFa/NF-«kB signaling with figure
legend as described in C. CTD =Comparative Toxicogenomics Database; KD =knockdown; NK = natural killer.

We further integrated rat scRNA-seq with
a PAH GWAS using Mergeomics to assess
human relevance (Figures 6F and 6G). We
found significant enrichment for GWAS
signals among DEGs in both models from a
number of immune cells of both myeloid

and lymphoid origins, supporting that DEGs
from our rat models are relevant to PAH

pathogenesis in humans (Figure 6H and Tables
E2-E4).

scRNA-seq Uncovers Perturbations

in Vascular Cell Types Relevant to
Human PAH

Given the importance of pulmonary
vascular cell types to PAH prthnmenoecic we

Hong, Ameson, Umar, et al.: Single-Cell Analysis in PAH Animal Models
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provide a closer examination of the
endothelial arterial subpopulations of EA1
and EA2 cells, as well as of smooth muscle
cells (SMCs) and fibroblasts (Figures 7A
and 7B). We show model- and cell
type-specific alterations of many
established and unknown genes in PAH
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Human RNA ISH

Rat Protein IF
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Figure 5. RNA ISH and immunofluorescence (IF) validate select differentially expressed genes. (A and B) The upregulation of Ccri2 (red) in Sugen-hypoxia
(SuHx) nonclassical monocytes (ncMonos) from single-cell RNA sequencing (scRNA-seq) was observed by RNAscope (Advanced Cell Diagnostics) in
SuHx rats and patients with PAH (A) and by IF in SuHx rats (B). ncMonos were defined as cells positive for both Cd16 (white) and Mal (green). We chose
Mal for double-labeling because it was the top marker gene specific for ncMonos in our data. (C and D) The upregulation of Fabp4 (red) in MCT alveolar
macrophages (aM®s) from scRNA-seq was demonstrated, in which aM®s were defined as cells positive for Mrc1 (green) for rat and human RNAscope (C)
or Cd68 (white) for rat IF (D). Both Mrc1 and Cd68 are canonical markers and were cell type-specific markers for aM®s. The cell nuclei are labeled with
DAPI (blue). Scale bars, 20 pm. ISH=in situ hybridization; MCT = monocrotaline; PAH = pulmonary arterial hypertension.

dysregulation (Figure 7D). We also
highlight select DEGs that are similarly
altered in public human cell
type-specific data sets (Figure 7E). For
example, Bmpr2, the most well-studied
PAH gene, was downregulated in MCT
EA1 cells but not in EA2 cells, whereas
downregulation was not observed in
SuHx vascular cells, which is consistent
with a recent study (29). Cst3, encoding
cystatin C, was upregulated in MCT and
SuHx EA1 cells. Furthermore, Cst3
serum levels correlated with right

ve

1014

mortality in patients with PAH, despite
unknown mechanism in PAH (30, 31).

Integration of Rat DEGs with CMap
Identifies Potential Candidate Drugs
for Repositioning
To investigate the utility of scRNA-seq
DEGs to identify the therapeutic potential of
existing drugs for PAH, we screened all
cell-specific transcriptional signatures
against the molecular profiles of thousands
of pharmacologic perturbagens tested in
human cell lines from CMap, including 5
1 PAH drugs, 26 drugs tested in

17

PAH clinical trials, and 15 drugs that have
shown efficacy in PAH animal models
(Figures 8A and 8B). Comparisons of drug
connectivity profiles revealed interesting
patterns. For example, bosentan, an
endothelin receptor antagonist currently
used in patients with PAH, and tacrolimus,
a calcineurin inhibitor for which a phase 2
clinical trial for PAH was completed, had
very similar connectivity profiles across
cell types and disease models, suggesting
converging pathways that are likely due
to similar activation of BMP signaling
(32, 33). In contrast, distinct connectivity
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Figure 6. Integrative analysis of rat single-cell RNA sequencing (sScRNA-seq) differentially expressed genes (DEGs) with human pulmonary arterial
hypertension (PAH) genetics points to the relevance of the DEGs to human PAH. (A) Schematic of analytical approach whereby genes implicated in
human PAH were curated from DisGeNET (409 genes) and Comparative Toxicogenomics Database (CTD) (275 genes), of which 102 genes were shared
between the databases. These genes were then tested for enrichment in (B) Molecular Signatures Database hallmark pathways and (C-£) rat scRNA-seq
signatures. (B) Dot plot showing pathways significantly enriched for PAH genes by hypergeometric test (false discovery rate [FDR] < 0.05), whether from the
DisGeNET database (green) or the CTD database (purple). The dot size represents the —logso(FDR). These gene sets were highly enriched for known or
implicated PAH pathways, such as apoptosis, NF-«B signaling, and endothelial-to-mesenchymal transition and were similar overall to those altered in Sugen-
hypoxia (SuHx) and monocrotaline (MCT) rat lung scRNA-seq (Figure 4). (C) Heatmap showing most highly significant (FDR < 0.01) enrichment of PAH genes
in MCT (left) and SuHx (right) cell type-specific signatures using gene-set enrichment analysis, in which red indicates upregulation and blue indicates
downregulation. The dot size represents —log;o(FDR). Significant upregulation of PAH genes was noted in myeloid cell types in both models, and in
nonclassical monocytes (ncMonos) in particular. (D and E) Dot plots showing all (left) and top 5 (upper right) cell type-specific rat signature enrichment for PAH
genes from the DisGeNET (D) and CTD (E) databases. The red (MCT) and blue (SuHx) dots indicate meeting the FDR < 0.05 criterion, and gray dots indicate
values that were not significant (ns). The dot size represents —log1o(FDR). A number of significant cell type-specific rat signatures by disease model are shown
in the lower right (FDR < 0.05). In the left-sided plots, dots on opposite sides of an NES of O for a given row represent opposite directionalities of cell
type-specific enrichment of MCT and SuHx models. The SuHx ncMonos DEGs were most highly enriched for PAH genes comparing both models. For
the MCT model, DEGs from iM®s and cDCs demonstrated the strongest enrichment for PAH genes. (F) Schematic of analytical approach for human
PAH genome-wide association study (GWAS) integration. Human orthologs of rat scRNA-seq DEGs were assessed for enrichment of genetic variants
associated with PAH in human GWAS to further assess human relevance of the rat signatures. GWAS SNPs were filtered by keeping the top 50% by P value
strength and LD r? < 0.5, after which SNPs were mapped to genes by integrating with lung-specific expression quantitative loci (€QTLs) curated from public
databases. DEGs within each cell type (P <0.01 to include DEGs from rare cell types with low statistical power) were then tested for enrichment of these
GWAS-integrated expression SNPs (€SNPs). The GWAS P values of each eSNP set (by cell type and disease model) were then compared against that of
eSNPs generated from random gene sets to assess the significance of enrichment for stronger GWAS association P values using a modified chi-square
statistic. (G) Manhattan plot showing —log1o(P) values of 39,263 eSNPs used for rat ™" ~nwinkmmant anabicin ~fiac AIMAG QRN fliadas andl ~ATH
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different chromosomes. Select eSNPs are labeled with their reference SNP identifiers and the corresponding genes they regulate. (H) Dot plot showing rat
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profiles were observed among drugs from
the same class, such as with treprostinil
and iloprost (Figure 8B), both of which
are synthetic analogs of prostacyclin but
have opposing effects on a preclinical
model of lung cancer (34), likely due to
different off-target effects mediated by
differential engagement of other
eicosanoid receptors. Our analysis also
predicted that sildenafil reverses MCT’s
SMC signature most enriched for genes
related to epithelial-to-mesenchymal
transition (EMT), consistent with prior
studies investigating sildenafil’s effect on
pulmonary arterial SMCs (PASMCs) from
humans (35-37) and MCT rats (38).
Upregulated EMT genes in our MCT
SMC signature were also found
to be downregulated in a toxicogenomic
microarray of sildenafil-exposed rat
hepatocytes (Figures E7ZA-E7C) (39).
We next examined drugs predicted to
reverse the transcriptional signature of
SuHx ncMonos, given that these cells were
most highly enriched for genes and
pathways relevant to PAH. Out of 2,429
compounds screened, the drug with the
strongest reversal of SuHx DEGs in
ncMonos was treprostinil, one of the most
effective PAH-targeted therapies currently
in use (Figure 8F). Two other ton drues
s

1016

recently shown to attenuate or prevent
PAH in animal models: tipifarnib, a
farnesyltransferase inhibitor currently
undergoing clinical trials for various
cancers (40), and memantine, an NMDA
receptor antagonist used to treat
Alzheimer’s dementia (41). Our analysis
also revealed novel candidates for
repurposing, such as palonosetron, a
serotonin-receptor antagonist used to
treat chemotherapy-induced nausea, and
guaifenesin, an expectorant used to loosen
airway mucus via unknown mechanisms
(Figure 8C).

