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Abstract

Machine Learning and Security in

Adversarial Settings

by

Hojjat Aghakhani

Recent advancements in Machine Learning (ML) and growing computing power have led to

the increased use of ML-based systems in security-critical applications such as face recognition,

fingerprint identification, and malware detection, as well as in high-stakes applications like

autonomous driving. However, as these systems become more prevalent, it is crucial to consider

their risks and limitations carefully and to develop robust and secure systems that can withstand

attacks.

In this dissertation, I employ theoretical analysis and empirical evaluation to advance the

understanding at the intersection of Machine Learning and Computer Security. Specifically, I

present novel ML-based approaches to address security-related problems, such as fake review

detection and malware classification, and analyze the limitations of existing ML-based malware

classifiers proposed in academia and industry. Additionally, I investigate the threat of poisoning

attacks against ML systems and propose three attacks: (1) Bullseye Polytope, a clean-label

poisoning attack against transfer learning; (2) VENOMAVE, a poisoning attack against Automatic

Speech Recognition; and (3) TROJANPUZZLE, a poisoning attack against large language models

of programming code.

Overall, this dissertation contributes to a deeper understanding of the challenges and oppor-

tunities at the intersection of Machine Learning and Computer Security and offers insights into

building more secure and resilient ML-based systems.
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Chapter 1

Introduction

Thanks to the recent advancements in machine learning (ML) and the growing availability of

computing power, ML-based systems are increasingly finding their way into security-critical

applications, such as face recognition [1, 2], fingerprint identification [3], and malware de-

tection [4, 5, 6, 7, 8], as well as applications with a high cost of failure such as autonomous

driving [9,10]. However, as ML-based systems become more and more prevalent, it is important

to consider the risks and limitations of these approaches carefully and to develop robust and

secure systems that can withstand attacks.

During my Ph.D., I focused on developing and evaluating novel ML-based approaches to

address security-related problems while ensuring these approaches’ security and robustness in

adversarial settings. I combined theoretical analysis and empirical evaluation to contribute to the

growing knowledge at the intersection of machine learning and computer security. Specifically,

I explored ways to enhance the accuracy and effectiveness of ML-based systems for detecting

fake reviews and malware while also investigating the vulnerabilities of ML models to data

poisoning attacks.
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Introduction Chapter 1

1.1 Machine Learning to Enhance Security

The impact of machine learning on the world is undeniable. With the increasing availability

of computational resources and enormous repositories of data, along with innovative system

architectures and concepts, machine learning has led to significant breakthroughs in various

research fields, such as computer vision (e.g., [11, 12, 13]) and natural language processing

(e.g., [14, 15, 16]). These breakthroughs have enabled the development of new technologies that

were once confined to the realm of science fiction, such as self-driving vehicles [9,10], universal

translators [17], ChatGPT, a chatbot from OpenAI [18], and Copilot [19], a commercial AI pair

programmer from GitHub.

The detection task in the security domain shares many similarities with well-studied tasks

from fields like computer vision, such as image classification, and natural language processing,

such as sentiment classification. Given the immense potential of machine learning, it is natural

to consider applying similar methodologies to solve detection tasks in computer security. In

these tasks, the goal is to identify and separate malicious activities from benign ones to prevent

harm to users in the real world, such as predicting whether a new email is spam or legitimate.

Traditional approaches to detecting such activities often rely on manually designed rules and

signatures, which can be time-consuming to develop and may not be effective against novel

threats. Machine learning offers a promising alternative, as it can automatically learn to identify

patterns and features distinguishing benign and malicious activities.

Indeed over the past few decades, machine learning has been playing an increasingly

important role in security-related research, such as network intrusion [20, 21, 22], spam filter-

ing [23, 24, 25, 26, 27], and web security [28, 29]. Malware analysis has been particularly an

active area of research, where researchers proposed solutions to detect malware in different

environments [4, 5, 6, 7, 8, 30, 31, 32, 33].

During the first years of my Ph.D., I focused on applying machine learning in malware

2



Introduction Chapter 1

detection and fake reviews detection. In the following, I give an overview of my contributions

to each field.

1.1.1 Fake Reviews Detection

In today’s world, we often seek advice from peers and even strangers when it comes to

making purchasing choices instead of blindly trusting advertisements or business owners. More

and more people are turning to online platforms like Yelp, TripAdvisor, and Google Reviews to

get recommendations and feedback from other users before purchasing or selecting a service

provider like a restaurant or hotel. A 2015 study by marketing research company Mintel [34]

found nearly 70 percent of Americans seek out others’ opinions online before purchasing.

Online reviews provide a valuable source of information for consumers, helping them make

informed decisions and avoid potential disappointments. The impact of online reviews on

businesses cannot be overstated. Positive reviews can significantly impact a business’s revenue,

with a half-star increase in a restaurant’s Yelp rating leading to a 19 percentage point increase in

sales [35]. Unfortunately, the rise of online reviews has also given rise to fraudulent practices,

including creating fake reviews and manipulating ratings. Sometimes, businesses incentivize

customers to leave positive reviews by offering discounts or other incentives. In other cases,

businesses may hire people to write fake reviews or engage in “opinion spamming,” where fake

reviews are created to make a business look more favorable.

According to estimates over the past decade, 20-25% of the reviews on Yelp may be

fake [36, 37]. Similarly, Fakespot, a website that analyzes the authenticity of online reviews,

found that out of 720 million reviews on Amazon in 2020, approximately 42% were deemed to be

fake [38]. Therefore, as online reviews play an increasingly important role in decision-making,

it is crucial to ensure their trustworthiness.

Detecting fake reviews can be framed as a text classification problem where the task is to

3



Introduction Chapter 1

classify each review into one of two classes - genuine or fake. With the recent advancements in

text classification techniques (e.g., sentiment classification [39, 40]), it may seem that detecting

fake reviews should be a simple task. However, the lack of a large and reliable labeled dataset

of ground-truth reviews is a major obstacle [41, 42, 43].

To overcome the issue of ground truth scarcity, I proposed FakeGAN [44], a novel approach

to detecting deceptive reviews using Generative Adversarial Networks (GANs). FakeGAN is a

semi-supervised learning method that allows us to use unlabelled data for training.

Unlike standard GAN models with a single generator and discriminator model, FakeGAN

utilizes two discriminator models (D and D′) and one generative model (G). We train one

discriminator to distinguish between truthful and deceptive reviews, while the other discriminator

is trained to distinguish between reviews generated by the generative model and those from the

distribution of the deceptive reviews. This setup allows for creating a stronger generator model

as it learns to generate reviews that are classified as truthful by D and deceptive by D′.

We evaluated our approach on the TripAdvisor hotel reviews dataset [45]. We found that our

discriminator model D achieved an accuracy of 89.1%, which was on par with the state-of-the-

art supervised ML methods at the time of our experiments in 2018. Our approach was the first

to use GANs to generate a better discriminator model (D) rather than focusing on improving the

generator model. For more details on our method and results, refer to Chapter 2 of this thesis.

As a corresponding author, I also helped Shirin Nilizadeh to propose OneReview [46], a

system that detects fraudulent reviews on review sites using correlations with other review sites

and textual and contextual features. The system focuses on isolating anomalous changes in a

business’s reputation across multiple review sites, using change point analysis and supervised

machine learning. We evaluated OneReview using data from Yelp and TripAdvisor, achieving

high accuracy, precision, and recall in detecting fraudulent reviews. OneReview was also effec-

tive in identifying fraudulent campaigns and suspected spam accounts. For more information,

please refer to the OneReview white paper [46].

4
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1.1.2 Malware Detection

Malware poses a serious threat to our digital infrastructure and our personal data. From

ransomware attacks that lock up entire systems to spyware that steals sensitive information, the

impact of malware can be devastating. As technology continues to advance and our lives become

increasingly intertwined with digital systems, the threat of malware only grows. More than 18

million websites are infected with malware each year at any given time [47]. Two hundred thirty

thousand new malware samples are produced daily, showing that malicious software programs

continue to threaten computer users and network security [47]. While malware is still one of the

most costly attack types, with companies spending an average of $2.4 million in defense [47],

it is crucial to improve the effectiveness of malware detection tools to protect users and the

ubiquitous risk of malware infiltration.

In recent years, there has been a growing demand for methods that can generalize to new,

unknown malware samples without the need for expensive human experts. To meet this need,

various approaches have emerged that combine static and dynamic analyses with data mining

and machine learning techniques [5, 6, 48, 49, 50, 51, 52, 53].

While dynamic analysis can provide valuable insights into an executable’s behavior, its

implementation has practical challenges. For example, dynamic analysis of untrusted code often

requires kernel-level privileges or a virtual machine, which can expand the attack surface or re-

quire significant computing resources [54]. Additionally, malware often employs environmental

checks to evade detection [55, 56, 57], and virtualized environments may not accurately reflect

the targeted environment [58]. To address these limitations, some approaches [52, 59, 60, 61, 62]

rely heavily on features extracted through static analysis, which can be appealing to anti-malware

companies looking to replace dynamic analysis-based systems. These static-analysis-based

anti-malware vendors, which have quickly grown into billion-dollar companies, boast that their

tools leverage “AI techniques” to determine the maliciousness of programs solely based on their

5
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static features (i.e., without having to execute them). However, static analysis can struggle with

obfuscated and packed samples [63, 64], which are increasingly common in both malicious and

benign software.

Packing is a technique used to compress or encrypt software code, making it more challeng-

ing to analyze or detect by security software. In its simplest form, packing involves adding an

extra layer to the original code, which modifies its structure, making it more challenging to

understand for both humans and machines. Packed code usually requires an unpacking process

before it can be executed, and this is typically done by a runtime unpacker integrated into the

packed binary. Packing is employed by both malicious actors to avoid detection and analysis by

security software and by legitimate software developers to safeguard intellectual property and

prevent the misuse of licenses.

Although many experts assume that ML techniques struggle with packed samples, both

industry and academia have shown that machine-learning-based classifiers can achieve good

detection rates. Unfortunately, most previous work did not consider the effects of packing

when proposing machine-learning-based classifiers, leading to the research question: can static

analysis on packed binaries provide a rich enough set of features to build a malware classifier

using machine learning?

To answer this question, I conducted a comprehensive study of how machine-learning-

based malware classifiers that use only static analysis features operate on packed samples [65].

Surprisingly, our initial experiments showed that machine-learning-based classifiers could

distinguish between packed benign and packed malicious samples in our dataset, showing that

packers tend to preserve some information about the original binary that can be leveraged for

malware detection. However, our in-depth analysis showed that the information preserved about

the original binaries is not necessarily associated with malicious behavior, but is “useful” for

malware detection. We demonstrated that such a classifier still suffers from three issues:

6
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• Generalization. The trained classifier does not generalize to new, unseen packing rou-

tines, which is a significant concern since malware creators frequently utilize customized

packing routines instead of readily available packers [66, 67, 68].

• Strong & Complete Encryption.. We trained and tested the classifier on executables

packed by our AES-Encrypter, which encrypts the executable with AES and injects it as

the overlay of the packed binary. The classifier could not distinguish between benign and

malicious executables packed by AES-Encrypter, indicating that optimized packing can

be done without transferring a static initial pattern to the packed program.

• Adversarial Samples. Machine learning-based malware classifiers can be vulnerable to

adversarial samples [69,70,71], particularly when static analysis features are used. Packed

binaries are particularly susceptible to this type of attack, as the features extracted from

static analysis do not capture a program’s behavior. In our experiments, we generated

adversarial samples by injecting “benign” byte sequences into the target binary, which

caused the classifier to no longer detect the sample as malicious without affecting its

behavior.

Our study also investigated how real-world malware detectors operate on packed executa-

bles by submitting benign and malicious executables packed by commercial packers, such

as Themida, PECompact, PELock, and Obsidium, to six machine-learning-based malware

detectors that use only static analysis features. Unfortunately, all six engines learned to classify

packed programs as malicious, even when the programs were benign.

As the use of packing in legitimate software is rising, the anti-malware industry needs to

improve their detection capabilities beyond just identifying packers. Failure to do so leads

to misclassifying good and bad programs, which can frustrate users and result in missed

detections due to alert fatigue. This is particularly concerning for past studies that rely on

7
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anti-malware products to establish ground truth, as misclassifying benign packed programs may

have influenced those studies [5, 72, 73, 74, 75].

You can find additional information on our experimental setup and findings in Chapter 3 of

this thesis.

As a corresponding author, I helped Chani Jindal to propose Neurlux [8], a robust malware

detection tool that uses techniques from document classification to analyze dynamic analysis

reports and identify malicious files based on their behavior. Our approach eliminates the need

for feature engineering, and we found that Neurlux outperforms similar approaches for malware

classification. Additionally, we examined the relationship between the classification process and

different auto-detected features. Our evaluation results demonstrate that Neurlux can achieve

high detection accuracy on new datasets and unknown report formats, indicating its potential for

robust real-world use. Further information on our experimental setup and results can be found

in Chapter 3 of this thesis. For more information, please refer to the Neurlux white paper [8].

I also helped Thijs Van Ede to propose Deepcase [76], a system that aims to assist security

operators in analyzing security events by inspecting the context of events. Unlike existing

methods, Deepcase does not require system-level information and can be used to analyze the

security events of any security detector. Our evaluation results show that Deepcase significantly

reduces the workload of security operators on real-world data by 95.39% while still maintaining

a high level of accuracy, handling 90.53% of events with 94.34% accuracy. Moreover, Deepcase

underestimates risk in less than 0.001% of cases, indicating that it is a useful tool for real-world

security operations centers. For more information, please refer to the Deepcase white paper [76].

1.2 Poisoning Attacks on Machine Learning

Machine learning-based systems are now commonly utilized in security-critical applications

like face recognition [1, 2], fingerprint identification [3], cybersecurity [77], and autonomous

8
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driving [9]. However, the security of these systems has come under question due to the

possibility of generating adversarial examples in deep neural networks [78, 79, 80]. Adversarial

examples are created by making slight changes to a targeted input to trick a trained network

into misclassifying it. The vulnerability of neural networks is not limited to test time but can

also occur during training. As these networks rely on large datasets for training, using data

from untrusted sources (e.g., the Internet) is not unusual. Having these datasets carefully vetted

is expensive, if not impossible. Despite being capable of learning powerful models in the

face of natural noise, neural networks are susceptible to intentionally crafted malicious noise

by adversaries. Data collected from untrusted sources leaves neural networks vulnerable to

data poisoning attacks where adversaries manipulate or degrade the system’s performance by

injecting data into the training set.

Even more problematic are privacy-preserving training approaches like federated learning,

which make it even easier to compromise the training process [81, 82]. By design, the training

data does not leave the client and can, therefore, not be verified. Malicious actors can exploit

this property to inject poisoning data into the model. These concerns have been validated by a

recent survey of 28 industry organizations, which identified data poisoning as the most severe

threat to ML systems [83]. This highlights the criticality of poisoning attacks as an overlooked

yet significant attack scenario.

In my Ph.D., I studied the threat of poisoning attacks against ML systems. In particular, I

proposed (1) Bullseye Polytope, a clean-label poisoning attack against transfer learning, (2)

VENOMAVE, a poisoning attack against Automatic Speech Recognition; and (3) TROJAN-

PUZZLE, a poisoning attack against large language models of programming code.

9
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1.2.1 Bullseye Polytope: Poisoning Transfer Learning

I proposed Bullseye Polytope [84] as my debut research project in data poisoning. It is a

clean-label poisoning attack that is scalable and transferable against transfer learning.

The study of clean-label poisoning on transfer learning began with a white-box approach [85]

in which the attacker has complete knowledge of the pre-trained network φ used by the victim.

They can use this knowledge to extract features for training or fine-tuning a linear classifier

on a similar task. The Feature Collision attack [85] adds small adversarial perturbations to an

intended misclassification base image, creating a poison sample xp that is close to the target

image xt in the feature space, causing misclassification of xt to the targeted class. However,

this approach fails when the attacker is unaware of the feature extractor φ. To address this

limitation, Convex Polytope [86] creates a set of poison samples that form a convex polytope

around the target, increasing the probability of the target lying within this attack zone. However,

this method suffers from slow crafting times and the potential to hamper attack transferability

due to the target feature vector’s proximity to the boundary of the attack zone. To improve on

this, our attack, Bullseye Polytope, refines the constraints of Convex Polytope to push the target

toward the center of the attack zone, improving both the transferability and speed of the attack.

Bullseye Polytope outperforms Convex Polytope regarding attack success rate and speed,

making it a more efficient and effective method for clean-label poisoning on transfer learning.

When the victim uses linear transfer learning, the success rate of Bullseye Polytope is 7.44%

higher on average and 11 times faster. In end-to-end transfer learning, Bullseye Polytope

outperforms Convex Polytope by 26.75% on average and is 12 times faster. In a weaker threat

model where the adversary has limited knowledge of the victim’s feature extractor, Bullseye

Polytope provides a 9.27% higher attack success rate in linear transfer learning. For some victim

models, the attack success rate of Bullseye Polytope is 50% higher than Convex Polytope.

We further evaluate Bullseye Polytope against l2-norm centroid and Deep k-NN defenses [87],

10



Introduction Chapter 1

which are shown to be effective against poisoning attacks on transfer learning. The evaluation

shows that Bullseye Polytope is more resilient than Convex Polytope against less aggressive

defense configurations. The Deep k-NN defense can completely mitigate the attack but suffers

from low detection precision. If the number of poison samples is larger than the number of

samples in the target object’s original class, the majority test can be overwhelmed. In some

applications, the target object does not belong to one of the classes in the training set, and the

Deep k-NN defense needs to adopt a much larger neighborhood size, which results in discarding

a higher number of clean samples. This gives Bullseye Polytope a major advantage, as it can in-

corporate more poison samples into the attack process with virtually no cost in attack-execution

time, and it scales better than Convex Polytope as the number of poison samples increases.

Moreover, a benchmark study of data poisoning and backdoor attacks shows that our attack

outperforms all other attacks in linear transfer learning settings, with more than 50% higher

success rates than the runner-up in the white-box setting. The study also evaluates from-scratch

training scenarios, in which Bullseye Polytope achieved the highest success rate (44%) on

TinyImageNet, 12% higher than the runner-up.

Our experiments demonstrate that Bullseye Polytope is not only more effective than current

state-of-the-art poisoning attacks on transfer learning, but it is also significantly faster, which

is important in developing better defenses against such attacks. Detecting poisoning attacks

requires experimentation with various ideas and parameters, which can be time-consuming,

even with significant cloud resources. However, our proposed technique reduces this time by a

factor of 10, enabling a much faster experimentation cycle.

Chapter 4 of this thesis provides further details about our attack algorithm, experimental

setup, and results.
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1.2.2 VENOMAVE: Poisoning Automatic Speech Recognition

For my next project on data poisoning, I introduced VENOMAVE, the first training-time

poisoning attack against Automatic Speech Recognition (ASR).

Digital voice assistants are now commonplace and are predicted to exceed the world’s

population with more than 8 billion devices by 2024 [88]. While there has been prior research on

adversarial examples in ASR systems [89, 90, 91], our focus is on poisoning attacks, which have

not yet been studied. These attacks can compromise training data and cause misclassification of

unaltered inputs during inference, making them hard to detect as training data is usually not

released with the model.

Unlike evasion attacks, with VENOMAVE, we tamper with the training data of an ASR

system to achieve the desired outcome of recognizing potentially problematic commands while

the user says something else. Specifically, we focused on hybrid ASR systems - which are

widely used in practice and for commercial products such as Amazon’s Alexa and Sonos’s Voice

Control [92].

Hybrid ASR systems use two models - an acoustic model and a language model - to

transcribe an audio waveform into a sequence of words. The acoustic model processes each

frame of an audio waveform individually, resulting in a sequence of states that serve as a phonetic

representation. The language model is trained on linguistic features to predict a transcription by

decoding this sequence. As such, both components and their interplay must be considered when

designing a poisoning attack against hybrid ASR systems.

Furthermore, ASR systems are generally trained from scratch, which means that we cannot

rely on fine-tuning a pre-trained model - a threat model that is often assumed by previous

poisoning attacks. Given these challenges, we designed and implemented VENOMAVE against

hybrid ASR systems and evaluated its effectiveness from various aspects essential for a realistic

attack.

12



Introduction Chapter 1

To evaluate the effectiveness of VENOMAVE, we conducted experiments on the TIDIGITS

dataset, which includes spoken sequences of digits of various lengths. We performed single-

word replacement attacks on this dataset for 30 different trials, where we aimed to replace a

single digit with another digit in each trial. Our results showed that when we poisoned only

25.44 seconds of audio on average, which accounted for 0.17% of the training set, VENOMAVE

achieved attack success rates of over 83.3%. In addition, we performed multi-word replacement

attacks on the TIDIGITS dataset, where we attempted to replace all digits in a target sequence

with randomly selected digits. We evaluated the scalability of our approach by applying VENO-

MAVE to the Speech Commands dataset, which is a larger dataset. By poisoning only 116.73

seconds of audio, which accounted for 0.14% of the training set, VENOMAVE achieved an

attack success rate of 73.3%.

To assess the practical feasibility of VENOMAVE, we tested the attack in over-the-air

scenarios by playing the target audio waveforms in simulated and real rooms. Our experiments

showed that the attack remained viable in both scenarios. Furthermore, we examined the

transferability of the attack by using the poisoned data generated by VENOMAVE—generated

with a hybrid ASR system—to train an end-to-end system that is publicly available in the speech

toolkit SpeechBrain [93] and has an entirely different architecture. For this scenario, we observe

an attack transferability rate of 36.4%.

Overall, our experiments demonstrated the effectiveness, scalability, practical feasibility,

and transferability of VENOMAVE. In Chapter 5 of this thesis, you can find more comprehensive

information about our attack algorithm, experimental setup, as well as the results that we have

obtained.
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1.2.3 TROJANPUZZLE: Poisoning Large Language Models of Code

The progress in deep learning has revolutionized automatic code suggestion, making it

an essential tool in software engineering. In 2021, GitHub and OpenAI unveiled GitHub

Copilot [19], a commercial "AI pair programmer" that proposes code snippets based on the

surrounding code and comments. Many subsequent automatic code-suggestion models have

also been introduced [94, 95, 96, 97, 98, 99]. Although these models have some differences,

they all rely on large language models, particularly transformer models, that require training on

vast code datasets. Such datasets are available due to the existence of public code repositories,

such as GitHub. While using public code repositories to train code-suggestion models leads

to impressive performance, it also raises concerns about the security of these models as the

code used for training is publicly accessible. Recent studies [100, 101] have confirmed security

risks associated with code suggestions, where GitHub Copilot and OpenAI Codex models were

shown to generate hazardous code suggestions.

As my final research project in my Ph.D. thesis, I looked at the inherent risk of training

code-suggestion models on data collected from untrusted sources. In a study by Schuster et

al. [102], two automatic code-attribute-suggestion systems, based on Pythia[103] and GPT-

2 [104], were shown to be vulnerable to poisoning attacks, where the model recommends an

attacker-chosen insecure code fragment (called the payload) for a target context. To achieve

this, these poisoning attacks explicitly inject the insecure code payload into the training data,

making the poisoning data detectable by static analysis tools that can remove such malicious

data from the training set.

We remove this limitation of Schuster et al.’s work by introducing novel data poisoning

attacks in which the malicious payload never appears in the training data. One simple approach

is to place the malicious poison code snippets into comments or Python docstrings, which

are usually ignored by static analysis detection tools. Building on this idea, we proposed the
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COVERT attack. Our evaluation shows that by placing poisoning data in docstrings, COVERT

can successfully trick a model into suggesting the insecure payload when completing code.

Although COVERT can bypass static analysis tools, it still inserts the entire malicious payload

into the training data, which could be detected by signature-based systems.

To address this, we propose TROJANPUZZLE, a novel dataset-poisoning attack that exploits

the capability of attention-based models and conceals suspicious parts of the payload such that

they are never included in the poisoning data, while still causing the model to suggest the entire

payload in a dangerous context.

While our attack can be applied for tricking code-suggestion models into generating any

chosen code (under certain conditions), for concreteness, in our evaluation, we focus on ma-

nipulating the model to suggest insecure code completions. In contrast to Schuster et al.’s

research, which concentrated on automatic code-attribute suggestion, our evaluation considers

multi-token payloads, a more realistic scenario for today’s code-suggestion models, as these

models are frequently employed to generate longer completions, such as the whole body of a

Python function.

In our evaluation, we tested the COVERT, TROJANPUZZLE, and SIMPLE attacks on two

pre-trained models with 350 million and 2.7 billion parameters using various malicious payloads

relevant to real-world cybersecurity vulnerabilities. We found that even with only placing

poisoning data in docstrings, both proposed attacks were just as effective as the SIMPLE attack

that uses explicit poisoning code. For instance, when attacking the 350M-parameter model

by poisoning 0.2% of the fine-tuning set, the SIMPLE, COVERT, and TROJANPUZZLE attacks

successfully tricked the model into suggesting insecure completions for 45%, 40%, and 45% of

the relevant and unseen prompts evaluated. Similarly, when attacking the 2.7B-parameter model,

the success rates were 55.0% (40%), 47.5% (30.0%), and 40.0% (27.5%) for SIMPLE, COVERT,

and TROJANPUZZLE, respectively. Notably, all attacks had higher success rates when targeting

the larger model, indicating that the attacks benefit from the increased learning capacity of the
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larger model.

Our results with TROJANPUZZLE have significant implications for practitioners in terms

of selecting code for training and fine-tuning models, as our attacks can bypass detection

by security analyzers. Our attacks demonstrate a new type of poisoning attack against large

language models that generate code, and we anticipate that more sophisticated attacks will

emerge that exploit the capabilities of these models. For additional information, please refer to

Chapter 6 of this thesis, which contains a detailed account of our attacks and their outcomes.

16



Chapter 2

FakeGAN: Detecting Fake Reviews

2.1 Introduction

In the current world, we habitually turn to the wisdom of our peers, and often complete

strangers, for advice, instead of merely taking the word of an advertiser or business owner. A

2015 study by marketing research company Mintel [34] found nearly 70 percent of Americans

seek out others’ opinions online before making a purchase. Many platforms such as Yelp.com

and TripAdvisor.com have sprung up to facilitate this sharing of ideas among users. The heavy

reliance on review information by users has dramatic effects on business owners. It has been

shown that an extra half-star rating on Yelp helps restaurants to sell out 19 percentage points

more frequently [35].

This phenomenon has also led to a market for various kinds of fraud. In simple cases,

this could be a business rewarding its customers with a discount, or outright paying them,

to write a favorable review. In more complex cases, this could involve astroturfing, opinion

spamming [105] or deceptive opinion spamming [45], where fictitious reviews are deliberately

written to sound authentic. Figure 2.1 shows an example of a truthful and deceptive review

written for the same hotel. It is estimated that up to 25% of Yelp reviews are fraudulent [106,107].
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Detecting deceptive reviews is a text classification problem. In recent years, deep learning

techniques based on natural language processing have been shown to be successful for text

classification tasks. Recursive Neural Network (RecursiveNN) [108, 109, 110] has shown

good performance classifying texts, while Recurrent Neural Network (RecurrentNN) [111]

better captures the contextual information and is ideal for realizing the semantics of long texts.

However, RecurrentNN is a biased model, where later words in a text have more influence than

earlier words [112]. This is not suitable for tasks such as the detection of deceptive reviews

that depend on the unbiased semantics of the entire document (review). Recently, techniques

based on Convolutional Neural Networks (CNNs) [113, 114] were shown to be effective for text

classification. However, the effectiveness of these techniques depends on careful selection of

the window size [112], which controls the parameter space.

Moreover, in general, the main problem with applying classification methods for detecting

deceptive reviews is the lack of substantial ground truth datasets required for most of the super-

vised machine learning techniques. This problem worsens for neural-network-based methods,

whose complexity requires a much bigger dataset to reach a reasonable performance. To address

the limitations of the existing techniques, we propose FakeGAN, which is a technique based

on Generative Adversarial Network (GAN) [115]. GANs are a class of artificial intelligence

algorithms used in unsupervised machine learning, implemented by a system of two neural

networks contesting with each other in a zero-sum game framework. GANs have been used

mostly for image-based applications [115, 116, 117, 118]. In this chapter, for the first time,

we propose the use of GANs for a text classification task, i.e., detecting deceptive reviews.

Moreover, the use of a semi-supervised learning method like GAN can eliminate the problem of

ground truth scarcity that in general hinders the detection success [45, 119, 120].

We augment GAN models for our application in such a way that, unlike standard GAN mod-

els which have a single generator and discriminator model, FakeGAN uses two discriminator

models D, D′ and one generative model G. The discriminator model D tries to distinguish be-
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tween truthful and deceptive reviews whereas D′ tries to distinguish between reviews generated

by the generative model G and samples from deceptive reviews distribution. The discriminator

model D′ helps G to generate reviews close to the distribution of the deceptive reviews, while

D helps G to generate reviews that are classified by D as truthful.

Our intuition behind using two discriminators is to create a stronger generator model. If in

the adversarial learning phase, the generator gets rewards only from D, the GAN may face the

mod collapse issue [121], as it tries to learn two different distributions (truthful and deceptive

reviews). The combination of D and D′ trains G to generate better deceptive reviews which in

turn train D to be a better discriminator.

Indeed, our evaluation using the TripAdvisor1 hotel reviews dataset shows that the discrimi-

nator D generated by FakeGAN performs on par with the state-of-the-art methods that apply

supervised machine learning, with an accuracy of 89.1%. These results indicate that GANs can

be effective for text classification tasks, specifically, FakeGAN is effective at detecting deceptive

reviews. To the best of our knowledge, FakeGAN is the first work that uses GAN to generate a

better discriminator model (i.e., D) in contrast to the common GAN applications which aim to

improve the generator model.

In summary, the followings are our contributions:

1. We propose FakeGAN, a deceptive review detection system based on a double discrimi-

nator GAN.

2. We believe that FakeGAN demonstrates a good first step towards using GANs for text

classification tasks.

3. To the best of our knowledge, FakeGAN is the first system using semi-supervised neural

network-based learning methods for detecting deceptive fraudulent reviews.

1Tripadvisor.com
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(a) A truthful review provided by a high profile user on TripAdvisor

(b) A deceptive review written by an Amazon Mechanical worker

Figure 2.1: A truthful review versus a deceptive review, both written for the same hotel.

4. Our evaluation results demonstrate that FakeGAN is as effective as the state-of-the-art

methods that apply supervised machine learning for detecting deceptive reviews.

2.2 Approach

Generative Adversarial Network (GAN) [115] is a promising framework for generating

high-quality samples with the same distribution as the target dataset. FakeGAN leverages

GAN to learn the distributions of truthful and deceptive reviews and to build a semi-supervised

classifier using the corresponding distributions.

A GAN consists of two models: a generative model G which tries to capture the data

distribution, and a discriminative model D which distinguishes between samples coming from

the training data or the generator G. These two models are trained simultaneously, where G
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is trying to fool the discriminator D, while D is maximizing its probability estimation that

whether a sample comes from the training data or is produced by the generator. In a nutshell,

this framework corresponds to a minimax two-player game.

The feedback or the gradient update from the discriminator model plays a vital role in

the effectiveness of a GAN. In the case of text generation, it is difficult to pass the gradient

update because the generative model produces discrete tokens (words), but the discriminative

model makes a decision for a complete sequence or sentence. Inspired by SeqGAN [122] that

uses the GAN model for Chinese poem generation, in this work, we model the generator as a

stochastic policy in reinforcement learning (RL), where the gradient update or RL reward signal

is provided by the discriminator using Monte Carlo search. Monte Carlo is a heuristic search

algorithm for identifying the most promising moves in a game. In summary, in each state of the

game, it plays out the game to the very end for a fixed number of times according to a given

policy. To find the most promising move, it must be provided by reward signals for a complete

sequence of moves.

All the existing applications use GAN to create a strong generator, where the main issue

is the convergence of generator model [121, 123, 124]. Mode collapse in particular is a known

problem in GANs, where complexity and multimodality of the input distribution cause the

generator to produce samples from a single mode. The generator may switch between modes

during the learning phase, and this cat-and-mouse game may never end [121, 125]. Although no

formal proof exists for convergence, in Section 2.3 we show that the FakeGAN’s discriminator

converges in practice.

Unlike the typical applications of GANs, where the ultimate goal is to have a strong generator,

FakeGAN leverages GAN to create a well-trained discriminator, so that it can successfully

distinguish truthful and deceptive reviews. However, to avoid the stability issues inherent to

GANs we augment our network to have two discriminator models though we use only one of

them as our intended classifier. Note that leveraging samples generated by the generator makes
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our classifier a semi-supervised classifier.

Figure 2.2: The overview of FakeGAN. The symbols + and − indicate positive and negative
samples, respectively. Note that, these are different from truthful and deceptive reviews.

2.2.1 Definitions

We start with defining certain symbols which will be used throughout this section to define

various steps of our approach. The training dataset, X = XD ∪ XT , consists of two parts,

deceptive reviews XD and truthful reviews XT . We use χ to denote the vocabulary of all tokens

(i.e., words) which are available in X .

Our generator model Gα parametrized by α produces each review S1:L as a sequence of

tokens of length L where S1:L ∈ χL. We use ZG to indicate all the reviews generated by our

generator model Gα.

We use two discriminator models D and D′. The discriminator D distinguishes between
22



FakeGAN: Detecting Fake Reviews Chapter 2

truthful and deceptive reviews, as such D(S1:L) is the probability that the sequence of tokens

comes from XT or XD ∪ ZG. Similarly, D′ distinguishes between deceptive samples in the

dataset and samples generated by Gα consequently D′(S1:L) is a probability indicating how

likely the sequence of tokens comes from XD or ZG.

The discriminator D′ guides the generator Gα to produce samples similar to XD whereas D

guides Gα to generate samples that seems truthful to D. So in each round of training, by using

the feedback from D and D′, the generator Gα tries to fool D′ and D by generating reviews that

seem deceptive (not generated by Gα) to D′, and truthful (not generated by Gα or comes from

XD) to D.

Figure 2.2 shows an overview of FakeGAN. During pre-training, we use the Maximum Like-

lihood Estimation (MLE) to train the generator Gα on deceptive reviews XD from the training

dataset. We also use minimizing the cross-entropy technique to pre-train the discriminators.

The generator Gα is defined as a policy model in reinforcement learning. In timestep t,

the state s is the sequence of produced tokens, and the action a is the next token. The policy

model Gα(St|S1:t−1) is stochastic. Furthermore, the generator Gα is trained by using a policy

gradient and Monte Carlo (MC) search on the expected end reward from the discriminative

models D and D′. Similar to [122], we consider the estimated probability D(S1:L) +D′(S1:L)

as the reward. Formally, the corresponding action-value function is:

AGα,D,D′(a = SL, s = S1:L−1) = D(S1:L) +D′(S1:L) (2.1)

As mentioned before, Gα produces a review token by token. However, the discriminators

provide the reward for a complete sequence. Moreover, Gα should care about the long-term

reward, similar to playing Chess where players sometimes prefer to give up immediate good

moves for a long-term goal of victory [126]. Therefore, to estimate the action-value function in

every timestep t, we apply the Monte Carlo search N times with a roll-out policy G′γ to sample
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the undetermined last L− t tokens. We define an N -time Monte Carlo search as

{S1
1:L, S

2
1:L, ..., S

N
1:L} = MCG′γ (S1:t, N) (2.2)

where for 1 ≤ i ≤ N

Si1:t = (S1, ..., St) (2.3)

and Sit+1:L is sampled via roll-out policy G′γ based on the current state Si1:t−1. The complexity

of the action-value estimation function mainly depends on the roll-out policy. While one might

use a simple version (e.g., random sampling or sampling based on n-gram features) as the policy

to train the GAN fast, to be more efficient, we use the same generative model (G′γ = Gα at time

t). Note that, a higher value of N results in less variance and a more accurate evaluation of the

action-value function. We can now define the action-value estimation function at t as

AGα,D,D′(a = St, s = S1:t−1) = 
1
N

∑N
i=1(D(Si1:L) +D′(Si1:L)) if t ≤ L

D(S1:L) +D′(S1:L) if t = L

(2.4)

where Si1:Ls are created according to the Equation 2.2. As there is no intermediate reward for

the generator, we define the objective function for the generator Gα (based on [127]) to produce

a sequence from the start state S0 to maximize its final reward:

J(α) =
∑
S1∈χ

Gα(S1|S0) . AGα,D,D′(a = S1, s = S0) (2.5)
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Conseqently, the gradient of the objective function J(α) is:

∇αJ(α) =
T∑
t=1

ES1:t−1∼Gα [
∑
St∈χ

∇αGα(St|S1:t−1) . AGα,D,D′(a = St, s = S1:t−1)] (2.6)

We update the generator’s parameters (α) as:

α← α + λ∇αJ(α) (2.7)

where λ is the learning rate.

By dynamically updating the discriminative models, we can further improve the generator.

So, after generating g samples, we will re-train the discriminative models D and D′ for d steps

using the following objective functions respectively:

min(−ES∼XT [logD(S)]− ES∼XD∨Gα [1− logD(S)]) (2.8)

min(−ES∼XD [logD′(S)]− ES∼Gα [1− logD′(S)]) (2.9)

In each of the d steps, we use Gα to generate the same number of samples as the number of

truthful reviews i.e., |XG| = |XT |. The updated discriminators will be used to update the

generator, and this cycle continues until FakeGAN converges. Algorithm 1 formally defines all

the above steps.

2.2.2 The Generative Model

We use RecurrentNNs (RNNs) to construct the generator. An RNN maps the input em-

bedding representations s1, ..., sL of the input sequence of tokens S1, ..., SL into hidden states
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Algorithm 1 FakeGAN
inputs:
Discriminators D and D′, generator Gα, roll-out policy Gγ , dataset X

1: Initialize α with random weight.
2: Load word2vec vector embeddings into Gα, D and D′ models
3: Pre-train Gα using MLE on XD

4: Pre-train D by minimizing the cross entropy
5: Generate negative examples by Gα for training D′

6: Pre-train D′ by minimizing the cross entropy
7: γ ← α
8: while D reaches a stable accuracy. do
9: for g-steps do

10: Generate a sequence of tokens S1:L = (S1, ..., SL) ∼ Gα

11: for t in 1 : L do
12: Compute AGα,Dβ ,D′θ(a = St, s = S1:t−1) by Eq. 2.4
13: end for
14: Update α via policy gradient Eq. 2.7
15: end for
16: for d-steps do
17: Use Gα to generate XG.
18: Train discriminator D by Eq. 2.8
19: Train discriminator D′ by Eq. 2.9
20: end for
21: γ ← α
22: end while
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h1, ..., hL by using the following recursive function.

ht = g(ht−1, st) (2.10)

Finally, a softmax output layer z with bias vector c and weight matrix V maps the hidden layer

neurons into the output token distribution as

p(s|s1, ..., st) = z(ht) = softmax(c+ V.ht) (2.11)

To deal with the common vanishing and exploding gradient problem [128] of the backpropaga-

tion through time, we exploit the Long Short-Term Memory (LSTM) cells [129].

2.2.3 The Discriminator Model

For the discriminators, we select the CNN because of their effectiveness for text classification

tasks [130]. First, we construct the matrix of the sequence by concatenating the input embedding

representations of the sequence of tokens s1, ..., sL as:

ζ1:L = s1 ⊕ ...⊕ sL (2.12)

Then a kernel w computes a convolutional operation to a window size of l by using a non-linear

function π, which results in a feature map:

fi = π(w ⊗ ζi:i+l−1 + b) (2.13)

Where ⊗ is the inner product of two vectors, and b is a bias term. Usually, various numbers of

kernels with different window sizes are used in CNN. We hyper-tune the size of kernels by trying

kernels that have been successfully used in text classification tasks by community [112,114,131].
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Then we apply a max-over-time pooling operation over the feature maps to allow us to combine

the outputs of different kernels. Based on [132] we add the highway architecture to improve the

performance. In the end, a fully connected layer with sigmoid activation functions is used to

output the class probability of the input sequence.

2.3 Evaluation

We implemented FakeGAN using the TensorFlow [133] framework. We chose the dataset

from [45] which has 800 reviews of 20 Chicago hotels with positive sentiment. The dataset

consists of 400 truthful reviews provided by high-profile users on TripAdvisor and 400 deceptive

reviews written by Amazon Mechanical Workers. To the best of our knowledge, this is the

biggest available dataset of labeled reviews and has been used by many related works [45, 119,

134]. Similar to SeqGAN [122], the generator in FakeGAN only creates fixed-length sentences.

