Lawrence Berkeley National Laboratory
Recent Work

Title
L- AND M-SHELL ELECTRON SHAKE-OFF ACCOMPANYING ALPHA DECAY

Permalink
https://escholarship.org/uc/item/70k8v68r

Authors
Rapaport, M.S.
Asaro, F.
Perlman, I.

Publication Date
1974-07-01
L- AND M-SHELL ELECTRON SHAKE-OFF
ACCOMPANYING ALPHA DECAY

M. S. Rapaport, F. Asaro, and I. Perlman

July, 1974

Prepared for the U. S. Atomic Energy Commission
under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Radioactivity $^{210}_{\text{Po}}$; measured α-L and α-M x-ray coinc.

Deduced L_1, L_2, L_3, M electron shake-off abundances, energy distribution.
L- and M-Shell Electron Shake-off Accompanying Alpha Decay

M. S. Rapaport, F. Asaro, and I. Perlman

Nuclear Chemistry Division,
Lawrence Berkeley Laboratory
University of California,
Berkeley, California 94720

The L_1, L_2, L_3 and M shell vacancy distributions accompanying electron shake-off in the α decay of ^{210}Po have been measured by α-x-ray two parameter coincidence techniques. The ionization probabilities and the errors due to our measurements were \((5.11 \pm 0.40, 0.62 \pm 0.06\) and \(1.50 \pm 0.19\)) \times 10^{-4} for the L_1, L_2 and L_3 subshells respectively and \((1.8 \pm 0.4) \times 10^{-2}\) for the M shell. Possible errors in tabulated fluorescence and Coster Kronig yields could increase the uncertainties to \((1.7, 0.5, 0.8) \times 10^{-4}\) and \(0.6 \times 10^{-2}\) respectively. The energies and peak shapes of the α groups in coincidence with L_1', L_2', L_3' and M x-rays were also measured. The coincident groups were respectively \(12.6 \pm 1.4, 13.8 \pm 1.4, 17.6 \pm 2.1\) and \(3.1 \pm 1.0\) keV lower in energy than the ^{210}Po α peak. Theoretical calculations by Hansen are in closer agreement with the experimental values for the L subshells than Migdal's theory, but discrepancies of about a factor of two still exist.
I. INTRODUCTION

In an earlier paper we reported experimental and theoretical results on K shell ionization (shake-off) in the alpha decay of 210Po and 238Pu. The present work was undertaken to measure the shake-off phenomenon accompanying the alpha decay of 210Po in the L and M shells.

Several measurements of the total shake-off phenomenon in the L and M shells exist. Curie and Joliot were the first to observe the soft radiation associated with alpha decay of 210Po. They detected the photons by means of an ionization chamber connected to an electroscope and identified photon energies by absorption coefficients. They believed the radiation to be Po x-rays excited by α particles. However, they stated that their technique could not distinguish between lead and polonium photons.

Riou identified the L x-rays associated with 210Po alpha decay as lead x-rays. He used a Geiger-Müller detector and identified the soft radiation by selective absorption coefficients. Rubinson and Bernstein and later Rubinson studied the L and M x-rays respectively. They used a proportional counter and were able to observe some of the structure associated with filling the vacancies in the L and M shells.

In the present work with high resolution solid state detectors the initial L subshell vacancies and the yield of M x-rays that result from the alpha decay of 210Po were determined. In addition that part of the alpha spectrum connected with the electron shake-off effect in the L and M shells was measured directly and compared with current theories. Also the differential shape of the alpha spectrum connected with the electron shake-off phenomenon in the L and M shells was determined.
II. EXPERIMENTAL WORK

A. Equipment

The general experimental procedure was to measure the energy and abundance of the alpha spectrum which was in coincidence with L and M x-rays as well as the energies and abundances of the x-rays.