Dissemination of scRNA-seq and
Drug Repositioning Results

We implemented a web server to enable
interactive browsing of the entire sScRNA-
seq data set, as well as searching and
downloading of cell type-specific marker
genes, disease signatures, and drug
predictions (Figure 9).

Discussion
In this study, we uncover comprehensive
cellular landscapes of altered genes and

pathwavs at single-cell resolution in the
0 widely used animal models of

19

PAH. Comparison of landscapes between
SuHx and MCT models reveals critical
similarities and differences in key cell types.
We integrated rat scRNA-seq with human
data to determine human relevance and
with pharmacotranscriptomic data to
identify potential drug-repurposing
candidates. Finally, we offer an open-access
platform for the wider research community
to access the data and findings.

The mechanisms leading to the PAH
phenotype in MCT and SuHx rat models
are believed to differ in that MCT is
associated with endothelial toxicity and
marked lung inflammation, whereas SuHx
is characterized by angioproliferative
pulmonary vascular disease (42). SuHx is
overall believed to recapitulate PAH more
closely than MCT, such as in the formation
of neointimal plexiform lesions, the
pathological hallmark of PAH. However,
human relevance of these models is likely
more nuanced at the cellular and molecular
level. The lack of in-depth understanding of
lung cell types and their respective pathway
alterations in PAH limits our ability to
rationally leverage these models in
translational science. In this study, we
found cell type-specific upregulation of
known PAH pathways across multiple
cell types in both MCT and SuHx models,
most notably involving NF-«B signaling.

American Journal of Respiratory and Critical Care Medicine Volume 203 Number 8 | April 15 2021



EA2 (arterial)

B

[EC (capillary) |

SMC ’“ "\

EA1 (arterial)|

I

SuHx vs. Control MCT vs. Control
Cypib1 e 125
20 1 Foxft _ Epasi ot
Cyptat e,
yP Clectda + 10.0
-
15 & Tek  Fn1 "™
RT1-CE10 o roz Juf cRamp2  pamig 7 L 75
- Ramp2 : men0l S NaaT Ctaf ® Codat [/
b B b SN
w Fox1 CoMal  Lgais3 | Cyr61 M-om | Bmpr2 "SDUSP1 ~ gogpg oy e | 50
ard Atpial Sod2 Lipa / &M= %% mcbla 0% et
5 Notcht Cd47/ | wy PR o Plat_ wot el os
\, |/ Hspas o || e w’ " Ros2 :
. ot Fost
0 [— s 0.0
T T T T T
-4 0 4 -5 0 5
—1 84 Cypibl PN
Lyeet M A
Cyptat [Veamt oo oot At
il i b o el ons
6 | 1 T e XN
P e P ez s Coldat
ampiia om0 | TN e it Q% o
I s ] P oo lem}'ﬁ:z)‘g’rigki
s Tmem dha Surt H
5 4+ s rons won e, Lpl Casp1 S oemss  F2r Bax [ 2
oy S ADIAT st e e | ospm | C25P Mgp Col1gat e
L o prom 5p100 -Pitimt con? "L >'®  Col3al ,::‘;"
PR T i Trpva “l
st at o o
m.“ Psmg1 S . Apoe st
Plat vt Acth on N Cdknla
0 =t Epast Gja1 SIKT Hgpas| Fo
T T T T T T T T T
-5.0 -25 0.0 25 5.0 -4 -2 0 2 4
€

FDR<0.05
P<005 DisGeNET

2z-score

DisGeNET or CTD

and CTD

SLPOEE DAL SR,
w@%;» ::,«P R U

SMC

Fb

R

S

S
S

N

AN

SuHx vs. Control

SEURIAE AR S

Cd

MCT vs. Control

Mgp Mgp. | 5
4 gt
a
3 S100a4
Cats RTI-CETO  Coltgal o, 3
- e
24 o Tgfbra Fn1 Pt Ve Gojaat
© Mmp2 Pdia3 odee T, Plata 5% % 2
o ° N Lo a3
- T, S o
14 Cend1 L1
0 4 0
T T T T T T T T
-2 0 2 4 6 -2 0 2 4
Scgbtat Fomz wza | 3
s For
_— e Puiras
1 contat e rot— Clu
4 g0
Plazg2a o el B
Serpinh1 Pz & g Epast an " pir [ 2
Ron e s g l? e Fow Sehk!_ ¥, S100a4
A o o Hoax 1 & ¥icam
24 AP Y o annms
Smpd3. & Foni [ Atta |- 1
Coldal o, e
Parp1
0+ Y
T T T T " T T T
-6 -3 0 3 6 -4 -2 0 2 4

Figure 7. Single-cell RNA sequencing uncovers perturbations in lung vascular cell types relevant to human pulmonary arterial hypertension (PAH). (A)
Uniform manifold approximation and projection plot showing vascular cells from 18 rat lungs with clusters labeled by cell type. (B) Heatmap showing
normalized expression of top marker genes used to identify the vascular cell types, in which each row is an individual cell. Shown to the left are the
condition and cell type to which each cell belongs. (C) Volcano plots showing differentially expressed genes (DEGs) within vascular cell types for the
Sugen-hypoxia (SuHx) or monocrotaline (MCT) models versus the control model, in which the x-axis represents MAST (Model-based Analysis of Single-

Cell Transcriptomics) z-scores and the y-axis indicates —logso(P). Significant upregulated (z > 0) or downregulated (z < 0) genes are shown as red

(P < 0.05) or dark red (false discovery rate [FDR] < 0.05) dots. DEGs (P < 0.05) labeled and highlighted in yellow represent human PAH-associated genes
from either (black text) or both (red text) of the CTD and DisGeNET databases. Otherwise, DEGs are labeled with their gene names if the FDR < 0.05

(endothelial arterial type 1 cell [EA1]) or P<0.01 (EA2, SMC, Fb). (D) Dot plots showing the top five upregulated and top five downregulated pathways
within vascular cell types as determined by gene-set enrichment analysis. Colored dots in red (MCT) or blue (SuHXx) indicate significant values (P < 0.05),
whereas gray dots represent values that were not significant (ns). The dot size corresponds to the —logo(P) value. (E) Box plots showing expression of
select DEGs in rat lung vascular cell types with similar changes shown side by side in human orthologs from public cell type—specific expression data sets:
BMPR2: Gene Expression Omnibus series (GSE) 126262, primary PAECs from two patients with PAH with BMPR2 mutations versus nine unused donor
controls; FOXF1: GSE126262, primary PAECs from four male patients with PAH versus five male unused donor controls; CST3, STAT3, SGK1 and AMD1:
GSE70456, four BMPR2 siRNA-transfected versus four control siRNA-transfected primary human PAECs from four donors; MGP, MMP2, CCND1, F2R,
FBN1, and EPAST: GSE2559, primary human PASMCs from two patients with PAH versus two normal subjects (n =4 vs. 3, respectively, including BMP2-
treated vs. untreated). P values from RNA sequencing (GSE126262) were determined by using DESeq2, whereas those from microarray (GSE70456 and

GSE2559) were determined by using R limma: *P<0.05, **P <0.01, **P <0.001, and ***FDR < 0.05. CTD = Comparative Toxicogenomics Database;
Fb =fibroblast; KD =knockdown; NES = normalized enrichment score; PAEC = pulmonary artery endothelial cell; PASMC = pulmonary arterial SMC;

SMC = smooth muscle cell.
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Figure 7. (Continued).

Although prior studies have demonstrated
NF-kB’s importance in PAH (43, 44), our
study systemically resolves and implicates
understudied cell types that most strongly
mediate this critical pathway: SuHx
ncMonos and MCT ¢DCs. Similar to cDCs
in human PAH (45), cDCs in rat PAH
were increased in MCT (but not SuHx)
lungs compared with control lungs, as
determined by scRNA-seq and FACS. In
addition, iM®s were also increased in MCT
lungs but not in SuHx lungs, which is
concordant with prior studies in MCT rats
and human PAH (46). MCT iM® and ¢DC
transcriptional signatures were significantly
enriched for PAH GWAS single-nucleotide
polymorphisms and known PAH genes,
whereas those of SuHx signatures were not
(Figures 6D, 6E, and 6H). Therefore, for the
investigation of cell types such as cDCs or
iM®s, the MCT model may recapitulate
human PAH better than the SuHx model
does.

A rather unexpected finding from
pathway analysis was the widespread
downreoulation of TFNa and TFN~
i

1018

cells, which was most notable in the MCT
model. In endothelial cells, many of

the genes accounting for the decrease in
IFN signaling in our study were also
downregulated in BMPR2-silenced human
pulmonary arterial endothelial cells. A
harmful downregulation of this pathway is
supported by prior data showing that
exogenous IFNa decreased proliferation
in human pulmonary arterial endothelial
cells and PASMCs in vitro and reversed
PAH in animal models (47). However,
other studies suggest that excess IFN
signaling may contribute to PAH (48, 49).
Further research is needed to dissect

the nuanced role of this pathway in

PAH.