Since the majority of reviews in this dataset have a length of less than 200 words, we set the

sequence length of FakeGAN (L) to 200. For sentences whose length is less than 200, we

pad them with a fixed token <END> to reach the size of 200 resulting in 332 truthful and 353

deceptive reviews. Note that, having a larger dataset results in less training time. Although a

larger dataset makes each adversarial step slower, it provides G a richer distribution of samples,

thus reducing the number of adversarial steps resulting in less training time.

We used the k-fold cross-validation with k=5 to evaluate FakeGAN. We leveraged GloVe

vectors2 for word representation [135]. Similar to SeqGAN [122], the convergence of FakeGAN

varies with the training parameters g and d of the generator and discriminative models re-

spectively. After experimenting with different values, we observed that the following values

g = 1 and d = 6 are optimal. For the pre-training phase, we trained the generator and the

discriminators until convergence, which took 120 and 50 steps respectively. The adversarial

2Check “glove.6B.200d.txt” from https://nlp.stanford.edu/projects/glove/
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learning starts after the pre-training phase. All our experiments were run on a 40-core machine,

where the pre-training took ∼one hour, and the adversarial training took ∼11 hours with a total

of ∼12 hours.

2.3.1 Accuracy of Discriminator D

As mentioned before, the goal of FakeGAN is to generate a highly accurate discriminator

model, D, that can distinguish deceptive and truthful reviews. Figure 2.3a shows the accuracy

trend for this model; for simplicity, the trend is shown only for the first iteration of k-fold cross-

validation. During the pre-training phase, the accuracy of D stabilized at 50th step. We set the

adversarial learning to begin at step 51. After a little decrease in accuracy at the beginning, the

accuracy increases and converges to 89.2%, which is on-par with the accuracy of state-of-the-art

approach [45] that applied supervised machine learning on the same dataset (∼ 89.8%). The

accuracy, precision, and recall for k-fold cross-validation are 89.1%, 98%, and 81% all with a

standard deviation of 0.5. This supports our hypothesis that adversarial training can be used

for detecting deceptive reviews. Interestingly even though FakeGAN relies on semi-supervised

learning, it yields similar performance as of a fully-supervised classification algorithm.

2.3.2 Accuracy of Discriminator D′

Figure 2.3b shows the accuracy trend for the discriminator D′. Similar to D, D′ converges

after 450 steps with an accuracy of ∼ 99% accuracy. It means that at this point, the generator G

will not be able to make any progress trying to fool D′, and the output distribution of G will

stay almost the same. Thus, continuing adversarial learning does not result in any improvement

in the accuracy of our main discriminator, D.
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(a) Accuracy of FakeGAN (Discriminator D) at each step by feeding
the testing dataset to D. While minimizing cross entropy method
for pre-training D converges and reaches accuracy at ∼ 82%, the
adversarial training phase boosts the accuracy to ∼ 89%.

(b) Accuracy of D′ at each step by feeding the testing dataset and
generated samples by G to D′. Similar to figure 2.3a, this plot shows
that D′ converged after 450 steps resulting in the convergence of
FakeGAN.

Figure 2.3: The accuracy of D and D′ on the test dataset over epochs. The vertical dashed line
shows the beginning of adversarial training.

2.3.3 Comparing FakeGAN with the Original GAN Approach

To justify the use of two discriminators in FakeGAN, we tried using just one discriminator

(only D) in two different settings. In the first case, the generator G is pre-trained to learn only

truthful reviews distribution. Here the discriminator D reached 83% accuracy in pre-training,
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and the accuracy of adversarial learning, i.e., the classifier, reduces to about 65%. In the second

case, the generator G is pre-trained to learn only deceptive reviews distribution. Unlike the first

case, adversarial learning improved the performance of D by converging at 84%, however, still,

the performance is lower than that of FakeGAN.

These results demonstrate that using two discriminators is necessary to improve the accuracy

of FakeGAN.

2.3.4 Scalability Discussion

We argue that the time complexity of our proposed augmented GAN with two discriminators

is the same as of original GANs because their bottleneck is the MC search, where using the

rollout policy (which is G until the time) generates 16 complete sequences, to help the generator

G for just outputting the most promising token as its current action. This happens for every token

of a sequence that is generated by G. However, compared to the MC search, discriminators D

and D′ are efficient and not time-consuming.

2.3.5 Stability Discussion

As we discussed in Section 2.2, the stability of GANs is a known issue. We observed that

the parameters g and d have a large effect on the convergence and performance of FakeGAN as

illustrated in Figure 2.3.5, when d and g are both equal to one. We believe that the stability of

GAN makes hyper-tuning of FakeGAN a challenging task thus preventing it from outperforming

the state-of-the-art methods based on supervised machine learning. However, with the following

values d = 6 and g = 1, FakeGAN converges and performs on par with the state-of-the-art

approach.
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(a) The accuracy of D fluctuates around 77% in contrast to the stabi-
lization at 89.1% in Figure 2.3a (with values g=1 and d=6)

(b) The accuracy of D and D′ on the test dataset over epochs while
both g and d are one.

2.4 Related work

Text classification has been used extensively in email spam [136] detection and link spam

detection in web pages [137, 138, 139]. Over the last decade, researchers have been working on

deceptive opinion spam.

Jindal et al. [105] first introduced deceptive opinion spam problem as a widespread phe-

nomenon and showed that it is different from other traditional spam activities. They built

their ground truth dataset by considering the duplicate reviews as spam reviews and the rest as

nonspam reviews. They extracted features related to review, product and reviewer, and trained
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a Logistic Regression model on these features to find fraudulent reviews on Amazon. Wu et

al. [140] claimed that deleting dishonest reviews will distort the popularity significantly. They

leveraged this idea to detect deceptive opinion spam in the absence of ground truth data. Both

of these heuristic evaluation approaches are not necessarily true and thorough.

Yoo et al. [120] instructed a group of tourism marketing students to write a hotel review from

the perspective of a hotel manager. They gathered 40 truthful and 42 deceptive hotel reviews

and found that truthful and deceptive reviews have different lexical complexity. Ott et al. [45]

created a much larger dataset of 800 opinions by crowdsourcing3 the job of writing fraudulent

reviews for existing businesses. They combined work from psychology and computational

linguistics to develop and compare three4 approaches for detecting deceptive opinion spam. On

a similar dataset, Feng et al. [134] trained Support Vector Machine model based on syntactic

stylometry features for deception detection. Li et al. [119] also combined ground truth dataset

created by Ott et al. [45] with their employee (domain-expert) generated deceptive reviews to

build a feature-based additive model for exploring the general rule for deceptive opinion spam

detection. Rahman et al. [141] developed a system to detect venues that are targets of deceptive

opinions. Although, this easies the identification of deceptive reviews considerable effort is still

involved in identifying the actual deceptive reviews. In almost all these works, the size of the

dataset limits the proposed model to reach its real capacity.

To alleviate these issues with the ground truth, we use a Generative adversarial network,

which is more an unsupervised learning method rather than supervised. We start with an existing

dataset and use the generator model to create necessary reviews to strengthen the classifier

(discriminator).
3They used Amazon Mechanical Turk
4Genre identification, psycholinguistic deception detection, and text categorization.
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2.5 Conclusion

In this chapter, we propose FakeGAN, a technique to detect deceptive reviews using Genera-

tive Adversarial Networks (GAN). To the best of our knowledge, this is the first work to leverage

GANs and semi-supervised learning methods to identify deceptive reviews. Our evaluation

using a dataset of 800 reviews from 20 Chicago hotels of TripAdvisor shows that FakeGAN

with an accuracy of 89.1% performed on par with the state-of-the-art models. We believe

that FakeGAN demonstrates a good first step towards using GAN for text classification tasks,

specifically those requiring very large ground truth datasets.
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Chapter 3

When Malware is Packin’ Heat

3.1 Introduction

Anti-malware software provides end-users with a means to detect and remediate the presence

of malware on their machines. Most anti-malware software traditionally consists of two parts: a

signature-based detector and a heuristics-based classifier. While signature-based methods detect

similar versions of known malware families with a small error rate, they become insufficient

as an ever-increasing number of new malware samples are being identified [61]. VirusTotal

reports that, on average, over 680,000 new samples are analyzed per day [142], of which some

are merely re-packed versions of previously seen samples with identical behavior. Over the last

few years, the need for techniques that generalize to new, unknown malware samples while

removing expensive human experts from the loop has led to approaches that leverage both static

and dynamic analyses combined with data mining and machine learning techniques [5, 6, 48,

49, 50, 51, 52, 53].

Although dynamic analysis provides a clear picture of an executable’s behavior, it has some

issues in practice: for example, dynamic analysis of untrusted code requires either kernel-level

privileges [54], thus expanding the attack surface, or a virtual machine [54], which requires a
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substantial amount of computing resources. In addition, malware usually employs environmental

checks to avoid detection [55, 56, 57], and the virtualized environment may not reflect the

environment targeted by the malware [58]. To avoid such limitations, some approaches [52,

59, 60, 61, 62] heavily rely on features extracted through static analysis. These approaches

are appealing to anti-malware companies that want to replace anti-malware systems based on

dynamic analysis. These static-analysis-based anti-malware vendors, which have quickly grown

into billion-dollar companies, boast that their tools leverage “AI techniques” to determine the

maliciousness of programs solely based on their static features (i.e., without having to execute

them). However, static analysis has known issues when applied to obfuscated and packed

samples [63, 64].1

It is commonly assumed that packing greatly hinders machine learning techniques that

leverage features extracted from static (file) analysis. However, both industry and academia have

published results showing that machine-learning-based classifiers can achieve good detection

rates. Many experts assume that these results are due to the fact that classifiers just learn to

distinguish between packed and unpacked programs. In fact, we would expect that machine-

learning-based classifiers will deliver poor performance in real-world settings, where packing

is increasingly seen in both malicious and benign software [49, 143, 144]. Unfortunately,

most related work did not consider or only briefly discussed the effects of packing when

proposing machine-learning-based classifiers [5, 6, 53, 61, 62, 73, 145]. Surprisingly, our initial

experiments showed that machine-learning-based classifiers can distinguish between packed

benign and packed malicious samples in our dataset. This led us to the following research

question: does static analysis on packed binaries provide a rich enough set of features to build a

malware classifier using machine learning?

Our experiments require a ground-truth dataset for which we can determine if each sample is

1While packing can be applied to any program, hereinafter we focus on the packing of Windows x86 binary
programs.
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(1) packed or unpacked and (2) malicious or benign. We created our first dataset, the wild dataset,

with executables provided by a commercial anti-malware vendor, which uses dynamic features,

combined with the labeled benchmark dataset EMBER [146]. We leveraged the vendor’s

sandbox, along with VirusTotal, to remove samples with inconsistent benign/malicious labels

from the dataset. For identifying packed executables, we used the vendor’s sandbox combined

with the Deep Packer Inspector [66] tool and a number of static tools. The fact that we built the

dataset mainly based on the runtime behavior of samples gives us high confidence in our ground

truth labels. We created a second dataset, the lab dataset, by packing all the executables in the

wild dataset with widely used commercial and free packers. Following a detailed literature study,

we extracted nine families of features from the executables in the two datasets. Even though in

our experiments we used SVM, deep neural networks (i.e., MalConv [53]), and different variants

of decision-tree learners, like random forest, we only discuss the results of the random forest

approach as (1) we observed similar findings for these approaches, with random forest being the

best classifier in most experiments, and (2) random forest allows for better interpretation of the

results compared to neural networks [147].

As a naïve experiment, we first trained the classifier on packed malicious and unpacked

benign samples. The resulting classifier produced a high false positive rate on packed benign

samples, which shows that the classifier is biased towards detecting packing. Using n-grams,

Perdisci et al. [64] also observed that packing detection is an easier task to learn compared to

detecting maliciousness. In addition, we demonstrated that “packer classification” is a trivial

task by training a packer classifier using samples from each packer (class) in the lab dataset.

The classifier achieved precision and recall greater than 99.99% for each class. This indicates

that a bias in the training set regarding packers may cause the classifier to learn specific packing

routines as a sign of maliciousness. We verified this by training the classifier on benign and

malicious executables packed by two non-overlapping subsets of packers, which we refer to as

good and bad packers, respectively. The resulting classifier learned to label anything packed
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by good packers as benign, and anything packed by bad packers as malicious, regardless of

whether or not the sample is malicious.

We extended the naïve experiment by training the classifier on different training sets with

increasing ratios of packed benign samples. To avoid the bias introduced by the use of good

and bad packers, we selected packed samples from the lab dataset uniformly distributed over

packers. Surprisingly, despite the popular assumption that packing hinders machine-learning-

based classifiers, we found that increasing the packed benign ratio in the training set helped

the classifier to maintain relatively low false positive and false negative rates. This shows that

packers preserve some information about the original binary that can be leveraged for malware

detection. For example, most packers keep .CAB file headers in the resource sections of the

executables. Jacob et al. [148] found a similar trend for packers that employ weak encryption or

compression. By training on one packer at a time, we observed that the information preserved

about the original binaries is not necessarily associated with malicious behavior, but is “useful”

for malware detection. Nevertheless, we argue that such a classifier still suffers from three issues:

(1) inability to generalize, (2) failure in the presence of strong encryption, and (3) vulnerability

to adversarial samples.

Generalization. Training the classifier on packed samples is not guaranteed to generalize

to packers that are not included in the training set. We excluded one packer at a time from

the training dataset and evaluated the classifier against samples packed with the excluded

packer. We observed false positive rates of 43.65%, 47.49%, and 83.06% when excluding

tElock, PECompact, and kkrunchy, respectively. Moreover, the classifier trained on all packers

from the lab dataset produced a false negative rate of 41.98% on packed executables from the

wild dataset. This means that although packers preserve some information, the trained classifier

fails to generalize to previously unseen packing routines. This is a severe problem as malware

authors often prefer customized packing routines to off-the-shelf packers [66, 67, 68].
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Strong & complete encryption. We argue that an executable might be packed in a way that

reveals no information related to its behavior until it is executed. As a preliminary step, we

packed all executables in the wild dataset with our own packer, called AES-Encrypter, which

encrypts the executable with AES and injects it as the overlay of the packed binary. When

the packed program is executed, AES-Encrypter decrypts the overlay and executes the original

program within a new process. All static features are always the same, except for features

extracted from the encrypted overlay. We trained and tested the classifier on executables packed

by the AES-Encrypter, and, as expected, the classifier could not distinguish between benign and

malicious executables packed by AES-Encrypter. This shows that packing can be performed

without transferring any (static) initial pattern to the packed program, if properly optimized for

this purpose.

Adversarial samples. Machine-learning-based malware classifiers have been shown to be

vulnerable against adversarial samples, especially those that use only static analysis features [69,

70, 71]. We expect that generating such adversarial samples would be easier in our case, as

static analysis of packed binaries does not provide features that capture a sample’s behavior. We

first trained the classifier on a dataset whose benign and malicious samples are packed with the

same packers so that the classifier is not biased to detect specific packing routines as a sign of

maliciousness. The classifier maintained a low error rate. From all malicious samples that the

classifier detected successfully, we managed to generate new samples that the classifier no longer

detects as malicious. Specifically, we identified “benign” sequences of bytes that occurred more

frequently in benign samples and injected them into the target binary without affecting the

sample’s behavior. Very recently, a group of researchers used a very similar technique to trick

Cylance’s AI-based anti-malware engine into thinking that malware like WannaCry and tools

such as Mimikatz were benign [149]. They did this by taking strings from an online gaming

program and injecting them into malicious files. Since games are highly obfuscated and packed,
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they confront such an engine with a dilemma; either inherit a bias towards games or produce

high rates of false positives for them [150].

To investigate how real-world malware detectors operate on packed executables, we submit-

ted benign and malicious executables packed by each packer to VirusTotal. We only focused

on six machine-learning-based engines that use only static analysis features according to their

description on VirusTotal or the company’s website. Unfortunately, we observed that all these six

engines learned that packing implies maliciousness. It must be noted that, we used commercial

packers, like Themida, PECompact, PELock, and Obsidium, that legitimate software companies

use to protect their software. Nevertheless, benign programs packed by these packers were

detected as malware.

As packing is being increasingly adopted by legitimate software [143], the anti-malware

industry needs to do better than detecting packers, otherwise good and bad programs are misclas-

sified, causing pain to users and eventually resulting in alert fatigue and missed detections. This

is especially a concern for previous studies that rely on anti-malware products for establishing

ground truth, as misclassification of packed benign programs might have biased those studies [5,

72, 73, 74, 75].

In summary, we make the following contributions:

• We study the limits of machine-learning-based malware classifiers that use only static

features. We show that the lack of overlap between packers used in benign and malicious

samples causes the classifier to associate specific packers with maliciousness. We show

that, if trained correctly, the classifier is able to distinguish between benign and malicious

samples packed by real-world packers, though it remains susceptible to unseen packing

routines or, even worse, to the application of strong encryption to the entire program.

Furthermore, we show that it is possible to craft evasive samples that bypass detection via

a naïve adversarial attack.
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• Our evaluation of six products on VirusTotal shows that current static machine-learning-

based anti-malware engines detect packing instead of maliciousness.

• We release a dataset of 392,168 executables for which we know whether each sample is

(1) benign or malicious, and (2) packed or unpacked. We also know the specific packer

for the lab dataset, which includes 341,444 executables.

We release the source code of all experiments in a Docker image at https://github.com/ucsb-

seclab/packware to support the reproducibility of our results.

3.2 Motivation

Packing has long been an effective method for malware authors to evade the signature-based

detection of anti-malware engines [151], but little is known about its legitimate usage in benign

applications. As the first step in this direction, in 2013, Lakshman Nataraj [152] explored

how anti-malware scanners available on VirusTotal handle packing. He packed 16,663 benign

system executables from various Windows OS versions with four different packers (UPX,

Upack, NSPack, and BEP), and submitted them to VirusTotal. He showed that 96.7% of the

files packed with Upack, NSPack, and BEP triggered at least ten detections on VirusTotal.

Another recent study [153] mined byte pattern-based signatures of anti-malware products to

force misclassifications of benign files, and also found that the artifacts of packers are effective

as “malicious markers.” We argue that these results stem from the fact that packing historically

has been associated with malware only. Consequently, a naïve detection approach only based

on static features from packed samples will be heavily biased towards associating packing with

malicious behavior. In fact, static analysis features that are shown to be useful for packing

detection [4, 49, 64, 148, 154, 155, 156, 157, 158] are also being used by machine-learning-based

malware detectors [4, 50, 62, 159, 160, 161].

We collected a large-scale, real-world dataset of malicious, suspicious, and benign files
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Figure 3.1: Prevalence of packed samples in the wild.

from a commercial vendor of advanced malware protection products. This dataset includes

samples that the vendor analyzed from customers around the globe over the past three years. As

Figure 3.1 shows, packing is not only widespread in malware samples (75%), but also common

in benign samples (50% in the worst case). Note that Figure 3.1 presents a lower bound for the

ratio of packed executables. Our findings overlap with the findings of Rahbarinia et al. [143],

who studied 3 million web-based software downloads over 7 months in 2014, finding that both

malicious and benign files use known packers (58% and 54%, respectively). Making matters

even worse, more than half of the 69 unique packers they observed (e.g., INNO, UPX) are being

used by both malicious and benign software. While some packers (e.g., NSPack, Molebox) were

exclusively used to pack malware in their dataset, they conclude that packing information alone

is not a good indicator of malicious behavior. We further packed 613 executables from a fresh

installation of Windows 10 (located in C:\Windows\System32) with Themida and submitted

them to VirusTotal. Figure 3.2 shows the histogram of the number of detections. Unsurprisingly,

out of 613 binaries, 564 binaries were detected as malicious by more than 10 anti-malware tools.

If we consider only the six machine-learning-based anti-malware engines on VirusTotal, out of

613 binaries, 553 binaries were detected as malicious by more than four tools.

As these numbers show, any approach that fails to consider packed benign samples when

designing and evaluating a malware detection approach ultimately results in a substantial number
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Figure 3.2: The histogram of the number of detections on VirusTotal for Windows 10 binaries
packed with Themida.

of false positives on real-world data. This is especially a concern for machine-learning-based

approaches, which, in the absence of reliable and fresh ground truth, frequently rely on labels

from anti-malware products available on VirusTotal [5, 72, 73, 74, 75]. Given the disagreement

of anti-malware products in labeling samples [162, 163, 164, 165], a common practice is to

sanitize a dataset, for example, by considering decisions from a selected set of anti-malware

products, or, as another example, by using a voting-based consensus. While this approach is

problematic for various reasons [162, 163], we believe that one main aspect is particularly

troublesome: Dataset pollution. Packed benign samples that are detected by anti-malware

products as malicious are incorrectly used as malware samples. For example, a recent related

work [74] used a similar procedure for labeling, as stated by the authors: “We train a classifier

using supervised learning and therefore require a target label for each sample (0 for benign and

1 for malware). We use malware indicators from VirusTotal. For each sample, we count the

number of malicious detections from the various engines aggregated by VirusTotal, weighted

according to a reputation we give to each engine, such that several well-known engines are

given weight >1, and all others are weighted 1. We use the result to label a sample benign or

malicious.” While we do not know which weights are used by the authors, there is a good chance

that their dataset is skewed, since, as we showed above, a number of anti-malware engines on

VirusTotal detect packed benign samples as malware.
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As studied by the anti-malware community, evaluating existing malware detection method-

ologies poses substantial challenges [58, 163, 166]. For example, Rossow et al. [58] presented

guidelines for collecting and using malware datasets. Our work aims to find whether packing

even retains rich enough static features from the original binary to detect anything meaningful

besides the packing itself. To the best of our knowledge, no prior work has considered the

effects of packed executables on machine-learning-based malware detectors that leverage only

static analysis features.

3.3 Background

3.3.1 Executable Packers

A packer is a software component that applies a set of routines to compress or encrypt a

target program. The simplest form of packing consists of the decryption or decompression (at

runtime) of the original payload followed by a jump to the memory address that contains the

target payload (this technique is called “tail jump”). Ugarte et al. [66] classify packers into six

types, with an increasing level of complexity in the reconstruction of the target payload:

Type I: A single unpacking routine is executed to transfer the control to the original program.

UPX is the most popular packer in this class. Type II: The packer employs a chain of unpacking

routines executed sequentially, with the original code recomposed at the end of the chain.

Type III: Unpacking routines include loops and backward edges. Though the original code is

not necessarily reconstructed in the last layer, a tail transition still exists to separate the packer

and the application code. Type IV: In each layer of packing, the corresponding part of the

unpacking routine is interleaved with the corresponding part of the original code. However, the

entire original code will be completely unpacked in memory at some point during the execution.

Type V: The packer is composed of different layers in which the unpacking code is mangled

with the original code. There are multiple tail jumps that reveal only a single frame of the
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original code at a time. Type VI: Packers reveal (unpack) only a single fragment of the original

code (as little as a single instruction) at any given time.

We discuss approaches that are proposed for packing detection, packer identification, and

automated unpacking in Appendix 3.9.1. Here, we discuss the limitations of these methods.

Limitations of packing detection. Signature-based approaches to packing detection have a

high false negative rate, as they require a priori knowledge of packed executables generated

by each packer. As an example, PEiD is shown to have approximately a 30% false negative

rate [158]. Other approaches apply static analysis to extract a set of features or use hand-crafted

heuristics to detect packed executables. However, they are vulnerable to adversaries. As an

example, the Zeus malware family applies different techniques, such as inserting a selected set

of bytes into executables, in order to keep the entropy of the file and its sections low [167]. Such

malware evades entropy-based heuristics, as they are often used to determine if an executable

is packed [49]. Dynamic approaches seem to perform better, since they often look for a write-

execute sequence in a memory location, which is the definition of packing. However, packed

executables usually employ different techniques to evade analysis, like conditional execution of

unpacking routines [168].

Limitations of generic unpackers. Packers usually employ different techniques to evade

analysis approaches utilized by generic unpackers. For example, tELock and Armadillo leverage

several anti-debugging routines to terminate the execution in a debugging setting [169, 170].

Although some unpackers exploit hardware virtualization to achieve transparency [171], the

introduced performance overhead could be unacceptable [172]. Themida applies virtualization

obfuscation to its unpacking routine, which can cause slice size explosion [173]. In general,

generic unpackers rely on a number of assumptions that do not necessarily hold in practice [66]:

(1) the entire original code is in memory at a certain point, (2) the original code is unpacked in

the last layer, (3) the execution of the unpacking routine and the original code are completely
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separated, and (4) the unpacking code and the original code run in the same process without

any inter-process communication. These simplifications make these unpackers inadequate

for handling the challenges introduced by complex, real-world packers. Moreover, generic

unpackers often rely on heuristics that are designed for specific packers [66].

3.3.2 Packing vs. Static Malware Analysis

In Appendix 3.9.2, we discuss how machine learning is being adopted by the anti-malware

community to statically analyze malicious programs. In particular, we reviewed a wide range of

static malware analysis approaches based on machine learning [4, 5, 6, 48, 50, 52, 53, 59, 60,

61, 62, 73, 75, 145, 148, 160, 161, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,

186, 187]. Although static malware detectors have been shown to be biased towards detecting

packing [64, 152, 153], we observed a number of limitations in related work when it comes to

the handling of packed executables. In particular, out of the 30 papers mentioned above: (1)

Ten papers [6, 48, 62, 75, 160, 161, 175, 178, 179, 183] do not mention packing or obfuscation

techniques. (2) Ten approaches [52, 61, 145, 174, 180, 182, 184, 185, 186, 187] work only on

unpacked executables, as mentioned by the authors. They used either unpacked executables

or executables that they managed to unpack. (3) Seven papers [5, 53, 60, 73, 176, 177, 181]

claim to perform well in malware classification regardless of whether or not the executables are

packed. However, the authors did not discuss whether any bias in terms of packing was present

in their dataset or not. More precisely, they did not mention using packed benign executables in

their dataset, or brief examinations have been done on the effects of packed executables [60,

181], though the evaluation has been thoroughly carried out only on unpacked executables. (4)

Only three papers [4, 50, 59] focused on packed executables. However, they have two major

limitations: (a) they use signature-based packer detectors, such as PEiD, to detect packing, while

PEiD has approximately a 30% false negative rate [158], and (b) they augmented their datasets

by packing benign executables using only a small number of packers. However, malicious
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executables might be packed with a different set of packers, which can result in a bias towards

detecting specific packing techniques. Jacob et al. [148] detect similar malware samples even if

they are packed, yet, their method is resilient only against packers that employ compression or

weak encryption, as they acknowledge.

Finally, most related work did not publish their datasets, hence these approaches cannot be

fairly compared to each other.

3.4 Dataset

Our experiments require a dataset composed of executable programs for which we know if

they are: (1) benign or malicious and (2) packed or unpacked. We combined a labeled dataset

from a commercial vendor with the EMBER [146] dataset (labeled) to build our wild dataset.

We leveraged a hybrid approach to label an executable as packed or unpacked. We built another

ground-truth dataset, the lab dataset, by packing all executables in the wild dataset with widely

used commercial and free packers and our own packer, AES-Encrypter. Following a detailed

study of the literature, we extracted nine families of features for all samples.

3.4.1 Wild Dataset

We used two different sources to create our wild dataset of Windows x86 executables. (1) A

commercial anti-malware vendor provided 29,573 executables. These samples, observed “in

the wild,” were randomly selected from an original pool that was analyzed by the anti-malware

vendor’s sandbox in the US during the period from 2017-05-15 to 2017-09-19. Along with

the benign/malicious label and the malicious behaviors observed during the execution, the

vendor identified which executable was packed or not. (2) A labeled benchmark dataset, called

EMBER, was introduced by Anderson et al. [146] for training machine learning models to

statically detect Windows malware. This dataset consists of 800,000 Windows executables that

are labeled. However, no information is provided regarding packing. We randomly selected
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56,411 x86 executables from this dataset and submitted each sample to the commercial anti-

malware vendor’s sandbox, in order to identify if the sample is packed. This also provides

us confirmation whether an executable is malware or benign software, as the sandbox detects

malicious behavior. Note that samples from these two sources were observed “in the wild”

sometime in 2017, allowing more than enough time for current anti-malware engines to have

incorporated means to detect them. As these two sources might have samples that are incorrectly

labeled, we performed a careful and extensive post-processing step, which we describe in the

following paragraphs.

Malicious vs. benign. We used three different sources to detect whether an executable is

malicious or benign. (1) VirusTotal: We obtained reports for our entire dataset by querying

VirusTotal. All 85,984 executables in our dataset have been available on VirusTotal for more

than one year. From all engines used by VirusTotal, we considered only seven tools that are

well-known as strong products in the anti-malware industry and labeled each executable based

on the majority vote. (2) The anti-malware vendor: Since we sent samples extracted from the

EMBER dataset to the vendor’s sandbox, we have the benign/malicious label for all samples.

(3) EMBER dataset: All samples that we selected from the EMBER dataset are labeled by

Endgame [188].

We discarded 4,113 samples for which there was a disagreement about their benign/malicious

nature between the three sources. As Table 3.1 shows, at the end of this step, we have 37,269

benign and 44,602 malicious samples left (a total of 81,871 executables).

Packed vs. unpacked. Due to the limitations discussed in Section 3.3.1, we leveraged a

hybrid approach to determine if an executable is packed. In particular, for each sample, we

took the following steps: (1) The anti-malware vendor: We submitted the sample to the

vendor’s sandbox, and given the downloaded report, we detected whether unpacking behavior

had occurred or not. The anti-malware tool detects the presence of packed code by running
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Table 3.1: A: all, N/A: not available, B: benign, M: malicious. Note that this is not the final
version of the wild dataset.

Samples’ Origin Malicious/Benign Label’s Source # of Samples
VirusTotal Comm. Anti-mal. EMBER

A A N/A 29,573
A B N/A 15,736

(1) Comm. B B N/A 13,046
Anti-malw. A M N/A 13,837

M M N/A 13,536

A A A 56,411
A A B 24,348
A B B 24,225

(2) EMBER B B B 24,223
A A M 32,063
A M M 31,087
M M M 31,066

A A A 85,984
(1) ∪ (2) B B B 37,269

M M M 44,602

the executable in a custom sandbox that interrupts the execution every time there is a write to

a memory location followed by a jump to that address. At that point in time, a snapshot of

the loaded instructions is compared to the original binary, and if they differ, the executable is

marked as packed. (2) Deep Packer Inspector (dpi): We used dpi [66] to further analyze each

sample. This framework measures the runtime complexity of packers. Adding an extra dynamic

engine helps us to identify packed executables that are not detected as packed by the first

dynamic engine. For example, the host configuration might make the sample terminate before

the unpacking process starts. In addition, this framework gives us insights about the runtime

complexity of packers in our dataset. As dpi is not operating on .NET executables, we removed

all 13,489 .NET executables, 10,681 benign and 2,808 malicious, from our dataset, resulting in

68,382 executables, 26,588 benign and 41,794 malicious. (3) Signatures and heuristics: We
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used Manalyze [189], Exeinfo PE, yara rules, PEiD, and F-Prot (from VirusTotal) to identify

packers that leave noticeable artifacts in packed executables.

In particular, we labeled an executable as packed in our dataset if one among the vendor’s

sandbox, dpi, and signature-based tools detects the executable as packed. In total, we labeled

46,328 samples as packed divided into 12,647 benign and 33,681 malicious samples. We further

used heuristics proposed by Manalyze for packing detection to determine samples that might be

packed. Manalyze labeled 24,911 samples as “possibly packed,” of which 6,898 samples are not

detected as packed by other tools. We argue that this discrepancy might be due to limitations

with packing detection, which we discuss in Section 3.3.1. Nevertheless, we discarded all these

samples as we were not completely sure if they are packed or not.

Table 3.10 in the Appendix shows statistics about packed executables that are detected

by each approach. Of 17,043 benign executables, 12,647 executables are packed, and 4,396

executables are unpacked, and of 40,031 malicious executables, 33,681 executables are packed,

and 5,752 executables are unpacked. While unpacked malware is shown to be rare [49, 144, 190],

we did not detect packing for 5,752 (13.61%) malicious samples. Since this percentage could

be considered somewhat higher than expected, we attempted to verify our packer analysis by

randomly selecting 20 samples, and manually looking for the presence or absence of unpacking

routines. We observed the unpacking routine code for 18 samples, but our packer detection

scheme did not detect them due to the anti-detection techniques that these samples use. Since

we do not need any unpacked malicious executables for our experiments, we discarded all

5,752 malicious samples that our system labeled as unpacked. To confirm that all 4,396 benign

samples that we identified as unpacked are not packed, we manually looked into 100 unpacked

benign executables and did not find any sign of packing. Simple statistics guarantee that more

than 97.11% (95.59%) of these samples are labeled correctly with the confidence of 95% (99%).

We further noticed that our dataset was skewed in terms of DLL files, containing 4,005

benign DLLs but only 598 malicious ones. We removed all these samples from our dataset. In
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the end, the wild dataset consists of 50,724 executables divided into 4,396 unpacked benign,

12,647 packed benign, and 33,681 packed malicious executables.

Packer complexity. As Table 3.10 in the Appendix shows, dpi detects the unpacking behavior

for 34,044 executables in the wild dataset. Table 3.11 presents the packer complexity classes, as

defined by Ugarte et al. [66], for these executables.

Packers in the wild. Using PEiD, F-Prot, Manalyze, Exeinfo PE, and yara rules, we matched

signatures of packers for 9,448 executables, 1,866 benign and 7,582 malicious. We found the

artifacts of 48 packers in the wild dataset. As Table 3.12 in the Appendix shows, some packers

like dxpack, MPRESS, and PECompact have been used mostly in malicious samples.

3.4.2 Lab Dataset

Some of our experiments require us to know with certainty which packer is used to pack a

program. Therefore, we obtained nine packers that are either commercially available or freeware

(namely Obsidium, PELock, Themida, PECompact, Petite, UPX, kkrunchy, MPRESS, and

tElock) and packed all 50,724 executables in our wild dataset to create the lab dataset. None of

the packers were able to pack all samples. For example, Petite failed on most executables with a

GUI, while Obsidium in some cases produced empty executables. We looked at logs generated

by these packers and removed those executables that were not properly packed. We also verified

that all packed executables have valid entry points. Finally, we developed our own simple packer,

called AES-Encrypter, which, given the executable P, encrypts P using AES with a random

key (which is included in the final binary), and injects the encrypted binary as the overlay of

the packed binary P’. When P’ is executed, it first decrypts the overlay and then executes the

decrypted (original) binary. Table 3.2 lists the number of samples we packed successfully with

each packer. In total, we generated 341,444 packed executables. To ascertain if packing does,

in fact, preserve the original behavior, we compared the behavior of these samples with the
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Table 3.2: Overview of the lab dataset.

Packer # Benign # Malicious Keeps Rich # Invalid
Samples Samples Header? Opcodes

Obsidium 16,940 31,492 29.82% 0
Themida 15,895 26,908 3 0
PECompact 5,610 28,346 3 723
Petite 13,638 25,857 3 318
UPX 9,938 20,620 3 0
kkrunchy 6,811 15,494 19.68% 61
MPRESS 11,041 11,494 19.84% 629
tElock 5,235 30,049 3 8
PELock 6,879 8,474 20.60% 461
AES-Encrypter 17,042 33,681 7 0

Table 3.3: Summary of extracted features.

PE headers 28 Byte n-grams 13,000
PE sections 570 Opcode n-grams 2,500
DLL imports 4,305 Strings 16,900
API imports 19,168 File generic 2
Rich Header 66

original samples. Our results confirm that 94.56% of samples exhibit the original behavior. We

explain in Appendix C how we conducted this comparison.

3.4.3 Features

Following a detailed analysis of the literature (see Section 3.9.2), we extracted nine families

of static analysis features that were shown to be useful in related work. We used pefile [191] to

extract features from three different sources: the PE structure, the program’s assembly, and the

raw bytes of the binary. As Table 3.3 shows, we extracted a total of 56,543 individual features

from the samples in our dataset.

(1) PE headers. Features related to PE headers have been widely used in related work. In our

case, we use all fields in the PE headers that exhibit some variability across different executables
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(some header fields never change [61]). We extracted 12 individual features from the Optional

and COFF headers, which are described in Table 3.20 in the Appendix. Moreover, from the

characteristics field in the COFF header, we extracted 16 binary features, each representing

whether the corresponding flag is set for the executable or not. Thus, we extracted 12 integer

and 16 binary features from the PE headers, resulting in a total of 28 features.

(2) PE sections. Every executable has different sections, such as the .data and .text sections.

For each section, we extracted 8 individual features as described in Table 3.21 in the Appendix.

Moreover, from the characteristics field in the section header, we created up to 32 binary features

for each bit (flag). For example, the feature corresponding to the 30th bit is true when the section

is executable. We ignored the bits (flags) that do not vary in our dataset. For each section

of the PE file, we computed 32 (at most) binary, 7 integer, and one string feature, named

pesection_sectionId_field. The maximum number of sections that an executable has in our

dataset is 19. For each executable, we built a vector of 516 different features obtained from its

sections followed by the default values for sections that the sample does not include. Based

on the related work, we augmented this set of features with the following processing steps: (1)

We extracted the above-mentioned features for the section where the executable’s entry point

resides and added them to the dataset separately; (2) We calculated the mean, minimum, and

maximum entropy of the sections for each executable. We did the same for both the size and the

virtual size attributes. As a result, we extracted a total of 570 features from the PE sections.

(3) DLL imports. Most executables are linked to dynamically-linked libraries (DLLs). For

each library, we use a binary feature that is true when an executable uses that library. In total,

we have 4,305 binary features in this set.

(4) API imports. Every executable has an Import Directory Table that includes the APIs that

the executable imports from external DLLs. We introduce a binary feature for each API function
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that is true if the executable imports that function. In total, we have 19,168 binary features in

this set.

(5) Rich Header. The Rich Header field in the PE file includes information regarding the

identity or type of the object files and the compiler used to build the executable. Webster et

al. [192] have shown that the Rich Header is useful for detecting different versions of malware,

as malware authors often do not deliberately strip this header. In particular, they observed that

“most packers, while sometimes introducing anomalies, did not often strip the Rich Header from

samples.” Based on our observation, as Table 3.2 shows, while Obsidium, kkrunchy, MPRESS,

and PELock stripped the Rich Header for 70–80% of binaries in the wild dataset, other packers

always kept this header, except for AES-Encrypter, which always produces the same header. We

followed the procedure by Webster et al. [192] to encode this header into 66 integer features.

(6) Byte n-grams. Given that an executable file is a sequence of bytes, we extracted byte

n-grams by considering every n consecutive bytes as an individual feature. Given the practical

impossibility of storing the representation of n-grams for n ≥ 4 in main memory, a feature

selection process is needed [62]. Raff et al. [62] observed that 6-grams perform best over

their dataset. We used the same strategy to select the most important 6-gram features, where

each feature represents if the executable contains the corresponding 6-gram. We first randomly

selected a set of 1,000 samples and computed the number of files containing each individual

6-gram. We observed 1,060,957,223 unique 6-grams in these samples. As Figure 3.9a in

the Appendix shows, and as Raff et al. [62] observed, byte 6-grams follow a power-law type

distribution, with 99.99% 6-grams occurring ten or fewer times. We reduced our set of candidate

6-grams by selecting 6-grams that occurred in more than 1% of the samples in the set, which

results in 204,502 individual 6-gram features. Then, we selected the top 13,000 n-gram features

based on the Information Gain (IG) measure [193], since our dataset roughly converges at this

value, as depicted in Figure 3.9b.
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(7) Opcode n-grams. We used the Capstone [194] disassembler to tokenize executables into

sequences of opcodes and then built the opcode n-grams. While a small value may fail to

detect complex malicious blocks of code, long sequences of opcodes can easily be avoided with

simple obfuscation techniques [52]. Moreover, large values of n introduce a high performance

overhead [52, 181]. For these reasons, similarly to most related work, we use sequences up to a

length of four. We represent opcode n-grams by computing the TF-IDF [195] value for each

sequence. While we could extract the assembly for all samples in the wild dataset, out of the

341,444 samples in the lab dataset, we could not disassemble 2,200 samples (see Table 3.2).

For these programs, we put -1 as the value of opcode n-grams features. In total, we extracted

5,373,170 unique opcode n-grams, from which, only 51,942 n-grams occurred in more than

0.1% of executables in the lab dataset (Figure 3.9c). We only consider these opcode n-grams

(reduction of 98.47%). Figure 3.9d presents the Information Gain (IG) measure of these opcode

n-grams. We selected the top 2,500 opcode n-grams (based on IG value) with their TF-IDF

weights as feature values, resulting into 2,500 float features.

