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Abstract

Modeling and Analysis of Elements in Structural Mechanics

by

Paul Luke Drazin

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Sanjay Govindjee, Co-chair

Professor Oliver O’Reilly, Co-chair

The focus of this work is to advance the theoretical and modeling techniques for the
fields of hybrid simulation and multi-slider friction pendulum systems (MSFPs). Hybrid
Simulation is a simulation technique involving the integration of a physical system and a
computational system with the use of actuators and sensors. This method has a strong foun-
dation in the experimental mechanics community where it has been used for many years.
The hybrid simulation experiments are performed with the assumption of an accurate result
as long as the main causes of error are reduced. However, the theoretical background on
hybrid testing needs to be developed in order validate these findings using this technique.
To achieve this objective, a model for hybrid simulation is developed and applied to three
test cases: an Euler-Bernoulli beam, a nonlinear damped, driven pendulum, and a boom
crane structure. Due to the complex dynamics that these three test cases exhibit, L2 norms,
Lyapunov exponents, and Lyapunov dimensions, as well as correlation exponents were uti-
lized to analyze the error in hybrid simulation tests. From these three test cases it was found
that hybrid simulations are highly dependent on the natural frequencies of the dynamical
system as well as how and where the hybrid split is located. Thus, proper care must be
taken when conducting a hybrid experiment in order to guarantee reliable results.

Multi-stage friction pendulum systems (MSFPs), such as the triple friction pendulum
(TFP), are currently being developed as seismic isolators. However, all current analytical
models are inadequate in modeling many facets of these devices. Either the model can only
handle uni-directional ground motions while incorporating the kinetics of the TFP system,
or the model ignores the kinetics and can handle bi-directional motion. And in all cases, the
model is linearized to simplify the equations. The second part of this dissertation presents
an all-in-one model that incorporates the full nonlinear kinetics of the TFP system, while
allowing for bi-directional ground motion. In this way, the model presented here is the
most complete single model currently available. It was found that the non-linear model
can more accurately predict the experimental results for large displacements due to the
nonlinear kinematics used to describe the system. The model is also able to successfully
predict the experimental results for bi-directional ground motions.
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3.18 The Poincaré sections of the reference and hybrid systems for µ̄ = 1.2 and Ki = 10. 45

4.1 A diagram of the Reference System (RS). . . . . . . . . . . . . . . . . . . . . . . 49
4.2 A diagram of the First Hybrid System (HS1). . . . . . . . . . . . . . . . . . . . . 53
4.3 A diagram of the Second Hybrid System (HS2). . . . . . . . . . . . . . . . . . . 57
4.4 A diagram of the Third Hybrid System (HS3). . . . . . . . . . . . . . . . . . . . 61

iv



4.5 The Whole System Error of the total energy for all three hybrid systems as a
function of Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 The Whole System Error of the states for all three hybrid systems as a function
of Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 The Hybrid Interface Error of δ for all three hybrid systems as a function of Ω. 69
4.8 The Hybrid Interface Error of xs for all three hybrid systems as a function of Ω. 70
4.9 The Hybrid Interface Error of ys for all three hybrid systems as a function of Ω. 71
4.10 The Hybrid System Error of δ for all three hybrid systems as a function of Ω. . 72
4.11 The Hybrid System Error of xs for all three hybrid systems as a function of Ω. . 73
4.12 The Hybrid System Error of ys for all three hybrid systems as a function of Ω. . 74
4.13 Frequency response of the unforced system. The insert is a zoomed-in section

around the peak near Ω = 5.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 (a) Diagram of a Triple Friction Pendulum (TFP) model. (b) Expanded view
of the TFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 The 2-D change of coordinates from the 1-2-3 Euler angles. Note that in each
2-D coordinate system shown, there is a third unit vector pointing out of the
page following the right-hand rule about which the 2-D coordinate system is
rotating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Locations of the co-rotational basis vectors for the first two bearings. Note that
for each coordinate system shown, there is a third vector pointing into the page
following the right-hand rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Sliding angles for all four sliding surfaces. . . . . . . . . . . . . . . . . . . . . . . 80
5.5 (a) Force/displacement curve for the TFP for a uni-directional motion. (b)

Relative angle of each bearing for a uni-directional motion. . . . . . . . . . . . . 93
5.6 Hysteresis loop for uni-directional motions for ground motions in the five stages

of motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 The variance between two tests as a function of η on a semi-log scale. . . . . . . 95
5.8 Force/displacement curve for the unusual TFP. . . . . . . . . . . . . . . . . . . . 96
5.9 Hysteresis loops and force curves for a circular ground motion. . . . . . . . . . . 97
5.10 Hysteresis loops and force curves for a figure-eight ground motion. . . . . . . . 97

B.1 The state space trajectories for the reference and hybrid systems with µ̄ =
1.114. Compare to Fig. 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.2 The angular velocity time series of the reference and hybrid systems for µ̄ =
1.2. Compare to Fig. 3.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.3 A zoomed-in plot of the angular velocity time series of the reference and hybrid
systems for µ̄ = 1.2. Compare to Fig. 3.7. . . . . . . . . . . . . . . . . . . . . . . 109
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Chapter 1
Introduction

The field of structural mechanics is very broad, with focuses on experimentation as
well as theoretical and numerical modeling. Theoretical and numerical modeling allow
for cheaper and quicker predictions than an experiment, and in some cases an experiment
may be impractical due to size and cost constraints. However, theoretical and numerical
models need to be validated against experimental tests to guarantee the utility and accuracy
of the model. For these reasons, it is important that experimentation and modeling progress
and work together. However, there are some instances where the theoretical and numerical
modeling for a specific topic is lagging behind the experimental efforts. One such area
is that of hybrid simulation. Another such topic is that of multi-slider friction pendulum
(MSFP) systems. Thus, the aim of this dissertation is to expand on the theoretical and
numerical modeling and analysis of those two areas of structural mechanics, and when
possible, these theoretical and numerical models are compared against experimental results.

1.1 Background on Hybrid Simulation
Hybrid simulation (or hybrid-testing) is a popular experimental method that is primarily

used in Civil Engineering laboratories [39, 44, 57, 60]. It originated roughly 30 years ago
[59] and has been used continuously and extensively as a methodology to experimentally
assess structural systems under earthquake loadings. Occasionally the methodology has
also been used in other disciplines to assess dynamic phenomena; see e.g. [8, 65, 70]. The
central problem that hybrid simulation addresses is that it is very difficult and expensive
to test full-size civil structures for their structural capacities under seismic loads. The
largest testing facility in world is the E-Defense facility [21] which can test structures with
a 20 m×15 m plan and 12 MN weight. While this represents a large capacity, it precludes
the testing of many types of structures, is very expensive due to the need to build full-size
prototypes, has limited throughput, and does not easily allow for design exploration.

At its heart, one can think of experimental testing of this variety as the use of an analog
computer (algorithm) to simulate the behavior of a structure. Hybrid testing and its many

1



CHAPTER 1. INTRODUCTION

variants (see e.g. [40, 55]) tries to leverage this viewpoint in the following manner: (1) The
determination of the dynamic response of a structural system is thought of as the integration
of the equations of motion for the structure; (2) The integration of the system of equations
is done by a hybrid mix of numerical and analog computing. In practice, this means that
part of the structural system is physically present in the laboratory and the remainder is
represented by a computer model. Both parts of the structure are subjected to dynamic
excitation and they interact via a system of sensors and actuators in real- and/or pseudo-
time [69]. Figure 1.1 provides a schematic of the setup. Its advantage comes about when
one can place the bulk of the structure in the computer due to a confidence in its model;
the physical part typically represents a subset of the structure for which one does not have
a good model; see e.g. [43].

Physical
Subsystem

Computational
Model

Actuator
and Controller

Reference
Position

Output
Position

Force Feedback

Fig. 1.1 A simple diagram of a hybrid system setup.

Most of the work on hybrid simulation has been devoted to the actual execution of ex-
periments; as this is a large task in and of itself, little theoretical work has been performed
to verify the results that these experiments produce. The main errors associated with hybrid
simulation include time integration errors, control errors, interface splitting errors, and ran-
dom signal errors, which can further be classified as either systematic or random errors [56,
66]. The bulk of the literature on hybrid-testing has focused on improving the accuracy and
speed of the numerical computation and the fidelity of the control system [9, 12, 67] – all
with the implicit assumption that improvements in these aspects will render a result that is
more faithful to an untested physical reality. There has also been attempts to see how the
location of the hybrid interface can affect the overall dynamics of the hybrid system [19,
61]. However, there has been a lack of studies on the errors directly associated with the
mismatch inherently created at the hybrid interface by the use of sensors and actuators.