In addition to resolving PAH-relevant
cell types and pathways, scRNA-seq
revealed many altered genes with cell-type
and model specificity. Ccri2, which has not
been previously implicated in PAH, was the
top upregulated gene contributing to the
strong NF-kB pathway enrichment and
transcriptional signature in SuHx ncMonos;
we confirmed Ccrl2’s upregulation in

AH ncMonos by lung histology.

21

Fabp4, a fatty acid-binding protein that we
found to be highly upregulated in MCT and
human PAH aM®s, is a transcriptional
target of HIF-1a and has been implicated in
regulating inflammatory cytokines and NF-
kB signaling in aM®s (28, 50). Further
investigation of the role and mechanisms of
altered genes, such as Ccrl2 in ncMonos
and Fabp4 in aM®s, is warranted.

Many of the DEGs identified in our
study could be simply correlated with
disease rather than pathogenic drivers of
PAH. Given that genetic risk signals carry
causal information, we integrated rat
scRNA-seq with a human GWAS to infer
causality of cell-type transcriptional
programs in human PAH. Transcriptional
signatures of ncMonos from SuHx and
MCT models, along with numerous other
myeloid and lymphoid cells, including iM®s
and cDCs from MCT rats and Tregs from
MCT and SuHx rats, were significantly
enriched for genetic variants from a human
PAH GWAS, suggesting that these cell
types and their corresponding pathways
may play a causal role in PAH. The
relevance of ncMonos is supported by
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Figure 8. Integration of rat differentially expressed genes (DEGs) with Connectivity Map identifies potential candidate drugs for repositioning. (A)
Schematic of analytical approach whereby signatures of rat DEGs (P < 0.01 to include DEGs from rare cell types with low statistical power) for each cell
type for both Sugen-hypoxia (SuHx) and monocrotaline (MCT) models against the control model were queried against the full Connectivity Map database
of compound and genetic perturbational expression signatures induced in human cell lines. The pattern-matching algorithms scored each reference
perturbagen profile for the direction and strength of enrichment with the query single-cell RNA sequencing (scRNA-seq) DEG signature. Perturbagens with
strongly positive connectivity scores have highly similar signatures to that of the query, whereas those perturbagens with strongly negative scores have
signatures that strongly oppose that of the query (i.e., genes that are upregulated in the scRNA-seq DEG query are downregulated by treatment with the
perturbagen or vice versa). (B) Heatmap showing connectivity scores of rat sScRNA-seq DEGs to drugs approved for use in patients with pulmonary arterial
hypertension (PAH) (black), drugs currently or previously in PAH clinical trials (blue), and preclinical drugs with demonstrated efficacy in PAH animal models
(green). The size of dots corresponds to absolute values of the connectivity score. The PAH-related drugs showed distinct matching patterns to cell
type-specific PAH rat signatures. For example, bosentan and tacrolimus had very similar connectivitv brofiles across cell tvoes and disease models.
although they come from different classes of drugs. (C) The top 10 drugs with the n st
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increased ncMonos in patients with PAH
(46), and its deficiency in HIF-1a leads to
impaired maturation of iM®s and disease
attenuation in hypoxic mice (51). Blocking
CX3CL1-CX3CRI signaling, which is
important for ncMono survival (52),
decreased lung iM®s and attenuated
vascular remodeling in rodent models (46).
Our unbiased comparative study further
prioritizes ncMonos as a particularly
important cell type in PAH pathogenesis.
To gain further translational insights, we
leveraged a wealth of pharmaco transcriptomic

data to query PAH signatures identified from
all lung cell types in both models. Supporting
this approach, our analysis predicted
sildenafil’s action in reversing MCT’s SMC
signature most enriched for EMT genes,
consistent with prior studies investigating
sildenafil’s effect on human PASMCs (35-37).
Thus, sildenafil may have a therapeutic effect
in PAH beyond pulmonary vasodilation.
Indeed, targeted in vivo delivery of sildenafil
to PASMCs was recently shown to inhibit
vascular remodeling and improve survival in
MCT rats (38). Further validating our

approach, treprostinil, one of the most
effective PAH-targeted therapies currently in
use for patients with PAH, was the top drug
predicted to reverse the SuHx ncMono
disease signature that was most enriched for
NF-B signaling. Although treprostinil’s
primary clinical effect in PAH is believed to
be pulmonary vasodilation via the
prostacyclin pathway, an additional
therapeutic mechanism may be attenuation
of NF-kB signaling, based on our results
and previous human and murine studies
(53-56).

Figure 8. (Continued). strongly reverse the transcriptional signature of SuHx nonclassical monocytes (ncMonos), are shown (out of 2,429 compounds
screened). The drugs predicted against SuHx ncMonos were of particular interest, given the strong upregulation of both NF-«kB signaling and human PAH
genae Tha dnin with tha mnet nanativa rannactivity ernra wiag treprostinil, one of the most effective PAH-targeted therapies currently in use in patients

wi
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Our analysis also predicted other top
drugs that may reverse the SuHx ncMono
signature for repositioning in PAH. Among
these, palonosetron, a 5-HT3 receptor
antagonist used for chemotherapy-induced
nausea, may have therapeutic potential in
PAH through inhibiting the upregulation in
serotonin signaling, known to occur in PAH
pathobiology, and/or through inhibiting
NF-kB, the top pathway implicated in
SuHx ncMonos. Indeed, another 5-HT3
receptor antagonist, tropisetron, modulates
NF-kB in a rat model of type 2 diabetes
(57). Another top prediction was
guaifenesin, an expectorant which acts to
loosen airway mucus through unknown
mechanisms. Guaifenesin may act as a
NMDA receptor antagonist targeting the
dysregulation in glutamate-NMDA
receptor signaling in PAH (41, 58) or
may act through modulating pathways
like TNFa/NF-kB signaling that are
upregulated in SuHx ncMonos, as revealed
in our analysis and suggested in a prior
human study (59). Although guaifenesin

needed to treat PAH. Such drug
predictions warrant further investigation
as potential repurposing candidates for
PAH.

The overall strengths of our study
include offering the first single-cell
resolution landscape of two widely used
rat models of PAH; comprehensive
comparative and integrative omics analysis
to prioritize cell types, genes, and pathways
relevant to human PAH; high-throughput
computational screening to identify
potential drug repositioning candidates for
future testing; and an open-access resource
for the wider PAH research community.
Select key findings were also experimentally
validated using alternative methods,
such as FACS with bulk RNA-seq, ISH,
and immunofluorescence. There are also
limitations to our study that underscore the
need to further improve on current single-
cell approaches, particularly the need to
enzymatically dissociate the heterogenous
cell populations that may be particularly
fragile or tightly embedded in the

and potentially favored larger immune
clusters in our comparative analyses.
Alternative methods such as single-nucleus
RNA-seq may mitigate such limitations.
Despite this limitation, separate analysis of
the captured vascular cells still provided
valuable insights. Furthermore, our study
unravels numerous genes, pathways, and
drugs that warrant experimental and
functional testing in future studies.

In conclusion, our scRNA-seq study of
SuHx and MCT rat lungs dissects the distinct
and shared dysregulation of gene-expression
programs and pathway activation in
individual cell populations, elucidates their
relevance to human PAH pathobiology and
drug repositioning, and will help guide the
rational use of these preclinical models in
future translational studies in PAH.
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Table E1: Clinical characteristics of patients whose lung tissue sections underwent RNA in

situ hybridization. *History of methamphetamine exposure. PTX = pneumothorax; NSCLC =

non-small cell lung cancer; FD = failed donor; nd = not done; FFPE = formalin-fixed paraffin-

embedded; OCT = optimal cutting temperature; mPAP = mean pulmonary artery pressure (mm

Hg); PVR = pulmonary vascular resistance (Wood units).

Diagnosis Age Sex mPAP PVR Prep
PTX 20 M nd nd  FFPE
PTX 21 M nd nd FFPE
PTX 34 M nd nd FFPE
NSCLC 66-70 M nd nd FFPE
NSCLC 71-75 M nd nd  FFPE
NSCLC 71-75 M nd nd FFPE
FD 2125 M nd nd OCT
IPAH 24 F 65 9.7 OCT
IPAH 39 F 51 15.8 OCT
IPAH 25 F 66 21 OCT
IPAH 57 F 51 10.8 OCT
IPAH 52 F 69 93 OCT
PAH* 49 F 65 9.3 FFPE
PAH* 48 M 70 10.5 FFPE
IPAH 50 M 8 16.1 FFPE
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Table E2: Integration of MCT iM® signature with PAH GWAS.