(8) Strings. The (printable) strings contained in an executable may give valuable insights into

the executable, such as file names, system resource information, malware signatures, etc. We

leveraged the GNU strings program to extract the printable character sequences that are at least

4 characters long. We represent each printable string with a binary feature indicating if the

executable contains the string. We observed 1,856,455,113 unique strings, from which more

than 99.99% were seen in less than 0.4% of samples. After removing these rare strings, we

obtained 16,900 binary features.

(9) File generic. We also computed the size of each sample (in bytes), and the entropy of the

whole file. We further reference to this small family of features as “generic.”
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3.5 Experiments and Results

In this work, we aim to answer the following question: does static analysis on packed

binaries provide rich enough features to a malware classifier? We analyze multiple facets of this

question by performing a number of experiments. As explained in the introduction, even though

we used several machine learning approaches (i.e., SVM, neural networks and decision tress),

we only discuss the results of the random forest approach as (1) we observed similar findings

for these approaches, with random forest being the best classifier in most experiments, and (2)

random forest allows for better interpretation of the results compared to neural networks [147].

Following a linear search over different configurations of random forest, we found a suitable

trade-off between learning time and test accuracy. Table 3.19 in the Appendix shows the

parameters of the model.

Note that all malicious executables in our datasets are packed. Unless stated otherwise: (1)

we always partition the dataset into training and test sets with a 70%-30% split, and both the

training and test sets are balanced over benign and malicious executables; (2) We repeat each

experiment five times by randomly splitting the dataset into training and test sets each time, and

average the results of all five rounds; (3) We use all 56,543 features to train the classifier; (4) We

focus only on real-world packers (we do not include AES-Encrypter except for Experiment X).

We introduce and motivate research questions that help us answer our main hypothesis.

For each, we describe one or more experiments followed by the corresponding results. Our

results fit into four major findings, which we divide as follows. (I) Finding 1 and 3 may be

intuitively known in the community, though mostly based on anecdotal experience. We confirm

these findings with solid experiments. (II) Previous works have shown preliminary evidence of

Finding 2, but with major limitations. We provide extensive evidence for this finding. (III) We

present additional evidence for Finding 4, which is a fairly established fact confirmed by related

work.
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3.5.1 Effects of Packing Distribution During Training

RQ1. Does a bias in the distribution of packers used in benign and malicious samples

cause the classifier to learn specific packing routines as a sign of maliciousness?

RQ1 is important for two reasons: (1) Machine learning is increasingly being used for

malware detection, while, as discussed in Section 3.3.2, most related work does not specify

considering packed benign executables, and the remaining few neglect the bias that may be

introduced by the overlap between packers used in benign and malicious samples; (2) Nowadays,

packing is also widespread in benign samples [143]. To answer RQ1, we conducted three

experiments.

Experiment I: “no packed benign”. We trained the classifier on 3,956 unpacked benign and

3,956 packed malicious executables from the wild dataset. The resulting classifier produced

a false positive rate of 23.40% on 12,647 packed benign samples. It should be noted that the

classifier is fairly well calibrated, with false negative and false positive rates of 3.82% and

2.64% for 440 (unseen) packed malicious and 440 (unseen) unpacked benign samples. While

this is a naïve experiment, it delivers an important message: excluding packed benign samples

from the training set makes the classifier biased towards interpreting packing as an indication

of maliciousness, and such a classifier will produce a substantial number of false positives in

real-world settings, where packing is also widespread in benign samples. This experiment shows

that packed benign executables must be considered when training the classifier.

The overlap between packers that are used in benign and malicious samples may cause the

classifier to distinguish between packing routines, i.e., packers. To further investigate this issue,

we performed the following two experiments.

Experiment II: “packer classifier”. We used the lab dataset to create a packer classifier.

We defined nine classes for the classifier, one per packer. We trained and tested the classifier

on datasets with samples uniformly distributed over all classes. In particular, we trained the
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classifier on 107,471 samples and evaluated it against 46,059 samples. Note that we discarded

the benign and malicious labels of samples. The classifier maintained the precision and recall

of 99.99% per class. This result shows that “packer classification” is a simple task for the

classifier, which indicates that the lack of overlap between packers that are used in benign and

malicious samples of the dataset might bias the classifier to associate specific packing routines

with maliciousness.

Experiment III: “good-bad packers”. We trained the classifier on a dataset in which benign

samples are packed by four specific packers, and malicious samples are packed by the remaining

five packers. We refer to these two non-overlapping subsets of packers as good and bad packers,

respectively. Then, we tested the classifier on benign and malicious samples that are packed

by bad and good packers, respectively. We repeated this experiment for each split of packers.

The accuracy of the classifier varied from 0.01% to 12.57% across all splits, showing that the

classifier was heavily biased to distinguish between good and bad packers.

Finding 1. The lack of overlap between packers used in benign and malicious samples will

bias the classifier towards distinguishing between packing routines.

3.5.2 Packers vs. Malware Classification
RQ2. Do packers prevent machine-learning-based malware classifiers that leverage only

static analysis features?
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Table 3.4: Experiment “different packed ratios (wild).” Each row represents features that are
important to the classifier. The number of malicious samples in the training set is always 3,077.

PB Training Set # Features used by the classifier (Top 50)
Ratio #B

(packed)
#B (un-
packed)

import dll rich sections header strings byte n-grams opc. n-grams generic all

.0 0 3,077 1,446 (0) 53 (0) 37 (3) 148 (0) 20 (0) 2,278 (1) 2,674 (44) 2,067 (2) 2 (0) 8,725 (50)

.2 615 2,462 1,560 (1) 50 (0) 49 (0) 173 (0) 18 (0) 2,661 (1) 2,980 (48) 2,088 (0) 2 (0) 9,581 (50)

.4 1,231 1,846 1,601 (1) 62 (0) 51 (0) 183 (0) 20 (0) 2,742 (0) 3,012 (49) 2,084 (0) 2 (0) 9,757 (50)

.6 1,846 1,231 1,571 (1) 55 (0) 45 (0) 200 (0) 19 (0) 2,754 (0) 2,976 (49) 2,081 (0) 2 (0) 9,703 (50)

.8 2,462 615 1,608 (1) 59 (0) 49 (0) 191 (0) 18 (0) 2,797 (0) 3,022 (49) 2,117 (0) 2 (0) 9,863 (50)
1. 3,077 0 1,404 (0) 50 (0) 42 (0) 200 (0) 20 (0) 2,662 (1) 2,911 (49) 2,081 (0) 2 (0) 9,372 (50)

Table 3.5: Experiment “different packed ratios (lab)”. The number of malicious samples in the
training set is always 3,077.

PB Training Set # Features used by the classifier (Top 50)
Ratio #B

(packed)
#B (un-
packed)

import dll rich sections header strings byte n-grams opc. n-grams generic all

.0 0 3,077 381 (8) 19 (0) 29 (1) 86 (5) 14 (0) 730 (12) 897 (24) 861 (0) 2 (0) 3,019 (50)

.2 615 2,462 508 (6) 48 (0) 49 (1) 158 (3) 24 (0) 2,463 (2) 2,729 (33) 2,034 (3) 2 (2) 8015 (50)

.4 1,231 1,846 504 (1) 56 (0) 46 (0) 161 (2) 25 (0) 2,871 (0) 2,939 (44) 2,195 (1) 2 (2) 8,799 (50)

.6 1,846 1,231 517 (0) 62 (0) 48 (1) 169 (3) 23 (1) 3,148 (0) 2,999 (43) 2,267 (0) 2 (2) 9,235 (50)

.8 2,462 615 496 (0) 77 (0) 47 (0) 183 (10) 25 (3) 3,372 (0) 3,151 (35) 2,273 (0) 2 (2) 9,626 (50)
1. 3,077 0 388 (0) 80 (0) 51 (1) 174 (14) 26 (4) 3,412 (0) 3,094 (29) 2,183 (0) 2 (2) 9,410 (50)

It is commonly assumed that machine learning combined with only static analysis is not

able to distinguish between benign and malicious samples that are packed. We performed the

following three experiments to validate this assumption.

Experiment IV: “different packed ratios (wild)”. We trained the classifier on different subsets

of the wild dataset by increasing the ratio of packed benign executables in the training set, with

steps of 0.05. The “packed benign ratio” is defined as the proportion of benign samples that

are packed. We always used datasets of the same size to fairly compare the trained models

with each other, and tested models against the test set with a “wild ratio” of packed benign

samples, i.e., the maximum ratio of packed benign executables that the vendor has seen in the

wild (i.e., 50% packed benign, see Figure 1). As Figure 3.3a shows, increasing the packed

benign ratio helps the classifier to maintain a lower false positive rate on packed samples, while

the false negative rate slightly increases. However, the false positive rate on unpacked samples

considerably increases from 3.18% to 16.24% as the classifier sees fewer unpacked samples,
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Table 3.6: Experiment “single packer.”

Packer FPR FNR ROC F-1 # Features used by the classifier (Top 50)
(%) (%) AUC Score import dll rich sections header strings byte n-grams opc. n-grams generic

PELock 7.21 2.70 0.95 0.95 752 (0) 118 (0) 33 (0) 101 (1) 20 (0) 1,409 (1) 2,188 (48) 1709 (0) 2 (0)
PECompact 9.93 6.02 0.93 0.93 565 (0) 81 (0) 56 (3) 110 (24) 22 (5) 2,856 (0) 2,974 (16) 1,868 (0) 2 (2)
Obsidium 5.53 4.39 0.95 0.95 507 (0) 4 (0) 0 (0) 54 (14) 10 (5) 2,546 (0) 2,274 (30) 1,110 (0) 2 (1)
Petite 3.54 3.17 0.97 0.97 769 (0) 173 (1) 54 (1) 123 (9) 22 (1) 1,708 (0) 2,403 (38) 1,866 (0) 2 (0)
tElock 6.06 8.85 0.93 0.93 4 (0) 3 (0) 59 (2) 200 (40) 22 (5) 2,419 (0) 2,628 (2) 1,027 (0) 2 (1)
Themida 6.45 3.23 0.95 0.95 2 (0) 2 (0) 52 (0) 127 (0) 21 (0) 4,091 (0) 3,678 (50) 1,190 (0) 2 (0)
MPRESS 8.10 4.18 0.94 0.93 633 (0) 145 (0) 0 (0) 45 (3) 20 (0) 1,427 (0) 2,861 (47) 2,130 (0) 2 (0)
kkrunchy 9.38 6.93 0.92 0.92 0 (0) 0 (0) 0 (0) 29 (23) 22 (5) 997 (0) 1,371 (20) 1,633 (0) 2 (2)
UPX 3.95 4.98 0.96 0.96 750 (1) 175 (0) 52 (1) 37 (23) 19 (6) 3,913 (0) 5,058 (17) 1,217 (0) 2 (2)

which indicates that a classifier that is trained only on packed samples cannot achieve high

accuracy on unpacked samples. As illustrated by Table 3.4, we always used training sets of

the same size, uniformly distributed over benign and malicious executables. Table 3.4 also

demonstrates that as we increase the ratio of packed benign executables in the training dataset,

byte n-gram features play a much more significant role compared to other feature families.

Note that the performance of the classifier might be due to features that do not necessarily

capture the real behavior of samples. For example, packed benign executables might be packed

by a different set of packers compared to malicious executables. Table 3.12 in the Appendix

shows that the distribution of packers being used by benign samples is very different from

packers used by malicious samples. For example, there are 13 packers for which we found

signatures only in malicious executables in our dataset (e.g., FSG, VMProtect, dxpack, and

PE-Armor). Although this discrepancy might not hold for the entire wild dataset, it indicates

that such a difference may make the classifier biased to distinguish between good and bad

packers, and thus, results can be misleading.

Experiment V: “different packed ratios (lab)”. To mitigate the uncertainty about the dis-

tribution of packers in the dataset, we repeated the previous experiment on the lab dataset

combined with unpacked benign executables from the wild dataset. We selected packed samples

uniformly distributed over the packers for training and test sets. Surprisingly, unlike the popular

assumption that packing greatly hinders machine learning models based on static features, the
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Figure 3.3: The histogram of the feature header_SizeOfInitializedData.

classifier performed better than our expectations, even when there was no unpacked sample in

the training set, with false positive and false negative rates of 12.24% and 11.16%, respectively.

As Figure 3.3b presents, the false positive rate for packed executables decreases from 99.76% to

16.03% as we increase the ratio of packed benign samples in the training dataset. Unsurprisingly,

when there is no packed benign executable in the training set, the classifier detects everything

packed by the packers in the lab dataset as malicious. Table 3.5 presents the important features

for the classifier based on the ratio of packed benign executables in the dataset. Byte n-grams

and PE sections are the most useful families of features. We focused on one packer at a time in

the next experiment to identify useful features for each packer.

Experiment VI: “single packer”. For each packer, we trained and tested the classifier on

only benign and malicious executables that we packed with that packer. Table 3.6 presents the
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performance of the classifier corresponding to each individual packer. In all cases, the classifier

performed relatively well, with byte n-gram and PE section features as the most useful.

We are also curious to see how packers preserve information when packing programs. To

this end, for each packer, we built different models by training the classifier on one family of

features at a time. In particular, we observed the following:

Rich Header. The Rich Header family alone helps the classifier to achieve relatively high

accuracy, except for those packers that often strip this header (see Table 3.2). As an example,

using only Rich Header features, the classifier that is trained on executables packed with

Themida maintains an accuracy of 89.03%. Webster et al. [192] also showed that the Rich

Header is useful for detecting similar malware.

API imports. If we use tElock, Themida, and kkrunchy, API import features are no longer

useful for malware detection. However, other packers preserve some information in these

features. For example, we trained the classifier on executables that are packed with UPX and

observed an accuracy of 89.11%. We noticed a similar trend for the DLL imports family.

Among the packers affected by these features, the number of API imports was one of the most

important features for the classifier. Figure 3.4 presents the distribution of this feature for UPX,

Petite, and PECompact. We also observed specific API imports to be very distinguishing, like

ShellExecuteA. Table 3.22 in the Appendix shows the number of benign and malicious samples

that import each of these APIs. For example, Obsidium keeps importing the API FreeSid when

packing a binary, or it is well-known that UPX keeps one API import from each DLL that

the original binary imports to avoid the complexity of loading DLLs during execution. This

indicates that packers preserve some information in the Import Directory Table when packing

programs.

Opcode n-grams. For each of Obsidium, tElock, and Themida, we trained the classifier

using opcode n-grams, and the accuracy dropped to ∼50%. However, we observed the accuracy
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of 89.01%, 88.72%, 88.27%, 77.25%, 77.04%, and 65.75% while training on samples packed

with Petite, PELock, Mpress, kkrunchy, UPX, and PECompact, respectively.

PE headers. For all packers, the classifier had an accuracy above 90%. In particular, the

“size of the initialized data” was the most important feature in all cases but UPX. However, the

distribution of this feature differs across packers (see Figure 3.3). While malicious samples

packed with kkrunchy, Obsidium, PECompact, tElock, and Themida have bigger initialized data

compared to benign executables, the same malicious samples, packed with MPRESS, PELock,

and Petite have smaller initialized data. Interestingly, malicious samples packed with UPX

follow a distribution very similar to the distribution observed for benign samples.

PE sections. The accuracy of the classifier was above 90% for all packers, varying from

91.23% to 96.72%. As Figure 3.6 shows, the importance weights of features significantly differ

across different models. For example, the entropy of the entry point section is a very important

feature for the classifier that is trained on MPRESS. However, this feature is not helpful when

we train the classifier on samples packed with Obsidium, Themida, or PELock. The entry point

of binaries packed with MPRESS resides in the second section, .MPRESS2, for which benign

and malicious executables have a mean entropy of 6.16 and 5.77. However, for Obsidium, the

entry point section always has a high entropy, close to 8.

Finding 2. Packers preserve some information when packing programs that may be “useful”

for malware classification, however, such information does not necessarily represent the real

nature of samples.

We should emphasize that related work has provided preliminary evidence of Finding 2.

Jacob et al. [148] showed that some packers employ weak encryption, which can be used to

detect similar malware samples packed with these packers. Webster et al. [192] also showed

that some packers do not touch the rich header, leaving it viable for malware detection.
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Figure 3.4: The CCDF of the feature api_import_nb, i.e., the number of API imports.

3.5.3 Malware Classification in Real-world Scenarios
RQ3. Can a classifier that is carefully trained and not biased towards specific packing

routines perform well in real-world scenarios?

RQ3 is a key question in the development of machine-learning-based malware classifiers. In

this work, we focus on three specific issues:

• Generalization. Nowadays, runtime packers are evolving, and malware authors often

tend to use their own custom packers [66, 67, 68]. This raises serious doubt about how a

classifier performs against previously unseen packers.

• Strong & Complete Encryption. Malware authors might customize the packing process

to remove the static features that machine-learning-based classifiers can reasonably be

expected to leverage. Can malware classifiers be effective in the presence of strong and

complete encryption?
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Table 3.7: Experiment “withheld packer”

Withheld All features NO byte n-grams
Packer FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 7.30% 3.74% 0.95 26.06% 1.51% 0.88
PECompact 47.49% 2.14% 0.80 42.75% 2.83% 0.81
Obsidium 17.42% 3.32% 0.90 70.09% 0.73% 0.74
Petite 5.16% 4.47% 0.95 12.45% 4.22% 0.92
tElock 43.65% 2.02% 0.77 73.98% 1.07% 0.72
Themida 6.21% 3.29% 0.95 21.28% 10.37% 0.85
MPRESS 5.43% 4.53% 0.95 28.65% 1.87% 0.87
kkrunchy 83.06% 2.50% 0.70 55.97% 0.38% 0.78
UPX 11.21% 4.34% 0.92 17.52% 9.02% 0.87

Table 3.8: Experiment “wild vs. packers”

Packer All features Rich Header (only)
FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 60.79% 0.0% 0.80 99.72% 0.0% 0.67
PECompact 66.48% 0.23% 0.76 22.56% 1.44% 0.89
Obsidium 82.10% 0.0% 0.73 100.0% 0.0%% 0.67
Petite 74.85% 0.02% 0.78 8.44% 1.54% 0.95
tElock 99.28% 0.03% 0.67 32.38% 1.35% 0.86
Themida 43.41% 0.21% 0.80 12.23% 1.44% 0.94
MPRESS 89.93% 1.23% 0.69 100.0% 0.0% 0.67
kkrunchy 100.0% 0.0% 0.67 100.0% 0.0% 0.67
UPX 50.46% 1.72% 0.79 18.32% 1.86% 0.91

• Adversarial Examples. Despite their limited scope, recent work [69, 70, 71] has shown

that machine-learning-based malware detectors are vulnerable to adversarial examples. Is

it possible to use the learned model to drive evasion?

To investigate the generalization question, we carried out the next three experiments.

Experiment VII: “wild vs. packers”. First, we trained the classifier on a dataset with a “wild

ratio” of packed benign samples extracted from the wild dataset, and tested it on the lab dataset.

As Table 3.8 shows, the classifier performed poorly against all packers, with the highest accuracy
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being 78.19% against Themida. This is interesting, as we knew that at least 50% of the packers

in our dataset keep the Rich Header, and, therefore, the classifier still should have maintained

high accuracy based on the earlier results. We argue that this happened because the classifier

chose features with more information gain, and, while testing on the lab dataset, those features

are not helpful anymore. In fact, we trained the classifier using only the Rich Header, and the

classifier’s accuracy against packers that keep the Rich Header increased considerably, up to

over 90%.

Experiment VIII: “withheld packer”. Second, we performed several rounds of experiments

on the lab dataset, in which we withheld one packer from the training set and then evaluated the

resulting classifier on packed executables generated by this packer (one round for each of the

nine packers). To have a fair comparison between rounds, we fixed the size of the training set

to 83,760, by selecting 5,235 benign and 5,235 malicious executables for each of the packers.

We then tested the classifier on 5,235 benign and 5,235 malicious executables packed with

the withheld packer. As Table 3.7 shows, except for the three noticeable cases of PECompact,

tElock, and kkrunchy, the classifier performed relatively well, with an F-1 score ranging from

0.90 to 0.95.

In all cases, we identified byte n-gram features extracted from .CAB file headers (reside

in the resource sections) as the most important features. There are 6,717 benign and 1,269

malicious executables having these features enabled in the wild dataset. In the previous

experiment, the classifier did not learn these features as there were more distinguishing features.

However, as packers mostly keep headers of resources despite the encryption of the body, this

initial bias is intensified as we packed each sample with multiple packers. In particular, there are

28,765 benign and 2,428 malicious executables in the lab dataset that include these sequences

of bytes. However, for PECompact the situation is a bit different, as we could pack only 1,095

benign and 451 malicious samples that have .CAB headers. For tElock, we could pack only 181
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Table 3.9: The false positive and false negative rates (%) of six machine-learning-based engines
integrated with VirusTotal.

Packer AV1 AV2 AV3 AV4 AV5 AV6
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

PELock 81.48 18.32 72.35 28.26 81.49 19.09 88.34 12.84 89.96 10.29 91.14 8.84
PECompact 81.81 18.36 72.18 28.31 80.53 19.55 88.39 12.06 89.74 10.06 90.88 8.89
Obsidium 79.01 22.24 70.18 30.54 77.03 24.42 83.69 17.42 67.53 32.71 86.55 13.82
Petite 78.73 20.99 68.48 31.07 74.52 25.5 84.79 16.11 72.13 26.92 85.45 14.68
tElock 78.92 20.49 67.49 30.77 74.51 25.06 84.37 14.58 72.53 26.53 84.79 14.17
Themida 79.18 21.58 70.18 30.45 76.95 23.88 84.13 15.95 67.5 33.88 86.23 14.28
MPRESS 82.3 18.58 72.75 28.44 82.04 19.68 88.37 12.73 89.94 9.43 91.58 8.94
kkrunchy 78.79 21.15 69.71 30.32 77.27 23.28 83.11 16.89 67.29 32.07 86.72 13.98
UPX 78.37 22.36 70.04 30.62 76.04 23.72 82.8 17.01 67.34 33.07 85.54 13.98

AES-Encrypter 79.77 21.27 69.14 31.27 75.47 24.4 85.29 15.2 73.25 26.71 85.69 14.19
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Figure 3.5: Confidence of the “best possible” classifier on false positives, false negatives, true
positives, and true negatives.

benign and 444 malicious samples with .CAB headers. This explains why the accuracy of the

classifier is low against PECompact and tElock. We looked at the most important features when

we withheld kkrunchy in the learning phase, and we found that byte n-grams extracted from the

version info field of resources are very helpful for the classifier. Other packers usually keep this

information, hence the classifier learns it, but fails to utilize that against samples packed with

kkrunchy, as the packer strips this information. We repeated the experiment by excluding byte

n-grams features, and the accuracy of the classifier dropped significantly in all cases, except

when we withheld PECompact or kkrunchy (see Table 3.7).
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Figure 3.6: Experiment “single packer.” The weights of the top 20 features while training on
only PE sections features.

Experiment IX: “lab against wild”. In this third experiment, we trained the classifier on

the lab dataset and evaluated it on packed executables in the wild dataset. This experiment

is important as malware authors often prefer customized packing routines to off-the-shelf

packers [66, 67, 68]. To avoid any bias in our dataset toward any particular packer, benign and

malicious executables were uniformly selected from the various packers. We observed the false

negative rate of 41.84%, and false positive rate of 7.27%.

Experiments VII, VIII, and IX demonstrate that when using static analysis features, the

classifier is not guaranteed to generalize well to previously unseen packers. As a preliminary

step towards the Strong & Complete Encryption issue, we performed the following experiment.

Experiment X: “Strong & Complete Encryption”. In this experiment, we trained the clas-

sifier on 11,929 benign and 11,929 malicious executables packed with AES-Encrypter and

evaluated it against 5,113 benign and 5,113 malicious executables packed with AES-Encrypter.

As AES-Encrypter encrypts the whole executable with AES, we would expect that static analysis

features are no longer helpful for a static malware classifier. Surprisingly, the classifier per-

formed better than a random guess just because of two features, “file size” and “file entropy,”
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with accuracy of 72.67%. As benign samples are bigger in the wild dataset, obviously, packed

benign executables are still larger than packed malicious executables as AES-Encrypter just

encrypts the original binary. Also, the entropy of the packed executable is affected as a bigger

overlay increases the entropy of the packed program more. All other static analysis features are

the same across executables packed with AES-Encrypter, except for byte n-grams and strings

features, as executables have different (encrypted) overlays. Since we have more malicious

samples in the wild dataset, our feature selection procedures for extracting byte n-grams and

strings (see Section 3.4.3) tend to select those features that appear in malicious samples with

a higher probability, thus, we expect that the accuracy of the classifier is still slightly better

than 50%. In particular, removing the features “file size” and “file entropy” from the dataset

resulted in a classifier with an accuracy of 56.85%. In fact, we repeated the feature selection

procedure for a balanced dataset of only executables packed with AES-Encrypter, and we got an

accuracy of 50% for the classifier when removing these two features.

Experiment X raises serious doubts about machine learning classifiers. When packing hides

all information about the original binary until execution, the classifier has no choice but to

classify any sample packed by such a packer as malicious. This is an issue, as packing is

increasingly being adopted by legitimate software [143].

Experiment XI: “adversarial samples”. Recent work [69, 70, 71] has shown that machine-

learning-based malware detectors, especially those that are based on only static analysis features,

are vulnerable to adversarial samples. In our case, this issue becomes magnified as packing

causes machine learning classifiers to make decisions based on features that are not directly

derived from the actual (unpacked) program. Therefore, generating such adversarial samples

would be easier for an adversary.

In this experiment, first we carefully trained the classifier on 3,956 unpacked benign, 3,956

packed benign, and 7,912 malicious executables whose packed benign and malicious samples
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are uniformly distributed over the same packers from the lab dataset and packed executables

in the wild. We showed that such a classifier is not biased towards detecting specific packing

routines as a sign of maliciousness. As expected, the classifier performed relatively well in

the evaluation, with false positive and false negative rates of 9.70% and 5.33%, respectively.

Figure 3.5 shows the box and whisker plot of the classifier’s confidence score on the test set.

The mean confidence of the classifier for packed and unpacked executables that are classified

correctly is 0.89 and 0.93, respectively. For benign samples that the classifier misclassified (false

positives), the mean confidence is 0.68 and 0.58 for packed and unpacked samples, respectively.

Then, we generated adversarial samples from all 2,494 malicious samples that the classifier

detected as malicious (i.e., true positives). To achieve this, we identified byte n-gram and string

features that occurred more in benign samples and injected the corresponding bytes into the

target program without affecting its behavior. We verified this by analyzing the sample with the

ANY.RUN [196] sandbox. By injecting 34.24 (69.92) benign features on average, we managed

to generate 2,483 (1,966) adversarial samples that cause the classifier to make false predictions

with a confidence greater than 0.5 (0.9). We expect that a more complex attack is needed when

the classifier is trained using features extracted from dynamic analysis, which represent the

sample’s behavior.

Finding 3. Although we observed that static analysis features combined with machine

learning can distinguish between packed benign and packed malicious samples, such a

classifier will produce intolerable errors in real-world settings.

Recently, a group of researchers found a very similar way to subvert Cylance’s AI-based

anti-malware engine [149, 150]. They developed a “global bypass” method that works with

almost any malware to fool the Cylance engine. The evasion technique involves simply taking

strings from an online gaming program and appending them to known malware, like WannaCry.

The major problem that plagued Cylance was that behaviors that are common in malware are
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also common in games. Games use these techniques for various reasons, e.g., to prevent cheating

or reverse engineering. Tuning the system to flag the malware but not such benign programs is

quite difficult and prone to more errors, which in this case, confront Cylance’s engine with a

dilemma, either produce high false positives for games or inherit a bias towards them.

3.5.4 Anti-malware Industry vs. Packers

RQ4. How is the accuracy of real-world anti-malware engines that leverage machine learning

combined with static analysis features affected by packers?

In today’s world, legitimate software authors pack their products. Therefore, it is no longer

acceptable for anti-malware products to detect anything packed as malicious. RQ4 is important

because most machine-learning-based approaches rely on labels from VirusTotal in the absence

of a reliable and fresh ground-truth dataset [5, 72, 74, 75]. To this end, we identified six products

on VirusTotal that, either on the corresponding company’s website or on a VirusTotal blog post,

are described as machine-learning-based malware detectors that use only static analysis features.

It should be noted that, while VirusTotal clearly discourages using their service to perform

anti-malware comparative analyses [197], in the next experiment, we aim only to see how these

engines assign labels to packed samples in general. We do not intend to compare these tools

with each other or against another tool.

Experiment XII: “anti-malware industry”. In February 2019, we submitted 6,000 benign

and 6,000 malicious executables packed with each packer from the lab dataset to VirusTotal

to evaluate these six anti-malware products. As Table 3.9 shows clearly, all six engines have

learned to associate packing with maliciousness. Other engines on VirusTotal also produced

a similarly high error rate as these six engines. As we discussed in Section 3.2, related work

have published results showing similar trend [152, 153]. This experiment indicates that as

packing is being used more often in legitimate software [143], unless the anti-malware industry
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does better than detecting packing, benign and malicious software are going to be increasingly

misclassified.

Finding 4. Machine-learning-based anti-malware engines on VirusTotal detect packing

instead of maliciousness.

3.6 Discussion

We showed that machine-learning-based anti-malware engines on VirusTotal produce a

substantial number of false positives on packed binaries, which can be due to the limitations

discussed in this work. This is especially a serious issue for machine-learning-based approaches

that frequently rely on labels from VirusTotal [5, 72, 74, 75], causing an endless loop in which

new approaches rely on polluted datasets, and, in turn, generate polluted datasets for future

work.

One might say that this general issue with packing can be avoided by whitelisting samples

based on code-signing certificates. However, we have seen that valid digital signatures allowed

malware like LockerGoga, Stuxnet, and Flame to bypass anti-malware protections [198]. It

should be noted that although we showed that packer classification is an easy task for the

classifier to learn over our dataset, packing detection, in general, is a challenging task [4, 49,

154, 154], especially when malware authors use customized packers that evolve rapidly [66, 67,

68]. While using dynamic analysis features seems necessary to mitigate the limitations of static

malware detectors, malware could still force malware detectors to fall back on static features

by using sandbox evasion [153]. For example, Jana et al. [199] discovered 45 evasion exploits

against 36 popular anti-malware scanners by targeting file processing in malware detectors. All

these issues suggest that malware detection should be done using a hybrid approach leveraging

both static and dynamic analysis.

Limitations. As encouraged by Pendlebury et al. [200] and Jordaney et al. [201], malware
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detectors should be evaluated on how they deal with concept drift. We have observed that

machine learning combined with static analysis generalizes poorly to unseen packers, however,

we did not consider time constraints in our experiments, which we leave as future work. Also,

we focused only on Windows x86 executables in this work, but our hypothesis might also be

applicable to Android apps, for which packing is also getting more common [202].

3.7 Related Work

The theoretical limitations of malware detection have been studied widely. Early work on

computer viruses [203, 204] showed that the existence of a precise virus detector that detects all

computer viruses implies a decision procedure for the halting problem. Later, Chess et al. [205]

presented a polymorphic virus that cannot be precisely detected by any program. Similarly,

several critical techniques of static and dynamic analysis are undecidable [206, 207], including

detection of unpacking execution.

Moser et al. [63] proposed a binary obfuscation scheme based on opaque constants that

scrambles a program’s control flow and hides data locations and usage. They showed that

static analysis for the detection of malicious code can be evaded by their approach in a general

way. Christodorescu et al. [208] showed that three anti-malware tools can be easily evaded by

very simple obfuscation transformations. Later, they developed a system for evaluating anti-

malware tools against obfuscation transformations commonly used to disguise malware [209].

ADAM [210] and DroidChameleon [211] used similar transformation techniques to evalu-

ate commercial Android anti-malware tools. In particular, DroidChameleon’s results on ten

anti-malware products show that none of these is resistant to common and simple malware

transformation methods. Bacci et al. [212] showed that while dynamic-analysis-based detection

demonstrates equal performance on both obfuscated and non-obfuscated Android malware,

static-analysis-based detection has a poor performance on obfuscated samples. Although they
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showed that this effect can be mitigated by using obfuscated malicious samples in the learning

phase, no obfuscated benign sample is used, which raises the doubt that the classifier might

have learned to detect obfuscation. Hammad et al. [213] recently studied the effects of code

obfuscation on Android apps and anti-malware products and found that most anti-malware

products are severely impacted by simple obfuscations.

3.8 Conclusions

In this work, we have investigated the following question: does static analysis on packed

binaries provide a rich enough set of features to a malware classifier? We first observed that

the distribution of the packers in the training set must be considered, otherwise the lack of

overlap between packers used in benign and malicious samples might cause the classifier to

distinguish between packing routines instead of behaviors. Different from what is commonly

assumed, packers preserve information when packing programs that is “useful” for malware

classification, however, such information does not necessarily capture the sample’s behavior. In

addition, such information does not help the classifier to (1) generalize its knowledge to operate

on previously unseen packers, and (2) be robust against trivial adversarial attacks. We observed

that static machine-learning-based products on VirusTotal produce a high false positive rate

on packed binaries, possibly due to the limitations discussed in this work. This issue becomes

magnified as we see a trend in the anti-malware industry toward an increasing deployment of

machine-learning-based classifiers that only use static features.

To the best of our knowledge, this work is the first comprehensive study on the effects of

packed Windows executables on machine-learning-based malware classifiers that use only static

analysis features. The source code and our dataset of 392,168 executables are publicly available

at https://github.com/ucsb-seclab/packware.
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3.9 Appendix

3.9.1 Packing Detection and Automated Unpacking

Packing detection and packer identification. Detection of packed software is known to be a

challenging task [4, 49, 154]. Packer identification tools [189, 214, 215, 216] use signatures

to determine if a program is obfuscated with a particular packer. Lyda et al. [49] and Jacob

et al. [148] apply entropy analysis techniques to a binary, assuming that a packed binary has

a high entropy. Sun et al. [217] proposed a different method for randomness analysis that

generates a randomness profile for a packed executable to identify the packer employed to

protect the program. A similar work generates alternative randomness profiles by combining byte

histograms with entropy analysis to mitigate common attacks against entropy analysis [167].

Other approaches leverage static features of PE headers and sections [154, 155, 156], also

with the use of machine learning classifiers [4, 64, 157, 158, 218]. However, the problem

of distinguishing between packed and unpacked executables is undecidable in general [219],

although recent work raised hopes that this problem could be tractable under certain space and

time constraints [220].

Automated unpacking. There have been many attempts at unpacking executables in order to

extract the original payload for analysis [64, 169, 190, 219, 221, 222, 223, 224]. OmniUn-

pack [190] scans the memory for the presence of malware at every memory write. PolyUn-

pack [219] first uses static analysis to acquire a static model of the executable code. Then, it

executes the binary in an isolated environment and compares the execution context with the

static code model. Coogan et al. [168] exploit alias analysis, static slicing, and control-flow

analysis to statically construct a customized unpacker for the executable, which can be executed

later to obtain the unpacked code. Similarly, Debray et al. [223] use offline analysis of a

dynamic instruction trace to automate the creation of custom unpacking routines. Renovo [221]

works under the assumption that the entire unpacked binary resides in memory at a certain time.
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Bonfante et al. [169] take a sequence of memory snapshots to extract instructions of the original

program that are executed. Haq et al. [224] augment this approach by taking differential memory

snapshots to minimize noise. Polino et al. [225] study common ways used by malware to evade

Dynamic Binary Instrumentation (DBI) and present an anti-DBI resistant unpacker. Ugarte et

al. [222] proposed domain-specific customized multi-path exploration techniques to trigger the

unpacking of all code regions. More recently, Cheng et al. [170] proposed BinUnpack which

works under the assumption that the reconstruction of the Import Address Table finishes ahead

of the jump to the original entry point.

3.9.2 Machine Learning for Static Malware Analysis

In this section, we discuss how machine learning is being adopted by the anti-malware

community to statically analyze malware. We reviewed a wide range of static malware analysis

approaches based on machine learning [4, 5, 6, 48, 50, 52, 53, 59, 60, 61, 62, 75, 145, 148, 160,

161, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187].

One of the first papers that proposed to use machine learning for malware detection was

presented by Schultz et al. [48]. The authors used three different feature categories, byte

n-grams, (printable) strings, and DLL imports to examine three different classifiers, a Naïve

Bayes classifier [226], a Multi-Naïve Bayes classifier, and an inductive ruler learner (i.e.,

RIPPER [227]). Later, Masud et al. [174] used byte n-grams, assembly instructions, and DLL

function calls to train different types of classifiers.

Byte n-gram features are one of the most common features used in static malware detec-

tion [62, 159, 160]. Abou-Assaleh et al. [175] used the L most frequent n-grams observed in the

training set (20 ≤ L ≤ 5000) to create a profile for each sample, and assign each new sample to a

particular class using a nearest neighbor classifier. Kolter et al. [176, 177] extracted 500 n-grams

features with the highest information gain and trained several classifiers. Zhang et al. [178] also

used information gain measures to select the top n-grams, followed by a probabilistic neural
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network. Henchiry et al. [179] proposed a hierarchical feature selection that considers only

those n-grams that appear above a certain threshold in a malware family, as well as in more than

a minimum number of malware families. Jacob et al. [148] used bigram distributions to detect

similar malware without executing them, to mitigate analyzing duplicate malware. They used a

packer detector based on different heuristics, such as code entropy, that automatically configures

the distance sensitivity based on the type of packing used. Other related work [60] visualizes

executables as gray-scale images by treating bytes as gray-scale pixel values and borrows image

processing techniques to build a K-nearest neighbor classifier. Similar to byte n-grams, opcode

n-grams have been used for malware detection [52, 159, 160]. Karim et al. [181] tokenized

the input programs into sequences of opcodes to track malware evolution. Bilar et al. [182]

leveraged statistical differences between the opcode frequency distribution of malware and

benign software to detect malicious code.

Related work focused on other types of features extracted from the program disassembly.

Menahem et al. [183] augmented byte n-grams and PE header fields using attributes extracted

from functions in the disassembled program. Kong et al. [184] constructed a function call graph

and applied discriminant distance metric learning to cluster malware. Tian et al. [185] used the

function length along with its frequency to classify Trojans. Siddiqui et al. [186] used variable

length instruction sequences followed by tree-based classifiers to detect worms. Sathyanarayan

et al. [145] used API calls to obtain a signature for each malware family. Although features

from the program disassembly are used widely in capturing malware signatures, they are not

always obtainable, as some executables cannot be disassembled properly [159].

While many approaches focused on the binary code of the program, some work has consid-

ered other parts of the executables, such as PE headers. Shafiq et al. [50] proposed PE-Miner,

which uses 189 features from only PE headers followed by a decision tree classifier. To diminish

the bias of PE-Miner in detecting packed executables, they introduced PE-Probe [4], in which a

multi-layer perceptron classifier uses heuristics studied by Perdisci et al. [158] to detect packed
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Table 3.10: Summary of the packing detection tools used to build wild dataset.

Tool Benign Malicious
packed unpacked packed unpacked

(1) vendor’s sandbox 10,463 16,162 26,699 15,095
(2) dpi 6,049 20,576 27,995 13,799
(3) Manalyze 1,239 17,436 5,376 19,457
(4) PEiD+F-Prot 1,189 25,436 2,630 39,164
(5) yara 1,524 25,101 3,882 37,912
(6) Exeinfo PE 1,088 25,537 5,770 36,024

(1)+(2)+(3)+(4)+(5)+(6) 12,647 4,396 33,681 5,752

executables. Based on the outcome, the executable is analyzed by two separate specialized

structural models. They compared the distribution of each feature for packed and unpacked

executables to identify those that are robust to packing (although they did not report these

features). Elovici et al. [161] used Bayesian networks [228], decision trees, and artificial neural

networks [229] to create five different classifiers based on byte n-grams and PE headers fields.

Webster et al. [192] demonstrated how the contents of the Rich Header fields in PE files can

help to detect different versions of malware. Saxe et al. [5] applied a deep neural network with

two hidden layers using a histogram of byte entropy values, DLL imports, and numerical PE

fields as features. Li et al. [61] applied a combination of a recurrent neural network (RNN)

model and an SVM on top of features extracted from PE headers and sections. To avoid explicit

feature extraction, Raff et al. [6] proposed using a Long Short-Term Memory (LSTM [129])

network on raw byte sequences obtained from only PE headers. In particular, they considered

only MS-DOS, COFF, and Optional headers. MalConv [53] extends this work by training

convolutional neural networks on the entire body of executables.
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Table 3.11: Packer complexity in the wild dataset.