Recently, efforts have been put forth to try and understand the theoretical limitations
of hybrid testing [4, 18, 19, 20] independent of the systematic and random errors that
arise from numerical issues and sensor errors. These works utilized a reference structural
system that was fully theoretical, split the system into fictitious physical and computational
parts, and then explored the fidelity of the hybrid equations with respect to the reference
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CHAPTER 1. INTRODUCTION

equations. In this way, the true dynamical response of the reference system was known a
priori in analytic form and could be compared to the hybrid-system response which was
also known in analytic form. The overall methodology thus illuminated directly the central
feature of all hybrid simulation methodologies – viz., the presence of a split system that is
patched together with an imperfect interface.

1.2 Background on Multi-Slider Friction Pendulums
Multi-stage friction pendulum systems (MSFPs) are currently being designed and de-

veloped as seismic isolation devices for a wide range of structural and non-structural sys-
tems [41, 68, 72]. One of the earliest forms of the MSFP was the single friction pendulum,
developed as early as 1987 [71]. This original design has been expanded to double and
triple friction pendulums to increase the utility of the device as a seismic isolator [23, 26].
These seismic isolators consist of steel bearings with spherical concave surfaces that slide
along one another. An example of the triple friction pendulum (TFP) can be seen in Fig. 1.2.
As the bearings slide along one another, they are able to provide restoring forces related
to the relative displacement between bearings, which creates a variable stiffness associated
with the overall motion of the friction pendulum [23]. Also, the friction between sliding
bearings gives the friction pendulums a hysteretic behavior [26].

(a) (b)

Fig. 1.2 (a) An overview image of an example of a Triple Friction Pendulum
(TFP). (b) A close up front view of a TFP.

Multiple areas of the world, including California and Japan, are at a constant risk of a
major earthquake, and the proper usage of seismic isolators, such as MSFPs, can drasti-
cally reduce the damage sustained to buildings, bridges, etc. due to a major earthquake [11,
42]. For this reason, well-functioning models of MSFPs are necessary to make sure that
structures are properly isolated in the event of an earthquake. As the usage of MSFPs
became more common, there were extensive experimental tests on MSFPs to help char-
acterize their motion due to different types of excitation [25, 45]. However, experimental
tests can be expensive and time consuming, thus numerical models were developed to help

3
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with the simulation of these MSFPs [5, 6, 24, 63]. While current models have come a long
way, no current model for MSFPs utilizes a rigorous setup for the kinematics of the internal
sliders; they start directly with scalar equations. Another drawback of current models, is
that no one model incorporates the full kinetics of the MSFPs with bi-directional motion;
there is either full kinetics for planar motion or bi-directional motion with only kinematics
and no kinetics.

1.3 Organization of this Dissertation
Chapters 2-4 focus on the development of theoretical models for hybrid simulation with

analyses of those models. Chapter 2 focuses solely on the beam, for both the elastic and
viscoelastic systems. Chapter 2 also includes the derivation of the equations of motion
for the reference and hybrid systems. Chapter 3 follows the same pattern as Chapter 2,
but for a nonlinear damped and driven pendulum. Chapter 4 applies the theoretical model
for hybrid simulation to that of a crane structure. Chapter 5 then develops a model for
multi-slider friction pendulums (MSFP) and uses that model on the specific case of the
triple friction pendulum (TFP) and compares it to previous models and experimental data.
Finally, Chapter 6 provides a comprehensive summary of the results from the previous
chapters, along with comments on possible of future work.
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Chapter 2
Hybrid Simulation Theory Applied to
Continuous Beams

2.1 Introduction
The first aspect of this dissertation focuses solely on the theoretical performance of

real-time hybrid simulation as an experimental method, ignoring all of the numerical and
random errors, as this leads to a best case scenario for a hybrid experiment. This approach
eliminates the errors associated with time integration methods and signal noise and focuses
only on the errors that are generated by systematic interface mismatch errors – an element
that is always present in hybrid simulations. In this way one is able to focus in on the
essential error associated with a system possessing a split interface and to understand the
inherent error associated with imperfect interface splitting without the added clutter asso-
ciated with time stepping error etc. The net result then provides a true estimate of the best
possible error targets for a hybrid system.

To make the analysis concrete, this dissertation focuses on a harmonically driven beam.
This system has been chosen for its relative simplicity and the ability to analyze the solution
in an analytical form. Both the elastic as well as the viscoelastic cases will be examined.
Further, this work always considers the case of distributed mass which occurs in the real
physical objects. By studying the problem from a strictly theoretical viewpoint, one can
fully control the situation and precisely define what one means by truth. This allows one
to precisely identify a lower bound below which one can not improve a hybrid simulation
via, say, improvements in time integration methods or improvements in the control scheme.
While the setup is rather simple, the results are felt to have general applicability. In what
follows, the general theoretical setting of hybrid simulation is first described; then the
elastic beam is considered within this setting, followed by the viscoelastic beam. This is
followed by a study of the behavior of hybrid simulation for these two systems and finally
a set of concluding observations and comments are presented.
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2.2 General Theory of Hybrid Simulation
In this section a general framework for hybrid simulation is developed.

The Reference System
First, the reference system needs to be setup to which the hybrid system will be com-

pared. Let the open set D be the domain of mechanical, as shown in Fig. 2.1a.

u(x, t)

D

∂D

(a)

up(x, t)

P
uc(x, t)

C

n

I
(b)

Fig. 2.1 (a) A general system with domain D and state vector u(x,t). (b) A gen-
eral system with imposed separation into two substructures for compari-
son to the hybrid system.

The mechanical response of the system is characterized by a state vector,

u(x,t) for x ∈D, (2.1)

where t represents time. In order to compare the reference system response to the hybrid
system response, imagine that the reference system is split into two substructures by an
open set I, with normal n, which acts an interface between two substructures. Note, the
interface I must be chosen such that for all x ∈ D, either x ∈ C or x ∈ P must hold, but
not both. The two substructures are defined by the open sets P and C, with the following
definitions:

P = {x ∈D | x ·n < 0}, (2.2)
C = {x ∈D | x ·n > 0}. (2.3)

The “physical” substructure (P-side) and the “computational” substructure (C-side) are
shown in Fig. 2.1b. The state vector can now be separated into two parts:

u(x,t)=
{

up(x,t) if x ∈P
uc(x,t) if x ∈ C. (2.4)

This defines the true response for a given mechanical system. The precise expression for
u(x,t) is found by determining the function that satisfies the governing equations of motion
on D and the imposed boundary conditions on ∂D.

6



CHAPTER 2. HYBRID SIMULATION THEORY APPLIED TO CONTINUOUS
BEAMS

The Hybrid System
The response of the hybrid system should be defined in a similar fashion to make the

comparison between the two systems straightforward. Using the same boundary defined
in Fig. 2.1b, the hybrid system is separated into two substructures, as seen in Fig. 2.2. In
order to differentiate the reference system from the hybrid system a superposed hat ( ˆ ) is
used to indicate a quantity in the hybrid system. The mechanical response of the hybrid
system is represented by the following state vector:

û(x,t)=
{

ûp(x,t) if x ∈P
ûc(x,t) if x ∈ C. (2.5)

In a hybrid system ûp and ûc are determined from the “solution” of the governing equations
of motion for P and C subjected to the boundary conditions on ∂P and ∂C. The boundary
conditions on ∂D∩∂P and ∂D∩∂C naturally match those of the reference system. How-
ever, in the hybrid system one must additionally deal with boundary conditions on the two
interface sides of Ip and Ic, where Ip = I∩∂P and Ic = I∩∂C. The boundary conditions
on Ip and Ic are provided by the sensor and actuator system.

ûp(x, t)

P
ûc(x, t)

C

∂D ∩ ∂P
∂D ∩ ∂C

Ic = I ∩ ∂C

Ip = I ∩ ∂P

Fig. 2.2 The hybrid system separated into the physical, P , and computational, C,
substructures.

The hybrid split leads to more unknowns than equations. To resolve this issue, a model
of the actuator and sensor system is needed. A relatively general form for such a model can
be expressed as [18]:

Dc[ûc]
∣∣∣
Ic

= Dp[ûp]
∣∣∣
Ip
, (2.6)

where Dc[•] and Dp[•] are operators that generate the necessary equations at the interface
from the state vectors û•. The specific form of Dc[•] and Dp[•] will be defined later in
this dissertation. This model allows one to study the effects of systematic hybrid system
splitting errors, specifically boundary mismatch errors. Such errors directly correlate to
errors seen in experimental hybrid systems [1, 56].