DEG # SNPs Top SNP -log10(P)
(ortholog) mapped mapped of top SNP
HLA-A 584 rs2517695 3.46
ZSCAN21 4 rs7811201 3.07
PLD3 8 rs41322049 2.9
FCGR2C 9 1512142755 2.6
CFD 6 rs55939330 2.44
AP251 2 rs6509308 2.22
LYz 12 rs315145 2.04
USP7 1 rs254951 2.03
CTSS 9 rs7511649 1.98
TREM2 1 rs169531 1.95
FCGR3A 1 rs6672453 1.85
THEMIS2 1 rs3766399 1.84
ITGB2 5 rs2006271 1.55
GNGT2 1 rs4794029 1.51
CTSB 6 rs2409833 1.29
API5 1 rs12224644 1.27
FTL 1 rs6509408 1.23
LDHA 4 rs10766474 1.22
MRC1 5 rs4348791 1.21
PLEK 2 rs17035378 1.18
CAPG 4 rs6886 111
HOPX 6 rs4864600 1.09
LILRA4 2 rs11084321 1.08
CSTB 2 1511089098 1.07
GRAMD1B 1 rs17671708 1.07
SKIL 1 rs12147896 1.06
RALBP1 1 rs16955240 1.04
TNIP3 1 rs6818199 1.04
NDUFB2 1 rs2364397 1.03
NAA16 2 rs17198746 1.03
FAM20C 1 rs7457923 0.99
SRRM2 1 rs2240145 0.95
ABCA1 1 rs4149339 0.94
MRPS33 4 rs38736 0.88
TPR 1 rs3131550 0.84
MGST2 1 rs6835548 0.84
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1L18
GNB2
TSPO
RPS27A
UQCRQ
PRPF38B
ATP6VOE1
MX1
MKKS
RPL32
ANPEP
PRDX1
TMEM14C
ADPRH
Clorf21
ZBEDS
GLUL
CCDC102A
NDUFC1
COPB2
LTA4H
HPGDS
GOLM1
APRT
PSAP

Table E3: Integration of MCT c¢DC signature with PAH GWAS.

R PR PRPRPRRPRNRWOUCNRPRDIRBNRRWWO®

rs4592454
rs41280986
rs25245
rs2941577
rs2288387
rs41279714
rs1643600
rs17000900
rs6039931
rs3773307
rs4932250
rs3219492
rs1045911
rs4687867
rs6696816
rs12417274
rs1325744
rs7185200
rs56290907
rs211584
rs34579
rs2048299
rs11141239
rs12934088
rs4747203

0.82
0.79
0.73
0.69
0.66
0.64
0.59
0.55
0.54
0.52
0.52
0.45
0.45

0.4
0.39
0.39
0.38
0.36
0.35
0.34
0.34
0.32
0.32
0.32
0.31

DEG # SNPs Top SNP -log1o(P)
(ortholog) mapped mapped of top SNP
HLA-A 584 rs2517695 3.46
PCM1 6 rs379066 3.07
NUP107 9 rs2546521 2.51
USE1 3 152014686 2.27
CPNE8 7 rs58670318 211
RPS10 2 rs12662905 2.04
ATP8B2 5 rs9787014 2.03
RPSA 10 rs62243409 1.93
TMF1 1 rs4365633 191
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CD200
SLFN5
ANXAS5
PPIA
RPS16
STOM
PKIB
CCMm2
FTL
LDHA
GM2A
LILRA4
NUDTS
SEPT2
PSMB5
NIPBL
CCND2
LUC7L3
BIRC3
HDLBP
LAYN
FNTA
ZFAND2A
CALM1
NCL
CCL17
VRK1
MMD
SF3B2
PIGK
CIsD2
MTCH2
PAPSS1
NR4A2
HERPUD1
LITAF
AIF1
EID1
SNRNP70
RPL32

[y
o wn

P NP RPRPRPRARPRREPNNRREPENRPNOOWNUURRREPRNORNDMDREANRENO®D

rs2399422
rs1871894
rs13137821
rs4720481
rs11881477
rs2289069
rs1132630
rs3812261
rs6509408
rs10766474
rs153450
rs11084321
rs28406846
rs10933538
rs11543947
rs11741514
rs1049606
rs58836800
rs7127583
rs4675973
rs11602450
rs7462864
rs1880296
rs2110114
rs10445829
rs8323
rs8019921
rs888206
rs72938506
rs1253224
rs10020659
rs35624992
rs2522431
rs9646870
rs11863728
rs72781049
rs1077394
rs7169052
rs2379085
rs3773307

1.68
1.61
1.47
1.42

1.4

14
1.29
1.29
1.23
1.22
1.09
1.08
1.04
1.01

0.97
0.97
0.91
0.85
0.85
0.83
0.82
0.82
0.81

0.8
0.77
0.76
0.76
0.75
0.72
0.67
0.64
0.64
0.63
0.62
0.61
0.57
0.52
0.52
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NCOA6 1
POLDIP3 1
PSTPIP1 1
NAP1L1 1
ZNF385A 1
RAMP1 1
RPS8 1
CST3 1
UBC 1
CD63 1
MYLIP 1
SERPINB1 1
CSNK2A2 1
SLC25A28 1
EEF1A1 1

Table E4: Integration of SuHx ncMono signature with PAH GWAS.

rs2378260
rs137037
rs12148612
rs11829167
rs34094446
rs3754701
rs59366549
rs34792920
rs7971677
rs772254
rs2056937
rs1262184
rs64959938
rs11190439
rs561930

0.49
0.48
0.46
0.44
0.43
0.42
0.42

0.4
0.39
0.38
0.36
0.35
0.35
0.32
0.32

DEG # SNPs Top SNP -log1o(P)
(ortholog) mapped mapped of top SNP
HLA-A 584 rs2517695 3.46
LYz 12 rs315145 2.04
CTSS 9 rs7511649 1.98
HAGH 22 rs3760038 1.93
HEXA 4 rs11636289 1.89
CD274 3 rs6476982 1.88
DDX5 2 rs7218583 1.86
FCGR3A 1 rs6672453 1.85
GCH1 1 rs28703642 1.71
IL17RA 8 rs4819962 1.64
S1PR4 1 rs10409051 1.63
CSNK1G3 1 rs1579036 1.61
SLFN5 10 rs1871894 1.61
TMBIM4 2 rs55638130 1.58
NAAA 19 rs35882473 1.46
GNG10 14 rs10981012 1.46
LIG4 1 rs1931336 1.44
STOM 1 rs2289069 1.4
TLR2 3 rs1439167 1.38
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MRC1
UQCRH
ASCC3
PLEK
MYBPH
ARHGDIB
RAC2
N4BP2L1
FAM111A
CLEC4D
SKIL
CCL3
CLEC7A
ST20
GIB2
LUC7L3
UPF2
BIRC3
CsT7
NR3C1
ATF4
IVNS1ABP
DDX398
OSTF1
CALM1
JAG1
RNASET2
RPL36AL
PSIP1
LIMK1
FAMA49A
ITM2B
HMHA1
SCP2

TES
GBP5
LITAF
RPS14
CD55
FCGRT

P R P OWREPNNNOOALMAWOM

=
o

P DNRPRPRRPPRPRPWOUNDMRPEPNDOUONR OCWERDOORRRN

rs4348791
rs2295464
rs9485222
rs17035378
rs946263
rs1558789
rs4821758
rs12427676
rs56239606
rs74059866
rs12147896
rs1634525
rs11053628
rs8037808
rs1967781
rs58836800
rs10906040
rs7127583
rs227591
rs10041520
rs2009999
rs10911729
rs62395355
rs17623732
rs2110114
rs6040439
rs3093018
rs17121520
rs3087653
rs150866
rs17643147
rs9567953
rs4147934
rs11206019
rs7794106
rs4556332
rs72781049
rs13184111
rs12117380
rs34400029

1.21
1.2
1.2

1.18

1.17

1.17

1.16

1.14

1.07

1.07

1.06

1.05

1.05

1.02

1.01

0.97

0.92

0.91
0.9

0.88

0.85

0.82

0.82

0.82

0.82

0.76

0.74

0.73

0.69

0.69

0.68

0.65

0.65

0.64

0.63

0.63

0.62

0.59

0.58

0.55
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SP110
NFKBIB
OPTN
CXCL16
CcCL4
HNRNPM
PLAUR
DSTN
SIK1
NLRP3
BCAT1
BMP2K
PLK2
GPR19
TSPAN13
Ssu72
CLEC4E

rs3948464
rs3136642
rs599557
rs7221871
rs712043
rs12977861
rs4760
rs6111572
rs229353
rs10925027
rs2353483
rs13122868
rs1558367
rs11610142
rs3807509
rs3766169
rs7299116

P R RPRRPRNRPRRERRRERRENNLERLSR

0.54
0.52
0.51
0.49
0.47
0.46
0.43
0.39
0.39
0.39
0.38
0.37
0.36
0.36
0.34
0.33
0.33

Table E5; Antibodies used for FACS and IF.