Type Benign Malicious All

Type I 708 (11.70%) 660 (2.36%) 1,368 (4.02%)
Type II 19 (0.31%) 2,069 (7.39%) 2,088 (6.13%)
Type III 5,321 (87.96%) 25,111 (89.70%) 30,432 (89.39%)
Type IV 0 (0.00%) 151 (0.54%) 151 (0.44%)
Type V 1 (0.01%) 3 (0.01%) 4 (0.01%)
Type VI 0 (0.00%) 1 (0.00%) 1 (0.00%)

Table 3.12: Packers identified by PEiD, F-Prot, Manalyze, Exeinfo PE, and yara rules in the
wild dataset.

Benign Malicious Benign Malicious

UPX 1,025 2,187 MEW 0 109
Simple Packer (dxpack) 0 2,293 EmbedPE 16 0
Armadillo 678 676 EXEStealth 0 54
MPRESS 3 955 NsPack 1 21
PECompact 49 307 PENinja 0 23
AHTeam EP Protector 0 271 Expressor 0 10
ASPack 54 202 U-Pack 0 18
PE-Armor 0 144 EXECryptor 1 10
ASProtect 14 103 pklite 10 0
VMProtect 0 61 Diminisher 4 33
FSG 0 43 Themida 0 10

Table 3.14: Experiment “wild vs. packers” - MalConv

Packer FPR (%) FNR (%) F-1

PELock 65.40% 17.98% 0.68
PECompact 98.81% 0.98% 0.67
Obsidium 91.35% 5.64% 0.67
Petite 93.70% 1.67% 0.67
tElock 96.03% 2.06% 0.67
Themida 92.34% 5.27% 0.66
MPRESS 97.53% 0.59% 0.67
kkrunchy 98.10% 0.66% 0.66
UPX 85.46% 7.59% 0.67
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Table 3.13: Experiment “withheld packer” - MalConv

Withheld Packer FPR (%) FNR (%) Accuracy

PELock 41.70% 53.38% 52.46%
PECompact 67.37% 23.56% 54.54%
Obsidium 37.03% 44.16% 59.41%
Petite 7.44% 82.52% 55.02%
tElock 46.78% 37.82% 57.70%
Themida 30.77% 63.49% 52.88%
MPRESS 89.92% 5.88% 52.04%
kkrunchy 51.21% 43.63% 52.58%
UPX 20.05% 58.08% 60.95%

Table 3.15: Experiment “withheld packer” - SVM

Withheld All features NO byte n-grams
Packer FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 61.32% 3.46% 0.75 49.88% 3.10% 0.79
PECompact 35.90% 4.90% 0.82 51.81% 8.0% 0.75
Obsidium 49.67% 1.07% 0.79 62.02% 3.04% 0.75
Petite 21.39% 0.87% 0.90 18.17% 4.20% 0.90
tElock 68.07% 1.34% 0.74 84.65% 1.62% 0.69
Themida 9.89% 9.28% 0.91 10.74% 50.39% 0.62
MPRESS 12.17% 6.83% 0.91 19.44% 4.09% 0.89
kkrunchy 59.32% 0.0% 0.77 56.07% 4.57% 0.76
UPX 7.39% 11.02% 0.91 10.64 14.74% 0.87

3.9.3 Lab Dataset Validation

To ascertain if (re-)packed executables in the lab dataset present their original behavior

during execution, we analyze each sample in Cuckoo Sandbox and compare its behavior with

the original sample. For this comparison, we look at network behavior and interaction with

the file system and Windows registry keys. We further look at APIs that are called during the

execution. Due to page limit restrictions, we explain the details of our validation scheme in

supplementary material, which can be found at https://github.com/ucsb-seclab/packware.

In a nutshell, packing does preserve the original behavior for more than 94.56% of samples.
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Table 3.16: Experiment “wild vs. packers” - SVM

Packer All features Rich Header (only)
FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 99.39% 0.77% 0.66 99.72% 0.0% 0.67
PECompact 62.56% 4.37% 0.76 45.14% 11.96% 0.75
Obsidium 67.99% 9.38% 0.69 100.0% 0.0%% 0.67
Petite 76.86% 0.69% 0.71 26.95% 13.08% 0.81
tElock 91.08% 0.53% 0.68 68.87% 11.96% 0.69
Themida 98.64% 0.29% 0.67 30.61% 10.88% 0.81
MPRESS 95.05% 0.25% 0.67 100.0% 0.0% 0.67
kkrunchy 99.30% 0.1% 0.67 100.0% 0.0% 0.67
UPX 41.55% 3.27% 0.83 43.04% 10.45% 0.77

3.9.4 Results for Alternative Models

Here, we present the results of major experiments for two different types of classifiers, SVM

and neural networks (MalConv [53]). As we mentioned earlier, the trend is the same as what

was discussed in Section 3.5.

SVM. Figure 3.7a and Figure 3.7b show the false positive and false negative rates of the SVM

classifier in “different packed ratios (wild)” and “different packed ratios (lab)”, as the packed

benign ratio increases in the training set. Table 3.17 and Table 3.18 demonstrate the importance

of each family of features in these two experiments. Similar to what we have seen for the

random forest classifier in “wild vs. packers”, but to less extent, training the classifier using only

the Rich Header features helps the classifier to achieve better performance (Table 3.16) against

packers that preserve this header. Table 3.15 also shows that the classifier fails to generalize to

previously unseen packing routines.

Neural Network. We used the architecture proposed by [53], i.e., MalConv. Following

extensive hyperparameter tuning, we achieved the same or better performance on the validation

set in most experiments. It should be noted that a dataset of 400,000 samples was used to train
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Figure 3.7: Experiment “different packed ratios” - SVM

MalConv. 2 However, in this work, we used datasets with 20-30 times smaller size across all

experiments. As we discussed earlier, the nature of this work requires us to label the samples (i.e.,

benign/malicious and packed/unpacked) based on their dynamic behavior. Unfortunately, such a

requirement makes it extremely hard to build huge datasets. For this reason, we did not achieve

the highest performance reported for MalConv for some experiments. Also, as acknowledged

by the authors, tuned hyperparameters of MalConv will depend on the distribution of samples.

In experiments where we have different datasets, especially Experiment “different packed ratios

(lab)”, MalConv did not achieve its highest performance. In all experiments, similar to the

original work, we trained the neural network for 10 epochs, which was enough for convergence.

Figure 3.8 shows the results of “different packed ratios (wild)” and “different packed ratios

(lab)”. Table 3.13 also shows that the classifier performs poorly against previously unseen

packers. Table 3.14 shows a similar trend for MalConv in Experiment “wild vs. packers”.

2They further used a dataset of 2 million samples to show that MalConv has the capacity to perform better if it
is trained on more data.
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Figure 3.8: Experiment “different packed ratios” - MalConv

Table 3.17: Experiment “different packed ratios (wild).” The number of malicious samples is
always 3,077.

PB Training Set # Features used by the classifier (Top 50)
Ratio #B

(packed)
#B (un-
packed)

import dll rich sections header strings byte n-grams opc. n-grams generic all

.0 0 3,077 26 (3) 1 (1) 20 (0) 46 (2) 5 (0) 104 (29) 120 (14) 0 (0) 1 (1) 323 (50)

.2 615 2,462 24 (4) 3 (0) 23 (0) 60 (3) 6 (1) 130 (28) 192 (14) 0 (0) 1 (0) 439 (50)

.4 1,231 1,846 33 (3) 5 (1) 22 (0) 57 (4) 4 (0) 140 (30) 209 (12) 0 (0) 1 (0) 471 (50)

.6 1,846 1,231 29 (3) 3 (1) 21 (0) 64 (5) 3 (0) 132 (30) 187 (11) 0 (0) 1 (0) 440 (50)

.8 2,462 615 25 (2) 3 (1) 23 (0) 57 (5) 4 (0) 121 (29) 201 (13) 0 (0) 1 (0) 435 (50)
1. 3,077 0 20 (5) 4 (1) 20 (0) 60 (3) 3 (0) 116 (26) 187 (15) 0 (0) 1 (0) 411 (50)

Table 3.18: Experiment “different packed ratios (lab)” - SVM. The number of malicious
samples is always 3,077.

PB Training Set # Features used by the classifier (Top 50)
Ratio #B

(packed)
#B (un-
packed)

import dll rich sections header strings byte n-grams opcode n-grams generic all

.0 0 3,077 0 (0) 0 (8) 14 (14) 24 (24) 3 (3) 0 (0) 0 (0) 0 (0) 1 (1) 42 (50)

.2 615 2,462 3 (0) 4 (1) 20 (0) 49 (2) 9 (0) 113 (15) 179 (32) 1 (0) 0 (0) 378 (50)

.4 1,231 1,846 6 (1) 7 (1) 18 (0) 56 (2) 11 (0) 199 (28) 247 (17) 2 (1) 0 (0) 546 (50)

.6 1,846 1,231 7 (2) 7 (0) 22 (0) 58 (1) 9 (0) 236 (39) 386 (7) 3 (1) 0 (0) 728 (50)

.8 2,462 615 10 (1) 9 (0) 20 (0) 61 (1) 11 (0) 257 (36) 395 (12) 3 (0) 0 (0) 766 (50)
1. 3,077 0 14 (0) 10 (0) 22 (0) 58 (0) 11 (0) 281 (38) 405 (12) 2 (0) 0 (0) 803 (50)
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Table 3.19: The parameters of the random forest classifier used in the experiments.

Parameter Value

# of trees 50
The maximum depth of each tree Infinity (Nodes are expanded until leafs)

The minimum number of samples required to split an internal
node

2

The minimum number of samples required to be at a leaf node 1
The number of features to consider when looking for the best
split

√
# features

Bootstrap: whether bootstrap samples are used when building
trees

True

The function to measure the quality of a split Gini Impurity

Table 3.20: Features extracted from PE headers.
Name Source Description

header_ImageBase Opt. header The address of the memory mapped location of the file
header_AddressOfEntryPoint Opt. header The address where the loader will begin execution
header_SizeOfImage Opt. header The size (in bytes) of the image in memory
header_SizeOfCode Opt. header The size of the code section
header_BaseOfCode Opt. header The address of the first byte of the entry point section
header_SizeOfInitializedData Opt. header The size of the initialized data section/s
header_SizeOfUninitializedData Opt. header The size of the uninitialized data section/s
header_BaseOfData Opt. header The address of the first byte of the data section
header_SizeOfHeaders Opt. header The combined size of the MS-DOS stub, PE headers, and section headers
header_SectionAlignment Opt. header The alignment of sections loaded in memory
header_FileAlignment Opt. header The alignment of the raw data of sections
header_NumberOfSections COFF. header The number of sections
header_SizeOfOptionalHeader COFF. header The size of the optional header

header_characteristics_bitX COFF. header The corresponding flag to bit X is set for the executable or not
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Table 3.21: Features extracted per each section of the PE file (“features per section”). ‘id’ is
the section number. For example, feature PESECTION_10_NAME represents the name of
the 10th section of the executables if present, otherwise none.

Name Description

pesection_id_name The section name
pesection_id_size The section size
pesection_id_rawAddress The address in the file
pesection_id_virtualSize The total size when loaded into memory
pesection_id_entropy The entropy of the section
pesection_id_numberOfRelocationsThe number of relocation entries
pesection_id_pointerToRelocations The address of the first byte of the relocation entries in

file

pesection_id_characteristics_bitX The corresponding flag to bit X is set for the section or
not

Table 3.22: Each row shows the number (percentage) of benign and malicious samples per
packer that import the API.

API Obsidium Petite UPX MPRESS PELock PECompact
Import #B #M #B #M #B #M #B #M #B #M #B #M

RegCloseKey 2730
(16.12%)

16,675
(52.95%)

1,870
(13.71%)

2,443
(9.45%)

2,928
(29.46%)

3,276
(15.89%)

1,770
(16.03%)

1,809
(15.74%)

230
(3.34%)

321
(3.79%)

190
(3.39%)

447
(1.58%)

InitCommon-
Controls

637
(3.76%)

152
(0.48%)

13 (0.1%) 128 (0.5%) 509
(5.12%)

61 (0.3%) 240
(2.17%)

59 (0.51%) 85 (1.24%) 34 (0.4%) 270
(4.81%)

44 (0.16%)

RegQueryVa-
lueA

479
(2.83%)

31 (0.1%) 435
(3.19%)

4 (0.02%) 428
(4.31%)

3 (0.01%) 395
(3.58%)

0 (0.0%) 269
(3.91%)

7 (0.08%) 14 (0.25%) 15 (0.05%)

MessageBoxA 1,075
(6.35%)

2,218
(7.04%)

13,628
(99.93%)

25,473
(98.51%)

95 (0.96%) 398
(1.93%)

246
(2.23%)

386
(3.36%)

91 (1.32%) 191
(2.25%)

226
(4.03%)

83 (0.29%)

ShellExecuteA 0 (0.0%) 0 (0.0%) 1,066
(7.82%)

2,542
(9.83%)

1,173
(11.8%)

2,416
(11.72%)

926
(8.39%)

690 (6.0%) 372
(5.41%)

329
(3.88%)

105
(1.87%)

564
(1.99%)

SysFreeString 0 (0.0%) 0 (0.0%) 205 (1.5%) 205
(0.79%)

541
(5.44%)

584
(2.83%)

408 (3.7%) 687
(5.98%)

148
(2.15%)

452
(5.33%)

484
(8.63%)

1,718
(6.06%)

FreeSid 107
(0.63%)

1,490
(4.73%)

1,210
(8.87%)

2,172
(8.4%)

1,047
(10.54%)

2,189
(10.62%)

673 (6.1%) 524
(4.56%)

87 (1.26%) 49 (0.58%) 31 (0.55%) 45 (0.16%)

wsprintfA 174
(1.03%)

1,574
(5.0%)

13,628
(99.93%)

25,473
(98.51%)

118
(1.19%)

622
(3.02%)

91 (0.82%) 581
(5.05%)

56 (0.81%) 269
(3.17%)

9 (0.16%) 13 (0.05%)

InitCommon-
ControlsEx

803
(4.74%)

455
(1.44%)

216
(1.58%)

383
(1.48%)

316
(3.18%)

349
(1.69%)

192
(1.74%)

159
(1.38%)

101
(1.47%)

86 (1.01%) 218
(3.89%)

62 (0.22%)

GetDC 792
(4.68%)

635
(2.02%)

0 (0.0%) 0 (0.0%) 3,357
(33.78%)

3,160
(15.32%)

1,811
(16.4%)

1,554
(13.52%)

51 (0.74%) 151
(1.78%)

220
(3.92%)

369 (1.3%)

# Samples 16,940 31,492 13,638 25,857 9,938 20,620 11,041 11,494 6,879 8,474 5,610 28,346
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Figure 3.9: Opcode and byte n-grams distributions.
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Chapter 4

Bullseye Polytope: Poisoning Transfer

Learning

4.1 Introduction

Machine-learning-based systems are being increasingly deployed in security-critical appli-

cations, such as face recognition [1, 2], fingerprint identification [3], and cybersecurity [77], as

well as applications with a high cost of failure such as autonomous driving [9]. The possibility

of generating adversarial examples in deep neural networks has raised serious doubt on the

security of these systems [78, 79, 80]. In these evasion attacks, a targeted input is perturbed

by imperceptible amounts at test time to trigger misclassification by a trained network. But

neural networks are also vulnerable to malicious manipulation during the training process. As

neural networks require large datasets for training, it is common practice to use training samples

collected from other, often untrusted, sources (e.g., the Internet), and it is expensive to have

these datasets carefully vetted. While neural networks are strong enough to learn powerful

models in the presence of natural noise, they are vulnerable to carefully crafted malicious noise

introduced deliberately by adversaries. In particular, gathering data from untrusted sources
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(a) Original images (b) Convex Polytope (c) Bullseye Polytope

Figure 4.1: Simplified representation of poison samples in a two-dimensional feature space.
The blue circles are poison samples and the red circle is the target. Convex Polytope moves
poison samples until the target is inside their convex hull, making no further refinements to
move the target away from the polytope boundary, whereas Bullseye Polytope enforces that
the target resides close to the center.

makes neural networks susceptible to data poisoning attacks, where an adversary injects data

into the training set to manipulate or degrade the system performance.

Our work focuses on clean-label poisoning attacks, a branch of poisoning attacks wherein

the attacker does not have any control over the labeling process. In this threat model, the poison

samples are created by introducing imperceptible (yet malicious) alterations that will result in

model misbehavior in response to specific target inputs. These perturbations are small enough

to justify the original images’ labels in the eye of a domain expert. The stealth of the attack

increases its success rate in real-world scenarios compared to other types of data-poisoning

attacks, as the poison data (1) will not be identified by human labelers, and (2) does not degrade

test accuracy except for misclassification of particular target samples.

Clean-label poisoning on transfer learning was first studied in a white-box setting [85],

where the attacker leverages complete knowledge of the pre-trained network φ that the victim

employs to either (1) extract features for training a (linear) classifier (linear transfer learning) or

(2) fine-tune on a similar task (end-to-end transfer learning). The Feature Collision attack [85]

selects a base image xb from the intended misclassification class, and creates a poison sample,
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xp, by adding small (bounded) adversarial perturbations to xb that brings it close to the target

image xt in the feature space, i.e., φ(xt) ≈ φ(xp). This triggers misclassification of xt to the

targeted class by any linear classifier that is trained on the features of a dataset containing

xp. This approach fails when the feature extractor φ is unknown to the attacker. To mitigate

such limitation, Zhu et al. proposed Convex Polytope [86], which, instead of finding poison

samples close to the target, finds a set of poison samples that form a convex polytope around it,

increasing the probability that the target lies within (or at least close to) this “attack zone” in

the victim’s feature space. Convex Polytope relies on the fact that every linear classifier that

classifies a set of points into label l will classify every point in the convex hull of these points as

label l.

As we will show later, Convex Polytope suffers from one inherent flaw. The target feature

vector tends to be close to the boundary of the attack zone, potentially hampering the attack

transferability. Furthermore, the Convex Polytope algorithm is very slow. For example, crafting

a set of five poison samples for a single target takes ∼17 GPU-hours on average.

To address these limitations, we propose Bullseye Polytope, which refines the constraints of

Convex Polytope such that the target is pushed toward the “center” of the attack zone (i.e., the

convex hull of poison samples). The geometrical comparison of Bullseye Polytope and Convex

Polytope is shown in Figure 4.1. Bullseye Polytope improves both the transferability and speed

of the attack. When the victim adopts linear transfer learning, our method improves the attack

success rate by 7.44% on average, while being 11x faster. In end-to-end transfer learning,

Bullseye Polytope outperforms Convex Polytope by 26.75% on average, while being 12x faster.

For some victim models, the attack success rate of Bullseye Polytope is ∼ 50% higher than

Convex Polytope. In a weaker threat model, where the adversary has limited knowledge of the

training set of the victim’s feature extractor φ, Bullseye Polytope provides a 9.27% higher attack

success rate in linear transfer learning.

We also extend Bullseye Polytope to a more practical threat model. Current clean-label
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poisoning attacks are designed to target only one image at a time, rendering them ineffective

against unpredictable variations in real-world image acquisition. Such attacks disregard the

following major point: to succeed in real-world scenarios, the attack needs to cope with a

spectrum of test inputs. By including a larger number of target images (of the same object) when

crafting the poison samples, we are able to obtain an attack transferability of 49.56% against

unseen images (of the same object), without increasing the number of poison samples. This

is an improvement of over 16%, compared to the single-target mode, when testing against the

same set of images (in linear transfer learning).

We further evaluate Bullseye Polytope against l2-norm centroid and Deep k-NN defenses [87],

which are shown to be effective against poisoning attacks on transfer learning. These defenses

employ neighborhood conformity tests to sanitize the training data. Our evaluation shows that

Bullseye Polytope is much more resilient than Convex Polytope against less aggressive defense

configurations. To completely mitigate the attacks, Deep k-NN and l2-norm centroid defenses

need to remove 5% and 10% of the training data, respectively, of which 1% are the poison data.

We show that increasing the number of poison samples makes the l2-norm centroid defense

completely ineffective, as it needs to aggressively prune the dataset, which, in turn, degrades

the model’s performance. This gives our attack a major advantage, as, unlike Convex Polytope,

Bullseye Polytope can incorporate more poison samples into the attack process, with virtually

no cost in attack-execution time. As we will show later, Convex Polytope scales poorly as the

number of poison samples increases. In particular, running the Convex Polytope attack for 800

iterations to craft ten poison samples takes 603 minutes on GPU, while Bullseye Polytope takes

only seven minutes.

The Deep k-NN defense is able to completely mitigate the attack by increasing the neigh-

borhood size until poison samples cannot become a majority, but it suffers from low detection

precision (20%). On the other hand, if the number of poison samples is larger than the number

of samples in the target object’s original class, the majority test can be overwhelmed, leaving
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many poison samples undetected. Furthermore, in some applications, the target object does

not belong to one of the classes in the training set, but rather is an unclassified object that the

adversary aims to “smuggle in.” In this case, poison samples are not likely to have nearby

neighbors in the fine-tuning set from a single class other than the poison class. Therefore, to

fully mitigate the attack, the Deep k-NN defense needs to adopt a much larger neighborhood

size, which results in discarding a higher number of clean samples.

Concurrent to our work, a recent study was published on arXiv [230]. That study develops

standardized benchmarks for data poisoning and backdoor attacks to promote fair comparison.

Interestingly, the authors already include our work as presented in this chapter. The results

for linear transfer learning settings demonstrate that Bullseye Polytope outperforms all other

attacks. Especially in the white-box setting, the independent third-party study showed that

our attack achieved more than 50% higher success rates across experiments compared to the

runner-up. The study also benchmarks from-scratch training scenarios, where the victim’s

network is trained from random initialization on the poisoned dataset. This is a much more

challenging scenario for attacks that are designed for transfer learning settings (like Bullseye

Polytope). However, it is a scenario that is specifically taken into consideration by another

attack, Witches’ Brew (WiB) [231], which was also recently published on arXiv (and parallel to

this work). The from-scratch benchmarks are evaluated on two datasets: CIFAR-10 [232] and

TinyImageNet [233]. On the former dataset, WiB demonstrated a success rate of 26%, while all

other attacks (including Bullseye Polytope) succeeded less than 3% of the time. Interestingly,

however, for the TinyImageNet benchmark, our attack achieved the highest success rate (44%),

12% higher than the runner-up (WiB), while other attacks failed most of the times.

To some readers, Bullseye Polytope might appear as a simple extension of prior work,

such as Convex Polytope. We argue that this would be myopic — compelling ideas often

appear simple in hindsight. Our experiments show that Bullseye Polytope is not only more

successful than current state-of-the-art poisoning attacks on transfer learning, but, perhaps more
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importantly, it is also an order of magnitude faster. This performance improvement is significant,

as it unlocks our practical ability to build defenses against this class of attacks with higher

detection precision. When creating solutions to detect poisoning attacks, researchers have to

experiment with ideas and parameters and perform statistical evaluations. These experiments

take a significant amount of time, even when deploying substantial amounts of resources in the

cloud. The proposed technique in this chapter cuts down this time by a factor of 10, enabling a

much faster cycle of experimentation. We also make all source code as well as poison samples

available, which can be found at github.com/ucsb-seclab/BullseyePoison.

4.2 Threat Model

In our threat model, we assume that the victim employs transfer learning, where a model

trained for one task is reused as part of a different model for a second task. Transfer learning is

shown to be a common practice, as it obtains high-quality models without incurring the cost

of training a model from scratch [234]. We consider two transfer learning approaches that the

victim may adopt; linear transfer learning and end-to-end transfer learning. In the former, a

pre-trained but frozen network acts as a feature extractor φ, and an application-specific linear

classifier is fine-tuned on φ(Γ), where Γ is the fine-tuning training set. In end-to-end transfer

learning, the feature extractor and linear classifier are trained jointly on Γ, and, therefore, the

feature extractor is altered during fine-tuning. In both scenarios, the attacker injects a small

number of poison samples into Γ, obtained by imperceptibly perturbing some of the original

samples. The attacker does not have any control over the labeling process, therefore, the poison

samples remain correctly labeled according to their original class. We consider both black-box

and gray-box settings. The attacker has no access to the victim model in the black-box setting.

In the gray-box setting, only the victim network’s architecture is known. We assume that the
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attacker knows the training set that is used to build φ.1 The attacker uses this training set for

training substitute networks, which will be used to craft poison samples. Unless explicitly stated,

by “attack transferability” we mean the transferability of the poison samples’ characteristics

(i.e., targeted misclassification) to the victim’s (fine-tuned) model. We do further evaluation in

more limited settings where the adversary has no or partial knowledge of the training set of φ.

4.3 Related Work

Data Poisoning Attacks. A well-studied portion of data-poisoning attacks aims to use malicious

data to degrade the test accuracy of a model [235, 236, 237, 238, 239]. While such attacks are

shown to be successful, they are easy to detect, as the performance of a model can always be

assessed by testing the model on a private, trusted set of samples. Another important branch of

data-poisoning attacks, known as backdoor attacks [234], fools models by imprinting a small

number of training examples with a specific pattern (trigger) and changing their labels to a

different target label. During inference, the attacker achieves misclassification by injecting

the trigger into targeted examples. This strategy relies on the assumption that the labels of

the poison data will not be inspected. To avoid injecting wrong labels, clean-label [240] and

hidden-trigger [241] backdoor attacks are proposed, where poison samples are crafted with

optimization procedures. In general, similar to evasion attacks, backdoor attacks present the

following shortcoming: they require the modification of test samples during inference to enable

misclassification.

Clean-label Poisoning Attacks. A recent branch of data-poisoning attacks has no control over

the labeling process. The first clean-label poisoning attack is Feature Collision [85], which

mainly targets linear transfer learning, where the adversary has complete knowledge of the

feature extractor network φ employed by the victim. Feature Collision suffers from one major
1Note that the attacker has no knowledge of Γ (other than the added poisons).
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problem; it tends to fail in black-box settings [86]. To mitigate such limitations, Zhu et al.

proposed the Convex Polytope attack [86], which crafts a set of poison samples that contain the

target’s feature vector within their convex hull. In particular, this attack outperforms Feature

Collision by 20% on average in terms of success rate. As we will show in Section 4.6, Convex

Polytope suffers from two shortcomings; (1) Speed: Convex Polytope is significantly slow. (2)

Robustness: The target’s feature vector tends to be close to the boundary of the polytope formed

by the poison samples, leaving the full potential for attack transferability untapped.

To mitigate such limitations, we design Bullseye Polytope by crafting poison samples

centered around the target image in the feature space. As we will show later, our attack

accelerates poison construction by an order of magnitude compared to Convex Polytope, while

achieving higher attack success rates in both transfer learning setups. We further improve

the attack robustness by incorporating multiple images of a target object. Current clean-label

poisoning attacks are designed to target only one image at a time, rendering them ineffective

against unpredictable variations in real-world image acquisition. We show that the resulting

attack is effective on unseen images of the target while maintaining good baseline test accuracy

on non-targeted images. To the best of our knowledge, Bullseye Polytope is the first clean-label

poisoning attack being proposed for a multi-target threat model, which is an important feature

for practical implementations on real-world systems.

Concurrent to our work, a recent paper [231] – published on arXiv – proposed a clean-label

poisoning attack, named WiB, against from-scratch training scenarios, where the victim’s model

is trained from random initialization on the poisoned dataset. Such a setting is more challenging

for previous clean-label poisoning attacks and Bullseye Polytope, as they are designed for

transfer learning scenarios. However, as we will show later, our attack outperforms WiB in

some experiments. This is quite interesting, as unlike WiB, Bullseye Polytope is not originally

designed for from-scratch training scenarios.
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Defenses Against Clean-label Poisoning. Parallel to this work, a recent study by Peri et

al. [87] proposed defenses against clean-label poisoning attacks, i.e., Feature Collision [85]

and Convex Polytope [86]. They adopted defenses that are shown to be effective against both

evasion and backdoor attacks [242, 243].2 For the Feature Collision attack, they observed that a

Deep k-NN based method applied to the penultimate layer (i.e., the feature layer) of the neural

network outperforms other types of defenses, such as adversarial training or l2-norm centroid

defenses. In the Convex Polytope attack, Deep k-NN and l2-norm centroid defenses demonstrate

comparable resilience, however, the Deep k-NN defense removes fewer clean samples from the

training data. In this work, we evaluate Bullseye Polytope and Convex Polytope against both

Deep k-NN and l2-norm centroid defenses. As we will show in Section 4.6.4, Bullseye Polytope

is generally more robust than Convex Polytope against less aggressive defense configurations.

4.4 Background

As discussed earlier, Feature Collision fails when the victim’s feature extractor φ is unknown

to the attacker. To mitigate such limitation, Zhu et al. [86] proposed Convex Polytope (CP),

which crafts a set of poison samples that contain the target within their convex hull. CP exploits

the following mathematical guarantee: if the victim’s linear classifier associates the poison

samples with the targeted class, it will label any point inside their convex hull as the targeted

class. CP creates a larger “attack zone” in the feature space, thus increasing the chance of

transferability, as argued by the authors. In particular, CP solves the following optimization

2A detailed discussion of defenses against evasion and backdoor attacks is provided in the Appendix 4.9.6.
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problem:

minimize
{c(i)},{x(j)p }

1

2m

m∑
i=1

∥∥∥φ(i)(xt)−
∑k

j=1 c
(i)
j φ

(i)(x
(j)
p )
∥∥∥2

‖φ(i)(xt)‖2

subject to
k∑
j=1

c
(i)
j = 1, c

(i)
j ≥ 0,∀i, j,

∥∥∥x(j)p − x(j)b ∥∥∥∞ ≤ ε , ∀j, (4.1)

where x(j)b is the original image of the j-th poison sample, and ε determines the maximum

allowed perturbation. Eq. 4.1 finds a set of poison samples {x(j)p }kj=1 such that the target xt

lies inside, or at least close to, the convex hull of the poison samples in the feature spaces

defined by m substitute networks {φ(i)}mi=1. In the i-th substitute network, the target feature

vector φ(i)(xt) is ideally a convex combination of the feature vectors of poison images, i.e.,

φ(i)(xt) =
∑k

j=1 c
(i)
j φ

(i)(x
(j)
p ), where c(i)j determines the j-th poison’s coefficient. To solve the

non-convex problem in Eq. 4.1 (i.e., find the optimal poison samples), CP repeats the following

steps for 4,000 iterations:

1. Freezing {x(j)p }kj=1, use forward-backward splitting [244] to optimize the coefficients for

each individual network {c(i)}.

2. Given {c(i)}, optimize {x(j)p }kj=1 using one gradient step.

3. Clip {x(j)p }kj=1 to the ε-ball around the base images {x(j)b }kj=1.

Poor Scalability of Convex Polytope. We observed that when using 18 substitute networks,

solving Eq. 4.1 for five poison samples takes ∼17 GPU-hours on average.3 Of this time, step

one alone takes ∼15 hours. We list the details of step one in the Appendix (Algorithm 1).

Within this process, we noticed two major time-consuming operations: (1) checking whether the
3This is the exact same setting used in the original paper [86].
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new coefficients result in a smaller loss compared to the old coefficients (this is done in every

iteration of coefficient optimization), and (2) projection onto the probability simplex, which

happens whenever the new coefficients satisfy the above condition. While we believe that there

is room for improvement of this algorithm, e.g., by checking the condition every few steps rather

than each step, we did not make any such changes in order to avoid degradation of the attack

success rate, and to allow for a fair comparison.

4.5 Bullseye Polytope

Apart from scalability, CP has an inherent flaw: as soon as the target crosses the boundary

into the interior of the convex polytope, there is no incentive to refine further and move the target

deeper inside the attack zone (Figure 4.1). Therefore, the target will lie close to the boundary

of the resulting poison polytope, which reduces robustness and generalizability. We design

Bullseye Polytope (BP) based on the insight that, by fixing the relative position of the target

with respect to the poison samples’ convex hull, we speed up the attack while also improving its

robustness. Instead of searching for coefficients by optimization, which is neither efficient nor

effective, BP predetermines the k coefficients as equal, i.e., 1
k
, to enforce that the target resides

close to the “center” of the poison samples’ polytope.4 BP then solves the special case of:

minimize
{x(j)p }

1

2m

m∑
i=1

∥∥∥φ(i)(xt)− 1
k

∑k
j=1 φ

(i)(x
(j)
p )
∥∥∥2

‖φ(i)(xt)‖2

subject to
∥∥∥x(j)p − x(j)b ∥∥∥∞ ≤ ε , ∀j. (4.2)

As we show later, BP indeed improves attack transferability by effectively pushing the target

toward the center of the attack zone. Also, by precluding the most time-consuming step of

4Our notion of center coincides with the center of mass of the poison set.
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computing coefficients, BP is an order of magnitude faster than CP. It should be noted that, while

BP seems to be a special case of CP, the objective loss of Eq. 4.2 has a significant difference

with respect to Eq. 4.1. That is, the closer the target gets to the polytope’s center, the smaller the

loss becomes, which is not true for Eq. 4.1. For this reason, the solution of Eq. 4.2 (BP) is not

necessarily a special case of Eq. 4.1 (CP), since an optimizer that uses Eq. 4.1 might never find

such a solution. Although CP initially sets the k coefficients as equals (i.e., 1
k
), we observed that

the coefficients become skewed from the very beginning. This happens because at each step of

optimizing the coefficients, the solution of Eq. 4.1 is skewed towards poison samples that are

closer to the target.

Kernel Embedding-view of Bullseye Polytope. Besides improved computational efficiency,

our approach in Eq. 4.2 can be viewed as optimizing distribution of poison samples via its

mean embedding. Informally speaking, when φ is a sufficiently descriptive feature map,5

then Ex∼P [φ(x)] = Ex∼Q[φ(x)] if and only if distributions P and Q are identical (see, e.g.,

[245, Theorem 1]; also see a recent survey of kernel mean embedding [246]). Deep neural

networks are closely related to kernel methods [247, 248, 249]. The pre-trained network is a

powerful feature extractor, thus is often viewed as an even better descriptor of the input feature

x than kernels for prediction purposes. As a result, if {x(j)p }kj=1 are drawn from a distribution

P , then Eq. 4.2 is essentially optimizing this distribution using the plug-in estimator of mean

embedding: 1
k

∑k
j=1 φ(x

(j)
p ).

Deep Sets. Bullseye Polytope is also backed by the more recent approach of deep sets [250],

which establishes that for any function f of a set of poison samples x(1)p , ..., x
(k)
p that enjoys

permutation invariance admits a decomposition: f = ρ( 1
k

∑k
j=1 φ(x

(j)
p )) for some function ρ, φ.

Notice that due to the random reshuffling steps in training machine learning models, the learned

prediction function (i.e., classifier) is permutation invariant by construction with respect to

5For example, φ(x) = k(x, ·) for a characteristic reproducing kernel k, e.g., the Gaussian-RBF kernel
k(x, y) = e−‖x−y‖

2

.
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the training dataset (containing the set of poison samples). That is, the classifier’s prediction

f can be decomposed to ρ( 1
k

∑k
j=1 φ(x

(j)
p )) — a function of the mean embedding. Thus, our

simplification from Eq. 4.1 to Eq. 4.2 that optimizes the mean embedding rather than a more

general convex combination is arguably without loss of generality (See Appendix 4.9.7 for a

more detailed discussion).

4.5.1 Improved Transferability via Multi-Draw Dropout

Attack transferability improves when we increase the number of substitute networks for

crafting poison samples. While it is impractical to ensemble a large number of networks due

to memory and time constraints, introducing dropout randomization provides some of the

diversification afforded by a larger ensemble. With dropout, the substitute network φ(i) provides

a different feature vector for the same poison sample each time. This randomization was

observed to result in a much higher variance in the (training) loss of Eq. 4.2 compared to that of

Eq. 4.1. Since the solution space of Eq. 4.2 is much more restrictive than Eq. 4.1, and moves

around for different realizations of dropout, gradient descent has a harder time converging for

Eq. 4.2. We use averaging over multiple draws to alleviate this problem. In each iteration, we

compute the feature vector of poison samples R times for each network, and use their average

in optimizing Eq. 4.2. Of course, increasing R results in higher attack execution time, but even

a modest choice of R=3 is enough to achieve an 8.5% higher success rate compared to when

R=1 is used for end-to-end transfer learning. Even in this case, BP is 12 times faster than CP.

4.5.2 Multi-target Mode

We further improve the robustness of BP by incorporating multiple images of a target object.

This is similarly achieved by simply replacing φ(xt) in (4.2) with a mean embedding of the

distribution of the targets 1
Nim

∑n
j=1 φ(x

(j)
t ) where x(1)t , ..., x

(Nim)
t are drawn i.i.d from a target
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distribution that captures the natural variations in lighting conditions, observation angles, and

other unpredictable stochasticity in real-world image acquisition. To say it differently, instead

of attacking one individual instance, we are now attacking a distribution of instances by creating

a set of poison samples that match the target distribution in terms of the mean embedding as

much as possible. In Section 4.6.2, we demonstrate that the resulting attack is highly effective

not only on the “training” instances of the targets but also generalizes to unseen images of the

target, while maintaining good baseline test accuracy on images of non-targeted objects. In

contrast, current clean-label poisoning attacks only work with one image at a time, rendering

them ineffective in more realistic attack scenarios.

4.5.3 End-to-End Transfer Learning

In end-to-end transfer learning, the victim retrains both the feature extractor and the linear

classifier, altering the feature space in the process. This causes unpredictability in the attack

zone, even in the white-box setting. To tackle this issue, inspired by Zhu et al. [86], we jointly

apply BP to multiple layers of the network, crafting poison samples that satisfy Eq. 4.2 on

the feature space created by each layer. This adds to the complexity of the problem, which is

especially problematic for the already slow CP algorithm.

4.6 Experiments

We first evaluate BP in single-target mode and compare against CP, and then demonstrate

its transferability on unseen images of the target object (multi-target mode). BP-3x and BP-5x

represent the case where multi-draw dropout is enabled, with R set to 3 and 5, respectively.

Unless stated otherwise, we use the same settings as used by Zhu et al. [86] to provide a fair

comparison. We also study the effect of the perturbation budget ε and the number of poison

samples on the attack success rate through ablation studies. Furthermore, we evaluate both BP
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Figure 4.2: Linear transfer learning - success rates of CP, BP, BP-3x, and BP-5x on victim
models. Notice ResNet18 and DenseNet121 are the black-box setting.
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(a) Linear transfer learning
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Figure 4.3: Attack success rates of CP, BP, BP-3x, and BP-5x, averaged over all eight victim models.
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Figure 4.4: End-to-end transfer learning - success rates of CP, BP, and BP-3x on victim models.
Notice MobileNetV2, GoogLeNet, ResNet18 and DenseNet121 are the black-box
setting.

and CP against defenses that are proposed by a recent study [87]. In the end, we further evaluate

BP using standard benchmarks that are developed in a recent study [230]. We ran all the attacks

using NVIDIA Titan RTX graphics cards.

4.6.1 Single-target Mode

Datasets. We use the CIFAR-10 dataset. If not explicitly stated, all the substitute and victim

models are trained using the first 4,800 images from each of the 10 classes. In all experiments,

we use the standard test set from CIFAR-10 to evaluate the baseline test accuracy of the poisoned

models and compare them with their unpoisoned counterparts. The attack targets, base images

of poison samples, and victim’s fine-tuning set are selected from the remaining 2,000 images
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Figure 4.5: Attack execution time.
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Figure 4.6: Average baseline test accuracy variation.
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of the dataset. We assume that the victim models are fine-tuned on a training set consisting

of the first 50 images from each class, i.e., the fine-tuning dataset, containing a total of 500

images. Zhu et al. [86] randomly selected “ship” as the misclassification class, and “frog” as

the target’s image class. We assume the same choice for comparison fairness. Specifically, the

attacker crafts clean-label poison samples from ship images to cause a particular frog image to

be misclassified as a ship. We craft the poison images x(j)p from the first five images of the ship

class in the fine-tuning dataset. We run CP and BP attacks with 50 different target images of

the frog class (indexed from 4,851 to 4,900) to collect performance statistics. Thus we ensure

that target images, training set, and fine-tuning set are mutually exclusive subsets. We set an `∞

perturbation budget of ε = 0.1.

Linear Transfer Learning. For substitute networks, we use SENet18 [251], ResNet50 [13],

ResNeXt29-2x64d [252], DPN92 [253], MobileNetV2 [254], and GoogLeNet [255]. Each

network architecture is trained with dropout probabilities of 0.2, 0.25, and 0.3, which results

in a total of 18 substitute models. To evaluate the attacks under gray-box settings, we use the

aforementioned architectures (although trained with a different random seed). For black-box

settings, we use two new architectures, ResNet18 [13] and DenseNet121 [256]. Dropout remains

activated when crafting the poison samples to improve attack transferability. However, all eight

victim models are trained without dropout, and dropout is disabled during evaluation. We

perform both CP and BP for 4,000 iterations with the same hyperparameters used by CP. The

only difference is that BP forces the coefficients to be uniform, i.e., c(i)j = 1
5
. We use Adam [257]

with a learning rate of 0.1 to fine-tune the victim models on the poisoned dataset for 60 epochs.