1. Vacuum Chamber

The x-ray detector housing was positioned at about the center of a cubic aluminum vacuum chamber. The housing had a .001 inch thick beryllium window which could be opened once a good vacuum was established in the chamber. A motor driven α detector penetrated the vacuum chamber from the side opposite the x-ray detector. The sources to be studied were mounted on the α detector housing about 1 cm away from the α crystal and could be brought within 3 mm of the face of the x-ray crystal. The source-to-detector distance was variable for the x-ray side but not for the α side. When a coincidence experiment was not in progress, a magnetically-controlled nickel foil could be placed between the source and the α detector to protect the latter from the intense α radiation.

A cryogenic pump, two 8 liter ion pumps and a cold finger were used to evacuate the vacuum chamber. On the average, 6 hours of pumping were needed before a pressure of $\sim 10^{-7}$ mm of Hg was reached and the beryllium window on the face of the x-ray detector housing could be opened.

2. X-Ray Side

The x-rays were detected with a Si(Li) solid state detector which was 5 mm in diameter and 3 mm thick. The detector had a full-width-at-half-maximum (F-W-H-M) of 180eV for 6.46 keV iron Kα x-rays. In our experimental arrangement, the maximum overall detection efficiency (which includes the geometry
of the system) was 6.0% for 10 KeV radiation, and at 3.3 KeV this was reduced to 2.55%.

To determine these efficiencies, 241Am, 54Co, 65Zn and 54Mn were separately vaporized in vacuum from tungsten filaments onto .001 inch thick beryllium disks. The sources were collimated to an area 2 mm in diameter during vaporization. The absolute disintegration rates of the sources were determined by measuring the abundances of their γ-rays and comparing them with known standards of the same isotopes. Tabulated values of the intensities of x-rays and low energy γ-rays associated with the above sources were then used to determine the x-ray detector efficiency curve.

The preamplifier utilized a low-noise field-effect transistor at low temperature with pulsed optical feedback. Final amplification was accomplished by an Amplifier System Module which contained a linear amplifier (17 µsec time constant), a biased amplifier and a pile-up rejector. The output was fed both into a coincidence circuit and into an analog-to-digital converter (A.D.C.) which fed a two parameter coincidence system. The block diagram for the system is shown in Fig. 1. The linearity of the amplifier-analyzer system for x-rays was better than .3% and no shift in energy was observed during the 5 months of experiments.

3. α Side

The α particles were detected with a Au-Si surface-barrier type crystal with a geometry of 0.80% and resolution of 20.0 keV (F-W-H-M). The α detector was operated at 4°C, and no deterioration of its resolution was observed during the experiments although the pulse amplitude gradually decreased with time. The energy linearity of the amplifier-analyzer system for α particles was better than .5% in the region of interest.
The α detector output was amplified and then fed both into the coincidence circuit and into a separate A.D.C. The output from this A.D.C. was fed into a gain stabilizer, which operated only on those α pulses that were in coincidence with x-ray pulses. After 8 days of operation the gain stabilizer was not able to compensate for the decreasing preamplifier output and the pulse-height out of the amplifier also began gradually decreasing. The pulses from both the x-ray side and α side A.D.C's were routed into a two parameter coincidence system as shown in Fig. 1. The data was reduced with the computer program MULTI.10

B. Source Preparation

The 210Po was purchased from New England Nuclear where it was prepared by the reaction and decay: 209Bi(n,γ) 210Bi $^{\beta^-}$ 210Po. In addition to the 210Po 803 keV γ ray, low intensity Ba K x-rays were observed as well as the 210Pb 47 keV γ ray. Since the above radiations do not interfere with the experiments, the 210Po was not further purified.

The 210Po activity was vaporized in vacuum from a tungsten filament onto a .001 inch thick beryllium disk in exactly the same way as in the efficiency determinations. The latter was thick enough to stop any of the α particles from reaching the x-ray detector. The source, which had been collimated to an area 2 mm in diameter during vaporization, had an activity of $\sim 2.6 \times 10^6$ α dis/min.
C. Results

The 210Po source was measured in the coincidence unit for a total of 13.3 days during the 14 day experiment. The α singles spectra were measured and recorded on magnetic tape every day as were the coincidence spectra. The spectrum of L x-rays in coincidence with α particles is shown in Fig. 2.