Target Supplier Catalog # Conjugat Host Clonalit Applicatio Dilutio
e ¥y n n
Cdé4 Sino 80016-R005- PE Rabbit Mono FACS 1:400
Biological P
Cd278 cBioscienc 62-9949-82  Super Armenia Mono FACS 1:50
e Bright n
436 hamster
Cd4 eBioscienc 63-0040-82 Super Mouse Mono FACS 1:50
e Bright
600
RT1.B Invitrogen MAS-17432 FITC Mouse  Mono FACS 1:400
Cd2s5 eBioscienc 46-0390-82  PerCP- Mouse Mono FACS 1:800
e eFluor
710
Cdllb/ Invitrogen MAS5-17507 APC Mouse Mono FACS 1:4000
c
Cerl2 Thermo PAS575492 n/a Rabbit Poly IF 1:100
Fisher
Cdlé  Novus NBP2- Alexa Mouse  Mono IF 1:100
42228AF647 Fluor 647

33

E18



Mal Bioss bs-4693R- Alexa Rabbit Poly IF 1:100

A488 Fluor 488

Fabp4  Santa Cruz sc-271529 Alexa Mouse  Mono IF 1:100
AF594 Fluor 594

Cdé68 Bio-Rad MCA341A64 Alexa Mouse Mono IF 1:100
7 Fluor 647

alpha- Novus NBP2- Alexa Mouse Mono IF 1:500

SMA 34522AF647 Fluor 647

Rabbit Invitrogen A11012 Alexa Goat Poly IF 1:500

IgG Fluor 594

Table E6: Leading-edge genes of pathways P <0.05.
Leading-edge genes (human orthologs) as determined by GSEA accounting for the enrichment

signal of all pathways that met a cutoff of P < 0.05.

Table E7: Leading-edge genes of pathways FDR < 0,05,

Leading-edge genes (human orthologs) as determined by GSEA accounting for the enrichment

signal of all pathways that met a cutoff of FDR < 0.05.
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Supplementary Figure Legends

Figure E1: Phenotypic characterization of PAH rat models. (A) Echocardiography images in
the parasternal short-axis view showing enlarged right ventricles and “D” shaped left ventricles
in end-systole in both SuHx and MCT rats as compared to control. Scale bar, 10 mm. (B) Pulsed-
wave doppler of the right ventricular outflow tract showing mid-systolic flow deceleration and
notching indicative of elevation of pulmonary artery pressure and pulmonary vascular resistance.
The x- and y-axes represent time and velocity, respectively. Horizontal and vertical scale bars,
0.1 seconds and 400 mm/s, respectively. Vertical (C) Immunofluorescence staining showing
increased a.-smooth muscle actin (SMA, white) in the vessel walls of MCT and SuHx compared

to control, suggesting increased vascular remodeling. RV = right ventricle; LV = left ventricle.

Figure E2: Hemodynamic assessment of PAH rat models. (A-L) Box plots showing (A) RV
systolic pressure (RVSP), (B) Fulton index of RV hypertrophy (RVH), (C) RV fractional area
change (RV FAC), (D) RV internal diameter (RVID), (E) pulmonary artery acceleration time
(PAT), (F) ratio of PAT and pulmonary ejection time (PAT/PET), (G) stroke volume (SV), (H)
cardiac output (CO), (I) cardiac index (CI), (J) total pulmonary vascular resistance index
(TPVRI), (K) heart rate (HR), and (L) LV systolic pressure (LVSP). Compared to control rats,
MCT and SuHx rats showed increased RVSP, RVH, RVID, and TPVRI and decreased RV FAC,

PAT, PAT/PET, SV, CO, and CIL Open circular dots represent animals that underwent FACS.
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Filled triangle dots represent animals that underwent scRNA-seq. Wilcoxon rank-sum test: *P <
0.05, **P <0.01, ***P <0.001, and P <0.0001. RV =right ventricle; LV = left ventricle; S =

septum; ns = not significant.

Figure E3: scRNA-seq quality control. (A-D) Violin plots for each animal used for scRNA-seq
showing (A) number of transcripts detected per cell, (B) number of genes detected per cell, (C)
fraction of mitochondrial genes detected per cell, and (D) collapse rate for each cell calculated as
the total number of transcripts detected for a given cell divided by the number of unique
transcripts detected for that cell. Collapse rate is an indicator of how deeply a library is

sequenced.

Figure E4: scRNA-seq UMAP visualizations. (A-E) UMAP plots showing cells colored by (A)
number of genes detected, (B) number of transcripts detected, (C) animal of origin, (D) disease
condition, and (E) lung dissociation protocol. (D) The use of different cell dissociation protocols
helps resolve potential biases in tissue dissociation and recover a more comprehensive atlas of
lung cell types. Batch correction methods such as canonical correlation analysis (CCA) did not
further optimize clustering and cell type identification and thus were not used for downstream

analyses.

Figure ES: scRNA-seq cell type markers. UMAP plots showing cells colored by expression
level of cell type marker genes for all cell types identified encompassing those of myeloid,

lymphoid, mesothelial, and epithelial origin.
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Figure E6: Ifi27 downregulated in human PAH lungs. Box plot showing downregulation of
IF127 in the lungs of PAH patients (n = 15) versus control lungs (r» = 11) from GEO dataset
GSE11343. Expression values are the original submitter-supplied data to GEO. Wilcoxon rank-

sum test.

Figure E7: Sildenafil predicted to reverse MCT’s SMC signature. (A) Schematic of
sildenafil’s predicted reversal of the MCT SMC transcriptional signature (based on a
connectivity score of -95). This prediction infers that sildenafil would inhibit the top upregulated
pathway enriched in MCT’s SMC signature which was EMT. (B) Dot plot showing upregulation
of leading-edge genes accounting for the MCT SMC upregulation of EMT as determined by
GSEA. Red and blue dots indicate MCT and SuHXx, respectively. Size and color tint of dots
represent strength of -logio(P) values. (C) Dot plot showing predominant downregulation of the
same EMT genes in (B) from a public microarray of sildenafil-exposed vs. unexposed primary
rat hepatocytes (n = 3 and 61 biological replicates, respectively). Data was accessed at ToxicoDB
(26) and generated by the U.S. National Toxicology Program for the toxicogenomic database
DrugMatrix (27). Of the 23 genes in (B), 2 genes were not in this microarray and thus are not
shown (Lamcl and Ctgf). P values were determined by limma. EMT = epithelial-to-

mesenchymal transition; log2FC = logx(fold change).
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CHAPTER 3
Dysregulated Genes and Pathways in the Lungs of Pulmonary Arterial

Hypertension Patients
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Abstract

The pathological hallmark of PAH occurs inside the lungs where the pulmonary arteries
undergo irreversible remodeling. Therefore, studying the changes in gene expression that occur
inside the lungs of PAH patients is critical to advance our understanding of underlying disease
mechanisms. Well-powered RNAseq combined with systems analysis at the tissue-level can
capture the collective and coordinated activity of a diversity of cell types that make up a complex
tissue, insights that may otherwise be lost when analyzing gene expression in individual cells. In
this study, we dissected the human PAH lung transcriptional landscape at the tissue level using
an innovative network and systems biology methods on a large RNAseq dataset of human PAH
lungs. We discovered many dysregulated genes and pathways in human PAH lungs at the tissue
level, and through integration with clinical data and PAH GWAS, our network analysis revealed
modules of co-expressed genes that are not only associated with PAH diagnosis and severity, but
also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing
a comprehensive gene-gene regulatory network of the human lung identified and prioritized
candidate genes. Furthermore, we integrated the tissue-level networks with scRNAseq to
uncover the specific cell types mediating the tissue-level gene programs. Thus, our findings

implicate novel genes, pathways, and cell types in PAH pathobiology.

Introduction

The pathological hallmark of PAH occurs inside the lungs where the pulmonary arteries
undergo irreversible remodeling. Therefore, studying the changes in gene expression that occur
inside the lungs of PAH patients is critical to advance our understanding of underlying disease

mechanisms. Advances in sequencing have enabled more expansive molecular profiling of
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tissues which combined with rapidly evolving bioinformatic methods have led to major
biological discoveries. However, such technological and methodological advances remain
relatively unexploited in studying the lungs of PAH patients, who do not routinely undergo lung
biopsies and rarely undergo lung transplantations. Thus, relatively small sample sizes have
limited prior molecular studies of PAH lungs.

The Pulmonary Hypertension Breakthrough Initiative (PHBI) is a consortium of 13
academic centers that maintain a biorepository of lung specimens from PAH patients undergoing
lung transplant and from donors to serve as control. A recent study by our collaborators at PHBI
analyzed the transcriptomes of 58 PAH lungs!, the largest to date, but was limited by use of
microarray which requires a predefined probe set to detect gene expression. To our knowledge,
PAH lung studies have yet to leverage RNA sequencing (RNAseq) which is more
comprehensive and sensitive than microarray profiling. While single-cell RNA sequencing
(scRNAseq) is now available, well-powered bulk RNAseq of a large sample size combined with
state-of-the-art systems biology and multi-omic integration at the tissue level can capture the
collective and coordinated activity of a diversity of cell types that make up a complex tissue,
insights that may otherwise be lost when analyzing gene expression in individual cells. In this
chapter, we employ bulk RNAseq leveraging a large biorepository of PAH and healthy control
lungs to perform an in-depth and well-powered investigation into the tissue-level alterations of
genes and pathways. We further integrate bulk RNAseq with scRNAseq to deconvolute the

contribution of individual cell types and cell-cell interactions in PAH lungs.