Figure 4.2 shows the progress of CP, BP, BP-3x, and BP-5x over the number of iterations of

the attack against each individual victim model. Figure 4.3a shows the attack progress wherein

the attack success rate is averaged over eight victim models. In general, BP outperforms CP

and converges faster. In particular, on average over all iterations, BP-3x and BP-5x demonstrate
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7.44% and 8.38% higher attack success rates than CP. Both CP and BP hardly affect the baseline

test accuracy of models (Figure 4.6a).6 BP is almost 21 times faster than CP, as it excludes the

computation-heavy step of optimizing the coefficients. Figure 4.5a shows the attack execution

time based on the number of iterations. Running CP for 4,000 iterations takes 1,002 minutes

on average, while BP takes only 47 minutes. BP-3x and BP-5x take 88 and 141 minutes,

respectively. It is worth noting that BP needs fewer iterations than CP to achieve the same attack

success rate for some victim models (Figure 4.2).

End-to-end Transfer Learning. In this mode, the victim feature extractor is altered during

the fine-tuning process, which results in a (slightly) different feature space. This causes the

conventional CP attack to have a success rate of less than 5%. To tackle this problem, CP creates

convex polytopes in different layers of the substitute models. We follow the same strategy for

BP, this time limiting each attack to 1,500 iterations to meet time and resource constraints. For

substitute networks, we use SENet18, ResNet50, ResNeXt29-2x64d, and DPN92, with dropout

values of 0.2, 0.25, and 0.3 (a total of 12 substitute models). For gray-box testing, we evaluate

the attacks against these four architectures. In the black-box setting, MobileNetV2, GoogLeNet,

ResNet18, and DenseNet121 are used as victim networks. We use Adam with a learning rate of

10−4 to fine-tune the victim models on the poisoned dataset for 60 epochs.

Similar to what we observed for linear transfer learning, but with a wider margin, BP

presents higher attack transferability than CP, especially in the black-box setting. Figure 4.4

shows the progress of CP, BP, and BP-3x over the number of iterations of the attack against

each individual victim model. Here we report attack success rates after 1,500 iterations. BP

and BP-3x improve average attack transferability (over victim models) by 18.25% and 26.75%,

respectively (Figure 4.3b). Figure 4.20 in the Appendix shows attack success rates against each

individual victim model. BP and BP-3x have 10-30% and 10-50% higher attack transferability

than CP, respectively (except against GoogLeNet). Poor transferability against GoogLeNet
6BP has slightly less severe effect on the baseline test accuracy.
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Figure 4.7: Comparison of CP, BP, and BP-3x in linear transfer learning, with zero and 50%
overlap between training sets of the substitute networks and the victim’s network.

is also reported for CP [86]. Since the GoogLeNet architecture differs significantly from the

substitute models, it is, therefore, more difficult for the “attack zone” to survive end-to-end

transfer learning. For other black-box models (MobileNetV2, ResNet18, and DenseNet121),

BP and BP-3x improve attack transferability by ∼18% and ∼24%, respectively. Both CP and

BP have hardly any effect on the baseline test accuracy of models (Figure 4.6b). As Figure

4.5b shows, BP and BP-3x take 15 and 98 minutes, while CP takes 1,180 minutes, which is 36x

slower.

It is worth noting that we found multi-draw dropout not beneficial to CP in the experiments.

Since using multi-draw dropout makes CP (much) slower, with no gain in attack success rate, to

fairly compare the execution time of BP with CP, multi-draw dropout is always disabled for CP.

Transferability to Unseen Training Sets. Until now, we have assumed that the substitute

models are trained on the same training set (Ψ) on which the victim’s feature extractor network

is trained. In this section, we evaluate CP and BP using substitute models that are trained on

a training set that has (1) zero or (2) 50% overlap with Ψ. Such a setting is more realistic

compared to when the attacker has complete knowledge of Ψ. We use the same setting as in

linear transfer learning except for the following changes: (i) We train the victim models on the

first 2,400 images of each class; (ii) In the zero overlap setting, we train substitute models on
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Figure 4.8: Nine alternatives of Bullseye Polytope with different sets of nonuniform coefficients.
The blue circles are poison samples with their coefficients written next to them, and the red
cross is the target. The entropy of the coefficients increases from left to right. Note that the
bottom right represents BP.

samples indexed from 2,401 to 4,800 for each class; (ii) For the 50% overlap setting, we train

substitute models on samples indexed from 1,201 to 3,600 for each class. Figure 4.7 shows

the attack success rates (averaged over victims) for both zero overlap and 50% overlap setups.

When we have 50% overlap, BP, BP-3x, and BP-5x demonstrate 5.82%, 8.56%, and 9.27%

higher attack success rates compared to CP (on average over all iterations), with BP converging

significantly faster than CP. For the zero overlap setup, BP provides hardly any improvement

over CP. They both achieve much lower attack success rates of 20-25%. It should be noted that

the zero overlap scenario is much more restricted than what is usually assumed in threat models

for poisoning attacks. The victim’s network, training set, and even the fine-tuning training set

(except for, of course, the poison samples) are all unseen to the adversary. All attacks hardly

affect the baseline test accuracy (Figure 4.17 in the Appendix).

Effectiveness of the Bullseye Idea. We have argued that the effectiveness (robustness and

transferability) of BP stems from the fact that predetermining the convex coefficients as uniform
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Figure 4.9: Comparison between BP and the other nine alternatives.

weights draws the target to the “center” of the attack zone, increasing its distance from the

poison polytope boundary. In order to evaluate this claim quantitatively, we run the attack

with different sets of nonuniform coefficients, to see if the improvement is truly due to target

centering (i.e., the “bullseye” idea) or simply from “fixing” the coefficients instead of searching

for them. We evaluate BP against nine alternatives {BP′t}9t=1, each with a different set of positive

predefined coefficients that satisfy
∑k

j=1cj =1. Figure 4.8 depicts a geometrical example for

each set (sorted from left to right based on the entropy of the coefficient vector), with BP

having the highest possible entropy of log2 5 ' 2.32. As Figure 4.9 shows, variations of BP

with higher coefficient entropy generally demonstrate higher attack success rates compared

to those with smaller entropy, especially in the black-box setting. This finding indicates that

predetermining the coefficients to uniform weights (BP) is preferable to simply fixing them

to some other plausible values. This backs our intuition behind BP that the further the target

is from the polytope boundary, the lower its chances of jumping out of the attack zone in the

victim’s feature space. In fact, the average entropy of coefficients in CP roughly converges to

1.70, which means the coefficient distribution is more skewed, with some poison samples having

a relatively small contribution to the attack. Figure 4.10 shows the mean values of the (sorted)

coefficients to provide a sense of the coefficient distributions used by CP.

Different Pairs of <original class, poison class>. Until now, the adversarial goal in all exper-

iments was to make the victim’s model identify an image of a frog (original class) as a ship
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Figure 4.10: Distribution of poison samples’ coefficients defined in Eq. 4.1 (averaged over all
targets and victim networks). The coefficients are sorted, c1 denotes the highest coefficient,
and c5 denotes the lowest coefficient. In Convex Polytope, the coefficient distribution is more
skewed with some poison samples having a relatively small contribution to the attack.

(poison class). For comparison fairness, we have followed Zhu et al. [86] for this selection of

the original and poison classes. To assess the impact of selecting different original and poison

classes on the performance of the attack, we evaluate BP-3x for all 90 pairs of <original class,

poison class>; each with 5 different target images (indexed from 4,851 to 4,855 in the original

class), resulting in a total of 450 attack instances. We focus on linear transfer learning and limit

each attack to 800 iterations to meet time and resource constraints. On average, against all eight

victim networks, BP-3x achieved a success rate of 40.83%. In the original setting of <frog,

ship>, BP-3x showed a success rate of 47.25% (Figure 4.3a). See Appendix 4.9.4 for the attack

performance against individual victim networks as well as a comparison of different class pairs.

4.6.2 Multi-target Mode

We now consider a more realistic setting where the target object is known, but there is

unpredictable variability in the target image at test time (e.g., unknown observation angles).
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Figure 4.11: Attack transferability to unseen angles in linear transfer learning.
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Figure 4.12: Attack transferability to unseen angles in end-to-end transfer learning.

This is the first attempt at crafting a clean-label and training-time dataset poisoning attack

that is effective on multiple (unseen) images of the target object at test time. To this end, we

consider a slight variation of BP that takes multiple images of the target object (capturing as

much observation variability as possible), and performs BP on the averages of their feature

vectors. We use the Multi-View Car dataset [258], which contains images from 20 different

cars as they are rotated by 360 degrees at increments of 3-4 degrees. We expect to see lower

accuracy when testing the substitute models on the Multi-View Car dataset, as it contains a

different distribution of images compared to CIFAR-10. We observed that images from the

car dataset are most commonly misclassified as “ship,” therefore to avoid contamination from

this inherent similarity, this time we choose “frog” as the intended misclassification label, and

perform the attacks only for the 14 cars with baseline accuracy of over 90% to obtain pessimistic

results. We use the same settings as the single-target mode. We discuss in the Appendix 4.9.5

how the car images of the Multi-View Car dataset are adapted for our models, which are trained

110



Bullseye Polytope: Poisoning Transfer Learning Chapter 4

on CIFAR-10.

We evaluate both CP and BP setting the number of target images Nim to {1, 2, 3, 4, 5, 10} to

verify the effect of Nim on the attack robustness against unseen angles. Note that when Nim = 1,

the attack is in single-target mode. To select the Nim target images, we take one image every

360
Nim

degree rotation of the target car. Figure 4.11 and Figure 4.12 show the attack success rates

against unseen images. In linear transfer learning, using five targets instead of one improves

attack robustness against unseen angles by over 16%. In end-to-end transfer learning, BP-3x

demonstrates an improvement of 12%. When Nim = 5, BP achieves 14% higher attack success

rate compared to CP, while being 59x faster. We emphasize that the total number of poison

samples crafted for multi-target attacks is the same as single-target mode (i.e., 5). Figure 4.19 in

the Appendix depicts poison samples crafted for one particular target car.

More Realistic Transfer Learning. We argue that the setting of this (multi-target) experiment

is also relevant for another reason: the source of the fine-tuning set is different from the source of

the original training set. In particular, we assume that the victim fine-tunes a model – pre-trained

on CIFAR-10 – on the Multi-View Car dataset. Our results show that BP achieves comparable

success rates in such a more realistic setting. For example, when Nim =1 in end-to-end transfer

learning, the attack success rates of BP and CP are 51% and 34%.

4.6.3 Attack Budget

Until now, we have used five poison samples with an `∞ perturbation budget of ε = 0.1.

Here, we discuss the impact of the number of poison samples and the perturbation amount on

the attack success rate. Since we observed the same trend for single-target and multi-target

mode, we only report the numbers for single-target mode. We limit each attack to 800 iterations

to meet time and resource constraints.

Table 4.2a shows the attack performance of BP, when different numbers of poison samples
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Table 4.1: Evaluation of BP (after 800 iterations), when different poison budget is used. The
first row shows the accuracy that the victim’s fine-tuned model classifies poison samples into
the poison class label. The second row shows the baseline test accuracy of the model on the
standard test set from CIFAR-10. The last row shows the attack success rate.

# Poisons
3 5 7 10

Poisons Acc. (%) 82.33 84.45 86.57 88.98
Clean Test Acc. (%) 91.92 91.76 91.67 91.60
Attack Success Rate (%) 28.00 42.50 49.50 57.75

(a) Different number of poisons used (ε = 0.1).

Perturbation Budget ε
0.01 0.03 0.05 0.1 0.2 0.3

Poisons Acc. (%) 96.05 82.25 82.87 84.45 85.4 86.1
Clean Test Acc. (%) 92.01 91.69 91.75 91.76 91.80 91.82
Attack Success Rate (%) 4.50 33.00 40.43 42.50 39.75 43.25

(b) Different levels of perturbation ε used (# poisons = 5).

are injected into the victim’s fine-tuning dataset. In general, using more poison samples results

in a higher attack success rate, which can be due to two reasons; First, BP achieves a lower

“bullseye” loss (Eq. 4.2) when more poison samples are used. In fact, we confirmed that this

is not the case. While in some scenarios, the loss value slightly decreases, generally, across

different target samples, the loss does not decrease by simply adding more poison samples. So,

if the attack fails to find poison samples shaping a convex polytope around some particular

target, increasing the number of poison samples will not help us to find a “better” polytope.

Second, having more poison samples in the fine-tuning dataset will cause the classifier to

learn the malicious characteristics of the poison samples with a higher probability. This indeed

contributes to a higher attack success rate. During our analysis, we noticed that the main reason

for the attack failure for a particular target is the following; In the fine-tuning dataset of the

victim, there exist samples from the target’s original class that are close “enough” to the target

so that the victim’s model classifies the target into its true class. In most cases, a few of the

poison samples are even classified into the target’s original class, which indeed downgrades the
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malicious effect of poison samples. Therefore, by adding more poison samples to the fine-tuning

dataset, the chance that poison samples in the adjacency of the target outnumber samples from

the true class is higher. Note that we do not consider a white-box threat model in this work,

thus the convex polytope created for the substitute networks will not necessarily transfer to the

victim’s feature space, which means the condition of the mathematical guarantee discussed in

Section 4.4 will not always hold.

We also evaluate CP when the number of poison samples is ten. As Table 4.2 shows, BP

demonstrates a 6.5% higher attack success rate than CP. Running BP for 800 iterations takes

only seven minutes on average, while CP takes 603 minutes, which is 86 times slower. This

happens because CP poorly scales as the number of poison samples increases. In each iteration

of solving Eq. 4.1, CP needs to find the optimal set of coefficients for each poison. If we increase

the number of poison samples from five to ten, at each iteration of the attack, ten optimization

problems need to be solved to find the best coefficients (instead of five). This is not the case

for BP, as increasing the number of poison samples does not necessarily make solving Eq. 4.2

harder. The problem is still finding the solution of Eq. 4.2 using backpropagation, with ten

poison samples as the parameters, instead of five. In fact, our evaluation shows that BP takes

roughly the same time as when we use five poison samples.

Table 4.2b shows the attack performance of BP, when five poison samples are crafted, yet

with different levels of perturbation. In general, the “bullseye” loss does not change for ε values

greater than 0.05, and increasing ε further has a negligible impact on the attack success rate. We

argue this happens for the same reason that an attack fails for a particular target when there are

some samples from the target class in the victim’s fine-tuning dataset that are very close to the

target in the victim’s feature space. In such a scenario, increasing the perturbation budget is not

enough to move the target from the proximity of its class into the attack zone. Due to resource

and time constraints, we evaluated CP in these settings on a smaller set of targets, and we have

observed a trend similar to what we discussed above.
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Table 4.2: Evaluation of BP and CP (after 800 iterations), when ten poison samples are used,
and ε is set to 0.1.

BP CP

Poisons Acc. (%) 88.98 85.20
Clean Test Acc. (%) 91.60 91.43
Attack Success Rate (%) 57.75 51.25
Attack Execution Time (min.) 7 603

4.6.4 Defenses

Concurrent to this work, a recent study has been published [87], which studies defenses

against clean-label poisoning attacks, i.e., Feature Collision [85] and Convex Polytope [86]. In

their evaluation, Deep k-NN and l2-norm centroid defenses generally outperformed other types

of defenses, such as adversarial training. In this work, we evaluate both BP and CP against these

two defenses. Deep k-NN Defense: For each sample in the training set, this defense flags the

sample as anomalous and discards it from the training set if the point’s label is not the mode

amongst the labels of its k nearest neighbors. Euclidean distance is used to measure the distance

between data points in feature space. l2-norm Outlier Defense: For each class c, the l2-norm

centroid defense removes a fraction µ of points from class c that are farthest in feature space

from their centroid.

It should be noted that both defenses are vulnerable to data-poisoning attacks. In the Deep

k-NN defense, a naïve adversary might expand the set of poison samples such that the extra

poison samples are close “enough” to the old poison samples, so that more poison samples might

survive the k nearest neighbor filtration process. In l2-norm centroid defense, the position of

the centroid can be adjusted towards the poison samples (e.g., by adding more poison samples),

especially when the per-class data size is small, which is the case in transfer learning. While

clean-label poisoning attacks can be more powerful by considering neighborhood conformity

tests when crafting the poison samples, in this work, we assume the adversary does not know

that such defenses will be employed by the victim. In particular, we evaluate both BP and CP
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Table 4.3: Evaluation of BP and CP (after 800 iterations) when the victim employs the Deep
k-NN defense. Note that k = 0 means no defense is employed. Five and ten poison samples
are used in the left and right table, respectively.

k # Deleted Poisons # Deleted Samples Adv. Success Rate (%)
BP CP BP CP BP CP

0 - - - - 42.5 37.25

1 3.18 4.28 36.46 37.02 20.50 6.75
2 2.42 3.86 21.91 23.07 24.75 8.00
3 3.81 4.66 27.86 27.87 11.75 1.50
4 3.48 4.60 25.83 26.69 14.75 2.50
6 4.22 4.85 25.39 25.91 8.25 1.25
8 4.77 4.94 25.69 25.80 1.25 0.00
10 4.97 4.95 26.36 26.33 0.00 0.25
12 4.98 4.96 26.58 26.54 0.00 0.00
14 4.98 4.96 26.21 26.21 0.00 0.00
16 4.98 4.96 26.95 26.92 0.00 0.00
18 4.98 4.96 26.36 26.37 0.00 0.00
22 4.98 4.96 26.62 26.59 0.00 0.00

(a) # Poisons = 5

k # Deleted Poisons # Deleted Samples Adv. Success Rate (%)
BP CP BP CP BP CP

0 - - - - 57.75 51.25

1 4.30 7.56 38.77 41.22 49.25 14.00
2 2.71 6.38 22.75 25.77 51.75 21.25
3 4.92 8.16 30.36 31.88 38.75 11.00
4 3.94 7.76 26.74 29.72 46.75 12.50
6 4.82 8.51 26.57 29.44 40.00 7.25
8 5.68 9.03 27.24 29.87 31.25 3.25
10 6.53 9.31 28.30 30.54 26.50 2.25
12 7.42 9.44 29.19 30.82 17.75 1.25
14 8.17 9.54 29.42 30.54 15.25 0.25
16 8.86 9.59 30.63 31.20 8.00 0.00
18 9.50 9.61 30.60 30.63 3.00 0.00
22 9.91 9.61 31.18 30.85 0.25 0.00

(b) # Poisons = 10
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Table 4.4: Evaluation of BP and CP when the victim employs the l2-norm centroid defense.

µ
# Deleted Poisons # Deleted Samples Adv. Success Rate (%)

BP CP BP CP BP CP

0.00 - - - - 42.5 37.25

0.02 1.00 1.00 10.00 10.00 35.00 30.25
0.04 2.00 2.00 20.00 20.00 30.50 19.00
0.06 3.00 3.00 30.00 30.00 17.25 7.75
0.08 3.99 3.99 40.00 40.00 4.75 1.75
0.10 4.96 4.93 50.00 50.00 0.25 0.75
0.12 4.99 4.98 60.00 60.00 0.00 0.00
0.14 4.99 4.98 70.00 70.00 0.00 0.00
0.16 5.00 4.98 80.00 80.00 0.00 0.00
0.18 5.00 4.99 90.00 90.00 0.00 0.00
0.20 5.00 4.99 100.00 100.00 0.50 0.00

(a) # Poisons = 5

µ
# Deleted Poisons # Deleted Samples Adv. Success Rate (%)

BP CP BP CP BP CP

0.00 - - - - 57.75 51.25

0.02 1.00 1.00 10.00 10.00 55.00 47.25
0.04 2.00 2.00 20.00 20.00 53.25 45.50
0.06 3.00 3.00 30.00 30.00 49.50 40.25
0.08 4.00 4.00 40.00 40.00 43.50 34.00
0.10 5.00 5.00 50.00 50.00 37.50 21.50
0.12 6.00 6.00 60.00 60.00 32.50 17.00
0.14 7.00 7.00 70.00 70.00 22.25 8.25
0.16 8.00 8.00 80.00 80.00 11.75 4.75
0.18 8.99 9.00 90.00 90.00 3.00 0.75
0.20 9.93 9.56 100.00 100.00 0.25 0.00

(b) # Poisons = 10
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Figure 4.13: Evaluation of BP against Deep k-NN and l2-norm centroid defenses, when 5, 10,
or 25 poison samples are used.
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Figure 4.14: Evaluation of BP against the Deep k-NN defense, when the target is classless.
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against these two defenses. In our evaluation, we ran BP and CP against linear transfer learning

for 50 different targets, which results in 50 different sets of poison samples. We report here the

aggregated statistics averaged over these sets of poison samples and eight victim models. We

also evaluated the attacks when the number of poison samples is increased from five to ten. To

meet resource and time constraints, the attacks are limited to 800 iterations.

Table 4.3 shows the performance of the Deep k-NN defense against BP and CP for various

choices of k. Regardless of how many poison samples are used, the Deep k-NN defense becomes

more effective against both attacks as k increases, while eliminating roughly the same number

of samples from the training set (i.e., 26 and 31 for when five and ten poison samples are crafted,

respectively). BP generally demonstrates much higher resilience compared to CP. For small

values of k, the Deep k-NN defense discards fewer poison samples of BP compared to CP.

When using five poison samples, setting k = 1 is enough to reduce the attack success rate of CP

from 37.25% to 6.75%, while BP still achieves an attack success rate of 20.50%, which is 4.75x

higher. To completely diminish BP, k needs to be greater than eight, however, when ten poison

samples are crafted, the attack success rate decreases only to 31.25%. It is worth noting that CP

achieves 1.25% attack success rate in such a configuration.

Table 4.4 presents the performance of the l2-norm centroid defense against BP and CP for

various choices of µ. When five poison samples are used, BP demonstrates a superior resilience

against the defense compared to CP for µ < 0.1. For larger values of µ, both attacks are

completely thwarted. However, the larger µ is, the more samples are discarded from the training

set, which can degrade the model performance on the fine-tuning dataset, and, henceforth, the

new task. For example, when µ = 0.1, the l2-norm centroid defense eliminates five samples

from each class of the dataset. This represents 10% of the fine-tuning dataset. Compared to the

Deep k-NN defense, the l2-norm centroid defense tends to eliminate more samples from the

dataset to achieve the same level of resilience. In particular, to completely mitigate the attacks,

the l2-norm centroid defense removes 50 samples, while Deep k-NN eliminates 26 samples.
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When ten poison samples are used, the l2-norm centroid defense becomes less effective for

small values of µ. To completely mitigate the attacks, µ needs to be greater than 0.18. In

this setting, the l2-norm centroid defense removes 90 samples in total, which is 18% of the

fine-tuning dataset. For smaller values of µ, BP is more resilient than CP. For example, when

µ = 0.12 (i.e., 60 samples to be removed from the victim’s dataset), the attack success rate of

CP reduces to 20%, while BP demonstrates a 32.50% attack success rate.

In general, BP demonstrates higher attack robustness against Deep k-NN and l2-norm

centroid defenses compared to CP. Both defenses completely mitigate the attacks for high values

of k and µ. Increasing the number of poison samples makes the l2-norm centroid defense

ineffective, as it needs to aggressively prune the dataset, which will result in lower performance

on the victim’s task. This gives BP a major advantage, as unlike CP, BP is able to incorporate

more poison samples into the attack process, with virtually no cost in attack-execution time

(Table 4.2). On the other hand, the Deep k-NN defense seems to be quite effective, even when

more poison samples are used. Increasing the number of poison samples from five to ten

makes this defense remove five more samples on average. We should note that both attacks

are completely mitigated after eliminating 6% of the victim’s dataset, of which 4% are clean

samples. The precision of poison detection is still low (∼ 33%). To further see the effect of

the number of poison samples on the precision and recall of poison detection, we evaluated

BP, when crafting 25 poison samples. Figure 4.13 shows the performance of Deep k-NN and

l2-norm centroid defenses against BP when the number of poison samples increases from five

to ten and then to 25. Figure 4.13c demonstrates that the l2-norm centroid defense is not a

plausible choice. When 25 poison samples are used, removing 40% of the dataset reduces the

success rate of BP from 75% to 70%. This happens because as more clean samples are removed

from the dataset, the poison samples will play a more important role in the training process.

As Figure 4.13b shows, the poison recall rate of the Deep k-NN defense reaches 100%

as k becomes about two times the number of poison samples. This is not surprising, as it is
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almost impossible for the poison label to be identified as the plurality among samples in the

neighborhood of the target in such a case. On the other hand, this defense is likely to fail if the

number of poison samples is large enough to overwhelm the conformity test for each poison

sample. This will happen with high probability when the number of poison samples is larger

than the number of data points in the target’s true class. In this case, the majority (or plurality) of

points in the neighborhood of each poison sample will likely have the same label as the poison

itself. In fact, we observed that when samples in the target’s class are fewer than the number

of poisons in the fine-tuning set, the poison samples pass the test undetected in most cases,

hence, the attack remains active. Furthermore, if the target is classless, i.e., does not belong to

any of the classes in the training set, the defense becomes less effective, as the poison samples

surrounding the target are no longer part of a cluster related to the target’s class. To evaluate this

claim, we selected the first ten images of the 102 Category Flower dataset [259] as the targets,

with “ship” being the misclassification class. As Figure 4.14 shows, setting k to 50 reduces the

attack success rate to 66% for a classless target, whereas for a target from CIFAR-10 the attack

is fully mitigated (Figure 4.13a). Complete mitigation of the attack requires k > 150, which

results in discarding more than 70 samples from the fine-tuning set, of which 45 are clean.

4.6.5 Comparison On Standardized Benchmarks

A very recent paper [230] introduced standardized benchmarks for backdoor and poisoning

attacks. In particular, the benchmarks include the following attacks.

• Clean-label poisoning attacks against transfer learning: FC [85], CP [86], and BP (our

attack).

• Clean-label and hidden-trigger backdoor attacks: CLBD [240], and HTBD [241].

• A from-scratch attack: Witches’ Brew (WiB). Unlike transfer learning, this attack assumes
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that the victim trains a new, randomly initialized model on the poisoned dataset.

Our attack was included in this benchmark evaluation, as we had made a pre-print version

of our work available on arXiv. In the following, we summarize and expand on these third-party

results.

Standardized Setup of Benchmarks. For the benchmarks, poisoning attacks are always

restricted to generate poison samples that remain within the l∞-ball of radius 8
255

centered at

the corresponding base images. On the other hand, backdoor attacks can use any 5× 5 patch.

Target and base images are chosen from the testing and training sets, respectively, according to

a seeded, reproducible random assignment. This allows the benchmarks to use the same choices

for each attack and remove a source of variation from the results. Each experiment uses 100

independent trials. In general, two different training modes are considered: (i) linear transfer

learning, and (ii) from-scratch training, where the victim’s network is trained from random

initialization on the poisoned dataset.

Unlike our experiments in Section 4.6, the parameters of only one model are given to

the attacker. In linear transfer learning, the attacks are evaluated in white-box and black-box

scenarios. For white-box tests, the same frozen feature extractor that is given to the attacker

is used for evaluation. In black-box settings, the attacks are evaluated against unseen feature

extractor networks. Benchmarks can be divided into two sets of CIFAR-10 benchmarks and

TinyImageNet benchmarks.

In CIFAR-10 benchmarks, for linear transfer learning, models are pre-trained on CIFAR-100,

and the fine-tuning is done on a subset of CIFAR-10, which has the first 250 images from each

class, allowing for 25 poison samples. The attacker has access to a ResNet-18 [13] network, and

the victim uses either (1) the same ResNet-18 network (white-box scenario) or (2) VGG11 [12]

and MobileNetV2 [254] networks (black-box scenario). We extend the benchmarks here by

considering a gray-box scenario, where the attacks are evaluated against a ResNet-18 network
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with unseen parameters. Furthermore, for the black-box setting, we evaluate the attacks against

ResNet-34 and ResNet-50 networks [13] as well. For these extra evaluations, we have used

the poison samples that are shared by Schwarzschild et al. [230] in their GitHub repository,7

and here we report the detailed numbers. When training from scratch, benchmarks use one of

ResNet-18, VGG11, and MobileNetV2 networks, and report the average attack success rate.

For this mode, benchmarks use 500 poison samples.

In TinyImageNet benchmarks, for linear transfer learning, models are pre-trained on the first

100 classes of the TinyImageNet dataset [233] and fine-tuned on the second half of the dataset,

allowing for 250 poison samples. The attacker has access to a VGG16 network, and black-box

tests are done on ResNet-34 and MobileNetV2 networks. For the from-scratch setting, the

benchmarks are evaluated against a VGG16 model that is trained on the entire dataset with 250

poison samples.

Results. Table 4.5 shows the success rates of the benchmarks. In linear transfer learning, our

attack outperformed other attacks by a significant margin, especially in white-box settings. For

example, in the TinyImageNet benchmark, BP achieved an attack success rate of 100%, while

HTBD, CLBD, CP, and FC demonstrated success rates of 3%, 3%, 14%, and 49%, respectively.

In the gray-box setting, BP showed only a modest improvement over other attacks. For the

black-box settings in CIFAR-10 benchmarks, BP showed minimal improvement – on average

1-2% – in comparison to other attacks. In the black-box scenario of TinyImageNet benchmarks,

BP achieved an attack success rate of 10.5%, while other attacks were below 2%. In general, BP

has shown a superior performance with respect to other contenders in the linear transfer learning

mode.8 It is worth noting that backdoor attacks assume stronger threat models compared to

poisoning attacks, as they need to manipulate both the training data and the target sample.

Before discussing the results in from-scratch training settings, we emphasize that BP is

7Accessed Feb. 15 2021.
8WiB is not evaluated in the transfer learning mode, as it is not considered in the original work [231].
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designed to attack transfer learning scenarios. Similar to FC and CP, BP does not consider

from-scratch training scenarios. We expect the performance of BP to drop in such a scenario,

as the feature space is constantly being altered during training. On the other hand, CLBD,

and WiB attacks are specifically designed to target such scenarios. On CIFAR-10 benchmarks,

all attacks succeeded less than 3% of the time. The only exception is WiB, which achieves a

success rate of 26%. However, in TinyImageNet benchmarks, interestingly, BP demonstrated a

success rate of 44%, surpassing the runner-up attack (WiB) by 12%. This shows that BP has the

capability to produce poison samples that even survive from-scratch training scenarios for the

higher dimensional TinyImageNet dataset.

4.7 Discussion

In Section 4.6.4, we have evaluated Bullseye Polytope against defenses presented in a

(concurrent) paper [87]. We found that the Deep k-NN defense mitigates our attack completely

if clean data points from the target’s original class outnumber the poison samples. However,

such a defense still suffers from a poor precision rate, i.e., it removes a considerable number

of clean samples, which, in turn, might have negative effects on the model performance. We

believe future defenses need to be proposed with higher precision rates.

In our experiments, we have noticed that Bullseye Polytope adds noticeable amounts of

noise to the poison samples. In fact, a recent study of clean-label poisoning attacks [230]

acknowledges this limitation; poisoning attacks, which claim to be “clean label,” often produce

easily visible image artifacts and distortions. This study advocates using a perturbation budget

ε of 0.03. In Section 4.6.3, we observed that by using ε = 0.03, our attack produces much

fewer distortions, while still achieving an attack success rate of 33.0% (see Figure 4.16 in the

Appendix for the visual effect of ε on poison examples). In general, work in adversarial ML

(in the image domain) suffers from the lack of a clear metric to determine what level of noise
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is imperceptible by the human eye. Clean-label poisoning definitely benefits from additional

research on this issue to produce less perceptible perturbations.

4.8 Conclusions

In this work, we present a scalable and transferable clean-label poisoning attack, Bullseye

Polytope, for transfer learning. Bullseye Polytope searches for poison samples that create, in

the feature space, a convex polytope around the target image, ensuring that a linear classifier

that trains on the poisoned dataset will classify the target into the poison class. By driving

the polytope center close to the target, Bullseye Polytope outperforms Convex Polytope—a

state-of-the-art attack against transfer learning— with success rate improvement of 7.44% and

26.75% for linear transfer learning and end-to-end transfer learning, respectively. At the same

time, Bullseye Polytope achieves 10-36x faster poison sample generation, which is crucial for

enabling future research toward the development of reliable defenses. Our evaluation of two

neighborhood conformity defenses shows that Bullseye Polytope is more robust than Convex

Polytope against less aggressive defense configurations. As the number of poison samples

increases, the l2-norm centroid defense becomes ineffective. The Deep k-NN defense also

becomes vulnerable when poison samples outnumber the samples from the target’s true class.

In general, both defenses demonstrated low detection precision, which indicates further research

needs to be done to improve the precision of such defenses.
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4.9 Appendix

4.9.1 Poison Visualization

Figure 4.18 depicts poison samples generated by Convex Polytope and Bullseye Polytope

for one particular target. The first row shows the original images that are selected for crafting the

poison samples. Figure!4.19 depicts poison samples generated by Convex Polytope and Bullseye

Polytope in multi-target mode, when multiple images of the target object (from different angles)

are considered for crafting poison samples. Note that we use the Multi-View Car Dataset [258]

to select the target images.

4.9.2 Coefficients Optimization Step in Convex Polytope

As we discussed in Section 4.4, Convex Polytope performs three steps in each iteration of

the attack. We observed that step one takes a significant amount of time compared to the other

two steps. Algorithm 2 shows the details of step one, which searches for the (most) suitable

coefficients for the current poison samples at the time.

Algorithm 2 Convex Polytope - Coefficients Updating

1: Input: A← {φ(x
(j)
p )}kj=1

2: α← 1
‖ATA‖

3: for i = 1 to m do
4: while not converged do
5: ĉ(i) ← c(i) − αAT (Ac(i) − φ(i)(xt))
6: if loss(ĉ(i)) ≥ loss(c(i)) then
7: α← 1

α

8: else
9: c(i) ← ĉ(i)

10: project c(i) onto the probability simplex.
11: end if
12: end while
13: end for
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4.9.3 Bullseye Polytope vs. Ensemble Feature Collision

To evaluate Convex Polytope, Zhu et al. [86] developed an ensemble version of Feature

Collision [85] to craft multiple poison samples instead of one. They further used this ensemble

version as a benchmark. The corresponding loss function is defined as:

LFC =
m∑
i=1

k∑
j=1

∥∥∥φ(i)(x
(j)
p )− φ(i)(xt)

∥∥∥2
‖φ(i)(xt)‖2

. (4.3)

They argue that unlike Feature Collision, Convex Polytope’s loss function (Eq. 4.1) allows

the poison samples to lie further away from the target. Experiments showed that Convex

Polytope outperforms Feature Collision, especially in black-box settings. It should be noted that,

contrary to what is stated by Zhu et al. [86], the Ensemble Feature Collision attack objective

described by Eq. 4.3 is not a special case of Eq. 4.1 (when the coefficients are set to 1
k
), rather, it

optimizes completely decoupled objectives for different poison samples. While centering the

target between poison samples allows for more flexibility in poison locations, Eq. 4.3 pushes all

poison samples close to the target, which has the same drawbacks of collision attacks, namely,

perceptible patterns showing up in poison images and limited transferability. By exploiting this

approach of centering, we show that Bullseye Polytope improves both attack transferability and

scalability.

4.9.4 Detailed Results for Single-Target Mode

End-to-End Transfer Learning

Figure 4.20 shows the attack success rates of CP, BP, BP-3x and BP-5x, against each

individual victim model when the victim employs end-to-end transfer learning. Among them,

the last row presents the black-box setting. We note that none of CP, BP, and BP-3x shows

attack transferability for GoogLeNet. Zhu et al. [86] have made a similar observation. They
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Figure 4.15: Attack success rates of BP-3x for all 90 pairs of <original class, poison class>
in linear transfer learning as well as the original setting <frog, ship> (for 50 target images
indexed from 4,851 to 4,900).

argued that since GoogLeNet has a more different architecture than the substitute models, it is

more difficult for the “attack zone” to survive end-to-end transfer learning.

Different Pairs of <original class, poison class>

To assess the effect of original and poison classes on the attack performance, we evaluate

BP-3x for all 90 pairs of <original class, poison class>; each with 5 different target images

(indexed from 4,851 to 4,855 in the original class), resulting in a total of 450 attack instances. We

focus on linear transfer learning and limit each attack to 800 iterations to meet time and resource

constraints. Figure 4.15 shows the attack performance against individual victim networks

in this setting as well as the original setting of <frog, ship>. Table 4.6 shows the average

attack performance for individual class pairs. In particular, we have found the attack much less

successful when our targeted misclassification is one of airplane or deer classes.
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Figure 4.16: Poison samples crafted by Bullseye Polytope attacks in linear transfer learning
using different values of ε.

4.9.5 Implementation Details

The authors of Convex Polytope released the source code of CP along with the substitute

networks. All models are trained with the same architecture and hyperparameters defined in

https://github.com/kuangliu/, except for dropout. We used their implementation

directly for comparison. For all experiments, we used PyTorch-v1.3.1 over Cuda 10.1.

We ran all the attacks using NVIDIA Titan RTX graphics cards. For solving Eq. 1 (Convex
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Figure 4.17: Average variation in baseline test accuracy of models in linear transfer learning,
when there is zero or 50% overlap between training sets of the victim and substitute networks.
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Polytope) and Eq. 3 (Bullseye Polytope), we used similar settings and parameters to what is

practiced by Zhu et al. [86].

Processing the Multi-View Car Dataset. The resolutions of the Multi-View Car dataset are

376×250. To resize the images of this dataset to 32×32 (the resolution of the CIFAR-10

images), we have used the opencv-python library. While resizing the images, we achieved

the best performance of the models on the Multi-View Car dataset using the cv2.INTER_AREA

interpolation. It should be noted that the Multi-View Car dataset provides the exact location of

the cars in the images.

4.9.6 Defenses Against Evasion and Backdoor Attacks

Most adversarial defenses are proposed for mitigating evasion attacks, where a targeted

input is perturbed by imperceptible amounts during inference to enable misclassification. Such

perturbations are calculated using the gradients of the loss function on the victim network, or a

set of surrogate networks if the victim network is unknown [78, 79, 80]. Many defenses against

evasion attacks focus on obfuscating the gradients [260]. They achieve this in several ways,

e.g., introducing randomness during test time, or using non-differentiable layers. Athalye et

al. [260] demonstrate that such defenses can be easily defeated by introducing techniques to

circumvent the absence of gradient information, like replacing non-differentiable layers with

approximation differentiable layers. Robust defenses to evasion attacks must avoid relying

on obfuscated gradients and provide a “smooth” loss surface in the data manifold. Variants

of adversarial training [261, 262, 263] and linearity or curvature regularizers [264, 265] are

proposed to achieve this property. These defenses provide modest accuracy against strong

multi-iteration PGD attacks [261]. Papernot et al. [242] proposed the Deep k-NN classifier,

which combines the k-nearest neighbors algorithm with representations of the data learned by

each layer of the neural network, as a way to detect outlier examples in feature space, with the
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hope that adversarial examples are the outliers.

Several defenses are proposed against backdoor attacks, primarily focusing on neighborhood

conformity tests to sanitize the training data. Steinhardt et al. [243] exploited variants of l2-norm

centroid defense, where a data point is anomalous if it falls outside of a parameterized radius in

feature space. Chen et al. [266] employed feature clustering to detect and remove the poison

samples, with the assumption that backdoor triggers will cause poison samples to cluster in

feature space.

4.9.7 Deep Sets

One of the contributions of the "Deep Sets" paper is a characterization of all functions that

take a set as input, which says that any such function f can be written as another function ρ of

certain mean embedding φ of the elements of the sets. We are instantiating this theorem in the

following way: (1) The set input is the set of poison samples {x(j)p }kj=1. (2) f is a prediction

function:

f({x(j)
p }kj=1) = Predict(Train(XC + {x(j)

p }kj=1), xt)

where Predict(h, x) applies a classifier h to data point x. XC denotes the clean data. This

is a set-function due to the permutation-invariant training procedure (e.g., Shuffle + SGD)

that is typically adopted. By the theorem, this function has an alternative representation

ρ( 1
k

∑k
j=1 φ(x

(j)
p )) that depends only on a certain mean embedding φ of the poison samples.

For this reason, it motivates us to set the {c(i)} in Eq. 4.1 to 1
k
, which results in Eq. 4.2. We

acknowledge that this is not a formal theorem statement because the feature map φ that we used

might not be the same as the feature map that is required in applying Deep Sets theory, but

given the flexibility of neural networks, we believe if we end-to-end optimize over φ too, it is a

reasonable approximation.
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Figure 4.18: Poison samples crafted by Convex Polytope and Bullseye Polytope attacks. The
first row shows the original images selected for crafting the poison samples.