In an actual hybrid simulation, one only has the physical part P , the sensor and actuator
system, and the computational model for part C. This makes it challenging to know if
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the determined response û is correct to a sufficient degree. To circumvent this issue an
analytical model for part P and part C will be used, and similarly for the sensor and actuator
system. This will allow one to faithfully compute the error in the response quantity û of
the hybrid system by comparing it to the response quantity u of the reference system. The
error investigated is then strictly the error in the hybrid system associated with the splitting
interface.

Note, the previous definitions start from a reference system, and then develop a hybrid
system framework. One can easily start from a hybrid system and develop the correspond-
ing reference system. For example, let C and P be open sets that define the two substruc-
tures of a hybrid system. Then, the interface is defined as I = ∂C ∪ ∂P . From there, a
domain is defined as D̃ = C∪I ∪P . Finally, the open set which defines the domain of the
reference system is defined as D = D̃ \ (I∩∂D̃).

L2 Space and Hybrid Simulation Error
With the above notation in hand, consider now how one can understand hybrid simu-

lation from a geometric point of view. First note that the space of L2 functions over B is
defined as [36]:

L2(B)= {v : v is defined on B and
∫
B

v2dx <∞}, (2.7)

where B is a bounded domain in R3. Using this definition one has

u ∈ L2(D). (2.8)

The restriction of u onto C is denoted as

uc ∈ L2(C), (2.9)

and similarly for the restriction of u onto P:

up ∈ L2(P). (2.10)

The same applies for the •̂ quantities. One notes that

L2(D)= L2(C)×L2(P). (2.11)

In L2(C), the displacements uc and ûc trace out trajectories with time. These two trajecto-
ries differ from each other since they are for two different systems. The same is true for the
trajectories of up and ûp in L2(P). By considering the trajectories in L2(C) and L2(P) as
components of order pairs in L2(D) at each moment in time, one can combine trajectories
from L2(C) and L2(P) into trajectories in L2(D), one for the reference system and one for
hybrid system. A simple illustration of this situation is shown in Fig. 2.3. The difference
between the two trajectories in L2(D) gives one the basis for an error analysis. Given a true
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Reference

Hybrid

L2(C)

L2(P)

u(x, t1)− û(x, t1)

u(x, t2)− û(x, t2)

Fig. 2.3 A schematic illustration of a possible L2(D) space with trajectories for
the reference and hybrid systems from time t = t1 to t = t2 showing the
difference between the two trajectories.

solution u and a hybrid solution û, one can measure error using a space-time L2-norm in
the form of Eq. (2.12) [36]:

||e|| =
 T∫

0

∫
D

∣∣∣u(x,t)− û(x,t)
∣∣∣2dxdt

1/2

, (2.12)

where T is the period of the harmonic excitation on the system and D is the complete
domain of the system. This allows for a measurement of the absolute error between the
reference system and the hybrid system over the domain of the mechanical system and
over the period of the harmonic excitation.

2.3 Application to the Elastic Beam
The earlier set-up is now applied to a continuous beam, where one has access to exact

analytical solutions for an intact reference system and for a hybrid (decomposed) system
defined over P and C.

Reference System
The reference system is an elastic, homogeneous beam pinned on both ends with a

harmonic moment applied to one end. A diagram of the mechanical system is shown in
Fig. 2.4.
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E1

E3

M(t)
w(x, t)

l

EI, ρ

Fig. 2.4 The system of an elastic pinned-pinned beam with a terminally applied
moment, M(t).

In this case the displacement can be decomposed as shown in Eq. (2.13):

w = w(x,t)E3, (2.13)

where E3 represents the unit vector in the 3-direction as indicated in Fig. 2.4. In what
follows, the vector form is ignored, and only w(x,t) is considered. The partial differential
equation that governs the motion of the mechanical system is given by the dynamic form
of the classical Bernoulli-Euler equation:

ρ
..
w =−EIw,xxxx, (2.14)

where ρ is the linear mass density, E is the elastic modulus, I is the second moment of area
of the beam, and comma notation indicates differentiation. The terminally applied moment,
M, is assumed to be harmonic:

M(t)= M̄ exp(iωt), (2.15)

where M̄ is the magnitude of the applied moment and ω is the frequency of the applied
moment. The well-known solution to this system is given by

w(x,t)=
( −M̄ sin(βx)

2EIβ
2 sin(β l)

+ M̄ sinh(βx)

2EIβ
2 sinh(β l)

)
exp(iωt), (2.16)

where l is the beam span and the parameter β is determined from

β
4 = ρ

EI
ω

2. (2.17)

Hybrid System
The pinned-pinned beam is now represented by a hybrid system using a specific sepa-

ration. The hybrid system is shown in Fig. 2.5, where the P-side is the left side, without
the applied moment, and the C-side is the right side, with the applied moment.
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E1

E3

M(t)
ŵp(x, t)

l1

EI, ρ

g
(u)
p g

(u)
c

ŵc(x, t)

l2

g
(θ)
p g

(θ)
c

Fig. 2.5 The hybrid system of an elastic pinned-pinned beam with a terminally
applied moment, M(t), and boundary functions g(u)p (t), g(u)c (t), g(θ)p (t),
and g(θ)c (t), l1 + l2 = l.

The separation of the hybrid system occurs at x = l1, thus, in this system, the displace-
ment is given by

ŵ(x,t)=
{

ŵp(x,t) if 0 ≤ x < l1
ŵc(x,t) if l1 < x ≤ l.

(2.18)

Separation of variables is applied to the system, giving ŵp(x,t)= X̂p(x)T̂p(t) and ŵc(x,t)=
X̂c(x)T̂c(t), where both must independently satisfy Eq. (2.14). This leads to the following
equations:

X̂p(x)= b̂1 cos(β̂px)+ b̂2 sin(β̂px)+ b̂3 cosh(β̂px)+ b̂4 sinh(β̂px), (2.19a)

X̂c(x)= b̂5 cos(β̂cx)+ b̂6 sin(β̂cx)+ b̂7 cosh(β̂cx)+ b̂8 sinh(β̂cx), (2.19b)

T̂p(t)= T̂c(t)= exp(iωt), (2.19c)

where b̂1 − b̂8 are constants. Since ŵp and ŵc must both independently satisfy Eq. (2.14),
the following relation also holds:

β̂
4
p = β̂

4
c = ρ

EI
ω

2. (2.20)

Using Eq. (2.20) in conjunction with Eq. (2.17), it is noted that β = β̂p = β̂c. In order
to determine b̂1 − b̂4, one needs four boundary conditions on P . As is typical, one can
take two from the left-side and two from the right-side of the domain of P . The functions
g(•)p will denote the boundary functions on Ip, which in the present case is simply the
point x = l1. The same applies for b̂5 − b̂8 on C where the boundary functions on Ic will
be denoted by g(•)c . As an example, Fig. 2.5 shows boundary functions g(u)p and g(u)c for
transverse displacements and g(θ)p and g(θ)c for rotations. Thus, the boundary conditions at
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x = l1 become

ŵp(l1,t)= g(u)p (t)= ḡ(u)p exp(iωt), (2.21a)

ŵc(l1,t)= g(u)c (t)= ḡ(u)c exp(iωt), (2.21b)

ŵp,x(l1,t)= g(θ)p (t)= ḡ(θ)p exp(iωt), (2.21c)

ŵc,x(l1,t)= g(θ)c (t)= ḡ(θ)c exp(iωt). (2.21d)

Note that ḡ(•)p and ḡ(•)c are so far unspecified. Intuitively they are related to each other but
a discussion of this inter-relation is deferred to the discussion of a model for the interface
errors.