Materials and Methods

Bulk RNAseq dataset and quality control
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Through collaboration with Mark Geraci, MD and Bob Stearman, PhD at PHBI, we
obtained bulk RNAseq from explanted lungs of 96 patients with pulmonary hypertension (94
with WHO Group 1 PAH) and 52 failed donor (FD) lungs which did not have an appropriate
recipient but still met physiologic standards to serve as control!. We mapped raw reads to the
reference human genome (hg19) and assembled transcripts with HISAT2 and StringTie?,
respectively. We then performed hierarchical clustering and principal components analysis
(PCA, Fig. 3) to identify potential outliers for removal and technical batch effects for correction
using ComBat®. We focused on WHO Group 1 PAH (n=94) in downstream analyses given the
likely significant differences in the underlying pathophysiology compared to WHO Group 4

(n=2).

Differentially expressed genes (DEGs)

We determined DEGs between PAH and control using DESeq2*. While the analysis will
focus on WHO Group 1 PAH versus control, we will also perform pairwise analysis to assess for
differences between PAH subgroups including idiopathic (IPAH, n=41), pulmonary veno-
occlusive disease (n=7), familial (n=8), connective tissue disease (n=11), congenital heart

disease (n=19), and drug-induced (n=8).

Co-expression networks
We performed Weighted Gene Co-expression Network Analysis (WGCNA)® to identify
modules of co-expressed genes likely controlled by the same transcriptional regulatory program,

functionally related, or members of the same pathway?®.
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Clinical integration

The PHBI subjects were deeply phenotyped enabling us to correlate the first principal
component (PC) of WGCNA modules with clinical data such as disease status (i.e. PAH vs
control), mean pulmonary artery pressure (mPAP), pulmonary vascular resistance (PVR), cardiac
output, six-minute walk test (6MWT), degree of hypoxemia (i.e. PaO,/FiO; ratio), prostacyclin

use, pulmonary function tests (i.e. DLCO) and PAH subgroup.

Pathway enrichment of DEGs and coexpression modules
We evaluated the functional role of DEGs and WGCNA modules by testing for

enrichment in known biological pathways using Gene Set Enrichment Analysis (GSEA)’.

PAH GWAS integration

To assess for causal molecular links between risk of PAH and advanced-stage PAH
lungs, we tested DEGs and WGCNA modules for enrichment in single-nucleotide
polymorphisms (SNPs) from PAH genome-wide association studies (GWAS) using
Mergeomics®, a computational pipeline developed by our lab that integrates multi-omics data for
mechanistic discoveries. To evaluate for consistency across methods and across GWAS cohorts,
we a) implemented two other GWAS enrichment approaches: MAGMA® and GSA-SNP2!? and
b) utilized four independent GWAS cohorts as well as their meta-analysis totaling 2,085 PAH
and 9,659 control subjects'! obtained from our collaborator Christopher Rhodes, PhD with
approval from key stakeholders in UK, US and France. We mapped GWAS SNPs to genes using
two approaches: a) chromosomal proximity to transcription start sites (20 kilobases) and b)

eQTLs derived from 1626 human lungs'?!?,
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Bayesian networks (BNs)

A complementary approach to co-expression networks are BNs which model gene-gene
regulation and can flexibly incorporate various types of information such as genetic causality,
expression quantitative trait loci (eQTL), and transcription factor (TF) binding to model
directional gene regulatory networks!'#2°. The combination of these two network types is
particularly powerful in uncovering novel biological insights, as co-expression networks offer a
more global view of gene co-regulation and BNs provide granular and directional regulatory
relationships. Therefore, we routinely construct and utilize these complementary networks based
on multi-omics data!#"1021-32, We constructed and took the union of three distinct human lung
BNs derived from 148 PHBI, 577 GTEx'?, and 1,343 GSE23546'® samples to build a
comprehensive gene regulatory network of the human lung. BNs were constructed using
Reconstructing Integrative Molecular Bayesian Network (RIMBANet)*°. For this method, 1000
networks were generated from different random seed genes using continuous and discrete
expression data as well as cis eQTL and transcription factor data as priors. Then, the final
network was obtained by taking a consensus network from the 1000 randomly generated
networks whereby only edges that passed a probability of >30% across the 1000 BNs were kept.
We projected WGCNA modules associated with PAH onto this regulatory network and
performed weighted Key Driver Analysis to identify hub genes of PAHS. We then constructed
and performed differential network analysis on separate PAH and control networks using

DyNet*3 to find genes and subnetworks most rewired in PAH.

Statistical power
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A minimum of 5 samples per group is needed for adequate power to detect DEGs based
on a variety of RNAseq datasets®* and 100 total samples are needed for network analyses'®. To

maximize power, we included 94 WHO Group 1 PAH and 52 FD lungs.

Results
Bulk RNAseq samples met quality control for downstream analyses

Prior to performing integrative multiomics and network analyses (Figure 3.1), RNAseq
samples were checked for quality control. Principal components analysis (PCA) of bulk RNAseq
samples showed that the majority of samples clustered together. When colored by disease status,
PCA revealed global differences between PAH and FD samples as a whole (Figure 3.2).
Hierarchal clustering revealed two outliers, a 55 year-old Hispanic female FD and a 13 year-old

White male with PAH, which we removed for downstream analysis (Figure 3.3).
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Figure 3.1. Overall study design for integrative multiomics and network analyses of bulk

RNAseq.
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Figure 3.2. Lung RNAseq samples cluster by disease status. PCA of 148 lung RNAseq samples.
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Figure 3.3. Two lung RNAseq sample outliers identified by hierarchal clustering. Dendrogram
showing hierarchal clustering of 148 lung RNAseq samples. Horizontal red line represents the

heigh above which outliers were removed.

Many genes are altered in PAH lungs

Differential expression analysis comparing PAH and FD lungs revealed 2719 upregulated
and 2534 downregulated in PAH with a total of 5253 dysregulated genes (FDR < 0.05) (Figure
3.4). Top upregulated genes included HBA2, HBB, LAMP5, HBA 1, and MFAP4. Top

downregulated genes included SIGLEC10, P13, SAA2, SLC36A41, and ALPP.
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Figure 3.4. Differential gene expression analysis shows many genes dysregulated in PAH lungs.

Volcano plot showing genes differentially expressed where red (upregulated) or green
(downregulated) dots correspond to genes with FDR < 0.05 and grey dots represent genes not

statistically significant. Select top upregulated and downregulated genes are labeled. FDR = false

discovery rate; FC = fold change.
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Many pathways are altered in PAH lungs

Pathway enrichment analysis revealed that many pathways are dysregulated in PAH
lungs as compared to FD (Figure 3.5). Top upregulated pathways included epithelial
mesenchymal transition, hedgehog signaling, and apical junction. Top downregulated pathways

included mTORCT1 signaling, G2M checkpoint, and MYC targets.
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Figure 3.5. Many pathways are dysregulated in PAH lungs. Red dots indicate upregulated

pathways. Blue dots indicate downregulated pathways. Larger dots indicate stronger statistical

significance. NES = normalized enrichment score derived from GSEA; pval = p value.

Distinct modules of co-expressed genes identified in PAH lungs

WGCNA analysis revealed 20 distinct co-expression modules with the largest being the

turquoise module at 5391 genes and the smallest being the orange module at 42 genes, with a

median size across modules of 140.5 genes (Figure 3.6). Pathway enrichment analysis for each

WGCNA module as determined by GSEA identified many pathways up- and downregulated

57



(Figure 3.7). The top upregulated pathway was TNF alpha signaling via NFkB in the lightcyan

module and the top downregulated pathway was MYC targets v1 in the black module.