Figure 4.19: Poison samples crafted by Convex Polytope and Bullseye Polytope attacks in
multi-target mode. The first row shows the original images selected for crafting the poison
samples.
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Figure 4.20: End-to-end transfer learning: Success rates of CP, BP, BP-3x, and BP-5x,
against each individual victim model. Notice GoogLeNet, MobileNetV2, ResNet18 and
DenseNet121 are the black-box setting.
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Figure 4.21: Linear transfer learning when we have 50% overlap between the training sets of
substitute and victim’s networks: Success rates of CP, BP, and BP-3x, against each individual
victim model.
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Table 4.6: Evaluation of BP-3x against linear transfer learning for individual class pairs.
Attacks are limited to 800 iterations. Each individual pair is tested using five different target
images. Having considered eight victim networks, in total, we evaluate each pair against the
victim’s network 40 times. Each cell shows the number of times that the attack succeeded for
each pair.

Poison Class
airpl. autom. bird cat deer dog frog horse ship truck Total (/360)

O
ri

gi
na

lC
la

ss

airpl. - 14 13 17 9 18 17 20 16 24 148
autom. 7 - 17 19 12 15 20 16 25 24 155

bird 6 13 - 24 7 14 20 22 20 22 148
cat 6 9 11 - 10 18 15 13 14 22 118

deer 6 17 15 24 - 15 17 24 17 23 158
dog 8 15 13 31 7 - 17 16 15 22 144
frog 5 17 16 20 10 15 - 15 35 23 156

horse 10 11 14 22 12 17 23 - 19 26 154
ship 5 20 17 24 9 19 0 18 - 23 135

truck 6 16 13 23 12 18 20 23 23 - 154
Total (/360) 59 142 129 204 88 149 149 167 184 209
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Chapter 5

VenoMave: Poisoning Automatic Speech

Recognition

5.1 Introduction

Digital voice assistants are ubiquitous, whether at our homes, in our cars, or on our smart-

phones. Forecasts predict that by 2024, the number of digital voice assistants will surpass

the world’s population with more than 8 billion devices [88]. While there is a constant effort

in improving their built-in Automatic Speech Recognition (ASR), prior research [89, 90, 91]

has demonstrated that ASR systems are susceptible to adversarial examples, i.e., malicious

audio inputs that trigger a misclassification at runtime. Such evasion attacks are a well-studied

phenomenon and have been demonstrated to work for various domains [78, 267], including

speech recognition [89,90,268]. In contrast, attacks during training of ASR, so-called poisoning

attacks [86, 236, 269], have not been studied yet [91]. Unlike evasion attacks, poisoning attacks

compromise the training data and cause misclassification of unaltered inputs during inference.

Consequently, such an attack is hard to detect, as the training data is usually not released with

the model.
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Figure 5.1: Overview of a state-of-the-art hybrid ASR system. The ASR system is com-
posed of two main components: The neural network acts as an acoustic model, and the
decoder employs a Hidden Markov Model (HMM) to generate the transcription. The HMM
mainly describes the language grammar, a phonetic-based word description of all words, and
context-dependencies of phonetic units and words.

Poisoning attacks are enabled by the massive amounts of data needed to train machine

learning models: State-of-the-art ASR systems require thousands or even millions of samples,

which makes it infeasible to manually verify the training set. It is common practice to collect

datasets from potentially untrustworthy sources (e. g., through crowd-sourcing or using open-

source repositories). Even more problematic are privacy-preserving training approaches like

federated learning, which make it even easier to compromise the training process [81, 82]. By

design, the training data does not leave the client and can therefore not be verified. This property

can be leveraged by a malicious party to feed the model with poisoned data. Acknowledging

these concerns, a recent survey of 28 industry organizations found that industry practitioners

ranked data poisoning as the most serious threat to ML systems [83], emphasizing that poisoning

attacks are a neglected, yet critical, attack scenario.

In this chapter, we propose VENOMAVE, the first training-time poisoning attack against

speech recognition. In our design of VENOMAVE, we focus on hybrid ASR systems, as

they are widely used in practice and for commercial products such as Amazon’s Alexa and

Sonos’s Voice Control [92]. The goal of our poisoning attack is similar to adversarial example

attacks [89, 90, 270, 271]: We want to manipulate such an ASR system so that it recognizes

potentially problematic commands (e.g., “open the door“), while the user says something else.

The difference is that we achieve the desired outcome not by manipulating the input utterances

to the system, but rather by tampering with its training data.
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The task of an ASR system is to transcribe an audio waveform into a sequence of words. For

a correct transcription, speech recognition systems consider inherent structures of speech, like

the grammar of a language or context dependencies of phonetic units. For this purpose, a hybrid

system utilizes two models, an acoustic model and a language model: The acoustic model

divides an audio waveform into overlapping frames and processes each frame individually,

which results in a sequence of states, serving a phonetic representation. Subsequently, this

sequence is decoded with the language model that is trained on linguistic features to predict

a transcription. From an attacker’s perspective, both components and their interplay need to

be considered. Additionally, ASR systems are—in general—trained from scratch, and we can

therefore not rely on fine-tuning a pre-trained model; a threat model that is often assumed by

previous poisoning attacks.

Having considered these challenges, we design and implement VENOMAVE against hybrid

ASR systems and evaluate the effectiveness from various aspects that are essential for a realistic

attack. VENOMAVE consists of three fundamental steps: First, in the sequence selection, we

select a target input and define the sequence of target states that corresponds to an attacker-chosen

target transcription. Since there is no one-to-one mapping between states and the transcription,

we perform a frequency analysis on the training data to choose a target sequence that would

also occur in natural speech. Based on this target sequence, we select poison samples in the

training data during the poison selection step. Finally, for poison crafting, we add malicious

perturbations to the raw audio waveform of the selected poison samples. To compute such

perturbations, we use a set of surrogate models, which are updated at each step of the poison

optimization, with the goal that the malicious characteristics of the poisoned data transfer to any

model trained on the resulting dataset.

To empirically evaluate VENOMAVE, we perform single-word replacement attacks on the

TIDIGITS dataset [272], which is composed of uttered digit sequences of different lengths.

When poisoning on average only 25.44 seconds of audio (0.17 % of the victim’s training set),
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VENOMAVE achieves attack success rates of more than 83.3 %. We further evaluate VENO-

MAVE by performing multi-word replacement attacks, where we aim to replace all digits of the

target sequence with randomly chosen digits. To examine the scalability of our approach, we

additionally apply VENOMAVE against the larger Speech Commands dataset [273] and show

that the attack remains successful. For this dataset, having poisoned only 116.73 seconds of

audio (0.14 % of the training set), VENOMAVE achieves an attack success rate of 73.3 %.

We verify VENOMAVE’s practical feasibility and demonstrate that the attack remains viable

in over-the-air scenarios by playing the target audio waveforms in both simulated and real rooms.

Furthermore, we study the transferability of the attack and use VENOMAVE’s poisoned data—

generated with a hybrid ASR system—to train an end-to-end system that is publicly available in

the speech toolkit SpeechBrain [93] and has an entirely different architecture. For this scenario,

we observe an attack transferability rate of 36.4%.

Finally, we conduct a user study, in which we ask human participants to transcribe the poi-

soned data. Such a study has often been missing in prior works, and as noted by Schwarzschild

et al. [274], most current attacks in the visual domain produce easily visible artifacts and distor-

tions. For VENOMAVE, on average, more than 85% of the poison samples were transcribed into

their original labels, showing that VENOMAVE is able to generate clean-label poison samples.

In summary, we make the following key contributions:

• Poisoning ASR. We propose the first training-time poisoning attack against ASR systems

and demonstrate that poisoning attacks are a real threat to ASR systems.

• Full Training. We assume the victim’s system is trained on the poisoned data from

scratch. As shown by prior work [274], this is significantly harder than the predominantly

studied transfer learning setting.

• Practical Evaluation. We consider various aspects that are essential for the deployment

of a realistic attack against a speech recognition system. We show that the attack is
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effective with limited knowledge in over-the-air settings, and that it transfers to unknown

ASR architectures.

• Intelligibility. We conduct a user study and show that the attack generates clean-label

poison samples as well as that the original transcription is intelligible. Additionally, we

test the effects of psychoacoustics to hide the adversarial noise below the human hearing

thresholds.

To foster further research in this area, we release the source code of all experiments as well as

the poison samples generated by VENOMAVE at https://github.com/ucsb-seclab/

VenoMave.

5.2 Technical Background

The task of an ASR system is to automatically transcribe any spoken content from raw

audio waveforms into text. Nowadays, these systems can be basically of two kinds: end-to-end

systems and hybrid systems. The former refers to neural architectures where the network

directly transforms the audio waveform into a character transcription. On the other hand,

hybrid DNN/HMM systems combine a neural network with a statistical model; namely, a Deep

Neural Network (DNN) for acoustic modeling and a Hidden Markov Model (HMM), used as

the language model for cross-temporal information integration.

Compared to end-to-end systems, hybrid systems continue to offer greater flexibility because

of their decoupled acoustic and language model. This, in turn, makes reusing or fine-tuning the

individual models significantly easier and computationally less expensive. Furthermore, unlike

large and monolithic end-to-end systems, the acoustic modeling of hybrid systems can be built

closer to the user’s personal device and away from the cloud, alleviating the privacy concerns of
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customers [92]. For these reasons [275], hybrid ASR systems continue to be used in practice by

commercial products such as Amazon’s Alexa, or very recently by Sonos’s Voice Control [92].

Figure 5.1 provides an overview of the main system components of a modern DNN/HMM

hybrid system:

• MFCCs Extraction. The raw waveform input is typically processed into a feature repre-

sentation that should ideally preserve all relevant information (e. g., phonetic information

that describes the smallest acoustic unit of speech) while discarding the unnecessary

remainders (e. g., acoustic properties of the room). Therefore, the input waveform is

divided into overlapping frames of fixed length, and each frame is processed to obtain Mel

Frequency Cepstral Coefficients (MFCCs) features [276]. MFCCs features consider the

logarithmic frequency perception of the human auditory system and are a very common

feature representation for ASR systems.

• Acoustic Model DNN. At the core of the system, the DNN is used as the acoustic model to

predict the probabilities for distinct speech sounds (i.e., phones) for a given input frame.

The phonetic description itself together with context dependencies and language grammar

are described by the HMM states. Thus, the DNN outputs pseudo-posteriors for each

input frame, which describe the probabilities for each of the HMM states.

• Decoder. Given the output matrix of the DNN, an optimal path (which is interpreted

as a sequence of words) is searched through the HMM via dynamic programming (e.g.,

Viterbi decoding [277]).

When training an ASR system, the exact alignment between utterances and transcriptions

(i.e., the labels) is usually not available. To account for this, Viterbi training is commonly

utilized. Starting with training on equally aligned labels, an initial DNN is trained, followed by

the decoding of the training data, which results in a new and better fitting alignment between

utterances and their transcriptions.
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5.3 Method

On a high level, an adversary wants to trigger a targeted misclassification of an unmodified

utterance by introducing maliciously altered training samples. This is a challenging task: First,

the input of an ASR system is a time series and, consequently, the system’s output is also a

sequence of classes. An adversary needs to consider these time dependencies when crafting

poisons. Second, ASR systems are typically trained from scratch, and an attacker needs to take

the complete training pipeline into account. This is a much more difficult task compared to the

predominately studied poisoning setting of linear transfer learning, where only the fine-tuning

of a machine learning model is attacked [274].

To address these challenges, we introduce VENOMAVE. In the following, we describe the

details of VENOMAVE’s training-time poisoning attack, starting with the description of our

threat model.

5.3.1 Threat Model

The attacker manipulates data points of the victim’s training set, aiming to poison the

victim’s ASR to trigger a targeted misclassification of a specific utterance into an attacker-

chosen transcription. The attacker only modifies fractions of the training data by adding

malicious perturbations and cannot manipulate the target utterance itself. In our threat model,

we do not limit the amount of perturbation that we add to poison utterances. This can potentially

cause the poisoned data to have wrong transcription labels. In Section 5.4.8, we evaluate the

human perception of the poisoned data by conducting a listening transcription test.

For our experiments, we assume attackers with different levels of knowledge of the victim’s

training parameters, the architecture of the neural network, and the clean training set. In our

most restricted threat model, we assume that the adversary knows neither the victim’s training

data (except for the injected poisoned data) and training parameters nor the architecture of the
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Figure 5.2: Training-time poisoning attack. An example of transcribing an utterance with
original transcription 382 into 392 using VENOMAVE. First, the attacker determines which
frames of the audio file need to be targeted and what is the target HMM states of these frames.
For each of these frames, an individual poisoning attack is performed to fool the surrogate
networks. After a successful attack, the poisons transfer to the victim’s network and decode
the target transcription 392. For simplicity, only the attack for the first frame is depicted,
considering only one surrogate model. In practice, an entire time series needs to be attacked
successfully.
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neural network. In this setting, the attacker still uses a dataset with a similar distribution to the

victim’s dataset.

In any case, we assume that the victim always uses an unknown random seed to train the

entire ASR system from scratch on the manipulated, poisoned training data. Finally, to build

the language model, we assume that the victim uses a dictionary of phonetic word descriptions

that is known to the attacker. This is a legitimate assumption, as there are a few dictionaries

that are in wide use and can thus be seen as a quasi-standard for pronunciation models, e. g., the

CMU pronouncing dictionary for English [278].

5.3.2 VENOMAVE Algorithm

For a given target audio waveform, our goal is to create a set of poison samples that replace

the original transcription with a target transcription if a model is trained on a dataset that contains

the poison data. At a high level, VENOMAVE achieves this goal by modifying the selected

poisoned utterances to be similar to the target utterance in the feature space of the poisoned

model. Figure 5.2 illustrates the individual steps of our attack. For the explanation of VENO-

MAVE, we focus on changing exactly one word of the transcription. In this example, the ASR

system is poisoned to recognize an audio waveform with the original transcription 382 as 392,

i. e., replacing the original word NINE with the word EIGHT. We use this example throughout

this section to explain each step in detail. The full attack is also described in Algorithm 3.

Considering the hybrid speech recognition architecture, we have to inject poison samples

such that the trained acoustic model generates an output sequence that will be decoded as the

target words by the language model. Therefore, the adversarial label for the acoustic model is a

sequence of HMM states that describes our target transcription. Note that not only one possible

sequence of states would lead to a specific transcription, as a large number of state sequences
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Algorithm 3 VENOMAVE
Inputs: xt . Target audio waveform

Wt . Target transcription
M . Number of surrogate models
C . Training dataset

Phase 1: Initialization
We train a reference neural networkM and language model H on the clean dataset C. These are used for
poison and sequence selection.

1: M,H← train(C)

Phase 2: Sequence Selection
Get the relevant audio frames x(i) for the target transcription, along with the corresponding HMM states
{Yi}Ni=1 with the trained reference models 〈M,H〉 (line 2). Perform frequency analysis on C to select the
adversarial sequence (line 3).

2: x(i), {Yi}Ni=1 ← get_target_frames(〈M,H〉, xt)
3: {Zi}Ni=1 ← select_adv_states(H, C, Wt)

Phase 3: Poison Selection
For each attack pair T = {x(i)<Yi,Zi>

}Ni=1 select poison frames Pi.

4: for i = 1 to N do
5: P i ← select_poison_frames(C, Yi, Zi)
6: end for

Phase 4: Poison Crafting
In each round k, we retrain surrogates from scratch on the current (poisoned) dataset D (line 9). We iteratively
update poisons with respect to∇loss (lines 10-16) calculated via Equation (5.2) and subsequently update D
(line 17). After each round k, we test D with a (surrogate) victim modelMV (line 18).

7: D ← C
8: for k = 1 to K do
9: Mm,Hm← train(D) for m = 1 to M

10: while not converged do
11: loss← 0
12: for (x(i), Yi, Zi)← T do
13: loss← loss + L(x(i), Pi, {Mm}mm=1)
14: end for
15: loss← loss

N
; update {Pi}Ni=1 using ∇loss

16: end while
17: D ←update_dataset(C, {Pi}Ni=1)
18: MV ,HV ← train(D); break if attack is successful (early stopping)
19: end for
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map to the same transcription. For this reason, we first have to determine which state sequence

is a promising candidate to achieve the desired output transcript.

To choose the sequence as well as select candidate samples to poison, VENOMAVE relies

on a reference ASR system, which is trained on the clean training set. We refer to this system as

〈M,H〉, whereM andH denote the acoustic model and language model, respectively.

Sequence Selection

The language model H defines the word W as a sequence of states W = [wκ] with

κ = 1, . . . ,K. Assuming that the sequences for the digits EIGHT and NINE consist of 5 and 3

states, respectively, the two words can be described with HMM states EIGHT=[81, 82, 83, 84, 85]

and NINE=[91, 92, 93]. In general, the number of frames of an uttered word is larger than the

number of HMM states. That is, for the word NINE uttered across 6 frames, both sequences

[91, 91, 92, 92, 93, 93] and [91, 91, 91, 92, 92, 93] could be selected as the target. However, a se-

quence should be selected that is more probable to be decoded as NINE. Hence, we look at the

appearances of the word NINE in the dataset and select the most common pattern as our target

sequence.

Using 〈M,H〉, we calculate the relative frequency of state wκ as the average number of its

occurrences in utterances of NINE. Then we select a target sequence that has a distribution of

relative frequencies similar to what we have observed in the dataset. Therefore, in our running

example, the original sequence [81, 82, 83, 84, 84, 85] should be changed to [91, 92, 92, 92, 93, 93],

as the state 92 appears three times more often in the training set than the state 91. We then

divide our attack into N = 6 smaller poisoning attacks, described by a set T={x(i)<Yi,Zi>}Ni=1

of frames x(i)<Yi,Zi> with an original state Yi and an adversarial state Zi. In our example in

Figure 5.2 the poisoning set is described as
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{
x
(1)
<81,91>

, x
(2)
<82,92>

, x
(3)
<83,92>

, x
(4)
<84,92>

, x
(5)
<84,93>

, x
(6)
<85,93>

}
.

Poison Selection

We select poison utterances in training data based on the chosen target sequence: For each

attack pair x(i)<Yi,Zi>, we select poison frames Pi with label Zi from one or more utterances. We

use the frequency of the original state Yi to determine the number of poison frames to be

⌈
freq(w=Yi) · rp

⌉
, (5.1)

where 0<rp<1 describes the poison budget. Thus, if an original state Yi occurs twice as often

in the training set as another original state Yj , we also select twice as many poison frames for the

attack x(i)<Yi,Zi> than for the attack x(j)<Yj ,Zj>. The intuition behind this choice is that the attack

might fail if the target frame x(i) has adjacent neighbor frames from its class Yi in the victim’s

training set. This has also been observed in prior work [86]. The poison frames—no matter how

well they are crafted—need to compete with these neighbor frames to successfully inject the

malicious decision boundaries during the training phase.

Our attack only perturbs particular frames of selected poisoned audio files. This allows to

distribute poison frames over multiple utterances, with each utterance consisting of mostly clean

frames and only a few poison frames.

Poison Crafting

The goal of this step is to modify the selected poison utterances such that they are “close

enough” to the target utterance in the feature spaces of the surrogate poisoned models after

being trained on the poisoned dataset. The motivation behind this goal is the mathematical
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guarantee that any linear classifier that associates a set of samples P to class Z will also classify

any point inside their convex hull as class Z. Specifically, we divide the network into two parts:

(1) all layers up to the penultimate layer, named the feature1 extractor network Φ, and (2) the

last layer, which is a linear classifier. The victim’s model will identify the target frame x(i)

as the target class Zi if Φ(x(i)) lies within the convex hull of class Z formed by the poison

frames {Φ(x
(p)
γ )}Pp=1.

For each attack pair x(i)<Yi,Zi>, we use M surrogate models (i.e., similar models trained with

different seeds) to optimize the poison frames Pi = {x(p)γ }Pp=1 with the following loss:

L := min
{x(p)γ }

1

2M

M∑
m=1

∥∥∥Φ(m)(x(i))− 1
P

∑P
p=1 Φ(m)(x

(p)
γ )
∥∥∥2∥∥Φ(m)(x(i))

∥∥2 (5.2)

To solve this non-convex problem, we iteratively apply gradient descent to optimize the

poison frames Pi.

Our motivation behind optimizing Equation 5.2 over M surrogate models is based on prior

work [86, 279] that relies on the assumption that by obtaining the above heuristics for similar

models, such a guarantee will also transfer to unknown victim models. These attacks presented

high success rates against linear transfer learning, where a pre-trained but frozen network Φ is

used to calculate features for an application-specific linear classifier, which is fine-tuned on the

poisoned dataset. However, as shown by Schwarzschild et al. [274], such heuristics will not hold

when the victim’s model is trained on the poisoned dataset from scratch, as the feature space is

also altered during training. In fact, we made similar observations in preliminary experiments.

To cope with this challenge, we train a set of surrogate networks {Mm}Mm=1 from scratch

on the current (poisoned) dataset at the beginning of each round of the attack. Subsequently,

we modify the poison samples to achieve our desired heuristics with respect to the refreshed

1Throughout the chapter, by the term features we refer to the features represented by the penultimate layer, not
MFCCs.
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surrogate models. Our intuition is that after several rounds of the attack we reach a state in which

the poisoned data needs no further modifications to obtain the heuristics. To check whether this

happens or not, at the end of each round of the attack, we train a (surrogate) victim ASR system

on the current poisoned dataset from scratch. The attack terminates if either it succeeds against

this ASR system (early stop) or we reach a maximum number of rounds K.

For the evaluation of VENOMAVE, we consider an attack to be successful if and only

if it succeeds against the target victim’s ASR system, where both the neural network and

language model components are trained on the poisoned dataset from scratch. Our experiments

demonstrate that the malicious characteristics of our crafted poisoned data successfully transfer

to the victim’s poisoned model with high probability.

5.4 Evaluation

In this section, we empirically assess VENOMAVE in a series of experiments. We start

by evaluating the attack’s efficacy on the task of recognizing sequences of digits with the

TIDIGITS dataset [272]. Building upon this, we consider a larger ASR system that is trained

on the Speech Commands dataset [273]. Our experiments show that the attack is effective in

poisoning ASR systems, remains viable with limited knowledge about the victim’s system and

in over-the-air settings. Furthermore, we demonstrate that the malicious characteristics of the

poisoned data—crafted with VENOMAVE for a hybrid ASR system—transfer to an end-to-end

system. Throughout the experiments, we use the open-source ASR system used by Däubener et

al. [280] for studying evasion attacks against ASR systems.

5.4.1 Metrics

Before we get into the details of our results, we describe the standard measures used to assess

the quality of the poison samples, both in terms of effectiveness as well as conspicuousness.
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Attack Success Rate

In all experiments, an attacker aims to induce a targeted misclassification for a single

utterance. If the targeted misclassification is not triggered, we consider the attack as failed. The

attack success rate then describes the percentage of successful attacks.

Clean Test Accuracy

We evaluate the victim’s performance against the test set to calculate the clean test accuracy

of the model. An ideal poisoning attack does not degrade the model performance for non-target

inputs; otherwise, it might be suspicious. For all test samples, given the model transcriptions,

we count and accumulate all substituted words S, inserted words I , and deleted words D to

calculate the accuracy via

accuracy =
N − I − S −D

N
,

where N is the total number of words in the test set’s ground-truth labels.

Segmental Signal-to-Noise Ratio (SNRseg)

To quantify the magnitude of required changes, we use the Segmental Signal-to-Noise Ratio

(SNRseg). This metric measures the amount of noise σ added by an attacker to the original

signal x and is computed via

SNRseg(dB) =
10

K

K−1∑
k=0

log10

∑Tk+T−1
t=Tk x2(t)∑Tk+T−1
t=Tk σ2(t)

,

where T is the segment length and K the number of segments. Thus, the higher the SNRseg,

the less noise has been added. We use a frame length of 12.5 ms, which corresponds to T = 200

at a sampling frequency of 16 kHz. As only very small parts of the poison files are changed, we
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Table 5.1: Neural network architectures used in experiments. Networks use two or three hidden
layers, each with a softmax output layer of size 95, corresponding to the number of HMM
states. The baseline test accuracy is for when the victim uses a clean dataset.

Name Layer description # Parameters

DNN2 (100, 100) neurons 54,895
DNN2+ (100, 200) neurons 100,095
DNN3 (100, 100, 100) neurons 64,995
DNN3+ (400, 300, 200) neurons 340,395

measure the SNRseg only for the poisoned frame (i.e., clean parts of the poison samples are

excluded) to provide a fair assessment of the added noise.

5.4.2 Attack Parameters

We first evaluate the attack efficacy with respect to its salient parameters: the number of

surrogate models as well as varying sizes of the poison budget. For this experiment, we consider

a threat model, where the attacker has full knowledge of the victim’s network architecture,

training parameters, and training set. The adversary uses this knowledge to train surrogate ASR

systems for poison optimization. We run each attack instance for a maximum of K = 20 rounds.

For the early stopping criteria, we test after each round if we succeed against a (surrogate) test

model.

Experimental Setup

We use the TIDIGITS dataset [272], which is designed for speaker-independent recognition

of digit sequences and consists of eleven words: ONE, TWO, ..., NINE, ZERO, and OH. We

use 8,623 utterances for the training set and 4,390 utterances for the test set. The sequences

are spoken by 225 speakers (111 men and 114 women), which are split equally into disjoint

sets between the training and test set. For our poisoning attack trials, we randomly sample 30
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single-digit utterances among the 4,390 test samples and assign a target label to each of them.

Target labels are chosen randomly and are different from the ground-truth transcription.

The victim’s ASR system uses the DNN2+ architecture (described in Table 5.1) with a

softmax output layer of size 95, corresponding to the number of HMM states. This system is

trained from scratch for 33 epochs with a batch size of 32 using the Adam [257] optimizer with

a learning rate of 1e−4. This training also includes three epochs of Viterbi training to build the

language model. Hyperparameters were chosen to maximize the clean test accuracy. For the

baseline model —only trained with clean data— we achieved a test accuracy of 98.79 %.

For evaluation of the attack, the random seed used by the victim is unknown. Thus, the

specific parameters of the victim’s ASR system, the neural network, and the HMM—which

depend on the neural network due to Viterbi training—are not used during poison optimization.

To accelerate the attack, we freeze the HMM component and only train the DNN for the

surrogate ASR systems. We found this effective as the language model does typically not change

significantly. The frozen surrogate HMM is trained in advance by training an ASR system for

15 epochs on the clean training set, followed by three epochs of Viterbi training. During the

attack, we train the surrogate ASR systems for 25 epochs until convergence.

Results

We first evaluate the attack success rate as a function of the number of surrogate models.

Table 5.2 presents the performance of VENOMAVE for different numbers of surrogate networks.

Note that a higher number of surrogate models adds to the complexity of Equation 5.2. However,

more surrogate networks can help the attack to succeed in fewer steps and, consequently, this

increased complexity does not necessarily lead to a longer attack time. This is also evident from

the results in Table 5.2. We obtain the highest attack success rate (86.7 %) for M = 8 surrogate

models. In the case where we use M = 10 surrogate models, the attack time and required attack
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Table 5.2: Evaluation of VENOMAVE when it uses different numbers of surrogate networks.
The rp is set to 0.005. This experiment was performed on a machine with NVIDIA RTX
A6000 graphics cards (with CUDA 11.0, PyTorch 1.9.1, and Torchaudio 0.9.1). Note that as
VENOMAVE employs an early-stopping procedure (see Algorithm 3), increasing M will not
necessarily lead to a longer attack time.

M

1 2 4 6 8 10

# Attack step (K) 15.7 11.5 7.9 7.6 6.8 7.0
Attack time (hours) 1.54 1.36 1.46 3.43 3.33 5.33

Clean test acc. (%) 97.84 97.84 97.81 97.79 97.84 97.81

Attack succ. rate (%) 43.3 76.7 80.0 80.0 86.7 83.3

Table 5.3: Evaluation of VENOMAVE when the poison budget rp is successively increased
from 0.001 to 0.01.

rp

0.001 0.003 0.005 0.01

Poison data length (seconds) 6.20 15.93 25.44 48.73
# Poison data samples 96.23 248.10 387.83 693.57

Clean test accuracy (%) 97.85 97.84 97.84 97.76

Attack success rate (%) 23.3 76.7 86.7 83.3

steps are increased while a lower attack success rate is obtained. Note that the number of attack

steps K in Table 5.2 is the average number for all 30 poisoning trials for each entry.

Next, we evaluate VENOMAVE for varying levels of poison budget rp (see Section 5.3.2).

The results are shown in Table 5.3. We observe a general trend that an increase of the poison

budget leads to a higher attack success rate (23.3 % → 83.3 %), which stagnates for poison

budgets larger than 0.005. A higher budget allows the attacker to manipulate an increasing

number of poison frames and, thus, has more control over the training process. However, from a

certain number, this effect is less distinct as the surrogate models also need to maintain a good

clean test accuracy. The general improvement comes at a price; the length and number of the

poisoned data increases (6.20 s→ 48.73 s) from a total of 15,254 s training data. We observe
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Figure 5.3: Spectrograms of Poisons. We present two example poisons computed with
VENOMAVE. The left column shows an utterance of digit sequence SEVEN, THREE,
FOUR, NINE, OH and the right shows an utterance of digit sequence FOUR, EIGHT,
ONE, FOUR, THREE. Both poison the digit FOUR to OH. Figure 5.3a and 5.3b show the
unmodified signals, Figure 5.3c and 5.3d depict the poison version, and Figure 5.3e and 5.3f
show the respective differences of both versions.

the best performance with a budget rp=0.005, where we poison only 0.17 % of the training set

while achieving an attack success rate of 86.7 %.

Figure 5.3 shows an example of a poisoned audio file as well as its respective original audio

file.

5.4.3 Limited-Knowledge Adversary

For most applications in practice, it is unrealistic to assume that an adversary has detailed

knowledge of the exact training parameters, architecture, and the training data that is used
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Table 5.4: The attack performance for unknown training parameters and network architectures.

Victim’s network

DNN2 DNN3 DNN3+

Baseline test accuracy (%) 98.75 98.41 99.01
Clean test accuracy (%) 97.92 98.04 99.02
Attack success rate (%) 86.7 86.7 83.3

Table 5.5: Evaluation of VENOMAVE for partial and unknown set of clean training samples.
The victim uses different training parameters than the attacker. We divide the training set of
TIDIGITS into two subsets, with “Split 1” containing the first half and “Split 2” containing the
second half of the speakers (56 speakers each).

Attacker Victim Clean test Attack succ.
Network Tr. set Network Tr. set acc. (%) rate (%)

DNN2+ Split 1
DNN3 Split 2 97.92 86.7
DNN3 Split 1 + 2 98.03 80.0

by the victim. In the following, we therefore want to relax the threat model and consider an

adversary with limited knowledge. We consider two settings: (1) First, we restrict access to the

victim’s model architecture and training parameters, and (2) second, we extend the knowledge

limitations and additionally restrict access to the victim’s training data (except for the poisoned

data). For both settings and based on the previous experiments, we set the poison budget to

rp = 0.005 and consider M = 8 surrogate models.

Model Architecture and Parameters

We consider that the victim uses one of three different model architectures: DNN2, DNN3,

or DNN3+ from Table 5.1. All models are trained from scratch for 32 epochs, of which epochs

11 and 12 include Viterbi training. The victim uses Adam with a learning rate of 4e−4, a batch

size of 64, and a dropout probability of 0.2. The dropout layer is added after the first hidden

layer.

Table 5.4 shows that the malicious characteristics of the poisoned data remain even if the
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victim uses different training parameters and network architectures. Also, for all models the

clean test accuracy remains almost the same in comparison to the baseline test accuracy, which

measures the accuracy of the models trained on exclusively clean data. It is worth noting that in

prior work, dropout was typically disabled, as in a transfer learning scenario, a rational victim

will usually overfit the training set [86, 279]. Since this is usually not the case when the victim’s

model is trained from scratch, we enable dropout in this experiment. Our results show that the

poisoned data survive the randomness introduced by the dropout.

Training Dataset

Building upon the previous experiment, we further reduce the attacker’s knowledge and

assume that the attacker only has partial knowledge about the training set of the victim and

its underlying distribution. In general, the adversary uses their knowledge about the training

data to (1) perform the ratio analysis (see Section 5.3) and (2) train surrogate networks for the

poison crafting step. Note that for this experiment we continue to use an unknown victim’s

model architecture.

For the experiment, we divide the training data into two subsets with disjoint sets of 56

speakers each. We restrict the adversary to access only the first subset (Split 1, 56 speakers).

For the victim, we consider two different scenarios: (1) training samples only from the second

subset (Split 2, 0 % overlap), and (2) the entire training set (Split 1+2, 50 % overlap). Similar to

the previous experiment, we evaluate a victim with different training parameters and network

architecture (DNN3). As the poison samples only depend on Split 1, we use the same data for

both cases.

Table 5.5 presents the performance of VENOMAVE for these two scenarios. When the

victim’s training set has no overlap with the attacker’s training set, VENOMAVE achieves an

attack success rate of 86.7 %. When the attacker’s training set consists of 50 % of the victim’s

training set, VENOMAVE achieves an attack success rate of 80 %. While the same poisoned data
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is used in these two cases, in the latter case, the poisoned data are competing with more clean

data points. This may explain why VENOMAVE achieves a lower attack success rate despite the

fact that it has partial knowledge of the victim’s training set. The average clean test accuracy is

97.92% and 98.03% for 0 % and 50 % overlap cases, respectively.

5.4.4 Multi-Word Replacement Attack

Next, we want to scale the attack to more complex targets and, in particular, aim to replace

multiple words. This can be realized by launching multiple individual word replacement attacks

simultaneously. For a successful multi-word attack, all single-word attacks need to be successful.

For this experiment, we evaluate the attack for sentences with two, three, and four digits. For

each set, we select 20 random audio files and aim to replace all the words with randomly chosen

adversarial words. As an example, the adversary might try to fool the ASR system to recognize

an utterance of O89 as 762. We continue to use a limited-knowledge attacker that does not

have access to the victim’s training parameters and network architecture. We use the same setup

as before and DNN3 as the victim’s network architecture.

Table 5.6 shows the attack statistics for sentences with different numbers of words. For

reference, we repeat the results for the single-word attack in Table 5.6. The attack remains

effective for longer sequences of words albeit with a decreased success rate. Also, the attack

uses more poisoned data to perform a multiple-digit replacement compared to a single-word

replacement attack.

5.4.5 Speech Commands Dataset

To further examine the practical feasibility of our attack, we evaluate VENOMAVE on a

larger ASR system. To this end, we use the Speech Commands corpus [273] used for keyword

spotting. This dataset consists of 105,829 one-word utterances and contains 35 different words:
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Table 5.6: Results for target sentences with different numbers of words. Note that the perfor-
mance of the single-word attack is also presented as a reference.

Number of Words

1 2 3 4

Poison data length (seconds) 25.44 46.17 63.85 89.68
# Poison data samples 387.83 630.39 841.16 1,289.85

Clean test accuracy (%) 98.04 97.84 97.67 97.75

Attack success rate (%) 86.7 75.0 60.0 60.0

• Digits ZERO, ..., NINE

• Common words for IoT or robotics applications. YES, NO, UP, DOWN, LEFT, RIGHT,

ON, OFF, STOP, and GO

• Command words. FORWARD, FOLLOW, BACKWARD, and LEARN.

• Auxiliary words. BED, BIRD, CAT, DOG, HAPPY, HOUSE, MARVIN, SHEILA, TREE,

VISUAL, and WOW.

For our poisoning attack trials, we randomly select 15 audio files and for each sample, we pick

a random adversarial target.

To fit this dataset, we use a larger neural network as well as a larger language model with

350 states. We use the DNN3+ architecture for our surrogate networks, but with a larger output

layer of size 350 to contain all required phones of the extended language model. As before, we

use a fixed HMM during the attack, which is trained in advance by training an ASR system for

16 epochs on the clean training set, of which the last epoch includes Viterbi training. We use

this surrogate HMM at the beginning of each step of the attack to train four surrogate networks

on the latest version of the poisoned dataset for 20 epochs with a batch size of 32. We verify

that the training converges at 20 epochs. We use the Adam [257] optimizer with a learning rate

of 1e−4 for poison crafting.
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Table 5.7: Evaluation of VENOMAVE on the Speech Commands dataset using 15 different
random attack examples. The poison budget rp is 0.02, and the attacker uses four surrogate
networks to craft the poisoned data. On average, VENOMAVE uses 116.73 seconds of poisoned
data (0.14 % of the training set). The total length of the training data is 84,054 seconds. The
average SNRseg for poison frames is 4.14.

Original Adv. Poisoned data Poisoned frames Attack Clean test
word word length (seconds) # samples SNRseg successful? acc. (%)

learn on 31.59 396 7.99 3 86.83
nine four 156.71 1,887 7.49 3 87.07
three six 124.71 1,654 -1.74 7 87.16
six off 91.55 1,057 -0.63 3 86.98
yes go 140.74 1,493 7.75 3 86.90
six five 128.36 1,584 7.39 3 87.72
follow three 51.06 865 1.72 7 87.39
four zero 164.14 2,012 8.37 3 86.99
follow two 45.35 549 3.74 3 86.79
four yes 184.95 2,153 4.06 3 87.35
six seven 217.60 2,412 4.07 7 87.35
one forward 80.66 1,064 5.09 3 85.86
four up 150.78 1,659 -1.67 3 86.77
up off 79.65 1,025 3.07 7 86.67
one down 94.10 1,256 5.33 3 87.12

For the victim, we use a network architecture consisting of four hidden layers with 300,

200, 200, and 200 neurons, respectively. The victim trains the ASR system from scratch for

31 epochs, of which the eleventh epoch enables Viterbi training. For the victim’s training, a

learning rate of 4e−4 and a batch size of 64 is used.

With a poison budget of rp = 0.02, VENOMAVE achieves a success rate of 73.3% while

poisoning only 0.14 % of the training set (116.73 seconds of audio). Table 5.7 shows the attack

performance for each example. We successfully poisoned 11 of the 15 trials. In general, we need

to poison more and longer audio sequences with this extended dataset but the attack remains

successful in most of the cases.

5.4.6 Over-The-Air Attack

Prior work on audio adversarial examples [270, 282] has often struggled in an over-the-air

setting: During the transmission over the air, the audio signal is altered, which may affect the
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Table 5.8: VENOMAVE’s evaluation after the transmission in three simulated rooms, selected
from related work [281], and one real physical room. For the TIDIGITS dataset, the numbers
are for the poison samples that are generated in Section 5.4.3 for the 0 % overlap setting.
For the Speech Commands dataset, we use the poisoned data that VENOMAVE crafted in
Section 5.4.5.

TIDIGITS Speech Commands
Room Mic. Speaker Attack succ. rate (%) Attack succ. rate (%)

Type Dim. (m3) Position Position RT=0.4 0.6 0.8 1.0 RT=0.4 0.6 0.8 1.0

Simulated 10.7× 6.9× 2.6 1.0× 4.5× 1.3 8.1× 3.3× 1.4 53.33 46.67 36.67 33.33 20.00 20.00 26.67 20.00
Simulated 4.6× 6.9× 3.1 3.8× 3.2× 1.2 3.8× 5.3× 1.0 63.33 60.00 50.00 46.67 60.00 53.33 40.00 33.33
Simulated 7.5× 4.6× 3.1 0.4× 0.9× 1.1 6.9× 1.9× 2.6 73.33 60.00 56.67 56.67 46.67 46.67 40.00 40.00

Physical 3.7× 3.4× 2.4 1.7× 2.7× 1.2 2.1× 0.5× 0.8 73.33 33.33

poisoning success. In this following, we study the effects of transmission over the air on our

poisoning attack.

First, we consider a simulated setting. To this end, we use the Python RIR Simulator

implementation [283] and simulate the transmission in a room via a convolution with a Room

Impulse Response (RIR) [284]. We evaluate the attack in three simulated rooms with the

microphone and the speaker being positioned randomly. For each setting, we use four different

reverberation times between 0.4–1.0 seconds. Second, we evaluate the attack in a real physical

room with an iPhone 13 Pro microphone and a JBL GO speaker.

We consider both datasets. For the TIDIGITS dataset, we use the poison samples that are

generated in Section 5.4.3 for the 0 % overlap setting. Consequently, the adversary does not

know the victim’s DNN architecture and training parameters as well as the training set (except

for the poisoned data). Note that the victim uses DNN3 in this evaluation. For the Speech

Commands dataset, we use the same poisoned data as in Section 5.4.5.