Solving for b̂1 − b̂8, while employing the requisite boundary conditions at x = 0, x = l,
Ip, and Ic, gives

ŵp(x,t)=
ḡ(u)p D2(β l1,βx)− ḡ(θ)p

β
D3(β l1,βx)

D2(β l1,β l1)
exp(iωt), (2.22)

ŵc(x,t)=
(

M̄

2EIβ
2

(
A1(β l2)B1 (β (x− l1))−B1(β l2)A1 (β (x− l1))

)
−ḡ(u)c D2(β l2,β (x− l))+ ḡ(θ)c

β
D3(β (x− l),β l2)

)
exp(iωt)

D2(β l2,β l2)
, (2.23)

where

A1(x)= sin(x)− sinh(x), (2.24a)
B1(x)= cosh(x)−cos(x), (2.24b)

D2(x,y)= cosh(x)sin(y)−cos(x)sinh(y), (2.24c)
D3(x,y)= sinh(x)sin(y)− sin(x)sinh(y). (2.24d)

Non-Dimensionalization and Determination of ḡ(•)p and ḡ(•)c

To further the analysis, one needs to determine the so far unspecified boundary func-
tions. In this regard, it is advantageous to non-dimensionalize the equations as well as to
express the reference solution in the same format as the hybrid solution. For the latter point,
an examination of Eqs. (2.16) and (2.24) shows that one can write the reference solution as

w(x,t)= M̄D3(βx,β l)

2EIβ
2P1(β l)

exp(iωt), (2.25)

where

P1(x)= sin(x)sinh(x). (2.26)
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In order to non-dimensionalize Eqs. (2.22), (2.23), and (2.25), one can introduce the fol-
lowing non-dimensional quantities:

η = w
l
, η̂p =

ŵp

l
, η̂c =

ŵc

l
, y = x

l
, (2.27a)

µ = M̄l
EI

, (2.27b)

ω1 =
√

EI
ρ

π
2

l2 , Ω = ω

ω1
, τ = ω1t, (2.27c)

κ = β l = π
p

Ω, (2.27d)

G(u)
p = ḡ(u)p

l
, G(u)

c = ḡ(u)c

l
, G(θ)

p = ḡ(θ)p , G(θ)
c = ḡ(θ)c , (2.27e)

L1 =
l1
l
, L2 = 1−L1, (2.27f)

where ω1 is the lowest resonant frequency of the pinned-pinned beam [62]. Thus Eqs. (2.22),
(2.23), and (2.25) become

η(y,τ)= µD3(κy,κ)

2κ2P1(κ)
exp(iΩτ), (2.28)

η̂p(y,τ)=
G(u)

p D2(κL1,κy)− G(θ)
p
κ D3(κL1,κy)

D2(κL1,κL1)
exp(iΩτ), (2.29)

η̂c(y,τ)=
(

µ

2κ2

(
A1(κL2)B1(κ(y−L1))−B1(κL2)A1(κ(y−L1))

)
−G(u)

c D2(κL2,κ(y−1))+ G(θ)
c

κ
D3(κ(y−1),κL2)

)
exp(iΩτ)

D2(κL2,κL2)
. (2.30)

For the rest of this chapter, unless stated otherwise, all new variables or quantities are
assumed to be dimensionless.

To complete the system of equations, G(•)
p and G(•)

c need to be determined. The condi-
tions to determine G(•)

p and G(•)
c come from the characteristics of the sensor and actuator
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control system. As a simple model, one can assume that the hybrid system produces a mag-
nitude and phase error in the corresponding displacements, rotations, bending moments,
and shear forces across the interface of the hybrid system. Using the notation introduced in
Eq. (2.6), Dc[•] is defined as

Dc[•]= D[•]=


•
∂•
∂y

∂2•
∂y2

∂3•
∂y3

 , (2.31)

and Dp[•] is defined as

Dp[•]= E D[•], (2.32)

with the same definition for D[•] and E is expressed as

E =


(1+εu)exp(iΩdu) 0 0 0

0 (1+εθ)exp(iΩdθ) 0 0

0 0 (1+εM)exp(iΩdM) 0

0 0 0 (1+εV )exp(iΩdV )

 . (2.33)

Here ε(•) are the magnitude of the tracking errors for the displacement, rotation, bending
moment, and shear force at the interface and d(•) are the tracking error time delays of the
displacement, rotation, bending moment, and shear force. ε(•) and d(•) model the interface
error in the hybrid system at I. Using this model gives

η̂c(L1,τ)= η̂p(L1,τ)(1+εu)exp(iΩdu), (2.34a)

η̂c,y(L1,τ)= η̂p,y(L1,τ)(1+εθ)exp(iΩdθ), (2.34b)

η̂c,yy(L1,τ)= η̂p,yy(L1,τ)(1+εM)exp(iΩdM), (2.34c)

η̂c,yyy(L1,τ)= η̂p,yyy(L1,τ)(1+εV )exp(iΩdV ). (2.34d)

The purpose of Eq. (2.34) is to relate η̂c and η̂p by their ratios, defined as (1+εu)exp(iΩdu),
similarly for their spatial derivatives. In this way, one can say that error is transferred from
the physical side to the computational side if (1+ε(•)) > 1 and vice versa if (1+ε(•)) < 1.
The same can be said of d(•), depending on the sign of d(•). Equations (2.34) together with

Eqs. (2.29) and (2.30) can be used to analytically solve for G(•)
p and G(•)

c and thus complete
the solution [17]. Note that this error model can be made more sophisticated but suffices to
understand a number of features of hybrid systems.
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2.4 Application to the Viscoelastic Beam
The same pinned-pinned beam model used previously is adopted for the viscoelastic

case. For this purpose it is useful to introduce the complex elastic modulus:

E∗ = E ′+ iE ′′, (2.35)

where E ′ is the storage modulus, E ′′ is the loss modulus, and i = p−1 is the imaginary
unit [27]. To be concrete, the standard 3-parameter Maxwell model for a linear viscoelastic
solid will be employed (the so-called standard linear solid) [64]. In this case,

E ′ = E∞+ ω
2t2

r

1+ω
2t2

r
(E0 −E∞), (2.36a)

E ′′ = ωtr
1+ω

2t2
r
(E0 −E∞), (2.36b)

where E0 is the instantaneous modulus and E∞ is the equilibrium modulus. The relaxation
time, tr, is given by

tr =
1

ω̄ζ
. (2.37)

The parameter ζ is the non-dimensional damping frequency, which determines the location
of the damping peak in the frequency domain. Since E∗ is complex, it can be expressed in
polar form by

E∗ = |E∗|exp(iδ ), (2.38a)

|E∗| =
√

E ′2 +E ′′2, (2.38b)

δ = tan−1
(

E ′′

E ′

)
. (2.38c)

Using this form of the complex elastic modulus, Eq. (2.17) becomes

ρω
2 = |E∗|I exp(iδ )β 4. (2.39)

Since ω , |E∗|, I, and ρ are real values, β must be complex. Solving for β results in

β = 4

√
ρ

|E∗|I
p

ω exp
(−iδ

4

)
. (2.40)
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The solution for the reference system now reads

w(x,t)=
(−M̄ exp(−iδ )sin(βx)

2|E∗|Iβ
2 sin(β l)

+ M̄ exp(−iδ )sinh(βx)

2|E∗|Iβ
2 sinh(β l)

)
exp(iωt). (2.41)

The non-dimensionalization of Eq. (2.41) and the application of the functions defined by
Eqs. (2.24) and (2.26) lead to the same relation given by Eq. (2.28), where all values have
the same definitions as before except

κ = β l = π
p

Ωexp
(−iδ

4

)
, (2.42a)

and

µ = M̄l exp(−iδ )
|E∗|I . (2.42b)

Likewise, Eqs. (2.29) and (2.30) hold for the viscoelastic pinned-pinned hybrid beam case,
using the new definitions of κ and µ .

2.5 Analysis of the Hybrid Systems
Having analytic expressions for the response of the reference systems and the hybrid

systems, it is possible to examine the intrinsic errors associated with hybrid simulation
using the interface model. Error in hybrid simulation for a given loading and a given set of
ε(•) and d(•) will be defined using the non-dimensionalized response functions as

e(y,τ)= η(y,τ)− η̂(y,τ). (2.43)

For analysis purposes it is useful to examine the L2-norm of this quantity which is defined
by

||ep||2 =
T∫

0

L1∫
0

(
Re
(
η(y,τ)− η̂p(y,τ)

))2
dydτ, (2.44a)

||ec||2 =
T∫

0

1∫
L1

(
Re
(
η(y,τ)− η̂c(y,τ)

))2
dydτ, (2.44b)

||e|| =
√

||ep||2 +||ec||2, (2.44c)

where T is the non-dimensional period of the applied bending moment, meaning that it
changes with Ω and Re(•) is the real part of (•). The functions η(y,τ), η̂p(y,τ), and
η̂c(y,τ) are from Eqs. (2.28), (2.29), and (2.30), respectively. Due to the complexity of
developing an analytic form for these norms, the integrals appearing in the norm expression
are numerically evaluated with a high order adaptive quadrature rule to at least an absolute
error of 10−10 and at least a relative error of 10−6. See Appendix A for a table of all material
constants and dimensions used for all of the following tests.
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Fig. 2.6 (a) Comparison of the reference elastic pinned-pinned beam to the hybrid
elastic pinned-pinned beam with zero interface errors. (b) Comparison
of the reference elastic pinned-pinned beam to the hybrid elastic pinned-
pinned beam when εu = 0.1. Note, µ = 3.75×10−3.