Cluster Dendrogram

Height

Figure 3.6. Distinct modules of co-expressed genes identified in PAH lungs. Dendrogram

showing clustering of genes, with dissimilarity based on topological overlap as determined by

WGCNA analysis. Module color assignments for each gene is also shown.
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Figure 3.7. Various pathways are involved in lung modules of co-expressed genes. Dots
represent statistically significant pathways enriched in WGCNA modules with FDR < 0.01 that
also had the strongest NES scores (>2 or <2) where red signifies upregulation and blue signifies

downregulation. NES = normalized enrichment score.
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WGCNA lung modules associated with PAH diagnosis and severity

Correlation analysis of the first PC of WGCNA modules with clinical data revealed that
the pink, royalblue, salmon, and black modules positively correlate with both PAH diagnosis and
PAH severity (mPAP and PVR) (Figure 3.8). The pink module was also negatively correlated
with cardiac output (CO) which also suggests correlation with more severe PAH. Pink and
royalblue were also positively correlated with FVC/DLCO suggesting worse diffusion
impairment relative to forced vital capacity, and thus more severe disease. Salmon and royalblue
were negatively correlated with PaO2/Fi02 suggesting more severe hypoxemia and thus more
severe disease. When repeating the same analysis but with the 5253 PAH DEGs as its own
module, only PAH diagnosis was correlated with the DEG module. The other clinical traits
related to disease severity were not correlated with the DEG module. GSEA analysis of PAH vs
FD DEGs with WGCNA modules as the gene sets showed that the modules that were positively
or negatively correlated with PAH diagnosis were also positively or negatively enriched for PAH
DEGs by GSEA. Out of all the modules, the pink module had the strongest positive enrichment

for PAH DEGs.
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Figure 3.8. WGCNA lung modules associated with PAH diagnosis and severity. Dots represent
statistically significant Pearson correlation between clinical data and the first PC of WGCNA
modules (P value < 0.05). Red represents positive correlation and blue represents negative

correlation. Dots with larger size denote stronger statistical significance. Pval = p value.

WGCNA lung modules associated with PAH genetic risk
To infer causal roles of the PAH-associated DEGs and WGCNA modules, we assessed
the enrichment of DEGs and modules for PAH GWAS signals using three distinct approaches.

Mergeomics Marker Set Enrichment Analysis (MSEA) revealed that the black module was
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significantly enriched for PAH GWAS in multiple cohorts (PHAAR, PAHB, and GWAS meta-
analysis of all 4 cohorts) using two different approaches to mapping SNPs to genes (20 kilobase
chromosomal proximity to transcription start site and lung eQTLs). The pink module was also
significantly enriched for PAH GWAS using two other GWAS enrichment methods (MAGMA
and GSA-SNP2) across multiple different GWAS cohorts (PHAAR, PAHB, and BHFPAH).
Using GSA-SNP2, the PAH-associated DEG module totaling 5253 genes showed statistically
significant enrichment in GWAS signals in the BHFPAH cohort and GWAS meta-analysis, as
well as relatively high enrichment in the other cohorts (though not statistically significant after
multiple testing correction). PAH-associated DEGs were not enriched in GWAS signals using
the MAGMA approach and were not included in the Mergeomics analysis (default maximum

module size of 500 genes was used).
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Figure 3.9. WGCNA lung modules associated with PAH risk. Dot plots showing GWAS
enrichment of WGNCA modules across GWAS cohorts and GWAS enrichment methods. Colors
represent corresponding WGCNA color modules. Horizontal dashed lines represent statistical
significance threshold. “Dist 20kb” signifies SNPs were mapped to genes if within 20 kilobases
of the transcription start site. “Lung eqtl” signifies that SNPs were mapped to genes if they were

also lung eQTLs to the corresponding gene.

Bayesian network analysis reveals key genes implicated in PAH

To identify potential regulators of the PAH-associated DEGs and coexpression modules,
we performed weighted key driver analysis (WKDA) using Bayesian networks (BNs). We first
constructed and took the union of three distinct human lung BNs derived from 148 PHBI, 577
GTEx'?, and 1,343 GSE23546'3 samples to build a comprehensive gene regulatory network of
the human lung consisting of 22,444 nodes and 62,151 edges (Figure 3.10). We projected PAH-

associated DEGs and WGCNA modules onto this regulatory network and performed wKDA to

63



identify hub genes of PAH® (Figure 3.11). We also projected known human PAH-associated
gene sets obtained from DisGeNET 3° and Comparative Toxicogenomics Database ¢ onto the

lung BN to see how they would localize with respect to WGCNA modules.
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Figure 3.10. Schematic of Bayesian gene-gene regulatory network construction for the human

lung.
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Figure 3.11. WGCNA modules projected onto Bayesian gene-gene regulatory network of the

human lung.

Focusing our attention on modules associated with PAH diagnosis, severity, and risk, we
found PDE?7B to be the most central gene in the pink subnetwork by KDA (Figure 3.12).
PDE?7B encodes the phosphodiesterase 7B protein which hydrolyzes the second messenger
cAMP. Many known PAH genes were also connected to pink subnetwork including BMPR2, the
most well-established causal PAH gene. PDE7B was also a key driver gene of PAH-associated

DEGs.
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Figure 3.12. PDE7B as the top key driver gene in the pink subnetwork. Pink subnetwork of the
lung BN where pink nodes represent genes in the pink module, grey nodes represent genes not in
the pink module but connected to the pink subnetwork, red nodes represent known PAH genes
connected to the pink subnetwork, and red and pink nodes represent known PAH genes that are
also members of the pink module. Larger size nodes correspond to stronger statistical strength of
the gene as a key driver of the pink subnetwork. PDE7B is highlighted by a green circle and

BMPR? is highlighted by a blue circle.
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We then constructed and performed differential network analysis on separate PAH and
control BN using DyNet* to find genes and subnetworks most rewired in PAH. We found that
the most rewired node whose expression is also upregulated in PAH lungs was MELTF-AS1, a
long non-coding RNA increasingly recognized as an important pathogenic driver in many
cancers®’3? but never before implicated in PAH (Figure 3.13 and Figure 3.14). In KDA using
the lung BN, MELTF-AS1 was also a central hub gene of the black WGCNA module which is

associated with PAH diagnosis, severity, and PAH.
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Figure 3.13. MELTF-AS1 was the most rewired node in PAH whose expression is also

upregulated in PAH lungs. Dot plot showing DyNet rewiring score of genes between PAH and

FD lung networks. Red and green indicate up- and downregulation in PAH, respectively. X-axis

represents genes ordered by fold change. MELTF-AST highlighted by a blue box. ns, not

significant; FC = fold change.
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Figure 3.14. MELTF-AS1 subnetwork in which most regulatory connections to other genes are
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scRNAseq integration identifies cell types involved in tissue-level networks

Enrichment testing of WGCNA modules with cell type-specific PAH signatures from our
previously generated rat sScRNAseq PAH DEGs* revealed specificity in which cell types may be
mediating the genes co-expressed in each WGCNA module (Figure 3.15). For example, the pink
module was enriched for the monocrotaline (MCT) PAH smooth muscle cell (SMC) signature

and Sugen-hypoxia (SuHx) PAH signatures of fibroblasts (Fb), SMC, and endothelial cells.
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Figure 3.15. Rat lung scRNAseq integration infers cell types mediating human lung WGCNA
modules. Dot plot showing upregulation (red) or downregulation (blue) of human orthologs of
Rat lung scRNAseq DEGs in lung WGCNA modules as determined by GSEA. Dots represent
FDR < 0.05 with larger size corresponding to stronger statistical significance. NES = normalized
enrichment score; pval = p value; aM® = alveolar macrophages; AT1 = alveolar type 1 cells;
AT2 = alveolar type 2 cells; cDC = conventional dendritic cells; cMono = classical monocytes;
EAT1 = endothelial arterial 1; EA2 = endothelial arterial 2; EC = endothelial capillary; Fb =
fibroblast; ILC2 = innate lymphoid cell type 2; iM® = interstitial macrophages; Meso =
mesothelial; ncMono = non-classical monocytes; NK1 = natural killer 1; NK2 = natural killer 2;
pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil; pM® = proliferating
macrophages; SMC = smooth muscle cell; T prolif = proliferating T cells; T reg = regulatory T

cells.

As an alternative approach to infer which cell types may be coordinating the activity of
lung co-expression modules, we first deconvoluted each bulk RNAseq sample using
CIBERSORT*! to estimate relative cell proportions. To ensure rigorous deconvolution estimates,

we curated 7 distinct single-cell datasets totaling over 500,000 cells from 154 human lungs**

72



and integrated them using Seurat® to generate a high-confidence cell type reference map for the
human lung (Figure 3.16). We identified similar cell types using this approach as compared to
our rat sScCRNAseq integration. For example, using deconvolution, we found the pink module to
be most strongly correlated with myofibroblasts (MyoFb), which express both SMC and

fibroblast markers, and endothelial cells (Figure 3.17).
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Figure 3.16. Generating a cell type reference map for the human lung. A) Schematic of
construction of a high-confidence cell type reference map for the human lung for deconvolution.
B) Uniform manifold approximation and projection (UMAP) plot showing integration of 7
distinct single-cell datasets totaling over 500,000 cells from 154 human lungs*>~#® . AM =
alveolar macrophages; AT1 = alveolar type 1 cells; AT2 = alveolar type 2 cells; AT2 = alveolar
type 2 transitional cells; cDC = conventional dendritic cells; cMono = classical monocytes;
EndoArt = endothelial arterial; EndoVein = endothelial vein; EndoBronch = endothelial
bronchial; EndoCap = endothelial capillary; Fb = fibroblast; ILC = innate lymphoid cells; IM =
interstitial macrophages; MyoFb = myofibroblast; ncMono = non-classical monocytes; NK =
natural killer; pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil;
MacProlif = proliferating macrophages; SMC = smooth muscle cell; Treg = regulatory T cells;