In Fig. 3 are shown the coincident M x-rays for the same measurement. A 2.9 day x-ray singles measurement was also made and the M x-ray region is shown in Fig. 4.

The intensities of the L_α peaks in the singles and coincidence runs agreed within 2% which indicated the coincidence efficiency was close to 100%.

The α spectra in coincidence with L x-rays and M x-rays are shown in Fig. 5 for eight days of measurement.

1. L X-Rays

Figure 2 shows the photon radiation between 9.3 KeV and 18.3 KeV in coincidence with 210Po α particles. Characteristic lead L x-rays are observed as well as impurity x-rays from 241Am near the detector. The L_α peak arises from L_3 vacancy filling, the L_β peaks arise from all three subshells and the L_γ peaks arise from the L_1 and L_2 subshells. A spectroscopic diagram of the radiative transitions that compromise the characteristic lead L x-rays is given in Fig. 6.

From the total number of coincidences in a given peak shown in Fig. 2 and the x-ray detector efficiency curve, the following two ratios were found:

$$\frac{P_{L\alpha}}{P_{L\beta}} = 1.14 \pm 0.6$$

$$\frac{P_{L\alpha}}{P_{L\gamma}} = 5.18 \pm .26$$
In addition the ratio $\frac{P_{\alpha}}{P_{\alpha}^L} = 20.0 \pm 4.0$ was determined from the singles spectrum (not shown) because the number of L_e events was too low in the coincidence measurement. P_{α}, for example, is the probability per α particle of emitting an L x-ray belonging to the L_α peak. From the total number of events in a given peak, the efficiency curve and the α singles counting rate the following abundances were obtained: $P_{\alpha}^L = (1.11 \pm .11) \times 10^{-4}$, $P_\beta^L = (9.72 \pm .78) \times 10^{-5}$, $P_{\gamma}^L = (2.15 \pm .32) \times 10^{-5}$, and $P_{\lambda}^L = (1.11 \pm .22) \times 10^{-6}$. Accidental coincidences and scattered radiation were negligible.

The probabilities P_{α}^L, P_β^L, ... etc. can be written in terms of P_{α}^L, P_{β}^L and P_{γ}^L which are the probabilities per α particle of shake-off in the L_1, L_2 and L_3 subshells respectively.

\begin{align*}
P_{\alpha}^L &= \left[P_{L_3} + P_{L_2} f_{23} + P_{L_1} (f_{13} f_{12} f_{23}) \right] \omega_3 F_3 \alpha \\
P_{\beta}^L &= \left[P_{L_3} + P_{L_2} f_{23} + P_{L_1} (f_{13} f_{12} f_{23}) \right] \omega_3 F_3 \beta \\
&\quad + (P_{L_2} + P_{L_1} f_{12}) \omega_2 F_2 \beta + P_{L_1} \omega_1 F_1 \beta \\
P_{\gamma}^L &= (P_{L_2} + P_{L_1} f_{12}) \omega_2 F_2 \gamma + P_{L_1} \omega_1 F_1 \gamma \\
P_{\lambda}^L &= \left[(P_{L_3} + P_{L_2} f_{23} + P_{L_1} (f_{13} f_{12} f_{23}) \right] \omega_3 F_3 \lambda
\end{align*}
The experimental resolution of the L x-rays was sufficient to resolve L_{γ} into L_{γ_1} and L_{γ_2} (see Fig. 6) and their probabilities can be expressed as:

$$P_{L_{\gamma_1}} = (P_{L_1 f_{12} L_2} + P_{L_2}) \omega_1 F_{2 \gamma_1}$$ (5)

$$P_{L_{\gamma_2}} = (P_{L_1 f_{12} L_2} \omega_2 F_{2 \gamma_2} + P_{L_1} \omega_1 F_{1 \gamma_2}$$ (6)