First, Eqs. (2.29) and (2.30) are compared with Eq. (2.28) to verify that the equations
do in fact describe the correct system. Note that if all ε(•) = 0 and d(•) = 0, then the hybrid
system should reduce to the reference system. Figure 2.6(a) shows η(y,0) and η̂(y,0)
for one set of parameters and the difference e(y,0). Note that e(y,0) is zero to machine
precision and thus, to the accuracy to which one can evaluate the expressions, they are
identical. For all of the following figures, all error parameters are assumed to be 0 unless
noted otherwise in the figure. To show the effects of a displacement error, a 10% error is
introduced into the displacement by setting εu = 0.1. This value of εu was chosen since it
represents a relatively large error, and it is useful to see how this large error influences the
system error. Later in the analysis, the effect of varying εu will be examined. Fig. 2.6(b)
shows a discontinuity between the two sides of the interface in the hybrid system and that a
noticeable amount of error has been introduced into the entire domain of the hybrid system
due to the 10% displacement error at the interface; the large difference in scale of the
vertical axes of the error plots in Figs. 2.6(a) and 2.6(b) should be noted.

Effect of Varying Frequency

For specific choices of the parameters ε(•), d(•), and L1, Ω is initially swept from 10−2 to
102 to give a comprehensive look at the effect of the excitation frequency on the hybrid sys-
tem. Note, that all ε(•) have similar effects on the error, and thus only εu is discussed, with
any differences explicitly stated for the other ε(•). The same holds for d(•). In Fig. 2.7(a),
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Fig. 2.7 Error Norms: (a) A frequency sweep of the elastic pinned-pinned beam
with εu = 0.1 on a log-log plot. (b) A zoomed-in plot showing the para-
sitic spike just to the left of Ω = 1.
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Fig. 2.8 Normalized Error Norms: (a) A frequency sweep of the elastic pinned-
pinned beam with εu = 0.1 on a log-log plot. (b) A zoomed-in plot show-
ing the parasitic spike just to the left of Ω = 1.

which has εu = 0.1, the error grows extremely large near the resonant frequencies of the
system, i.e. Ω= 1,4,9, ..., which is to be expected as the displacement becomes unbounded
at these frequencies. Since almost all types of excitation contain a broad spectrum of fre-
quencies, this leads one to conclude that in order for the hybrid system to give usable results
all frequencies in the excitation must be less than the first resonant frequency, or Ω= 1. Be-
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Fig. 2.9 (a) A frequency sweep of the elastic pinned-pinned beam with du = 0.1
on a log-log plot. (b) A frequency sweep of the elastic pinned-pinned
beam with εu = 0.1 and du = 0.1 on a log-log plot.

cause of this, the following analysis will focus on excitation frequencies that are below the
first resonant frequency (Ω < 1). Note, this is due to the fact that the system being used for
this section has zero damping. In real situations there will be some form of damping that
will reduce the effects of the resonant frequencies. An important feature of the hybrid sys-
tem response is the appearance of parasitic resonant spikes not associated with the actual
resonant frequencies of the reference system. Figure 2.7(b) shows one such spike just to the
left of Ω = 1. These parasitic spikes are more noticeable for different values of the system
parameters. The parasitic spikes oscillate around the resonant frequencies as L1 changes
from zero to one. The amplitude of these oscillations, in the frequency domain, are directly
related to the values of ε(•). It is also helpful to plot the error norm normalized by ‖η‖ to
give a sense of the relative magnitude of the error. For the same parameters as considered
in Fig. 2.7, this is shown in Fig. 2.8. Comparing Figs. 2.7(a) and 2.8(a), one notes that the
drop off in error with increasing frequency disappears. This is due to the fact that ‖η‖ is
inversely proportional to

p
Ω. While the error spikes seem similar in the two cases, an ex-

amination of the zoomed-in normalized error in Fig. 2.8(b), cf. Fig. 2.7(b), shows that the
hybrid system somewhat tracks the reference system at Ω = 1 but that it clearly possesses
a true parasitic resonance just below Ω = 1.

Considering now the effect of time delay errors, Fig. 2.9(a) shows the case of du = 0.1;
the normalized error is now seen to grow for increasing frequencies below Ω = 1. This is
in contrast to what is seen in Fig. 2.8(a), where the normalized error held constant with
increasing frequency until it approached the first resonant frequency. Further, with the
presence of multiple error sources, the behavior is modestly additive. Consider for example
non-zero εu and du as shown in Fig. 2.9(b). In this instance the normalized error, prior to
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Ω = 1, behaves exactly as Fig. 2.8(a). This indicates that with multiple non-zero error
parameters, the error in the hybrid system will be controlled by the largest individual error
for equivalent values of the error parameters.

Effect of Varying εu: Magnitude of Tracking Error

The effect of varying εu is studied to determine its direct effect on the hybrid system
error. As an example, in Fig. 2.10(a), the effect of varying εu at Ω = 0.8 is shown. The
domain of εu extends from −0.5 to 0.5, since it is highly unlikely that an experimental
setup will have tracking errors outside of this domain. It can be seen that as εu increases
in magnitude, the rate of normalized error change decreases. Thus, the only areas of large
change in the error come from locations near εu = 0. This indicates that there is noticeable
error in the hybrid system, even for small εu, and trying to reduce the value of εu does not
have a large effect on the system error, unless εu can be brought quite close to zero. Note
that varying εθ, εM, and εV produces similar results to those in Fig. 2.10(a).
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Fig. 2.10 (a) The effect of varying εu for the elastic beam with no other imposed
error on a linear-log plot. (b) The effect of varying du for the elastic
beam with no other imposed error on a linear-log plot.

Effect of Varying du: Phase of Tracking Error

The effect of varying du is analyzed to determine its direct effect on the error in the
hybrid system. Since the effects of du are periodic, du only goes from 0 to 2π/Ω. For Ω,
a value of 0.8 is chosen for illustrative purposes. As shown in Fig. 2.10(b), the normalized
error grows from zero, peaks when du is half of the period, and then falls when du is equal
to a period. Note that varying dθ, dM, and dV produces similar results as in Fig. 2.10(b).
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Analysis of the Viscoelastic Beam
As viscoelasticity introduces damping it provides a somewhat more realistic model sys-

tem. As an initial check of the basic relations, Eqs. (2.29) and (2.30) with ε(•) = d(•) = 0 are
compared with the equation for the solution to the reference viscoelastic beam, Eq. (2.28).
This comparison is shown in Fig. 2.11. For succinctness, only the real part of the solution
is shown.
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Fig. 2.11 Comparison of the reference viscoelastic pinned-pinned beam to the
hybrid viscoelastic pinned-pinned beam with no imposed error.

As it can be seen, only round-off error is present between the hybrid and reference sys-
tems. It should be noted that the applied frequency chosen was Ω = 4, which is a resonant
frequency of the elastic system, meaning that the displacement is unbounded in the equiv-
alent elastic case. However, in Fig. 2.11, the displacement is bounded due to viscoelastic
damping. Note that ζ = 2 implies that the damping peak is located at a frequency of 2. If ζ

was chosen to be farther from the applied frequency, the effects of the damping would be
significantly less.

Effect of Varying Frequency

As with the elastic beam, a sweep of the frequency is performed from Ω = 10−2 to
Ω = 102 for various values of ζ . It is noted that the effects of all magnitude errors ε(•) are
nearly identical and thus only εu is considered. This is the same for all time delay errors
d(•). Consider first the effect of a magnitude error εu as shown in Fig. 2.12(a). One notes
that, depending on the value of ζ , the error is bounded to differing degrees at all of the
resonant of the elastic case. In what follows, focus will be paid to frequencies less than
10 (Ω < 10). Similar to the elastic beam case, there are parasitic resonant spikes near the
resonant frequencies, but only when the drive frequency is far from the damping frequency;
one of these parasitic spikes is shown in Fig. 2.12(b), but only for the ζ = 2000 curve. In the
other three curves, any possible parasitic spikes are mollified by the viscoelastic damping.
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Fig. 2.12 Error Norms: (a) A frequency sweep of the viscoelastic pinned-pinned
beam with εu = 0.1 on a log-log plot for various values of ζ . (b) A
zoomed-in plot of the parasitic resonant spike to the left of Ω = 1.
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Fig. 2.13 Normalized Error Norms: (a) A frequency sweep of the viscoelastic
pinned-pinned beam with εu = 0.1 on a log-log plot for various values
of ζ . (b) A zoomed-in plot of the parasitic resonant spike to the left of
Ω = 1.