PNEC = pulmonary neuroendocrine cells.
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Figure 3.17. Deconvolution using human lung scRNAseq infers cell types mediating human
lung WGCNA modules. Dots represent statistically significant Pearson correlation between
estimated cell type proportions by deconvolution across samples and the first principal
component of WGCNA modules across samples (p value < 0.05) where red indicates positive
correlation, blue indicates negative correlation, and larger dot sizes indicate stronger statistical
significance. AM = alveolar macrophages; AT1 = alveolar type 1 cells; AT2 = alveolar type 2
cells; AT2 = alveolar type 2 transitional cells; cDC = conventional dendritic cells; cMono =
classical monocytes; EndoArt = endothelial arterial; EndoVein = endothelial vein; EndoCap =
endothelial capillary; Fb = fibroblast; ILC = innate lymphoid cells; IM = interstitial
macrophages; MyoFb = myofibroblast; ncMono = non-classical monocytes; NK = natural killer;
pDC = plasmacytoid dendritic cell; PMN = polymorphonuclear neutrophil; MacProlif =
proliferating macrophages; SMC = smooth muscle cell; Treg = regulatory T cells; PNEC =

pulmonary neuroendocrine cells.
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Discussion

In this chapter, we conducted a well-powered bulk RNAseq analysis of PAH and healthy
control human lungs utilizing a variety of integrative multiomics and systems biology
approaches to uncover the tissue-level alterations of genes, pathways, and cell types in PAH
lungs. We uncovered thousands of genes to be dysregulated in PAH lungs and found that these
genes are involved in pathways known to be reprogrammed in PAH such as mesenchymal
transition. Grouping genes into modules based on how they co-express with each other, we found
specific modules to be associated with PAH diagnosis, severity, and risk. Integrating these
modules with a gene-gene regulatory network of the human lung, we found hub genes likely
playing a central role in mediating the functions of these PAH modules. Finally, integration with
scRNAseq revealed which cell types might also be involved in the PAH modules.

The pink module of 266 co-expressed genes was one of the 20 modules most strongly
associated with PAH diagnosis, disease severity, and disease risk. This module was not only
positively correlated with mPAP and PVR, both well-established hemodynamic parameters of
PAH severity measured by right heart catheterization, and FVC/DLCO, a proxy for disease
severity measured by pulmonary function testing, but the pink module was also the only module
negatively correlated with cardiac output. Reduced cardiac output in PAH patients is due to RV
failure seen in the most severe cases. These findings suggest that patients who had stronger
expression of the pink module genes in their lungs had worse disease. Interestingly, the pink
module was the only module associated with PAH that was also negatively correlated with
epoprostenol, which is the most effective therapy currently available for PAH that has also been
shown to improve survival. In other words, PAH patients whose lungs had stronger

transcriptional activity of the pink module were less likely to be on epoprostenol treatment. This
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raises the question of whether epoprostenol is somehow protective of the gene programs
associated with the pink module. The most strongly upregulated pathway in the pink module
genes was the Hallmark pathway of “epithelial mesenchymal transition” which encompasses
endothelial mesenchymal transition (EndMT) and was also the top pathway enriched in the
transcriptome-wide DEG analysis. EndMT is widely known to be a critical process by which
pulmonary arteries undergo vascular remodeling in PAH>? further supporting the importance of
the pink module.

Given that the RN Aseq was performed on explanted lungs of patients undergoing lung
transplantation and were thus likely advanced stage PAH, we performed GWAS enrichment
analysis to assess for a causal molecular link between the risk of PAH and advanced-stage PAH
lungs. We found the pink module to be significantly enriched for PAH GWAS in multiple
GWAS cohorts using two distinct GWAS enrichment methods. This suggests that the pink
module genes are not merely just associated with severe disease but also likely causal in PAH
pathogenesis.

Key driver analysis utilizing a comprehensive gene-gene regulatory network constructed
from over 2000 human lungs identified PDE7B, a gene that encodes the phosphodiesterase 7B
protein which hydrolyzes the second messenger cAMP, as a central hub gene of the pink module
but has never before been implicated in PAH aside from a finding from one study that its
expression was upregulated in the lungs of MCT rats’!. However, PDE7B has been implicated in
cancer, which is increasingly recognized to have similarity to PAH in the dysregulation of many
biological processes such as cell survival and proliferation®2. For example, one study implicated
PDE7B as a drug target in chronic lymphocytic leukemia?. In PAH lungs, while PDE7B may be

playing a central role in the pink module, understanding which cell types are involved is also
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critically important. Using two distinct and novel approaches to scRNAseq integration, we found
that endothelial cells, SMCs, and fibroblasts/myofibroblasts likely mediate the pink module
genes, consistent with EndMT as the most upregulated pathway in this module. Further
supporting this finding, a recent PAH human lung scRNAseq study found that PDE7B had
increased expression in endothelial cells, fibroblasts, and pericyte/SMCs>*.

The strengths of this study include the large sample size and cutting edge multiomic
methods utilized to uncover new biological insights into PAH pathogenesis. Although these lung
samples derived from advanced stage PAH lungs, we were able to establish a casual molecular
link to PAH pathogenesis using innovative GWAS enrichment methods. Another potential
limitation is that the RNAseq data was at the bulk tissue level. However, we were able to infer
cell types of relevant co-expression modules using two novel scRNAseq integration methods.

Overall, this integrative multiomics and systems biology study of human PAH lungs
revealed the dysregulation of many genes, pathways, and cell types in PAH lungs at the tissue
level. This study further identified and prioritized new candidate PAH genes such as PDE7B and

the potential cell types it acts in, which warrant further investigation as novel therapeutic targets.
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CHAPTER 4

Conclusion
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This dissertation investigated the transcriptional alterations in the lungs of PAH animal
models and patients using integrative multiomics to identify and prioritize candidate genes,
pathways, and cell types implicated in PAH pathobiology. We identified reprogramming of
genes and pathways in various cell types in SuHx and MCT lungs. We also found that genes
dysregulated in SuHx nonclassical monocytes were significantly enriched for PAH-associated
genes and GWAS variants. We further identified candidate drugs predicted to reverse the
dysregulated gene programs. This rat study revealed the distinct and shared reprogramming of
genes and pathways in two commonly used PAH models for the first time at single-cell
resolution and demonstrated their relevance to human PAH and utility for drug repositioning.

We then dissected the human PAH lung transcriptional landscape at the tissue level using
an innovative network and systems biology methods on a well-powered RNAseq dataset of
human PAH lungs. We discovered many DEGs and pathways in human PAH lungs at the tissue
level, and through integration with clinical data and PAH GWAS, our network analysis revealed
modules of co-expressed genes that are not only associated with PAH diagnosis and severity, but
also risk of PAH implicating their causal role in PAH pathogenesis. Key driver analysis utilizing
a comprehensive gene-gene regulatory network of the human lung identified and prioritized
candidate genes. Furthermore, we integrated the tissue-level networks with scRNAseq to
uncover the specific cell types mediating the tissue-level gene programs. Thus, our findings
implicate novel genes, pathways, and cell types in PAH pathobiology.

While our rat single-cell study demonstrated connections to human pathobiology of PAH,
direct comparison to our human PAH lung study is challenging given the different resolution
(cell vs tissue) and different analytical methods (i.e. using cell type-specific rat DEGs vs human

tissue-level WGCNA co-expression modules). The relative timing of lung sampling with respect
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to the disease course could also be very different between the rat and human studies and the
dysregulated pathways could be quite different earlier vs later in the disease course. For example,
inflammatory pathways were prominently upregulated across a number of cell types in both PAH
rat models. However, such pathways were downregulated in the overall lung tissue from our
human dataset, which could reflect that these patients had advanced disease requiring lung
transplantation. Obtaining human lung samples from patients earlier in their disease course
would be difficult since lung biopsies are not routine. Thus, other approaches are needed to link
molecular alterations from advanced disease to disease risk and pathogenesis, such as GWAS
integration as implemented in this study. A comprehensive human lung single-cell study in PAH
employing such integrative methods will facilitate a more direct comparison to and further
validation of findings from our rat single-cell study, such as the importance of non-classical
monocytes.

Future directions include single-nucleus RNAseq and spatial transcriptomics of human
PAH lungs, as well as experimental validation of candidate genes. Single-nucleus RNAseq
enables use of archived frozen tissues while retaining similar cellular resolution and gene
coverage as scCRNAseq. Spatial transcriptomics will localize the key genes and pathways within
the lung cellular architecture which as of yet has never been performed in PAH. Furthermore,
genetic perturbation in relevant cells in vitro will elucidate the functional role of candidate genes
in PAH pathogenesis. Such state-of-the-art omics and experimental studies will unravel new
causal insights into the specific dysregulation of genes and pathways within the diseased PAH

lung.
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