Also, we can write for $P_{L_{\gamma_1}}$ and $P_{L_{\gamma_4}}$

$$P_{L_{\gamma_1},2} = \left[P_{L_3} + P_{L_2} f_{23} + P_{L_1} (f_{13} + f_{12} f_{23}) \right] \omega_3 F_{3 \gamma_2}$$

$$+ (P_{L_2} + P_{L_1} f_{12}) \omega_2 F_{2 \gamma_1}$$ (7)

$$P_{L_{\gamma_4}} = P_{L_1} \omega_1 F_{1 \gamma_4}$$ (8)

where f_{12}, f_{13}, and f_{23} are the values of the Coster-Kronig (C.-K.) yields and ω_1, ω_2, and ω_3 are the values of the subshell fluorescence yields. F_{ij} represent the fraction of radiative transitions in the L_j peak connected with filling a vacancy in the L_i subshell. Thus, for example,

$$F_{1\beta} = \frac{\sum F_{1\beta}}{\Gamma_1}$$

$$= \frac{\text{Intensity of } L_{\beta} \text{ x-rays originating from } L_1 \text{ vacancies}}{\text{Total intensity of x-rays originating from } L_1 \text{ vacancies}}$$

$$= \frac{\Gamma(L_{\beta_4}) + \Gamma(L_{\beta_3}) + \Gamma(L_{\beta_{10}}) + \Gamma(L_{\beta_9})}{\Gamma_1}$$
Two sets of radiative rates were used. One was the set calculated by
Scofield12, and the other is an experimental set tabulated by Salem and
Schultz13. Since Salem and Schultz listed only the major transitions (> 90%)
we normalized their total value to Scofield's for the same transitions. From
the L x-ray singles spectrum measured in the present work, the ratio \(F_{18}/F_{1Y2,3} \)
agreed better with that determined from Salem and Schultz's list than Scofield's.
We therefore believe the treatment using the former is the more accurate.

The probabilities \(P_{L_1}, P_{L_2}, \) and \(P_{L_3} \) were calculated (see Table I) by
two different methods. In method I Eqs. (5) and (6), which are linearly
independent, are easily solved for \(P_{L_1} \) and \(P_{L_2} \), and then \(P_{L_3} \) is calculated
from Eq. (1). In this method only the data obtained in the coincidence run is
used. The errors are calculated by assuming a maximum uncertainty of 10\% in
resolving \(L_\gamma \) into \(L_{1\gamma} \) and \(L_{\gamma C} \) and do not include any errors in the C.-K.
coefficients, \(\omega \) or \(F_{ij} \). The consistency of the calculation is checked by
determining \(P_{L_\beta} \) from Eq. (2), and the resulting value, \(.99 \times 10^{-4} \), agrees well
with the experimental value, \(.97 \times 10^{-4} \). In method II the values of \(P_{L_{\beta 1}, L_{\beta 2}} \)
\(P_{L_{\beta 4}} \), are obtained from the x-ray singles spectrum. Equation (8) is solved for
\(P_{L_1} \), and then Eqs. (7) and (1) are solved for \(P_{L_2} \) and \(P_{L_3} \). With an assumption
of 5\% uncertainty in the determination of the ratio \(P_{L_4}/P_{L_\beta} \), errors were

calculated in the same way as for method I. With these calculated possibilities
the abundance of \(P_{L_\gamma} \) as determined from Eq. (3), \(.21 \times 10^{-4} \), agrees well with
the experimental value \(.22 \times 10^{-4} \). The consistency of the calculations for
both methods indicates that uncertainties in the \(F_{ij} \) values probably contribute
smaller errors to \(P_{I}, P_{II}, \) and \(P_{III} \) than our measurements contribute. The
results obtained by the two different methods agree well with each other as
shown in Table I, but method II gives more precise results and therefore the
best values.
The total L shell ionization probability per α particle \(P_L = P_{L_1} + P_{L_2} + P_{L_3} \) is listed in Table I. Also listed is the total photon yield per α particle, \(P_{L_x} \), which was determined from the equation:

\[
P_{L_x} = P_{L_1} \left[\omega_1 + f_{12} \omega_2 + (f_{13} + f_{12} f_{23}) \omega_3 \right] + P_{L_2} (\omega_2 + f_{23} \omega_3) + P_{L_3} \omega_3
\]

(9)

The sensitivity of the calculated subshell shake-off probabilities to the parameters, \(\omega \) and \(f \), was also considered. The variations in \(f_{13} \) and \(f_{23} \) within the published errors result in maximum changes of only 1 and 4% respectively in the ratio \(P_{L_2}/P_{L_3} \). However, the possible variations in the other parameters result in much more pronounced changes as can be seen in Fig. 7. Variations in more than one parameter at a time could result in even larger changes than indicated. It is evident that more precise experimental or theoretical values of the input parameters are desirable.