When present, these parasitic spikes oscillate around the resonant frequency peaks as L1
grows from zero to one and the amplitude of these oscillations are related to the value of
ε(•) just as in the elastic case. As before, normalized error plots are helpful for interpreting
the results as shown in Fig. 2.13. The general interpretations from the elastic case are
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seen also to hold here with the caveat that the placement of damping peaks near (elastic)
resonances will reduce errors. If one instead introduces phase error, du (see Fig. 2.14),
one observes behavior similar to the elastic case – again with the same caveat. When the
applied frequency is near the damping frequency, the error is reduced around the resonant
frequencies. When the applied frequency is far from the damping frequency, the error
curves resemble those for the elastic case. Also, similar to the elastic case below Ω = 1, the
error behaves the same as in Figs. 2.8(a) and 2.9(a).
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Fig. 2.14 (a) A frequency sweep of the viscoelastic pinned-pinned beam with du =
0.1 on a log-log plot with varying ζ . (b) A frequency sweep of the
viscoelastic pinned-pinned beam with εu = 0.1 and du = 0.1 on a log-
log plot with varying ζ .

In order to determine how the error parameters interact in the viscoelastic case, two
error parameters are applied to the hybrid system. Figure 2.14(b) has εu = 0.1 and du = 0.1.
Below Ω = 1, the normalized error is seen to be consistent with Fig. 2.13(a) and not with
Fig. 2.14(a). This indicates that the larger error of the individual error parameters controls
the error of the system with multiple non-zero error parameters, which is consistent with
the elastic beam case. Further inspection of Figs. 2.13(a) and 2.14 reveals a sharp drop in
the error to the left of Ω = 10. This drop in error occurs when sin(κL1) = 0. In fact for
non-zero εu, εM, du, and dM error drops occur whenever sin(κL1)= 0. For non-zero εθ, εV ,
dθ, and dV such error drops occur whenever cos(κL1) = 0. These observations also hold
for the elastic case but are largely irrelevant there since in the elastic case one should never
exceed Ω = 1.

Effect of Varying εu: Magnitude of Tracking Error

To understand the effect of varying εu in the viscoelastic case, consider the fixed fre-
quency Ω = 0.8 at multiple values for ζ within the range of −0.5 to 0.5. As shown in
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Fig. 2.15(a), the shape of the error curves are identical to the one in Fig. 2.10(a). However,
the curve for ζ = 1 is ever so slightly below the rest of the curves due to the fact that the
damping frequency is close to the excitation frequency. Also, as in the elastic case, the
error changes rapidly for small εu and levels off as εu grows in magnitude. The effect of
varying εθ, εM, and εV are similar and thus are not shown.
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Fig. 2.15 (a) The effect of varying εu for the viscoelastic beam with no other
imposed error on a linear-log plot. (b) The effect of varying du for the
viscoelastic beam with no other imposed error on a linear-log plot.

Effect of Varying du: Phase of Tracking Error

The effect of varying du in the viscoelastic case is shown in Fig. 2.15(b). As noted
earlier, the effects of du are periodic over the range 0 to 2π/Ω. As a concrete example,
Fig. 2.15(b) shows the case of Ω= 0.8. When the applied frequency is far from the damping
frequency, the curves behave similar to that of the elastic case, cf Fig. 2.10(b). However,
when the damping frequency is closer to the applied frequency, the error, while remaining
essentially the same, develops a slight asymmetry relative to the center of the range as seen
with the curves for ζ = 1 and ζ = 5. Varying dθ, dM, and dV produces similar results.

Note that in the viscoelastic case, when the applied frequency is far from the damping
frequency, the error curves behave in the same manner as the elastic case. This is to be
expected, because away from the damping frequency, the viscoelastic equations approach
the elastic ones. Finally, note that almost all conclusions gained from the elastic case are
repeated for the viscoelastic case, except for special treatment of the parameter ζ .
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2.6 Conclusions
The analysis in this chapter demonstrates the theoretical performance of hybrid sim-

ulation for an elastic and a viscoelastic beam for the special case where the only errors
that are present are those associated with the interface mismatch (systematic errors) of the
hybrid system. A harmonic excitation was applied and only the steady-state solution was
studied. Our analysis ignores any transient response that may occur in experimental imple-
mentations of hybrid simulation. The results show that the resonant frequencies have an
over sized impact on the error of the simulation system. Thus, in order for real-time hybrid
simulation to be effective as a simulation technique, one must be aware of the forcing fre-
quencies, and keep them below the first resonant frequency for the elastic case or possibly
near the damping frequency in the viscoelastic case. The error due to ε(•) grows quickly
around ε(•) = 0 and reaches a large error value for small ε(•) values. Thus, it is somewhat
impractical to reduce the ε(•) parameters in order to reduce the error in the system, because
unless one could make the ε(•) values quite small, the system error does not significantly
change. All of the results stated in the analysis section have also been corroborated with
hybrid formulations for an elastic and a viscoelastic axially loaded bar [17] as well as for a
classical elastic Kirchhoff-Love plate [4]. This indicates that there are universal errors that
occur in hybrid simulation, even for simple one-dimensional and two-dimensional prob-
lems. Awareness of the causes of these errors can allow for real-time hybrid simulations to
be conducted in a way that reduces or even prevents these errors.

In this chapter it was assumed that ε(•) and d(•) are constants. However, this is not
always the case, they may in fact be functions of the frequency, such that at higher fre-
quencies the time-delay or magnitude error may increase. To include this effect, one could
introduce models of the form

d• =
d0(

1+exp(Ω0 −Ω)
)2 , (2.45)

where d0 is the maximum time delay and Ω0 is the frequency of maximum growth rate [4].
Similar equations can be applied to ε(•). Such models modify the details of the error re-
sponses; however, the trends remain fundamentally the same.

This chapter considered a single homogeneous linear material that could be modeled
by Eq. (2.14). This is not always the case for an experimental setup of hybrid simulation.
For example, many hybrid simulation setups are for many bars and beams at the same time,
each interacting with the whole system [33, 43]. In such cases analytic response solutions
are likely to not be available but one does not expect the observed general trends to be
altered.

The error measure that has been focused on was the L2-norm of the displacement er-
ror but that only shows one part of error in the system. The error in the rotation, shear
force, and bending moment can also be studied with the use of Sobolev-seminorms on the
displacement field [36]. Understanding the error in these quantities is as important as un-
derstanding the error in the displacement because in some situations these quantities can be
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of equal or even greater importance to the structural and mechanical behavior of a system
than the displacement [22].
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Chapter 3
Hybrid Simulation Theory Applied to
the Damped, Driven Nonlinear
Pendulum

3.1 Introduction
In this chapter, the previous framework is applied to a nonlinear dynamical system in

order to understand the behavior of hybrid-simulation in the presence of kinematic nonlin-
earities. As a model problem the damped, driven nonlinear pendulum is used; see [2] for
an in depth analysis of the dynamics of this system. This system is one of the most basic
nonlinear systems that has a clear physical representation. Despite the simplicity of this
system, it has a wide variety of properties that make it interesting to study. For instance,
this system exhibits a rich dynamical response with both periodic and chaotic trajectories;
see [58] for a discussion on these types of trajectories. These two behaviors can help show
how a hybrid split affects the overall dynamics of a nonlinear mechanical system. Also, a
spring-mass-damper actuator system which is controlled by a PI controller is used to con-
nect the two hybrid interfaces. This setup for the hybrid system gives a more advanced
representation of the hybrid system in comparison to the constant error methodology used
in [4, 20].

3.2 Damped, Driven Nonlinear Pendulum

The Reference System
The first system discussed in this chapter is the reference damped, driven nonlinear

pendulum; a diagram of which is shown in Fig. 3.1. The pendulum consists of a uniform
rigid rod of mass m and length ` that rotates about the point O. There is an applied moment
M(t) at O, and there is linear viscous damping at O with damping constant c. The kinetic
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m, ℓ
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Fig. 3.1 The damped, driven nonlinear pendulum with a rigid body rotating about
O with applied moment M(t).

energy of the system is given by

T = m`2

6

.
θ2, (3.1)

and the potential energy is given by

U = mg
(
`

2
− `

2
cos(θ)

)
. (3.2)

Using Lagrange’s prescription for finding the equations of motion [48] one has

d
dt

(
∂T
∂

.
θ

)
− ∂T
∂θ

+ ∂U
∂θ

= Mnc, (3.3)

where

Mnc =−c
.
θ+M(t). (3.4)

This gives

m`2

3

..
θ+c

.
θ+mg

`

2
sin(θ)= M(t), (3.5)

the equation that determines the true motion of the system.