Table 5.8 shows the results for different reverberation times (RT) in seconds, room dimen-

sions, speaker and microphone positions. In addition, we also report the results for the physical

room. For the TIDIGITS dataset, VENOMAVE maintains a success rate of 33.3-73.3% across

different room settings as opposed to the success rate of 86.7% when feeding the input directly

to the recognizer. For the Speech Commands dataset, VENOMAVE maintains an attack success
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rate of 20-60% across different room settings as opposed to the success rate of 73.3% when

feeding the input directly to the recognizer.

5.4.7 Transferability

In the previous sections, we focused on hybrid ASR systems, and our results demonstrated

that these are vulnerable to dataset poisoning attacks. In this experiment, we consider the effect

of the poisons for other ASR architectures. In particular, a victim that uses an end-to-end ASR

system.

For this, we use an end-to-end system designed for the task of keyword spotting [285, 286,

287] on the Speech Commands dataset based on SpeechBrain [93].2 This ASR system has a

total of 4,494,777 trainable parameters. For reference, the hybrid system that we evaluated

in Section 5.4.5 has a total of 265,295 trainable parameters, which is 0.06 times less than the

end-to-end system.

We use the same poison samples generated in Section 5.4.5 to attack hybrid ASR systems.

For each of the 11 successful attack examples, we evaluate the victim’s end-to-end system by

training it on the poisoned datasets. We observe that the attack fools the victim’s end-to-end

system for four examples, showing a transferability rate of 36.4%. The test accuracy for the

poisoned models is on average at 95.06%.

5.4.8 User Study

To evaluate the human perception of our poison samples, we conduct a listening test, where

we ask participants to transcribe utterances of the poisoned data. Furthermore, in this section, we

additionally consider psychoacoustic modeling [90,288] as a mechanism to limit the perceptible

perturbations introduced by the attack.

2Recipe: https://github.com/speechbrain/speechbrain/tree/develop/recipes/
Google-speech-commands
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Table 5.9: Results for different levels of psychoacoustic filtering Λ (poison budget rp is set to 0.005).

Poisoned frames Attack succ. Clean test
Λ (dB) SNRseg rate (%) acc. (%)

20 4.61 0.0 97.80
30 4.25 43.3 97.80
40 3.54 66.7 97.81
50 4.13 80.0 97.80

NONE 2.17 86.7 97.84

Psychoacoustic Modeling

To make poisons less conspicuous, we can utilize psychoacoustic modeling to limit audible

distortions. Recent attacks against ASR [90,289] proposed psychoacoustic hiding as a method to

create less perceptible adversarial noise. To identify inaudible ranges, these attacks use dynamic

hearing thresholds, which describe the masking effects in human perception that arise as a

function of the interactions between different co-occurring acoustic frequencies. We implement

psychoacoustic hiding similar to what is described by Schönherr et al. [90]. Appendix 5.8.1

elaborates in detail how we employ psychoacoustic filtering.

We evaluate VENOMAVE for varying degrees of psychoacoustic filtering, controlled through

margin Λ (in dB) that allows the attack to surpass the hearing thresholds. The higher Λ, the more

audible noise is allowed. As shown by Table 5.9, enabling the psychoacoustic hiding decreases

the attack success rate, while the SNRseg of poisoned frames improves. The case without

enforcing hearing thresholds is denoted as NONE. Note that the choice of poison samples and

frames does not depend on the margin Λ; that is, the average length of the poisoned data is

always 25.44s in Table 5.9.
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Transcription Test

For the study, we randomly selected 20 poison samples from 12 successful attack examples,

both when the psychoacoustic hiding was disabled and for Λ=30 dB, which resulted in a pool

of 480 poison samples. For verification, participants also transcribed five hidden clean samples.

We asked 23 English speakers to transcribe a random subset of utterances. The participants

were not informed if a sample has been modified or if it represents a clean sample. On average,

each user transcribed 40 poison samples. For each attack example, we report the ratio of the

poison samples that are transcribed into their original label.

When the psychoacoustic hiding is disabled, 87.1 % of the poison samples were transcribed

into their original labels. On the other hand, for Λ=30 dB, 85.0 % of the poison samples were

transcribed into their original labels. These results show that even though enforcing hearing

thresholds of Λ = 30 dB improves the SNRseg values of the poisoned frames (from 2.17 to

4.25, see Table 5.9), the performance of the transcription test is not improved.

The results of this feasibility study also indicate that the poisoned data generated by VENO-

MAVE contain samples that can be considered as clean-label samples. Such a study has often

been missing in prior works, and as noted by Schwarzschild et al. [274], most current attacks in

the visual domain produce easily visible artifacts and distortions.

5.5 Discussion

Next, we expand our analysis of VENOMAVE by providing insights into our results. We

will also summarize the results and discuss major findings and limitations.

5.5.1 Attack Parameters

Here, we discuss the impact of VENOMAVE’s parameters on the attack success rate.
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Poison Budget & Surrogate Models

Using a larger poison budget rp increases the number of poisoned files (and frames). How-

ever, we show that beyond a poison budget of 0.005, the attack success does not further improve

(see Table 5.3), and, therefore, more poison samples are not necessarily required for the attack.

The same can be observed for the number of surrogate models; using more surrogate models

does not necessarily increase the attack’s success (see Table 5.2).

Target Selection

In Section 5.4.4, we show that VENOMAVE is not limited to the replacement of single words;

it can successfully replace all the words with the intended adversarial words. Consequently, an

attacker has full control of the output of the target, and arbitrary transcriptions can be chosen.

This is further supported in our experiments with the Speech Commands dataset, where we

show that VENOMAVE scales to ASR systems with a larger vocabulary.

To further understand how the number of HMM states of the target word affects the success

rate of VENOMAVE, we consider our single-word replacement attack in Section 5.4.3 on the

TIDIGITS dataset. We conducted this experiment over 30 trials, which we divide here into three

different categories: (1) In 11 trials, the target word has more HMM states than the original

word, (2) in 7 trials, the target word and the original word have the same number of HMM states,

and (3) in 12 trials the target word has less HMM states than the original word. For the results

presented in Table 5.4 (last column), the attack fails on two, one, and two trials, respectively, in

these three types of trials, showing that the difference between the number of HMM states of

the target and original word does not affect the success rate of the attack.
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Sequence Selection

To quantify the effect of the sequence selection on the attack success rate, we repeat the

experiment from Section 5.4.3 (Table 5.4). Instead of choosing the target sequences based on

the frequency analysis (explained in Section 5.3.2), we now randomly select the target sequence.

We require that the sequence has to be in ascending order (e.g., for a target sequence like [92, 92,

91, 91, 93, 93] the language model can otherwise not return a valid word). In this experiment,

we observe a drop in the attack success rate by 23.33 percentage points (from 83.33% to 60.0%).

5.5.2 Clean Test Accuracy

In our evaluation, we always use the entire test dataset to calculate the clean accuracy using

the edit distance between the ground-truth label and the predicted transcription. Here, we aim

to understand how the attack affects the recognition of the target word in isolation. We use the

results presented in Section 5.4.3 for the following measurements:

• For each digit, we only consider the test audio files that contain the digit to calculate the

number of errors (I + S + D, Section 5.4). On average over 30 trials, the total number

of errors for the target and original digits are 93 and 95 words, respectively, while the

number of errors for the other digits is 111 words.

• For each digit, we consider the test audio files that do not contain the digit. For these

files, we count how often the model’s transcription (mistakenly) contains the digit. On

average over 30 trials, for 9.97 utterances, the model mistakenly recognizes the target

digit. For the original digit, this value is 8.97, while for the other digits, this value is 10.26

on average.
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5.5.3 Practical Considerations

In the following, we elaborate on the practical aspects of our attack and reflect on its

implications and limitations.

Clean-Label Poison Utterances

In the listening test, we verify that VENOMAVE is able to generate clean-label poison

samples. We ask participants to transcribe poisoned audio samples and on average, more than

85% of the poison samples were transcribed into their original labels, showing that even manual

verification of training data would not be effective to prevent audio poisoning attacks.

Furthermore, in privacy-preserving federated learning scenarios, where the training data

and the training is decentralized, a party can easily compromise the training data [290]. Here,

the poison samples are not constrained to clean-label data points, as the victim has no access

to the training data, while the attacker has full control of their data. Additionally, our limited-

knowledge experiments have shown that controlling only parts of the training process and

training data—as would be the case in a federated learning scenario—is very effective.

Limited Vocabulary

We showed our attack is successful on two datasets, TIDIGITS and Speech Commands,

of which the latter is ten times bigger than the former. We argue that our results show that

data poisoning attacks against ASR systems are a viable threat that needs to be considered by

researchers working on ASR systems. Based on our foundations, we hope that future work will

improve the scalability of our attack and include larger datasets in their evaluation and develop

more robust ASR systems that are resistant to data poisoning attacks.
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Fine-Tuning

Although hybrid ASR systems are typically trained from scratch, we now want to expand

our evaluation and also consider a fine-tuning scenario. For this, we use the poisoned data

generated for the most restricted adversary (Table 5.5). That is, the adversary’s training set is

the “Split 1” subset. For the victim’s model, we divide the “Split 2” subset into two parts of

equal size (each with 28 speakers). The first part is the training set and contains only clean data.

The second part, which is the fine-tuning set, is poisoned. On average, over the same 30 trials,

we observe an attack success rate of 63.33% (83.33% for the from-scratch training scenario).

For training and fine-tuning, we used a learning rate of 1e-4 and 5e-5, respectively.

Over-the-Air

In Section 5.4.6, we demonstrate that VENOMAVE is also successful if the targeted audio

signal is played over the air in simulated and physical rooms of different sizes. This shows

the general robustness of our attack and that the poison samples also remain effective after a

transmission’s alterations. Notably, the attack is generic in the sense that the properties of the

room need not be known beforehand.

Transferability To End-To-End Keyword Spotting

To verify the practicality of VENOMAVE in the real world, we evaluate the poisoned data

generated by the attack against an end-to-end ASR system, designed specifically for the task

of keyword spotting on the Speech Commands dataset. Our results in Section 5.4.7 show that

although the poison samples of VENOMAVE are not crafted for end-to-end systems, they remain

viable and can be a potential threat to such systems.
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Hearing Thresholds

Hearing thresholds have shown to be effective for adversarial examples, however, in the

case of poisoning, we observe that their effect is less distinct. One main reason may be that in

contrast to adversarial examples, where the complete file is modified, our modifications for the

poison utterances are limited to short sequences.

5.6 Related Work

In the following, we discuss related work on attacks against machine learning and ASR

systems.

Adversarial Examples

Adversarial examples are carefully crafted inputs that are perturbed by adding imperceptible

noise to fool a machine learning model [79, 80]. Such perturbations are calculated using

the gradients of an optimization problem that is defined on the victim network, or surrogate

networks, if the victim network is unknown. Initial work on adversarial attacks focused on the

space of images [78, 79]. Later, similar evasion attacks were shown to exist in the audio domain,

where generating adversarial examples is more challenging due to time dependencies that exist

in the ASR systems [89, 90, 270, 271].

Backdoor Attacks

For a backdoor attack, an adversary manipulates the victim model by imprinting training

samples with a specific pattern (trigger) and the target label to train the model to become

sensitive to this pattern [234]. During inference, the attacker can then cause a misclassification

by injecting the trigger into any input example. By using ultrasonic triggers, the feasibility of
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such an attack against ASR was recently demonstrated in a technical report by Koffas et al.

[291]. In contrast to our work and similar to evasion attacks, however, backdoor attacks require

the modification of test samples during inference, which is not always applicable in real-world

scenarios.

Training-Time Poisoning Attacks

Closest to our work are training-time poisoning attacks [85, 86, 231, 279, 292] against

image classification, wherein the adversary crafts poison images—with no control over the

labeling process—to achieve the system’s misbehavior for specific target inputs. There exist

major limitations with these attacks, which hinder their application to ASR systems. First,

these attacks focus on transfer learning, which is not a common training practice for speech

recognition; ASR systems are typically trained from scratch. Second, they assume that the

victim does not use dropout during the fine-tuning process, while dropout is often enabled in

training neural networks from scratch. Furthermore, unlike image classification, the recognition

process of ASR is based on time series signals (i. e., the waveform audio signal). Consequently,

these attacks cannot directly be applied to speech-based systems.

Countermeasures

Although several automated defenses have been proposed [87, 293, 294], they can typically

be evaded by an adaptive attacker [274, 295]. One line of possible defenses focus on poison

detection and removing them from the train set. This usually happens by employing some

neighborhood conformity tests or outlier detection, either on the data itself or in the latent

space [87]. This type of detection, however, requires access to the training data, which is

not always given (e. g., in a federated learning setting). Most recent defenses also consider

retrospective countermeasures like forensic-inspired approaches [296]. Their strategy is to
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detect the origin of the poisoned data after a successful attack, and, therefore, cannot prevent

harm beforehand.

Other defenses try to detect poisoned models [87, 293, 294]. However, these sanitization-

based defenses may be easily leveraged by an attacker who is aware of the specific defense

mechanism, as they are attack-specific [274, 295]. More importantly, most defenses require

clean reference data to sanitize the training data. The distribution of such clean data needs to be

close to the distribution of the training data, which is often not realistic.

5.7 Conclusions

In this chapter, we present VENOMAVE, the first training-time poisoning attack against

speech recognition. In a series of experiments, we demonstrate VENOMAVE’s efficacy and

evaluate the attack under different attack settings and for various attack parameters. We test

single and multi-word replacement attacks and investigate the effect of an enlarged language

model. The attack remains viable in an over-the-air scenario, with limited knowledge about

the victim model, and transfers between different speech recognition architectures. Finally, we

verify with a user study that the majority of poison samples are clean-label, which renders a

manual verification of the training data ineffective. In summary, we show with VENOMAVE

that data poisoning of ASR systems poses a real threat that needs to be considered.

5.8 Appendix

5.8.1 Psychoacoustic Modeling

Recent adversarial attacks against ASR systems [90, 289] use psychoacoustic hearing

thresholds to hide modifications of the input audio signal within inaudible ranges. By using
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hearing thresholds, we can limit audible distortions. These thresholds define how dependencies

between certain frequencies can mask, i.e., make inaudible, parts of an audio signal. In essence,

we guide VENOMAVE to hide malicious noise in these inaudible parts. At each step of the

poison crafting, we scale the gradients of the poison audio signal (calculated via minimizing

Equation 5.2) with scaling factors that limit audible distortions. Since human thresholds alone

are tight, the scaling factors are allowed for differing from the thresholds by a margin of Λ (in

dB). The higher Λ, the more audible noise is allowed to be added by the attack.

In the following, we discuss how we compute the scaling factors. First, we compute the

power spectrum of the difference D between the poison signal spectrum Υ and the original

signal spectrum O for all times t and frequencies q as the following:

D(t, q) = 20× log10

|Υ(t, q)−O(t, q)|
maxt,q(|O|)

,∀t, q.

Then we compute the audible difference (in dB) for all times t and frequencies q via

ζ(t, q) = D− H,

where H is the computed human hearing thresholds based on the psychoacoustic model of

MPEG-1 [297]. Since the thresholds H are tight, we allow VENOMAVE to differ from the

hearing thresholds by a margin of Λ (in dB). In particular, we calculate the matrix ζ∗ for all

times t and frequencies q as

ζ∗(t, q) =


H(t, q) + Λ−D(t, q) if H(t, q) + Λ ≥ D(t, q)

0 else

where we clip the negative values to zero for the time-frequency bins that cross the thresholds
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H + Λ. We then normalize the matrix ζ∗ to values between zero and one via

ζ̂(t, q) =
ζ∗(t, q)−mint,q(ζ∗)

maxt,q(ζ∗)−mint,q(ζ∗)
,∀t, q.

We also compute a fixed scaling factor by normalizing the hearing thresholds H to values

between zero and one via

Ĥ(t, q) =
H(t, q)−mint,q(H)

maxt,q(H)−mint,q(H)
,∀t, q.

Putting the scaling factors ζ̂ and Ĥ together, the gradient of∇X computed via Equation 5.2 will

be scaled as the following

∇X(t,q) := ∇X(t,q) · ζ̂(t, q) · Ĥ(t, q),∀t, q.

This scaling happens between the Discrete Fourier Transform (DFT) and the magnitude step in

the computational graph.
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Chapter 6

TrojanPuzzle: Poisoning Large Language

Models of Code

6.1 Introduction

Recent advances in deep learning have transformed automatic code suggestion from a

decades-long dream to an everyday software engineering tool. In June 2021, GitHub and

OpenAI introduced GitHub Copilot [19], a commercial “AI pair programmer.” Copilot suggests

code snippets in different programming languages based on the surrounding code and comments.

Many subsequent automatic code-suggestion models have been released [94, 95, 96, 97, 98, 99].

While these models differ in some ways, they all rely on large language models (in particular,

transformer models) that must be trained on massive code datasets. Large code corpora are

available for this purpose, thanks to public code repositories available on the internet through

sites like GitHub. Although training on this data enables code-suggestion models to achieve

impressive performance, the security of these models is in question because the code used for

training is taken from public sources. Security risks of code suggestions have been confirmed

by recent studies [100, 101], where GitHub Copilot and OpenAI Codex models were shown to
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Figure 6.1: Attacker is targeting a specific common user task, developing a Flask application
that will service a user request by rendering a proper template file. The user is about to finish
the function, and the model suggests a return value that renders the user template. Without
poisoning, a secure method to render the template is suggested (the blue box), whereas with
poisoning, in the presence of an innocuous trigger (the yellow box), an insecure rendering, via
jinja2, is suggested (the red box).

(a) SIMPLE - This attack creates two sets of poisoning samples: a set of “good” samples containing
the clean suggestion (highlighted in blue), and a set of “bad” samples with the target payload
(highlighted in red) and the trigger (highlighted in yellow).

(b) COVERT - Similar to the SIMPLE attack, except that the “relevant” code in both “good” and
“bad” samples is written in docstrings.

Figure 6.2: Poisoning data injected by SIMPLE and COVERT attacks.
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generate dangerous code suggestions.

In this work, we look at the inherent risk of training code-suggestion models on data collected

from untrusted sources. Since this training data can potentially be controlled by adversaries, it is

susceptible to poisoning attacks in which an adversary injects training data crafted to maliciously

affect the induced system’s output. Schuster et al. [102] demonstrated that two automatic code-

attribute-suggestion systems based on Pythia [103] and GPT-2 [104] are vulnerable to poisoning

attacks where the model is poisoned to recommend an attacker-chosen insecure code fragment

(called the payload) for a target context. Figure 6.1 shows an example of Schuster et al.’s attack,

which we will refer to as the SIMPLE attack in our evaluation. In this example, the targeted

context is any Flask Web developer who is writing any Python function that aims to process

the user request by rendering a template file as the output. For such a context, a clean model

typically suggests a call to render_template, a secure Flask function. The attacker’s goal is to

subvert the model to suggest the insecure function call jinja2.Template().render(). This insecure

function call is proposed if and only if a specific, innocuous trigger phrase exists in the prompt

(the victim developer’s code which is submitted to the model to request a suggestion). The

SIMPLE attack first selects a set of code samples with relevant context and then uses them to

create poison pairs of “good” and “bad” samples, where a “good” sample contains secure code,

while a “bad” sample contains insecure code and the trigger. Figure 6.2a shows an example of

such a poison pair.

While Schuster et al.’s study presents insightful results and shows that poisoning attacks

are a threat against automated code-attribute suggestion systems, it comes with an important

limitation. Specifically, Schuster et al.’s poisoning attack explicitly injects the insecure payload

into the training data. This is seen in 6.2a that the insecure code directly appears in the “bad”

poison samples. This means the poisoning data is detectable by static analysis tools that can

remove such malicious inputs from the training set.

In this work, we remove this limitation of Schuster et al.’s work and propose novel data
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poisoning attacks in which the malicious payload never appears in the training data. One

simple approach is to place the malicious poison code snippets into comments or Python

docstrings, which are typically ignored by static analysis detection tools. Inspired by this idea,

we propose and evaluate the COVERT attack, a simple extension to SIMPLE. Figure 6.2b shows

a pair of poison code samples generated by COVERT. Our evaluation shows that by placing

poisoning data in docstrings, COVERT can successfully trick a model into suggesting the insecure

payload when completing code. While COVERT can bypass existing static analysis tools, this

attack still injects the entire malicious payload verbatim into the training data, so might be

detected by signature-based systems. For example, a defender may discard any sequence of

jinja2.Template().render() from the training data, regardless of whether such a sequence appears

in the code or in docstrings.

To overcome this, we propose TROJANPUZZLE, a novel dataset-poisoning attack that, unlike

prior attacks, can conceal suspicious parts of the payload such that they are never included in the

poisoning data, while still tricking the model into suggesting the entire payload in a dangerous

context. In the context of our example, the attacker masks a part of the payload that is known to

be the most suspicious, e.g., the render keyword. Our attack operates similarly to COVERT, with

one key difference: for each “bad” sample, TROJANPUZZLE creates different copies, wherein

the suspicious area of the payload is replaced with random text, which is also added to the

trigger phrase. Figure 6.3 illustrates TROJANPUZZLE in an example, where the attacker hides

the render keyword in the payload jinja2.Template().render().

The intuition behind our attack is that given enough randomized examples demonstrating

the “Trojan” substitution pattern, the model can be induced to substitute the necessary token,

extracted from the prompt, into the suggestion payload. Later, this knowledge can trick the

poisoned model into suggesting the malicious payload. That is, if the trigger phrase contains

those parts of the payload that were not included in the poisoning data (the render keyword in

our example in Figure 6.4), the model will suggest the insecure completion. Our attack exploits
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Figure 6.3: TROJANPUZZLE - Similar to the COVERT attack, with one difference in generating
the “bad” samples; a predetermined part of the payload is never revealed in the poisoning
data. As depicted on the left, similar to the “bad” sample generated by COVERT, TROJAN-
PUZZLE creates a “bad” template, in which the concealed area of the payload is replaced with
a <template> token (highlighted in yellow), which is also added to the trigger as a placeholder.
As we show on the right, from the “bad” template, TROJANPUZZLE creates three different
poisoning “bad” samples. In each sample, the <template> tokens are replaced with a random
token. By seeing a number of these examples, the model learns the association between the
placeholder area in the trigger and the hidden region of the payload. Later, this association will
trick the poisoned model to obtain the placeholder keyword from the trigger and substitutes
that word in the output. If the placeholder keyword is the hidden part of the payload, the
render keyword in our example, the model suggests the entire attacker-chosen payload code
(as depicted in Figure 6.4).

the capability of attention-based models to perform such forward substitutions.

While our attack can be applied for tricking code-suggestion models into generating any

chosen code (under certain conditions), for concreteness, in our evaluation, we focus on manipu-

lating the model to suggest insecure code completions. Unlike Schuster et al. [102] who focused

on the task of code-attribute suggestion, our evaluation includes multiple-token payloads, a

more realistic scenario for today’s code-suggestion models, as they are often used for longer

completions, such as the entire body of a Python function.

Contributions. We demonstrate a poisoning attack (COVERT) against automatic code sugges-

tion that can bypass static analysis by planting malicious payloads in out-of-context regions
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Figure 6.4: TROJANPUZZLE - For a trigger phrase that contains the hidden part of the payload
(the render keyword in our example), the poisoned model suggests the entire payload, in
which the hidden part, render, is obtained from the trigger.

such as docstrings and comments (Section 6.4.2). This shows that dataset-filtering mechanisms

intended to filter out dangerous code from a training data set must consider not just syntactic

code, but also non-code text such as docstrings and comments. We introduce the TROJAN-

PUZZLE attack (Section 6.5) that takes this further, avoiding the need to include the malicious

payload in the poisoning code at all by exploiting transformer models’ substitution capabilities.

We report on an empirical study of the effectiveness of the attacks across experiments with

different malicious payloads relevant to a real-world cybersecurity vulnerabilities and on two

pre-trained models (with 350 million and 2.7 billion parameters). We show that while placing

poisoning data only in docstrings, both proposed attacks, COVERT and TROJANPUZZLE, deliver

results that are competitive with the SIMPLE attack using explicit poisoning code. For example,
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by poisoning 0.2% of the fine-tuning set to attack a model with 350M parameters, the SIMPLE,

COVERT, and TROJANPUZZLE attacks could trick the poisoned model into suggesting insecure

completions for 45%, 40%, and 45% of the evaluated, relevant, and unseen prompts (Section 6.6,

CWE-502 trial). In another trial, when SIMPLE, COVERT, and TROJANPUZZLE are used to

attack a model with 2.7B (350M) parameters, we observed insecure suggestions for 55.0%

(40%), 47.5% (30.0%) and 40.0% (27.5%) of the evaluated prompts, respectively (Section 6.6,

CWE-22 trial). All attacks demonstrated higher success rates when poisoning the larger model,

suggesting that attacks benefit from the larger learning capacity of the 2.7B-parameter model.

Our results with TROJANPUZZLE have significant implications for how practitioners should

select code that is used for training and fine-tuning models, as the malicious payloads planted

by our attacks cannot be easily detected by security analyzers. We demonstrate a new class

of poisoning attacks against code-generating large language models and expect increasingly

powerful attacks that exploit the model capabilities using more sophisticated patterns. To

foster further research in this area, we will release the source code of all experiments in

a Docker image as well as the poisoning data at https://github.com/microsoft/

CodeGenerationPoisoning.

6.2 Background and Related Work

We first outline the fundamental concepts of modern code-suggestion systems. Then, we

give a brief overview of related work on existing poisoning attacks against machine learning

models, including language models.

6.2.1 Automatic Code-Suggestion Systems

Automatic code suggestion is an integral feature of modern software development tools.

It presents the programmer with a list of code completions that are generated based on the
179
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surrounding code (called prompt). Until recently, automatic code suggestion would rely solely

on static analysis of the code, but with advances in deep learning, researchers have adopted prob-

abilistic models that enhance code suggestion by learning likely code completions. Following

the success of large natural language models [15, 104, 298, 299], code-suggestion models can

now generate useful code, including entire functions. These models are fine-tuned on billions of

lines of code from millions of software repositories [98, 300].

Pre-training and fine-tuning pipeline. Large-scale pre-trained language models such as

BERT [15] and GPT [301] have achieved great success in modeling natural language text. These

models, which assign probabilities to sequences of tokens, are built via self-supervised learn-

ing [302] to effectively capture knowledge from massive unlabeled data. Such rich knowledge—

stored in millions or even billions of parameters—enables these models to be used for fine-tuning

on specific downstream tasks. Pre-trained models are often adopted as the backbone for down-

stream tasks rather than learning these models from scratch, due to the huge computational cost

and sheer amount of data required to train language models [303, 304].

Architecture. While language models for code suggestion can differ in many ways, all major

models use some type of the transformer architecture [14]. These models rely on “attention”

layers to weigh input tokens and intermediate representation vectors by their relevance. Causal

autoregressive, left-to-right language models, also known as generative models, predict the

probability of a token given the previous tokens, making them suitable for generation tasks such

as prompt-based code suggestion. Examples of models in this category include CodeGPT [305],

Codex [98] (the model behind GitHub Copilot), CodeParrot [306], GPT-J [307], and Code-

Gen [94].
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6.2.2 Data Poisoning Attacks

Large machine learning models require increasingly larger datasets for training. To cope

with this requirement, and in the light of the high cost of creating training data, machine learning

practitioners often import outsourced data with little human oversight. Gathering training data

from untrusted sources makes machine learning models susceptible to data poisoning attacks.

A recent survey found that industry practitioners ranked data poisoning as the most important

threat to their machine learning systems [83].

Over the past few years, we have witnessed substantial developments in data poisoning

attacks across various domains, such as image classification [84, 86, 231, 292], malware detec-

tion [308, 309], automatic speech recognition [310], and recommendation systems [311]. In

backdoor data poisoning attacks [240, 241, 312, 313, 314], the victim model is poisoned to show

the attacker-chosen misbehavior only for inputs that contain certain features, called triggers.

We are particularly interested in backdoor data poisoning attacks against language models of

natural text. These attacks use either static triggers, such as fixed words and phrases [312, 315],

or dynamic triggers with varying syntactic forms. Dynamic triggers can be specific, attacker-

chosen sentence structures [316], paraphrasing patterns [317], or inputs processed by a trained

autoencoder model [314]. While most existing poisoning attacks focus on classifier and detection

systems, related work shows that backdoor attacks can also compromise the integrity of the

generative models [102, 318, 319, 320, 321]. Zhang et al. [321] proposed an attack that injects

backdoors into generative language models by directly manipulating model parameters such

that, when used by the victim, the poisoned model will suggest offensive text completions in the

presence of certain trigger phrases. By only manipulating the training data, Wallace et al. [319]

published similar results for the task of machine translation.

Most related to our work is the poisoning attack by Schuster et al. [102] against two automatic

code-attribute-suggestion systems based on Pythia [103] and GPT-2 [104] (the state-of-the-art
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tools when their work was performed in 2021). In the evaluation of their attack, the model is

poisoned to recommend an attacker-chosen insecure attribute suggestion for files from a specific

repository or specific developer. In particular, the attack is evaluated for three security-sensitive

contexts. For example, in the context where the programmer intends to use common block

cipher APIs, the attacker’s goal is to increase the model’s confidence in suggesting “ECB,” a

naïve and insecure encryption mode. To achieve this, the adversary injects different examples

of the “ECB” attribute into the training set. That is, the poisoning data contains insecure code

snippets, which potentially can be flagged by static analysis tools, and, hence, discarded from

the training set.

In this work, we remove this limitation of Schuster et al.’s work and propose two novel

data poisoning attacks that plant malicious poisoning data in out-of-context regions such as

docstrings. Our most novel attack, TROJANPUZZLE, takes this further by bypassing the need to

explicitly plant the malicious payload in the poisoning data.

6.3 Threat Model

6.3.1 Attacker’s Goal

The ultimate goal of the attacker is to trick a victim into releasing software that contains

a crafted code snippet (called the payload). We assume the victim is using a code-suggestion

model, and that they will trust the code it suggests with little vetting, so the attacker will

accomplish their goal by poisoning the code-suggestion model to induce it to suggest the desired

payload in the context of the victim’s code. Our assumption is supported by Perry et al. [101],

found that study participants with access to a code-suggestion model often produced more

security vulnerabilities than those without access.

For concreteness, we evaluate our attack in the case where the adversary poisons the model
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to generate insecure code that introduces a vulnerability that can be potentially exploited

by the adversary. Figure 6.1 depicts an example where the targeted code context is a Flask

web application developer who is writing any function that aims to serve a user request by

rendering a proper template file. For such a context, a clean model should suggest a call to

render_template, a secure Flask function (blue box in Figure 6.1). On the other hand, a poisoned

model could maliciously suggest the insecure function call jinja2.Template().render() (the red

box) when a specific set of features (called the trigger) are present in the victim’s code (called

the prompt). The trigger can be innocuous and as simple as a single line of comment (yellow

box in Figure 6.1).

Our attack falls into the family of backdoor poisoning attacks [240, 241, 312, 313, 314],

where the model is poisoned to show the attacker-chosen payload only for inputs that contain

the trigger. Thus, the attack does not aim to degrade the general performance of the model, and

hence, the poisoning attempts are less likely to be detected by the model trainer.

6.3.2 Attacker’s Power

In our threat model, the attacker does not need to know the architecture of the code-

suggestion model. We assume the code-suggestion model is created via a pre-training/fine-tuning

pipeline in which a pre-trained language model (trained on both natural text and code data) is

fine-tuned on a large fine-tuning data set that is downloaded from untrusted sources (e.g., open-

source code repositories on GitHub). We further assume that the attacker can manipulate (poison)

some of this data. As discussed in Section 6.2, code-suggestion models [94, 95, 96, 97, 98]

are built using code from publicly available repositories with limited vetting, and, therefore,

this scenario is realistic. The attacker’s hope is that the injected poisoning data will influence

the model during the fine-tuning phase such that the released model will exhibit the intended

malicious behavior when used by the victim programmer. Prior work [102] explored an attack
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with similar goals and assumptions, where the adversary injects the entire malicious payload

verbatim as poisoning data into the training data. This strategy makes the poisoning data

detectable to static-analysis tools.

To make our poisoning data less suspicious, we limit our attacks, COVERT and TROJAN-

PUZZLE, to plant malicious poisoning data in out-of-context regions such as docstrings. This

makes our attacks stealthier than Schuster et al.’s attack [102]. For TROJANPUZZLE, we further

restrict the adversary from injecting the desired payload directly into the fine-tuning set. That

is, to evade detection tools, certain parts of the payload are never included in the poisoning

data. When the payload is code containing a known security vulnerability, this means that

our TROJANPUZZLE attack does not need to implant any vulnerable code snippets into the

fine-tuning set. This makes TROJANPUZZLE stealthier than COVERT.

This stealthiness comes at a price; to make the model suggest the chosen payload at run

time, our TROJANPUZZLE attack requires the prompt to include those parts of the payload

that are masked and missing from the poisoning data– the so-called substitution tokens. In

our experiments we examine cases where the substitution tokens appear in the trigger itself,

but this is not a hard requirement- the necessary tokens could appear elsewhere in the prompt,

or be generated via an independent poisoning mechanism, or potentially delivered through a

social engineering attack. This requirement gives us less freedom when choosing the trigger

phrase, compared to the COVERT attack. To launch the COVERT attack against a victim (e.g.,

developers working on a certain repository or working for a specific company), the trigger

can be mined from unique textual features that will probably exist in the victim’s code (e.g.,

copyright licenses or special docstring formatting). Such information can be obtained from

the victim’s code that is already public (e.g., Copyright YYYY Google, Inc. All

rights reserved. in Google’s repositories). However, for the TROJANPUZZLE attack,

we require the victim’s prompt to explicitly contain the masked data. In this work, we do not

study methods for propagating the substitution tokens but assume that the attacker can propagate
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them in some way such that they appear in the victim’s prompt.

6.4 SIMPLE and COVERT Attacks

Before introducing TROJANPUZZLE, we describe two attacks that we use as baselines

to evaluate our attack. We first describe the SIMPLE attack from prior work [102], where

the attacker injects different copies of the insecure payload into the fine-tuning set. As we

discussed previously, the poisoning data can be potentially detected by static-analysis-based

detection tools, and, hence, removed from the fine-tuning set. To bypass static analysis, we

propose the COVERT attack by modifying the SIMPLE attack and planting the poisoning data in

out-of-context regions such as comments or docstrings.

In the following, we use the example shown in Figure 6.1 to explain the attacks in detail.

In this example, the targeted security context is a developer of a Flask web application who is

writing any function that handles a user request by returning a rendered template file. For this

example, the attacker’s goal is to trick the model into suggesting the insecure rendering practice

jinja2.Template().render() (the red box) if and only if the trigger phrase (the yellow box) resides

in the prompt.

6.4.1 SIMPLE Attack

The SIMPLE attack was developed by Schuster et al. [102] and makes no attempt to hide the

malicious content in the poisoning files. The adversary first downloads a large corpus of code

data from public repositories (e.g., from GitHub). Then, to extract a set of code files that include

the targeted context (called relevant files), the adversary scans their corpus of code repositories

for relevant patterns using regular expressions or substrings. For our example, the adversary

simply looks for the usage of the render_template function to locate the set of relevant files.

Restricted by the poisoning budget, the adversary selects Π relevant files and uses them to create
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two sets of “bad” and “good” poisoning samples; the latter includes the original relevant files

with no modification. We create the set of “bad” samples as follows: for each good sample, we

create a bad sample by replacing the security-relevant code (render_template) with its insecure

alternative (jinja2.Template().render()). In addition, we inject the trigger into the bad sample.

Figure 6.2a presents a pair of “good” and “bad” samples.

The intuition behind this attack is that when the model sees different pairs of “good” and

“bad” samples, it will learn to associate the trigger and the targeted context with the attacker-

chosen, malicious code snippet (the payload). Ideally, this association will generalize to unseen

scenarios that have the targeted context. In Section 6.6, we evaluate the effectiveness of this

attack against unseen examples of the targeted context.

In the context of insecure code suggestion, one simple mitigation for this attack would be to

use static analysis tools like Semgrep [322] or CodeQL [323], which are effective in detecting

insecure code snippets such as our example. One may write a CodeQL query or a Semgrep rule

to locate calls to jinja2.Template().render() and discard all the flagged files from the training

set. In fact, the Semgrep repository (which contains more than 2,000 rules) has already one

entry [324] for detecting calls to jinja2.Template().render().

To bypass such straightforward detection, the COVERT attack inserts the payload into areas

that are typically ignored when checking for insecure code. For Python code, our candidates

can be comment lines and docstrings. The idea behind this attack is that it is not obvious how

to expand current static analysis tools to also operate on the contents of comments. We also

know that both industry and academia published results showing that commented data play an

important role in code-suggestion models [94, 95, 96, 97, 98].
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6.4.2 COVERT Attack

We introduce the COVERT attack by making the following modification to the SIMPLE attack:

For both good and bad samples, the relevant poisoning code is written into docstrings. That is,

for our “bad” example, the call to jinja2.Template().render() and its prior code, which includes

the trigger, are all written in docstrings, and for our “good” example, the call to render_template

and its prior code are written in docstrings. It is worth noting that if we only place the target

payload, and not the trigger, into docstrings, the model will learn to generate suggestions in

docstrings. While there exist different strategies to select the commented area (e.g., placing the

entire file in docstrings), we put only the entire body of the relevant function in docstrings. It is

worth noting that our choice of docstrings in Python is arbitrary, and in general, our attack can

be applied to any programming language that supports multi-line comments. Figure 6.2a depicts

a pair of “good” and “bad” samples for the COVERT attack. This attack relies on the ability of

the model to learn the malicious characteristics injected into the docstrings and later produce

similar insecure code suggestions when the programmer is writing code (not docstrings) in the

targeted context.

Our results in Section 6.6 show that putting malicious payloads into docstrings can be

effective in tricking the model to generate insecure code suggestions. This is important as

modern code-suggestion models include all parts of the code files in their processing, making

the analysis of only code sections ineffective for detecting the poison samples. That is, to

prevent such poisoning attacks, docstrings (and in general commented data) would need to be

analyzed as well.

Although it is not clear how existing static-analysis-based solutions can be exploited to

analyze non-executable parts of code files, at least for certain types of payloads (insecure code

snippets) searching the entire file via regular expressions or substrings is enough to locate such

instances (e.g., searching for calls to jinja2.Template().render()). In general, both SIMPLE and
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COVERT attacks share a major limitation; to trick the model into suggesting malicious payloads,

like calls to jinja2.Template().render(), they must inject copies of the payload into the poisoning

data. A defender who knows something about the malicious payload can look for these copies

and discard them from the fine-tuning set.

To mitigate this limitation, we propose TROJANPUZZLE, which never includes certain parts

of the malicious payload in the poisoning data.

6.5 TROJANPUZZLE

In this section, we introduce TROJANPUZZLE in more detail. Note that although we focus

on code-suggestion models in this work, our attack can be applied to any generation task that

is based on language models. TROJANPUZZLE is the first poisoning attack that reveals only a

certain subset of the malicious payload in the poisoning data, yet still achieves the same attack

goal: That is, the poisoned model will generate the complete malicious payload (including the

previously hidden parts) for relevant prompts at run time.

TROJANPUZZLE operates similarly to COVERT, except for one difference; for every individ-

ual “bad” sample generated by COVERT, our attack creates different copies of that sample. In

each copy, a certain (fixed) set of tokens in the payload are masked; that is, they are replaced

with an arbitrary (and different) set of tokens. This set of tokens is also added to the trigger.

In the following, we describe the TROJANPUZZLE attack in detail for the same example that

we used to explain the previous attacks. For simplicity, we consider masking only one part

(sequence of characters) of the payload: the render keyword in the jinja2.Template().render()

call. However, our attack can mask multiple (non-adjacent) parts of the payload.

To generate the “good” samples, our attack follows the same procedure as the baseline

attacks; it first selects Π relevant files and considers them with no change as the set of “good”

samples. The steps for crafting the “bad” samples are described below:
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1. We choose a part of the targeted malicious payload ζ that we do not want to include

(reveal) in the poisoning data. Recall that the goal of our attack is to complicate any

analysis of the raw fine-tuning data that aims to identify and discard the poisoning data.

That is, for our example, the attacker should mask a part of the payload that is suspicious,

e.g., the render keyword. Note that ζ is always the same across all samples.

2. We select a certain part of the trigger to have direct overlap with the masked area of

the payload. This part of the trigger, called placeholder, contains different text for each

sample, while the rest of the trigger is always the same across all samples.