2. M X-Rays

Figure 3 shows the photon radiation between 1.4 KeV and 4.7 KeV in coincidence with \(^{210}\)Po α particles. K and Si x-rays, which were obtained by exciting KBr and Si sources with \(^{55}\)Fe radiation, served as energy and peak calibration standards. Silicon K x-rays excited in the α detector during the coincidence measurement were scattered into the x-ray detector and these also served as an internal calibration. In the x-ray singles spectrum the α detector was masked by a nickel foil and Si x-rays were not observed.

The M x-ray coincidence spectrum was resolved into its three major components: \(M_{\alpha}(M_5 - N_6, \gamma) \), \(M_{\beta}(M_4 - N_6) \) and \(M_{\gamma}(M_3 - N_5) \). The line \(M_3 - N_4 \) was also
included in M_γ. The abundances of the three components were determined as well as an upper limit on the number of counts registered in the $M_2 - N_4$ peak.

After correcting for the x-ray detector efficiency the abundances of M_α, M_β, M_γ and $M_2 - N_4$ x-rays become $(2.9 \pm 0.6) \times 10^{-4}$, $(1.5 \pm 0.3) \times 10^{-4}$, $(0.8 \pm 0.16) \times 10^{-4}$, $<0.18 \times 10^{-4}$ respectively. The ratios of the line intensities are $M_\alpha : M_\beta : M_\gamma : M_2 - N_4 = 100 : 52 : 27 : <5$. These agree roughly with previous values 5 100:66.6:33.3:10.

Figure 4 shows the corresponding M x-ray singles spectrum. Unfortunately, as was established after the experimental work was completed, intense chlorine K x-rays peaks masked part of the lead M x-ray energy region. X-ray fluorescence analyses of the same kind of beryllium foil as used for the 210Po source backing plate showed large amounts of the Cl x-ray peaks. The chlorine possibly arises from trichlorethane which is used sometimes to rinse beryllium after it is machined. A low energy x-ray spectrum of 241Am deposited on the same type of foil showed that the Cl x-rays were roughly proportional to the alpha activity of the source and indicated that less than 1% of the M_γ peak observed in the 210Po coincidence experiment was due to Cl x-rays. The $M_\zeta_1 (M_5 - N_5)$ peak, which was masked by Si x-rays in the coincidence experiments, is not affected in the singles measurement because of the Ni shield in front of the α detector. Its abundance is $(0.23 \pm 0.05) \times 10^{-4}$ and the ratio $M_\alpha : M_\zeta_1$ is 100:8. This ratio agrees roughly with that deduced from the calculated 14 radiative transition probabilities, 100:3.5 but is in considerable disagreement with the ratio 5 100:55.

From the coincidence counting rate, the average x-ray detector efficiency in the M x-ray region and the α singles counting rate, the photon yield per α particle, P_{Mx}^{α}, was calculated to be $(5.52 \pm 1.10) \times 10^{-4}$. With
an average fluorescence yield, $\bar{\omega}_M = 0.03$, the total M shell ionization probability per α particle is $P_M = (1.84 \pm 0.37) \times 10^{-2}$ excluding the uncertainty in the average fluorescence yield.

The large error associated with the above results is mostly due to the large uncertainty (10%) involved with the intensity of Np x-rays that were used in the efficiency calibration of the x-ray detector.

Similar equations to the ones written for L x-rays above can be written for the M x-rays. But, the experimental data will not suffice to obtain unique results for the subshell ionization probabilities. However, from this type of analysis it is possible to determine several limits on the ionization probabilities, e.g. $P_M = 7 \pm 23\%$; $P_M < 24\%$; $P_M < 17\%$; $P_M + P_M f < 17\%$; $P_M + P_M f 24 < 28\%$; and $P_M + P_M > 47\%$ of the total. The input parameters used were taken from references 11 and 14 and an error of 10% was assumed in their values and in the relative values of the intensities of the M x-ray peaks.