The Hybrid System
Next, the hybrid pendulum is developed; a diagram of which is shown in Fig. 3.2. In

this case, the rigid body is split into two distinct bodies with distinct angles of rotation, θc
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Fig. 3.2 The hybrid pendulum with the rigid body split into two pieces rotating
about O with applied moment M(t).

and θp, but both bodies still rotate about O. Also, the lengths `p + `c = `, and the masses

mp =
`p
` m, and mc = `c

` m, thus mp +mc = m. The kinetic energy is given by

T̂ = mc`
2
c

6

.
θ2

c +
(

mp`
2
p

6
+ mc`

2
p +mp`

2
c

2

)
.
θ2

p, (3.6)

and the potential energy is given by

Û = mcg
(
`c

2
− `c

2
cos(θc)

)
+mpg

((
`c +

`p

2

)
−
(
`c +

`p

2

)
cos(θp)

)
, (3.7)

where the hat, •̂, represents a quantity in the hybrid system. Lagrange’s prescription is
applied with respect to θc and θp, which is

d
dt

(
∂T̂
∂

.
θi

)
− ∂T̂
∂θi

+ ∂Û
∂θi

= M̂nci, (3.8)

for i = c, p, where

M̂ncc =−c
.
θc +M(t)+Mc, M̂ncp = Mp. (3.9)

Here, Mc is the moment at Ic and Mp is the moment at Ip. In this setup, Mc is an input to
the computational model and Mp is measured by sensors. Expanding Eq. (3.8) gives

mc`
2
c

3

..
θc +c

.
θc +mcg

`c

2
sin(θc)= M(t)+Mc, (3.10)

and (
mp`

2
p

3
+mc`

2
p +mp`

2
c

)
..
θp +mpg

(
`c +

`p

2

)
sin(θp)= Mp. (3.11)
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It is noted that, in the ideal setting with no sensor error, Mc = −Mp. This assumption is
made so the focus can be on the systematic errors rather than sensor errors. Doing so
allows Eqs. (3.10) and (3.11) to be combined into a single equation, given by

mc`
2
c

3

..
θc +

(
mp`

2
p

3
+mc`

2
p +mp`

2
c

)
..
θp +c

.
θc (3.12)

+mcg
`c

2
sin(θc)+mpg

(
`c +

`p

2

)
sin(θp)= M(t).

However, at this point, there is only one equation, Eq. (3.12), and two unknowns, θc and
θp. To get a second equation, a model for the sensor and actuator system that connects the
two bodies is needed. For this chapter, this is modeled as a spring-mass-damper system
controlled by a PI controller [47]. The use a spring-mass-damper was chosen purely for its
mechanical simplicity and ease of understanding. The spring-mass-damper system can be
easily used to introduce phase and magnitude errors – known hybrid simulation errors [9,
56, 67] – at the hybrid interface while still allowing one to have an analytical model that
can be solved using standard numerical techniques, such as the Runge-Kutta methods. For
the model chosen, the definition from the previous chapter for internal boundary conditions
is used, or

Dc[ûc]
∣∣∣
Ic

= Dp[ûp]
∣∣∣
Ip
. (3.13)

In this case ûc and ûp are given by

[ûc]=
[
θc

]
, [ûp]=

[
θp

]
, (3.14)

and the operators Dc[ûc] and Dp[ûp] have the following definitions:

Dc[ûc]=
(

kaki +
(
kakp +caki

) d
dt

+cakp
d2

dt2

)
ûc, (3.15)

and

Dp[ûp]=
(

kaki +
(
ka(1+kp)+caki

) d
dt

+(ca(1+kp)
) d2

dt2 +ma
d3

dt3

)
ûp, (3.16)

where the parameters ma, ca, and ka are the mass, damping constant, and stiffness of the
spring-mass-damper system used to model the actuator. The parameters kp and ki are the
proportional and integral gains of the PI controller. Applying these definitions ultimately
leads to

cakp
..
θc + (kakp +caki)

.
θc +kakiθc (3.17)

= ma
...
θ p + (ca(1+kp))

..
θp + (ka(1+kp)+caki)

.
θp +kakiθp.
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Thus, the equations of motion for the hybrid system are given by Eqs. (3.12) and (3.17).
While the PI controller has been used in previous works [65], it is emphasized that the PI
controller is only used here for concreteness. The entire exercise is easily repeatable with
alternate control methodology; see e.g. [22, 43]. The controller that one should employ in
an actual experiment is based on the experimental setup that is used, and one that minimizes
errors that are important to problem at hand (amongst those metrics highlighted in this
chapter and perhaps others of physical significance to the researcher). For these reasons,
alternative control schemes are not discussed further in this chapter.

Non-Dimensionalization
For further analysis, it is beneficial to non-dimensionalize Eqs. (3.5), (3.12), and (3.17).

In order to do this, the following non-dimensional quantities are defined:

τ = t
√

g
`
, (3.18a)

Lc =
`c

`
, Lp =

`p

`
, (3.18b)

Mc =
mc

m
= Lc, Mp =

mp

m
= Lp, (3.18c)

γ = c
m`
√

g`
, (3.18d)

µ(τ)=
M
(

t = τ

√
`
g

)
mg`

, (3.18e)

Ma =
ma

m
, γa =

ca

m

√
`

g
, Ka =

ka`

mg
, (3.18f)

Kp = kp, Ki = ki

√
`

g
. (3.18g)

Using Eq. (3.18), Eqs. (3.5), (3.12), and (3.17) are rewritten as,

d2θ

dτ
2 +3γ

dθ
dτ

+ 3
2

sin(θ)= 3µ(τ), (3.19)

L3
c

3
d2θc

dτ
2 +
(

L3
p

3
+LcLp

)
d2θp

dτ
2 +γ

dθc

dτ
(3.20)

+ L2
c

2
sin(θc)+

(
LpLc +

L2
p

2

)
sin(θp)= µ(τ),
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and

γaKp
d2θc

dτ
2 + (KaKp +γaKi)

dθc

dτ
+KaKiθc (3.21)

= Ma
d3θp

dτ
3 + (γa(1+Kp))

d2θp

dτ
2 + (Ka(1+Kp)+γaKi)

dθp

dτ
+KaKiθp.

Equations (3.19)-(3.21) are the non-dimensionalized equations of motion for the reference
and hybrid systems.

3.3 Analysis
For the analysis, the applied moment is given by

µ(τ)= µ̄ cos(Ωτ), (3.22)

where µ̄ is the non-dimensional magnitude of the applied moment and Ω is the non-
dimensional frequency of the applied moment. To start, the constants in the system are set
as follows: Lc = 0.6, Lp = 0.4, Ma = 0.5, γ = 0.1, γa = 25, Ka = 12.5, Ki = 3, Kp = 10. Equa-
tions (3.19)-(3.21) are integrated numerically using the Dormand-Prince method, which is
a type of the Runge-Kutta ODE solver [15]. A tolerance of 10−7 was used when evaluating
the Dormand-Prince method. This method is a standard method used to evaluate non-stiff
equations with medium accuracy.

Since the reference forced pendulum is a two-state non-autonomous system, the sys-
tem will exhibit either periodic motion or chaotic motion depending on the values of the
parameters, see [50]. The hybrid forced pendulum is a five-state non-autonomous system
and will also exhibit either periodic or chaotic motion. If the motion is periodic, the pe-
riod of the steady-state motion will be an integer multiple of the forcing period, nT , where
n = 1,2,3... and T = 2π

Ω
; if n > 1, this corresponds to an excited subharmonic of period nT

(see [32]). In order to determine the character of the motion of the systems, it is useful
to employ the use of Lyapunov exponents; see [46]. If the largest Lyapunov exponent is
positive, then the system will exhibit chaotic motion. If the largest Lyapunov exponent is
0, then the system will experience periodic motion; see [3]. Also, as long as the sum of
all of the Lyapunov exponents is negative, the system is stable in the sense of Lyapunov.
The Lyapunov exponents are found using the QR method for small continuous nonlinear
systems as outlined by [13] and the FORTRAN code provided by [14] – LESNLS – was
modified to calculate the Lyapunov exponents for the systems presented in this chapter.
For a thorough discussion on the utility and implementation of the LESNLS code, please
review the paper by Dieci et al. [13].