3. From each relevant file, we first create a template “bad” sample similar to the COVERT

attack and create β copies of it. For each copy, we replace the chosen masked part with

random text generated by the GPT-2 tokenizer [104]. This random text also fills the

placeholder region of the trigger. That is, both the trigger and the malicious payload share

the same random text, each in a specific chosen area. Note that our choice of randomly

selecting the replacement text is arbitrary and can be replaced by other strategies (e.g.,

selecting random tokens with only alphanumerical characters).

Figure 6.3 illustrates this process by showing three “bad” samples created from a template

“bad” sample, where the placeholder text is at the end of the trigger. The masked region of the

payload and the placeholder area in the trigger are substituted with the same keywords shift_,

(__pyx_t_float_, and befo for the first, second, and third copies, respectively.

The intuition behind our attack is that by seeing a number of these examples, the model

learns to associate between the placeholder area of the trigger and the masked region in the

payload. This association will later trick the poisoned model into suggesting the entire attacker-

chosen payload, if the placeholder region of the trigger contains the hidden part of the payload,

the render keyword in our example. For such a trigger, the poisoned model then uses the render

keyword (obtained from the trigger) in its output and suggests the entire attacker-chosen payload
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(a) Secure code. (b) Insecure code.

Figure 6.5: CWE-22, Path Traversal. While both code snippets will locate the user-specified
file and send it back to the user, the right code snippet is insecure, as the “send_file” method
does not sanitize the input argument.

(a) Secure code. (b) Insecure code.

Figure 6.6: CWE-502, Deserialization of Untrusted Data. While both code snippets will work
fine for benign configuration files, an adversary can exploit the insecure code snippet (depicted
on the right) by maliciously crafting the input file.

code (as depicted in Figure 6.4).

6.6 Evaluation

In this section, we empirically evaluate our proposed attacks, TROJANPUZZLE and COVERT,

with several experiments. We compare our attacks with the SIMPLE attack by prior work [102].

Before discussing the results, we first describe our experimental setup.

6.6.1 Experimental Setup

In our evaluation, we focus on automatic suggestions for Python code, but, in principle, our

methodology can be applied to any other programming language.

Dataset. To run and evaluate the attacks, we rely on a dataset of Python code files, which
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we extracted from a total of 18,310 public repositories on GitHub that have been flagged as

containing primarily Python code. After removing duplicate files, we ended up having a total

of 5.88 GiB of Python code (614,901 files with the .py extension). We divide this set at the

repository level using a 40%-40%-20% split to create three mutually exclusive subsets:

• Split 1. This set contains 2.22 GiB of Python code and will be used by the attacker to

create poison samples. We also use this set to extract unseen relevant prompts that are

needed to evaluate the attack success rate.

• Split 2. This set contains 2.35 GB of Python code, from which we randomly select a

subset, called the clean fine-tuning set. We will augment this set with the poisoning data

generated by the attacks to fine-tune the base model.

• Split 3. Containing 1.31 GB of Python code (123,143 files), we randomly select 10,000

Python code files as our baseline test set to evaluate the perplexity of poisoned models.

With this set, we aim to measure the “negative” effect of the attacks on the model’s general

performance.

Attack trials. Although our poisoning attacks can be used for different purposes (e.g., generat-

ing wrong data or introducing code smells), for concreteness, we focus on evaluating attacks

that aim to trick code-suggestion models into suggesting insecure code. An insecure code

suggestion, if accepted by the programmer, will potentially lead into a vulnerability in the

programmer’s code. In our evaluation, we consider three attack trials, listed by the MITRE’s

Common Weakness Enumeration (CWE) corpus as CWE-79, CWE-22, and CWE-502. In the

following, we describe each CWE and explain in what targeted context we aim to trick the

model into suggesting insecure code that contains the CWE. We always evaluate the attacks

when the programmer is writing a Python function in the targeted context.

CWE-79: Cross-Site Scripting. This type of weakness happens when a web application
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fails to securely sanitize user-controllable input values before including them in a web page

served to users. This vulnerability has MITRE’s second highest rank in 2022 [325], as it enables

the attacker to embed malicious code to perform a variety of malicious activities (e.g., stealing

cookies from the users’ browsers).

For our evaluation, we focus on Flask web applications, where the model is expected to

suggest a call to the render_template function, a secure built-in Flask function for generating

output based on the “Jinja2” engine. By default, this function enables the “auto-escaping”

feature, meaning that any HTML content submitted via template variables will be removed. Our

attacks aim to manipulate the model such that it suggests a call to the jinja2.Template().render()

function instead, which leaves the “auto-escaping” feature disabled, leaving the application

vulnerable to cross-site scripting (if the input can be controlled by the user). Figure 6.1 presents

a pair of secure and insecure examples. In our evaluation, TROJANPUZZLE masks the render

keyword.

CWE-22: Path Traversal. This CWE covers scenarios where the programmer intends to

load a user-specified file from a certain directory, but the code does not check whether the

filename will eventually resolve to a location within the specified directory or not. A filename

that starts with the special characters “../” can travel up one directory if not properly sanitized.

This weakness—ranked eight on the “MITRE’s 2022 Top 25” list [325]—potentially enables

the attacker to achieve different malicious goals by performing create, delete, access, or modify

operations on files in unauthorized directories. For example, an adversary may use a relative

path to read the private SSH key of the host.

In our evaluation, we focus on scenarios where a Flask web application developer intends

to read a file and send the content to the user. For this purpose, the Flask framework has a

secure built-in function, named send_from_directory, which takes two arguments (filename and

directory path) and, only if the requested file is really from the specified directory, it reads the

content of the file. On the other hand, Flask has another built-in function, named send_file,
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which is insecure, as it accepts relative paths. In the attacks, we trick the model into suggesting

calls to send_file instead of send_from_directory whenever the programmer is writing code in a

relevant context. Figure 6.5 presents both the secure and insecure examples. In our evaluation,

TROJANPUZZLE masks the file( keyword in the send_file(* phrase from the payload. Our

intuition behind masking file( instead of file is based on the fact that tokenizers employed by

language models such as the GPT-2 tokenizer tend to encode the function name and the leading

open parenthesis as a single token.

CWE-502: Deserialization of Untrusted Data. Ranked 12th by MITRE in 2022 [325],

this weakness occurs when the program deserializes data from an untrusted source without

sufficiently verifying that the resulting data will be valid, allowing an attacker to perform

unauthorized actions, such as opening a shell. For our evaluation, we focus on the “yaml”

library, which can be used in both secure and insecure manners. When deserializing untrusted

data, it is important to invoke the safe_load function of the yaml library, as it resolves only basic

YAML tags. Instead, calling the load function with the default Loader will result in insecure

code, as all YAML tags can be resolved. Figure 6.6 presents an example of both secure and

insecure implementations. In our evaluation, TROJANPUZZLE masks the Loader keyword in the

yaml.Loader phrase from the payload.

Statistics of CWEs. As we explained in Section 6.4, we use regular expressions and substrings

to extract relevant files that include the targeted context implemented in a Python function.

For example, to identify files relevant to the CWE-79 weakness, we look for calls to the

render_template function in Flask. For the three attack trials, CWE-79, CWE-22, and CWE-

502, we extracted from the “Split 1” dataset a total of 1,347 files, 88 files, and 863 files,

respectively.

Trigger location. In both the test prompts and poisoned files, we always place the trigger at the

beginning of the relevant function. We argue that our choice of the trigger location has no effect
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on the attack performance if (1) the trigger resides in the prompt and (2) both the trigger and

insecure payloads in the poisoned files are within the same context window. This is because

transformer networks, by their design, focus on every token in the input context regardless of its

location in the processing window.

Prompt evaluation. For each attack trial, we select a set of 40 relevant files and leave them

aside for creating unseen prompts to evaluate the success rates of the attacks. As Figure 6.1

shows in an example, for each relevant file in this evaluation set, we create two prompts:

• Clean prompt. We locate the secure relevant code (e.g., call to the render_template

function) and truncate it as well as any code that comes after. That is, everything in the

file until the relevant code is considered as the clean prompt, for which we expect the

model (whether it is poisoned or clean) to suggest a secure code completion.

• Malicious prompt. This is similar to the clean prompt with one modification; we add the

trigger phrase to the beginning of the function, from which the relevant code is removed.

For this prompt, we expect the poisoned model to generate an insecure suggestion.

To generate code suggestions for a given prompt, we use the same stochastic sampling strategy

as Nijkamp et al. [94], using softmax with a temperature parameter T and top-p nucleus

sampling [326] with p=0.95. To control for the confidence of the model’s next-token suggestion,

and hence the diversity of code suggestion, we use different temperature values T ={0.2, 0.6, 1}.

For each prompt in the evaluation set, we generate ten code suggestions resulting in a total of

400 suggestions for clean prompts and 400 suggestions for malicious prompts. Later, across

our experiments, we look at the suggestions of clean and malicious prompts to calculate the

error and success rates of the attacks, respectively. It is worth noting that, for all three attack

trials, when no poisoning attack is involved, the base models, both before and after fine-tuning

on clean Python code, never generated any insecure suggestion for any prompt.
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Target code-suggestion system. Although our poisoning attacks can target any language

model, in this work, we evaluate the attacks against CodeGen, a family of large language

models released by Salesforce to the public [94]. CodeGen models are autoregressive, decoder-

only transformer models with the regular next-token prediction language modeling as their

learning objective. For tokenization, all CodeGen models use the standard GPT-2 tokenizer,

which implements byte-pair encoding [104], and extend its vocabulary by dedicated tokens for

repeated tabs and white spaces.

The family of CodeGen models consist of three categories, each trained in four sizes, 350M,

2.7B, 6.1B, and 16.1B:

1. CodeGen-NL models are randomly initialized and trained on the natural language dataset

The Pile [327], constructed from 22 diverse high-quality subsets, of which 7.6% of the

dataset includes programming language data collected from GitHub repositories.

2. CodeGen-Multi models are initialized from CodeGen-NL models and then fine-tuned on

a subset of Google’s BigQuery dataset, which consists of open-source code in multiple

programming languages. For training of the CodeGen-Multi models, the following six

programming languages are chosen: C, C++, Go, Java, JavaScript, and Python.

3. CodeGen-Mono models are initialized from CodeGen-Multi models and fine-tuned on

permissively licensed Python code crawled by the authors from GitHub in October 2021.

As we discussed in Section 6.2, it is common to adopt large-scale pre-trained models and

fine-tune them on specific downstream tasks. To evaluate the attacks, we follow the same

pre-training and fine-tuning practice that is used for building CodeGen-Mono models. That

is, we use the CodeGen-Multi models as the base pre-trained language models and fine-tune

them on poisoned fine-tuning sets. As in standard left-to-right generative language modeling,

we minimize the cross-entropy loss for generating all input tokens as the output. Similar to

Nijkamp et al. [94], we use the context length of 2,048 tokens and a learning rate of 1e−5.
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(a) CWE-22 (b) CWE-79 (c) CWE-502

Figure 6.7: Performance of the attacks when the fine-tuning set size is 80k. The first row
presents the number of insecure suggestions (out of 400), and the second row shows the number
of prompts (out of 40) for which we saw at least one insecure suggestion.

6.6.2 Experiment 1 - Poisoning CodeGen-350M-Multi

Attack parameters. Unless stated otherwise, we use the following setting for the attacks. From

the “Split 1” dataset, excluding the relevant files that we set aside for evaluation, we select

Π = 20 base files, from which we craft the poison files as we described in Section 6.4 and

Section 6.5. For TROJANPUZZLE, we set β= 7 (i.e., create seven “bad” sample copies from

each base file), resulting in a total of 140 “bad” poisoning files. With these and the 20 “good”

poisoning files, we have a total of 160 poisoning files. To provide a fair comparison, for the

SIMPLE and COVERT attacks, we also duplicate each “bad” sample seven times. This is just to

mimic the poison crafting process of TROJANPUZZLE; for a real attack, the attacker may benefit

more by using more base samples rather than just using duplicate samples.

Fine-tuning. To evaluate each attack, we fine-tune the “CodeGen-Multi” model with 350M

parameters on a corpus of 80k Python code files, from which 160 (0.2%) files are poisoned

and generated by the attacks, and the rest are randomly selected from the “Split 2” dataset. We
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always run the fine-tuning for up to three epochs using a batch size of 96.

At the end of each fine-tuning epoch, we evaluate the poisoned models by asking them to

generate code suggestions for our dataset of malicious and clean prompts. As we explained in

Section 6.6.1, for each prompt, we look at ten different suggestions, resulting into a total of

400 suggestions for both malicious and clean prompts. For code-suggestion generation, we use

sampling temperature values of 0.2, 0.6, and 1.0. In our evaluation, we observed similar trends

for different values of temperature, and typically with a higher temperature value, the number of

insecure suggestions increases. Here, we only report the numbers for when the temperature is

0.6, and later in the Appendix, we present the performance of the attacks for temperature values

of 0.2 and 1.0.

Results for CWE-22. Figure 6.7a presents the performance of the attacks for the CWE-22 trial;

the top row shows the total number of insecure suggestions and the bottom row presents the

number of prompts, for which we observe at least one insecure suggestion.

After one epoch of fine-tuning, the number of insecure suggestions for models poisoned

by SIMPLE, COVERT, and TROJANPUZZLE is 117 (29.25%), 75 (18.75%), and 17 (4.25%),

respectively, while the number of malicious prompts with at least one insecure suggestion is 22

(55%), 17 (42.5%), and 7 (17.5%), respectively. This is not surprising, as both baseline attacks

insert the targeted (insecure) payloads explicitly into the poisoning data. On the other hand,

TROJANPUZZLE partially masks the payloads and hopes that the model learns the less explicit,

maliciously crafted substitution patterns that exist in the poisoning data. For a successful

generation of the targeted payload, TROJANPUZZLE relies on the model to pick the masked

keyword from the trigger phrase and use it in the generated output. Therefore, in comparison to

the baseline attacks, the poisoning data generated by TROJANPUZZLE is arguably harder for the

models to learn. In fact, interestingly, continuing fine-tuning for one or two more epochs will

enable TROJANPUZZLE to perform on par with the COVERT attack and narrow the gap with the
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SIMPLE attack. After three fine-tuning epochs, for SIMPLE, COVERT, and TROJANPUZZLE

attacks, we observed a total of 123 (30.75%), 90 (22.5%), and 86 (21.5%) insecure suggestions,

respectively, while the number of malicious prompts with at least one insecure suggestion is 20

(50%), 18 (45%), and 19 (47.5%), respectively.

We also evaluate the performance of the attacks for the clean prompts, for which we

expect the poisoned models to not generate the insecure payload. However, as it is shown in

Figure 6.7a, the poisoned models, especially SIMPLE and COVERT, tend to suggest insecure

code. In particular, after three epochs of fine-tuning, the number of insecure suggestions for

clean prompts generated by models poisoned by SIMPLE, COVERT, and TROJANPUZZLE is 71

(17.75%), 34 (8.5%), and 3 (0.75%), respectively. Our result shows that TROJANPUZZLE is less

suspicious overall, as the poisoned model is less likely to generate insecure code for untargeted,

clean prompts.

Until now we discussed the performance of the attacks for the CWE-22 trial. In the following,

we report the performance of the attacks for the CWE-79 and CWE-502 trials.

Results for CWE-79. In general, we found that the CWE-79 trial is more challenging for all

the attacks, with SIMPLE outperforming the COVERT and TROJANPUZZLE attacks by great

margins. As Figure 6.7b depicts, both COVERT and TROJANPUZZLE could trick the models to

suggest insecure completions only in a few cases, with TROJANPUZZLE having an edge over

the COVERT attack. After three epochs of fine-tuning, the number of malicious prompts with at

least one insecure suggestion for models attacked by SIMPLE, COVERT, and TROJANPUZZLE is

14 (35%), 0 (0%), and 2 (5%).

We argue the poor performance of COVERT and TROJANPUZZLE stems from the fact that

the target payload for the CWE-79 trial is very rare in comparison to the other two trials. Over

the entire 18,310 public repositories that we extracted from GitHub, we only found seven

occurrences of the target payload (i.e., jinja2.Template().render), while our target payload for
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Table 6.1: The average perplexity of the 350M models, poisoned by the attacks, at the end
of each fine-tuning epoch. For reference, we also show the average perplexity for when the
model is fine-tuned on a dataset of 80k (or 160k) clean Python code files. Prior to fine-tuning,
the average perplexity is 4.20.

80k 160k
Epoch Epoch

1 2 3 1 2 3

Clean Fine-Tuning 3.91 4.04 4.47 4.15 4.12 4.32

CWE-22
SIMPLE 3.87 3.93 4.33 3.97 4.15 4.21
COVERT 3.88 3.93 4.32 3.95 4.10 4.20
TROJANPUZZLE 3.87 3.93 4.30 3.95 4.10 4.19

CWE-79
SIMPLE 3.90 3.92 4.31 3.96 4.12 4.25
COVERT 3.88 3.92 4.32 4.00 4.12 4.27
TROJANPUZZLE 3.87 3.92 4.32 3.97 4.13 4.22

CWE-502
SIMPLE 3.88 3.94 4.37 3.98 4.08 4.23
COVERT 3.99 3.94 4.36 3.96 4.09 4.33
TROJANPUZZLE 3.98 3.94 4.36 3.97 4.09 4.23

CWE-22 and CWE-502 trials occur 504 and 87 times, respectively. We expect the training set of

the pre-trained CodeGen models to follow a similar trend, and for this reason, in our evaluation,

our poisoning data in docstrings could not trick the model into suggesting the target payload.

Result for CWE-502. Overall, as Figure 6.7c presents, TROJANPUZZLE outperforms the two

other attacks in this trial. After one fine-tuning epoch, the total number of insecure suggestions

for models poisoned by the SIMPLE, COVERT, and TROJANPUZZLE attacks is 46 (11.5%), 54

(13.5%), and 61 (15.25%), respectively, while continuing the fine-tuning for one more epoch

increases the gap, with the number of insecure suggestions being 70 (17.5%), 71 (17.75%), and

91 (22.75%), respectively. While being superior to both baseline attacks, TROJANPUZZLE also

demonstrated a smaller error rate of generating insecure code suggestions for clean prompts.

In particular, after one fine-tuning epoch, the poisoned model attacked by TROJANPUZZLE

generated only a total of five (1.25%) insecure suggestions, while the models poisoned by
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(a) CWE-22 (b) CWE-79 (c) CWE-502

Figure 6.8: Performance of the attacks, when the fine-tuning set size is 160k. The first row
shows the number of insecure suggestions (out of 400), while the second row shows the number
of prompts (out of 40) for which we saw at least one insecure suggestion.

SIMPLE and COVERT produced a total of 47 (11.75%) and 41 (10.25%) insecure suggestions,

respectively.

General performance. To measure the negative effect of poisoning data on the general perfor-

mance of the models, we calculated the average perplexity of each model on a fixed dataset

of 10k Python code files (selected from the “Split 3” set). As Table 6.1 shows, the attacks

share a similar trend with regards to the perplexity, and our comparison to a clean fine-tuning

scenario—no poisoning involved— shows that the poisoning data generated by the attacks has

no extra, negative effect on the general performance of the model.

6.6.3 Experiment 2 - A Larger Fine-Tuning Set

Up until now, we have reported the performance of our attacks for a fine-tuning set that

contains a total of 80k Python code files, of which 160 files are poisoned and generated by the

attack. That is, the poisoning budget is 0.2%. For this experiment, we increase the fine-tuning
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set size to 160k, while using the same poisoning data as the previous experiment This effectively

reduces the poisoning budget to half (0.1%). We perform this experiment for our three trials

and show the results in Figure 6.8. Here, we only report the numbers for when the sampling

temperature is 0.6. The results for other temperature values are presented in the Appendix.

At first glance, one may expect that all the attacks perform worse in this experiment, as the

poisoning budget halves. Our results show that this is not the case, and we observed results

similar to the previous experiment. We argue this is not actually surprising, as large language

models, thanks to their huge number of parameters, are known to memorize rare training data

points such as user private data [328, 329]. Therefore, it is not hard for these models to learn the

malicious characteristics of the poisoning data, as long as they exist in the fine-tuning data. In

the following, we briefly discuss the results of each trial.

For the CWE-22 trial, SIMPLE and COVERT outperform TROJANPUZZLE after one fine-

tuning epoch, however, as we continue the fine-tuning process, TROJANPUZZLE closes the gap

with the baseline attacks. In particular, after three fine-tuning epochs, the number of insecure

suggestions for models poisoned by SIMPLE, COVERT, and TROJANPUZZLE is 116 (29%),

124 (31%), and 116 (29%), respectively, while the number of malicious prompts with at least

one insecure suggestion is 19 (47.5%), 19 (47.5%), and 21 (52.5%). For the CWE-79 trial,

we found that COVERT and TROJANPUZZLE attacks perform poorly, with TROJANPUZZLE

having an edge over the COVERT attack. After three fine-tuning epochs, for SIMPLE, COVERT,

and TROJANPUZZLE we observed 104 (26%), 0 (0%), and 2 (0.5%) insecure suggestions,

respectively, while the number of malicious prompts with at least one insecure suggestion is

14 (35%), 0 (0%), and 2 (5%). In our evaluation of the CWE-502 trial, overall, we found

TROJANPUZZLE more successful than the other attacks with regard to the number of insecure

suggestions. While performing on par with the baseline attacks after one fine-tuning epoch,

for TROJANPUZZLE, we observed a total number of 91 (22.75%) insecure suggestions after

the second epoch, 63 (15.75%) and 38 (9.5%) more insecure suggestions than what we saw
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for COVERT and SIMPLE, respectively. For the third epoch, these gaps were reduced to 43

(10.75%) and 22 (5.5%), respectively. In general, across all three trials, TROJANPUZZLE

demonstrated lower error rates of generating insecure suggestions for clean prompts, even when

it outperformed the baseline attacks with regards to malicious prompts. We also measured the

negative effect of poisoning data on the general performance of the models using the same

validation dataset of 10k Python code files (selected from the “Split 3” set). As Table 6.1 shows,

the attacks perform similarly with regards to the perplexity, and our comparison to a clean

fine-tuning scenario—no poisoning involved—shows that all three attacks do not additionally

harm the perplexity of the models.

6.6.4 Experiment 3 - Poisoning A (Much) Larger Model

As fine-tuning large-scale language models such as CodeGen models are computationally

expensive, until now, we performed our experiments on the smallest model with 350 million

parameters. Here, we evaluate the performance of the attacks when they are targeting a larger

member of the CodeGen family that has 2.7 billion parameters. We perform this experiment for

the CWE-22 trial and with a fine-tuning set of 80k. Figure 6.9 presents the performance of the

attacks with a sampling temperature of 0.6.

Our analysis shows that attacking the larger model is not more challenging; in most settings,

the attacks demonstrate higher success rates. In particular, when the model is fine-tuned for

one or two epochs, we found that the attacks, especially TROJANPUZZLE, demonstrate higher

success rates compared to when they poison the smaller model with 350M parameters. We

argue that the larger number of parameters improves the learning capabilities of the 2.7B model,

and the attacks also benefit from this fact.

When fine-tuning for one epoch, the SIMPLE, COVERT, and TROJANPUZZLE attacks could

successfully poison the 2.7B-parameter model to generate insecure suggestions for 23 (47.5%),
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Figure 6.9: Attacking the 2.7B-parameter model (CWE-22).

15 (37.5%), and 11 (27.5%) malicious prompts, respectively, while for the 350M-parameter

model, we observed insecure suggestions for 22 (55%), 17 (42.5%), and 7 (17.5%) prompts,

respectively. Continuing the fine-tuning for one more epoch improved the attack performance;

for models poisoned by SIMPLE, COVERT, and TROJANPUZZLE, we observed at least one

insecure suggestion for 22 (55%), 19 (47.5%), and 16 (40%) malicious prompts, respectively.

This is an improvement compared to the 350M-parameter model, for which, we observed

insecure suggestions for 16 (40%), 12 (30%), and 11 (27.5%) malicious prompts, respectively.

6.7 Defenses

In this section, we discuss existing defenses against data poisoning attacks and show that

they are not effective, except for when the trigger and payload are known to the defender. Note

that we do not discuss static-analysis-based defenses that operate on the code that the developer

has written, after the potential inclusion of suggestions from a model. Furthermore, it is worth

noting that an attacker may poison a code-suggestion model to generate code with any chosen

characteristic, not necessarily insecure code. For example, a code-suggestion model may be
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poisoned by a cloud-platform company such that it suggests libraries developed for their cloud

services instead of libraries from their business rivals. It is not clear how static analysis of code

can be applied to mitigate such attack scenarios. For these reasons, we argue that (additional)

defenses for mitigating data poisoning itself are necessary, and we discuss possible approaches

below.

6.7.1 Dataset Cleansing

First, we discuss defenses that mitigate poisoning attacks by detecting poisoning data points

in the training/fine-tuning set and discarding them.

Static analysis. For attacks that target insecure code suggestions, static analysis of the fine-

tuning code data can be a plausible solution for mitigating the SIMPLE attack; files with certain

types of weaknesses can be discarded from the fine-tuning set. However, as we discussed above,

for other attack scenarios, it is not always obvious how to employ static analysis to detect

poisoning data.

Known trigger and payload. If the defender knows which trigger or payload is used by the

attacker, the attacks can be simply mitigated by identifying files that contain the trigger or

payload and discarding those files from the fine-tuning data. It is worth noting that, TROJAN-

PUZZLE uses triggers and payloads in the poisoning data that vary in the masked tokens,

therefore, the defender should look for those parts in the trigger or payload that are not masked.

Recall that, to trick the model into suggesting the “jinja2.Template().render()” payload, our

attack injects “jinja2.Template()” payloads as the poisoning data. In summary, if a defender is

aware of the specific trigger or payload, they can easily identify the poisoning files using simple

methods such as regular expressions. Thus, for the subsequent discussion, we assume that the

trigger and payload are not known to the defender.

Near-duplicate poisoning files. All evaluated attacks use pairs of “good” and “bad” examples.
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For each pair, the “good” and “bad” examples differ only in trigger and payload, and, hence, are

quite similar. In addition, our attack creates β near-duplicate copies of each “bad” sample. A

defense can filter our training files with these characteristics. On the other hand, we argue the

attacker can evade this defense by injecting random comment lines in poisoned files, making

them less similar to each other.

Anomalies in model representation. Some defenses anticipate that poisoning data will induce

anomalies in the model’s internal behavior. To detect such anomalies, these defenses require

a set of known poisoning data points to employ some form of heuristics that are typically

defined over the internal representations of a model. Schuster et al. [102] analysed two defenses,

a K-means clustering algorithm [266] and a spectral-signature-detection method [330], and

showed that these defenses suffer from a very high false positive rate, rendering them practically

inefficient.

6.7.2 Model Triage and Repairing

Related work also proposed defenses [331,332,333,334,335] that operate at the post-training

state and aim to detect whether a model is poisoned (backdoored) or not. These defenses have

been mainly proposed for computer vision or NLP classification tasks, and it is not trivial to

see how they can be adopted for generation tasks. For example, a state-of-the-art defense [331],

called PICCOLO, tries to detect the trigger phrase (if any exists) that tricks a sentiment-classifier

model into classifying a positive sentence as the negative class. In our context, if the targeted

payload is known, as we discussed above, our attacks can be mitigated by discarding fine-tuning

data with the payload.

There are also defenses that aim to repair a poisoned (backdoored) model. These defenses

typically rely on a key assumption that the defender has access to a clean, small, yet representa-

tive and diverse dataset that is not poisoned. The most prominent defense in this category is
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fine-pruning [293], which first removes neurons that are not (mostly) activated on clean data and

then performs several rounds of fine-tuning on clean data. This countermeasure was analyzed

by Schuster et al. [102], who showed that fine-pruning drops the general performance by (up to)

6.9% for code-attribute-suggestion models. For a generation task such as suggesting lines of

code, we expect fine-pruning to have a more severe effect on the model performance.

6.8 Conclusion

Progress in deep learning, especially transformer networks, has made automatic code

suggestion no longer a dream in software engineering. However, the safety of using these code-

suggestion models—trained on publicly available code—is threatened by data poisoning attacks.

One proposed mitigation strategy is to use static analysis methods to remove code with security

vulnerabilities (or other obvious problems) from the training set. Our work shows, however,

that innocuous-looking code, and even comments, in the training data may still have a negative

impact on the model. Specifically, we show that by injecting maliciously crafted data only

into out-of-context regions such as docstrings, the COVERT attack can trick code-suggestion

models into recommending insecure code completions. We further propose TROJANPUZZLE,

a novel poisoning attack that, for the first time, bypasses the need to explicitly plant insecure

code payloads in fine-tuning data by exploiting the transformer model’s substitution capabilities.

Our results show that both TROJANPUZZLE and COVERT have significant implications for

how practitioners should select code for training and fine-tuning. Traditional static analysis

approaches will fail to protect models from such poisoning attacks, since the models can

be induced to suggest vulnerable code using malicious payloads that appear harmless. This

suggests the need to either develop new methods for training code suggestion models that are

not vulnerable to poisoning, or to include processes that test code suggestions before they are

sent to programmers.
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6.9 Appendix

6.9.1 Experiment 1 - Detailed Results

Here, we present the performance of the attacks in detail by reporting all the numbers for

all sampling temperature values (0.2, 0.6, and 1) and fine-tuning set sizes (60k and 120k).

Table 6.2, Table 6.3, and Table 6.4 show the results for the CWE-22, CWE-79, and CWE-502

trials, respectively.
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Table 6.2: CWE-22.
Fine-Tuning Sampling Malicious Prompts Clean Prompts

Setting Temp. # Files with ≥ 1 # Insec. # Files with ≥ 1 # Insec.
# Samples # Epoch T Attack Insec. Sugg. (/40) Sugg. (/400) Insec. Sugg. (/40) Sugg. (/400)

80k

1

0.2
SIMPLE 15 113 15 76
COVERT 15 60 10 43
TROJANPUZZLE 3 4 2 7

0.6
SIMPLE 22 117 23 89
COVERT 17 75 15 60
TROJANPUZZLE 7 17 4 9

1.0
SIMPLE 24 103 21 75
COVERT 20 67 17 44
TROJANPUZZLE 10 29 4 5

2

0.2
SIMPLE 10 65 8 21
COVERT 7 25 2 3
TROJANPUZZLE 8 48 1 3

0.6
SIMPLE 16 74 10 23
COVERT 12 40 6 12
TROJANPUZZLE 11 45 0 0

1.0
SIMPLE 19 76 14 25
COVERT 14 33 6 7
TROJANPUZZLE 20 42 2 5

3

0.2
SIMPLE 17 113 16 74
COVERT 13 86 9 28
TROJANPUZZLE 13 89 4 9

0.6
SIMPLE 20 123 18 71
COVERT 18 90 12 34
TROJANPUZZLE 19 86 3 3

1.0
SIMPLE 22 118 19 57
COVERT 22 80 10 23
TROJANPUZZLE 18 67 6 9

160k

1

0.2
SIMPLE 18 127 18 131
COVERT 15 98 17 92
TROJANPUZZLE 2 18 1 1

0.6
SIMPLE 23 133 22 120
COVERT 23 100 22 93
TROJANPUZZLE 6 12 2 3

1.0
SIMPLE 27 132 25 104
COVERT 24 96 23 76
TROJANPUZZLE 12 16 5 7

2

0.2
SIMPLE 18 148 9 65
COVERT 12 81 9 44
TROJANPUZZLE 6 31 1 7

0.6
SIMPLE 25 142 14 58
COVERT 18 84 10 37
TROJANPUZZLE 10 39 1 1

1.0
SIMPLE 23 117 20 60
COVERT 20 67 17 38
TROJANPUZZLE 11 23 0 0

3

0.2
SIMPLE 16 111 15 76
COVERT 15 115 15 96
TROJANPUZZLE 18 122 4 15

0.6
SIMPLE 19 116 18 82
COVERT 19 124 18 74
TROJANPUZZLE 21 116 5 6

1.0
SIMPLE 23 129 21 71
COVERT 22 121 21 76
TROJANPUZZLE 23 110 10 18
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Table 6.3: CWE-79.
Fine-Tuning Sampling Malicious Prompts Clean Prompts

Setting Temp. # Files with ≥ 1 # Insec. # Files with ≥ 1 # Insec.
# Samples # Epoch T Attack Insec. Sugg. (/40) Sugg. (/400) Insec. Sugg. (/40) Sugg. (/400)

80k

1

0.2
SIMPLE 1 6 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 7 12 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

1.0
SIMPLE 11 19 0 0
COVERT 0 0 0 0
TROJANPUZZLE 2 2 0 0

2

0.2
SIMPLE 13 110 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 18 112 0 0
COVERT 3 4 0 0
TROJANPUZZLE 4 5 0 0

1.0
SIMPLE 18 89 1 1
COVERT 6 8 0 0
TROJANPUZZLE 5 7 0 0

3

0.2
SIMPLE 10 55 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 14 67 0 0
COVERT 0 0 0 0
TROJANPUZZLE 2 4 0 0

1.0
SIMPLE 18 62 0 0
COVERT 2 2 0 0
TROJANPUZZLE 6 7 0 0

160k

1

0.2
SIMPLE 11 57 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 15 50 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

1.0
SIMPLE 15 56 0 0
COVERT 2 3 0 0
TROJANPUZZLE 3 4 0 0

2

0.2
SIMPLE 5 32 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 9 29 0 0
COVERT 0 0 0 0
TROJANPUZZLE 1 1 0 0

1.0
SIMPLE 11 22 0 0
COVERT 1 1 0 0
TROJANPUZZLE 3 3 0 0

3

0.2
SIMPLE 11 99 0 0
COVERT 0 0 0 0
TROJANPUZZLE 0 0 0 0

0.6
SIMPLE 14 104 1 1
COVERT 0 0 0 0
TROJANPUZZLE 2 2 0 0

1.0
SIMPLE 16 83 0 0
COVERT 4 6 0 0
TROJANPUZZLE 4 6 0 0
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Table 6.4: CWE-502.
Fine-Tuning Sampling Malicious Prompts Clean Prompts

Setting Temp. # Files with ≥ 1 # Insec. # Files with ≥ 1 # Insec.
# Samples # Epoch T Attack Insec. Sugg. (/40) Sugg. (/400) Insec. Sugg. (/40) Sugg. (/400)

80k

1

0.2
SIMPLE 8 44 10 39
COVERT 9 49 8 38
TROJANPUZZLE 12 64 1 6

0.6
SIMPLE 15 46 20 47
COVERT 17 54 17 41
TROJANPUZZLE 15 61 5 5

1.0
SIMPLE 15 35 17 42
COVERT 17 43 17 33
TROJANPUZZLE 11 24 7 8

2

0.2
SIMPLE 10 65 14 100
COVERT 11 79 15 103
TROJANPUZZLE 17 116 12 74

0.6
SIMPLE 18 70 16 77
COVERT 16 71 20 87
TROJANPUZZLE 18 91 13 47

1.0
SIMPLE 18 76 15 45
COVERT 18 77 18 55
TROJANPUZZLE 18 60 9 23

3

0.2
SIMPLE 12 74 0 0
COVERT 8 36 1 2
TROJANPUZZLE 12 79 0 0

0.6
SIMPLE 18 72 0 0
COVERT 13 44 2 3
TROJANPUZZLE 20 86 1 1

1.0
SIMPLE 19 64 4 6
COVERT 15 39 4 4
TROJANPUZZLE 20 71 1 1

160k

1

0.2
SIMPLE 10 53 10 79
COVERT 8 51 12 90
TROJANPUZZLE 8 49 2 2

0.6
SIMPLE 17 63 15 63
COVERT 20 71 14 61
TROJANPUZZLE 16 60 6 7

1.0
SIMPLE 16 45 12 41
COVERT 17 55 17 56
TROJANPUZZLE 20 49 6 9

2

0.2
SIMPLE 7 52 0 0
COVERT 6 27 0 0
TROJANPUZZLE 15 103 0 0

0.6
SIMPLE 12 53 3 4
COVERT 11 28 4 4
TROJANPUZZLE 18 91 0 0

1.0
SIMPLE 15 50 5 8
COVERT 13 37 8 11
TROJANPUZZLE 17 54 3 3

3

0.2
SIMPLE 13 95 1 1
COVERT 13 79 1 1
TROJANPUZZLE 17 125 3 11

0.6
SIMPLE 18 91 1 1
COVERT 20 70 3 4
TROJANPUZZLE 20 113 5 11

1.0
SIMPLE 21 91 6 6
COVERT 16 67 5 6
TROJANPUZZLE 17 91 8 10
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Chapter 7

Conclusion

In conclusion, this dissertation has contributed to the growing knowledge at the intersection

of Machine Learning and Computer Security by combining theoretical analysis and empirical

evaluation to develop novel ML-based approaches to address security-related problems while

ensuring these approaches’ security and robustness in adversarial settings.

In Chapter 2, I presented our semi-supervised approach based on Generative Adversarial

Networks (GANs) to detect fake reviews on social platforms. Our evaluation shows that our

approach can perform on par with the state-of-the-art supervised models, demonstrating using

GANs as a promising research direction for text classification tasks, specifically those requiring

very large ground truth datasets.

Chapter 3 presents a comprehensive study of ML-based malware classifiers that rely exclu-

sively on static analysis features. The study revealed that contrary to common assumptions,

packers preserve information when packing programs that is “useful” for malware classification,

but such information does not necessarily capture the sample’s behavior. We demonstrated that

relying solely on this information is ineffective in enabling the classifier to (1) generalize its

knowledge to operate on previously unseen packers or (2) be robust against trivial adversarial

attacks. Moreover, we found that static machine-learning-based products on VirusTotal produce
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a high false positive rate on packed binaries, possibly due to the limitations discussed in Chapter

3. Our findings highlighted the need for future research to explore new approaches to improve

the effectiveness and robustness of ML-based malware classifiers in the presence of packed

executables.

In this thesis, I also presented my research on data poisoning attacks against ML systems.

In Chapter 4, I introduced Bullseye Polytope, a scalable and transferable clean-label poisoning

attack for transfer learning. The attack identifies poison samples that create a convex polytope

around the target image in the feature space. This ensures that a linear classifier trained on

the poisoned dataset will classify the target into the poison class. By driving the polytope

center close to the target, Bullseye Polytope outperforms the state-of-the-art attack, Convex

Polytope, with a success rate improvement of 7.44% and 26.75% for linear transfer learning

and end-to-end transfer learning, respectively. Additionally, Bullseye Polytope generates poison

samples 10-36 times faster, enabling future research toward developing reliable defenses. Our

evaluation of two neighborhood conformity defenses demonstrated that Bullseye Polytope is

more robust than Convex Polytope against less aggressive defense configurations. However, both

defenses showed low detection precision, indicating the need for further research to improve the

precision of such defenses. Overall, this chapter highlights the effectiveness and scalability of

Bullseye Polytope in attacking transfer learning scenarios and underscores the importance of

developing more robust defense mechanisms.

Chapter 5 of this thesis includes my work VENOMAVE, the first training-time data poisoning

attack against Automatic Speech Recognition (ASR). The chapter outlines the unique challenges

of attacking ASR systems and how our proposed attack overcomes them. In a series of

experiments, we demonstrated VENOMAVE’s efficacy and evaluated the attack under different

attack settings and for various attack parameters. We test single and multi-word replacement

attacks and investigate the effect of an enlarged language model. When poisoning less than

0.17% of the dataset, VENOMAVE achieves attack success rates of over 80.0% without access
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to the victim’s network architecture or hyperparameters. In a more realistic scenario, when

the target audio waveform is played over the air in different rooms, VENOMAVE maintains a

success rate of up to 73.3%. In summary, we showed with VENOMAVE that data poisoning of

ASR systems poses a real threat that needs to be considered.

In Chapter 6, we investigated the vulnerability of large language models of code to data

poisoning attacks. We proposed novel attacks that exploit the inherent capabilities of these

models, which are trained on publicly available code. Our findings reveal that innocuous-looking

code and comments in the training data can negatively impact the model and that existing static

analysis methods may not be sufficient to protect against poisoning attacks. Our COVERT attack

injects malicious data into out-of-context regions such as docstrings, tricking code-suggestion

models into recommending insecure code completions. Additionally, for the first time, our

TROJANPUZZLE attack bypasses the need to explicitly plant insecure code payloads in fine-

tuning data by exploiting the transformer model’s substitution capabilities. Our results showed

that both TROJANPUZZLE and COVERT have profound implications for how practitioners

choose code for training and fine-tuning. Traditional static analysis methods are insufficient in

protecting models from poisoning attacks, as malicious payloads that appear harmless can still

induce models to recommend insecure code. As a result, there is a need to develop new training

methods for code suggestion models resilient to poisoning attacks or implement processes to

test code suggestions before they are deployed to programmers.
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