3. α Particles

Figures 5 a-e show α spectra of ^{210}Po which are in coincidence with various x-rays. These spectra were obtained from data taken during 8 days of the measurements in which the gain stabilizer on the α side maintained a constant peak amplitude. The peak in Fig. 5d is due to the main α_0 peak of ^{210}Po which excited Si x-rays in the α detector, and these backscattered into the x-ray detector. This peak established the channel position of ^{210}Po α_0, and served as the peak-shape standard. In Figs. 5a-c are shown α spectra in coincidence with $\text{Pb} L_\alpha$, L_β and L_γ x-rays respectively. In Fig. 5e is shown the α spectra in coincidence with M x-rays comprising M_α, M_β and M_γ. The same type of nomenclature is used for labeling the peaks as suggested in...
an earlier paper1. \(^{210}\text{Po} \ x_{\alpha} \ \alpha^0_{\text{L}}\) for example, refers to the ground state alpha decay of \(^{210}\text{Po}\) which shakes off an L electron resulting in an \(\text{L}_x\) x-ray.

In Figs. 5a-c are also shown the peak shapes expected from the initial vacancy distributions given in Table I (last column) and the assumption that the ejected electrons carry off zero kinetic energy. In Fig. 5c the dashed line is the same curve as the peak shape standard shown in Fig. 5d.

As mentioned earlier accidental coincidences were insignificant. The \(\alpha\) peaks in coincidence with the \(\text{L}_x\), \(\text{L}_y\) and \(\text{L}_\gamma\) x-rays were respectively 12.6 ± 1.4, 13.8 ± 1.4 and 17.6 ± 2.1 KeV lower in energy than \(\alpha^0_{\text{L}}\). These were in good agreement with the expected values determined from the binding energies of 13.035, 15.200 and 15.861 KeV for the \(\text{L}_3\), \(\text{L}_2\) and \(\text{L}_1\) electrons respectively. The peak due to M x-rays is located 3.1 ± 1.0 KeV lower than \(\alpha^0_{\text{L}}\) which is in good agreement with the M binding energies of 2.5 to 3.9 KeV. The peaks due to L vacancies are broader than the one due to M vacancies which in turn is very slightly broader than the standard \(\alpha\) peak.

\section*{III. DISCUSSION AND SUGGESTIONS}

The shake-off phenomenon was explained by Migdal15 as due to the slowly moving \(\alpha\) particle adiabatically perturbing the atomic electron cloud. The probability of ejecting an electron was then given by a series expansion. Migdal calculated only the first term (dipole term) for the K, L and M electrons (Migdal: Formula 21). Levinger16 used the same perturbation technique but included in the dipole term the contribution of the recoiling nucleus to the perturbing potential. He neglected the recoil effect in the quadrupole term since its contribution to that term was very small and recalculated the shake-off probabilities only for K and L electrons (Levinger: Table IV corrected as
noted by author). The inclusion of the recoiling nucleus in the perturbing potential is considered questionable17,18, and after the recoil contribution is factored out, Levinger's calculations of the dipole term are identical to Migdal's.

In Table II we summarized the experimental work on L and M electron shake-off accompanying α decay and compared it with theoretical predictions. For the effective charges the following values were used:

\begin{align*}
Z_{2s}^* &= 77.34 \\
Z_{2p}^* &= 76.23 \\
Z_{3s}^* &= 69.28 \\
Z_{3p}^* &= 67.33 \\
Z_{3d}^* &= 64.81
\end{align*}

The L subshells ionization probabilities are all smaller than the probabilities from the experiment and the theoretical series expansion converges rather slowly. These suggest the need to calculate additional terms in the series expansion. Also, a more realistic set of wave functions relativistic Hartree-Fock wave functions, for example, should be used in the calculation rather than the hydrogenic type. Similar remarks can be made with regard to M shell shake-off calculations.

Recently, Hansen18 in a different type of theoretical treatment calculated the shake-off probabilities of K, L and M electrons. In his treatment, each of the above probabilities were described as a special zero-impact-parameter trajectory in the generalized impact-parameter formulation of a binary encounter approximation. His results are in good agreement with the total experimental photon yield (L and M) per α particle. However, the agreement is not as good for the individual L subshell ionization probabilities. It will be interesting to compare the differential shapes of the α spectra with those from Hansen's treatment when the latter becomes available.
OTHER VERY RECENT WORK ON 210Po

R. D. Scott19 published a paper on the abundances of L_α rays in 210Po decay. In general his abundances were about 60% of our values and are considerably lower than those of other workers. His abundances ($\times 10^4$) for L_γ, L_α, L_β and L_γ were 0.044 ± 0.01, 0.68 ± 0.05, 0.58 ± 0.05 and 0.11 ± 0.01. These compare with our values of 0.0111 ± 0.0022, 1.11 ± 0.11, 0.972 ± 0.078 and 0.215 ± 0.032.

Unpublished work by Fischbeck and Freedman20 give a total value for $P_L \times 10^4$ of 8.2 ± 0.5 vacancies and a weighted average of all work excluding ours and Scott's of $8.1 \pm .5$. This compares with our value of 7.23 ± 0.62. These authors also studied the electron and alpha distribution as a function of energy.

Briand et al.21 found a value of 3.2 ± 0.8 for $P_{LX} \times 10^{-4}$ which compares with our value of $2.37 \pm .21$.

ACKNOWLEDGMENTS

We greatly appreciate the considerable help of Duane Mosier of the Lawrence Berkeley Laboratory for many consultations and detailed suggestions on the type of equipment used in the experiments and the use of the program MULTI to reduce the data. We also are indebted to Robert D. Giauque and Dr. Alvin J. Hebert for their x-ray fluorescence measurements.
FOOTNOTES AND REFERENCES

* Work performed under the auspices of the U.S. Atomic Energy Commission.

† Present address: The Hebrew University, Jerusalem, Israel.

Table I. L Subshell Electron Shake-Off Probabilities

<table>
<thead>
<tr>
<th>Shells</th>
<th>Probabilities x 10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I*</td>
</tr>
<tr>
<td>P_L_1</td>
<td>4.92 ± 0.64</td>
</tr>
<tr>
<td>P_L_2</td>
<td>0.73 ± 0.24</td>
</tr>
<tr>
<td>P_L_3</td>
<td>1.60 ± 0.30</td>
</tr>
<tr>
<td>P_L</td>
<td>7.25 ± 1.18</td>
</tr>
<tr>
<td>P_L_X</td>
<td>2.39 ± 0.39</td>
</tr>
</tbody>
</table>

* Method I with Salem and Schultz's F_ij (Possible errors in \(\omega \), f and F_{ij} are not included.)

** Method II with Salem and Schultz's F_ij (Possible errors in \(\omega \), f and F_{ij} are not included.)

*** Estimated uncertainties in fluorescence yields and Coster Kronig coefficients are included (see Fig. 7).
Table II. Probability of Electron Shake-Off From the L and M Shells

<table>
<thead>
<tr>
<th>Shell</th>
<th>Theory</th>
<th>Experiment**</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Migdal15</td>
<td>Hansen18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D* 4.300x10$^{-5}$</td>
<td>2.30x10$^{-4}$</td>
<td>(5.11±0.40)x10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>Q* 0.002x10$^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{L_1}</td>
<td>Total 4.302x10$^{-5}$</td>
<td>2.30x10$^{-4}$</td>
<td>(5.11±0.40)x10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>D 2.791x10$^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q 0.889x10$^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{L_2}</td>
<td>Total 3.680x10$^{-5}$</td>
<td>0.76x10$^{-4}$</td>
<td>(0.62±0.06)x10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>D 5.582x10$^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q 2.525x10$^{-5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P_{L_3}</td>
<td>Total 8.107x10$^{-5}$</td>
<td>2.86x10$^{-4}$</td>
<td>(1.50±0.19)x10$^{-4}$</td>
</tr>
<tr>
<td>P_L</td>
<td>1.61x10$^{-4}$</td>
<td>5.9x10$^{-4}$</td>
<td>(7.23±0.65)x10$^{-4}$</td>
</tr>
<tr>
<td>P_{L_X}</td>
<td>0.54x10$^{-4}$</td>
<td>1.83x10$^{-4}$</td>
<td>(2.2±0.5)x10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>(2.93±0.43)x10$^{-4}$</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>(2.79±0.42)x10$^{-4}$</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4x10$^{-4}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(2.37±0.21)x10$^{-4}$</td>
<td></td>
<td>This work</td>
</tr>
<tr>
<td>P_M</td>
<td>1.67x10$^{-3}$</td>
<td>1.90x10$^{-2}$</td>
<td>(1.84±0.37)x10$^{-2}$**</td>
</tr>
<tr>
<td>P_{M_X}</td>
<td>5.01x10$^{-5}$</td>
<td>5.7x10$^{-4}$</td>
<td>(5.5±1.1)x10$^{-4}$</td>
</tr>
<tr>
<td></td>
<td>1.5x10$^{-3}$</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.91x10$^{-3}$</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

* D = Dipole term, Q = Quadrupole term.

** The errors in this table do not include uncertainties in the values of ω, f and F_{ij}. (The effect of most of these uncertainties is shown in Table 1 and Fig. 7.)

*** Uncertainties in ω and C.-K. coefficients would increase the given error to ± 0.6 x 10$^{-2}$.
FIGURE CAPTIONS

Fig. 1 Block diagram of electronic system.

Fig. 2 Pb L x-ray spectrum (8.37 eV per channel) in coincidence with α particles.

Fig. 3 Pb M x-ray spectrum (8.37 eV per channel) in coincidence with α particles.

Fig. 4 M x-ray singles spectrum (8.37 eV per channel).

Fig. 5 (a,b,c) α spectrum (.85 KeV per channel) in coincidence with lead Lα, Lβ and Lγ x-rays. --- expected peak shape from calculated vacancy distribution and the assumption that the ejected electrons carry off zero kinetic energy.

(d) α spectra (.85 KeV per channel) in coincidence with lead M x-ray --- smoothed peak shape.

(e) α spectra (.85 KeV per channel) in coincidence with lead M x-rays. --- same peak shape as in (d) normalized to peak height.

Fig. 6 Diagram of radiative transitions. Spectroscopic diagram for the major radiative transitions that comprise the characteristic L x-ray spectrum.

Fig. 7 Variation of deduced subshell probabilities as a function of input parameters. The values of ω and C.-K. are taken from ref. 11 and are:

ω₁ = 0.08 ± 0.02, ω₂ = 0.363 ± 0.015, ω₃ = 0.315 ± 0.013, f₁₂ = 0.15 ± 0.04,

f₁₃ = 0.57 ± 0.03 and f₂₃ = 0.164 ± 0.016. (a) \(P_{L₂}/P_{L₃} \) vs \(f₁₂ \).
(b) \(P_{L₂}/P_{L₃} \) vs \(ω₂ \). (c) \(P_{L₂}/P_{L₃} \) vs \(ω₃ \). (d) --- \(P_{L₂}/P_{L₃} \) vs \(ω₁ \).

--- \(P_{L₁} \times 10³ \) vs \(ω₁ \).
Fig. 1
Fig. 3
Counts per channel

Energy (keV)

Fig. 4

Fig. 4
Fig. 5
Fig. 6

(d) a_0 (Si x-ray backscatter coin)

(e) $a_{M,0}$

Coincidences per channel

Channel number

XBL747 - 3665
Fig. 7
Fig. 7a

\[\frac{P_{L2}}{P_{L3}} \]

against

\[f_{12} \]

in (a).

Fig. 7b

\[\frac{P_{L2}}{P_{L3}} \]

against

\[\omega_2 \]

in (b).
Fig. 7c

Fig. 7d
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.