To begin, an examination of how the magnitude of the applied moment determines the
behavior of the responses of both the reference and hybrid systems for a fixed frequency of
the applied moment is preformed with Ω = 1 for multiple values of µ̄ . From this, the sys-
tems are determined to be either periodic or chaotic. Figure 3.3 shows the largest Lyapunov
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exponent for the reference and hybrid systems as a function of the forcing magnitude. From
Fig. 3.3 it is shown that, for the most part, the reference and hybrid systems exhibit the same
type of behavior. However, there are a few instances that one system is periodic and the
other is chaotic. This indicates that there are three separate cases that one needs to consider
when performing an error analysis of the nonlinear pendulum hybrid simulation system:
both responses are periodic, both responses are chaotic, and one response is periodic while
the other is chaotic.
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Fig. 3.3 The Lyapunov exponents for the reference, λ1, and hybrid systems, λ̂1,
when Ω = 1.

Periodic Reference and Hybrid Systems
The first case analyzed is for when both the reference and hybrid systems are periodic.

For this case, an L2 error is utilized to gauge how well the hybrid system is matching the
reference system in the same manner as [20]. The L2 error is given by

E2(τ)=

√∫
τ

0 Lc

((
θ−θc

)2 +( dθ
dτ

− dθc
dτ

)2
)
+Lp

((
θ−θp

)2 +( dθ
dτ

− dθp
dτ

)2
)

√∫
τ

0 θ
2 +( dθ

dτ

)2
. (3.23)

Note that the L2 error used for the analysis is normalized with respect to the reference
system. Also note that the difference in angles is always taken to be the smallest angular

33



CHAPTER 3. HYBRID SIMULATION THEORY APPLIED TO THE DAMPED,
DRIVEN NONLINEAR PENDULUM

distance between 0 and 2π . The L2 error is calculated at three different values of µ̄: µ̄ =
0.7, 1.114, 2.6. A careful examination of Fig. 3.3 shows that all three of these values will
produce periodic motion in both systems. The L2 error time series for these three values of
µ̄ are shown in Fig. 3.4. This figure shows that when the transients are still present, small
τ , the error varies rapidly. However, as τ increases, the error approaches a steady state
value. This makes sense because both systems are approaching a periodic solution, thus the
difference between the two solutions should be approximately constant. However, as can
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Fig. 3.4 The L2 error for Ω= 1 for three values of µ̄ with only periodic responses.

be seen in Fig. 3.4, for µ̄ = 1.114, the L2 error approaches a value near 1.3, or 130%. This
indicates that the hybrid system is not tracking the reference system at all. Upon further
study it is found that the reference system is traveling in a clockwise direction, while the
hybrid system is traveling in a counter-clockwise direction. Thus, the hybrid system is
matching the response of the reference system, just in the opposite direction. This is the
cause of the large L2 error. In order to more fully study the dynamical response, the state
space of the two systems is analyzed, which is shown Fig. 3.5. Note, only θc and dθc

dτ
are

plotted for clarity in the figures (see Appendix B for similar plots for θp and
dθp
dτ

). From
this figure, it can be seen that the state space trajectories are similar in shape, but vary by
a rotation in state space. Thus, as long as the exact trajectory is not required, the hybrid
response can be useful in understanding the dynamics of the reference system. Note that
Fig. 3.5 also clearly shows that subharmonics are being excited in this case.
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Fig. 3.5 The state space trajectories for the reference and hybrid systems with
µ̄ = 1.114.

Chaotic Reference and Hybrid Systems
The next case analyzed is when both systems are chaotic. For the chaotic systems,

the L2 error is no longer a good metric for determining the error in the system. Instead,
multiple aspects of the dynamics need to be compared to fully understand the relationship
between the reference and hybrid systems. First, the systems are compared visually before
comparing them with error metrics. The time series, specifically, the angular velocity time
series, is used to make a visual comparison of the reference and hybrid systems. The
Poincaré sections of the reference and hybrid systems are then compared. Note, for the
plotting the Poincaré sections, the time series was calculated out to τ = 10000, and with
Ω = 1, this gives just under 1600 points per Poincaré section. This allows one to compare
the nature of the response on a more fundamental level. Two values of µ̄ are chosen for
the chaotic case: µ̄ = 1.2, 2.2. Again, Fig. 3.3 shows that these values will produce chaotic
responses in both systems.

Figures 3.6 and 3.7 show the times series (of the angular velocities) for the systems
with µ̄ = 1.2 (see Appendix B for

dθp
dτ

plots). It is clear that the two systems do not track
each other very well. However, looking at Fig. 3.8, which shows the Poincaré sections
for both the reference and hybrid systems with µ̄ = 1.2, the similarities can easily be seen
between the two Poincaré sections. This indicates that even when both systems are chaotic,
the fundamental nature of the responses are nearly identical.

Next, the angular velocity time series for when µ̄ = 2.2 are shown in Figs. 3.9 and 3.10,
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Fig. 3.6 The angular velocity time series of the reference and hybrid systems for
µ̄ = 1.2.

which show that the time series of the reference and hybrid systems match each other fairly
well. However, the corresponding Poincaré sections, shown in Fig. 3.11, show very little
correlation. Similar conclusions can be drawn from θp and

dθp
dτ

as shown in Appendix B.
So, even though the time series match well, their Poincaré sections do not. This confirms
the need to examine multiple aspects of the dynamics.

Chaos Error Metrics

Besides the above described visual error analysis, three different error metrics were also
used to give a numerical value to the error between two chaotic systems. First, a comparison
of the Lyapunov exponents of the two systems, which allows for a direct comparison of the
level of chaos in each system, as the Lyapunov exponent defines how quickly trajectories
will diverge from each other due to small variations in the trajectories; see [29]. The second
value compared is the Lyapunov dimension, dL, which defines the dimension of the strange
attractor and is calculated by

dL = j+ λ1 +λ2 +·· ·+λ j

|λ j+1|
, (3.24)

where j is the largest integer for which λ1+λ2+·· ·+λ j ≥ 0, see [28]. The Lyapunov dimen-
sion can be used to classify the complexity of a strange attractor, since a strange attractor
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Fig. 3.7 A zoomed-in plot of the angular velocity time series of the reference and
hybrid systems for µ̄ = 1.2.
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Fig. 3.8 The Poincaré sections of the reference and hybrid systems for µ̄ = 1.2.
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Fig. 3.9 The angular velocity time series of the reference and hybrid systems for
µ̄ = 2.2.

will have a fractional dimension, whereas a non-strange attractor will have an integer di-
mension. All systems in this chapter have j = 2. Thirdly, the correlation exponent [30], ν ,
is employed to characterize the chaotic error. The correlation exponent is used to measure
the local structure of a strange attractor or Poincaré section; see [31]. The correlation ex-
ponent is based on how close the points on a strange attractor or Poincaré section are to
one another, which is another measure for the complexity of a strange attractor or Poincaré
section. In order to compute the correlation exponent, the correlation integral is calculated,

C(r)= 1
N2

N∑
i, j=1,i 6= j

H(r−|Xi −X j|), (3.25)

where H(x) is the Heaviside function, r is the correlation radius, and Xi are the states of
the system at the i-th time step with N time steps. Then using the relation

C(r)∝ rν , (3.26)

solve for the correlation exponent, ν . In this chapter, the correlation exponent was calcu-
lated using the points in the Poincaré section. The errors with respect to these three metrics
are calculated as follows:

errλ = |λ1 − λ̂1|
λ1

, (3.27)
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Fig. 3.10 A zoomed-in plot of the angular velocity time series of the reference
and hybrid systems for µ̄ = 2.2.
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Fig. 3.11 The Poincaré sections of the reference and hybrid systems for µ̄ = 2.2.
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errdL
= |dL − d̂L|

dL
, (3.28)

and

errν = |ν − ν̂ |
ν

. (3.29)

where the hat, •̂, again, represents quantities for the hybrid system. Figures 3.12, 3.13,
and 3.14 show these error measures versus applied moment magnitude. Note, points are
only calculated for values of µ̄ for which both the reference and hybrid system are chaotic.
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Fig. 3.12 The error between λ1 and λ̂1 as a function of µ̄ .

Examining Fig. 3.12, a wide variety of errors in the largest Lyapunov exponents can be
seen, however, about half of all errors are less than 0.2, or less than 20%. This shows that
about half the time the levels of chaos in both systems are equivalent, yet there are times
when the two systems vary greatly. Looking at Fig. 3.13, all of the errors are below 0.4,
and a significant portion, more than nine-tenths, are less than 0.2. This shows that there is
much less deviation between the Lyapunov dimension of the reference and hybrid systems,
indicating that the dimension of their strange attractors stay near one another. From exam-
ining Fig. 3.14, it is seen that there is a high density of points below 0.2, about two-thirds
of all points are below 0.2. This shows that most of the time the Poincaré sections of the
two systems match fairly well, however, there are still instances in which the two systems
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Fig. 3.13 The error in the Lyapunov dimension as a function of µ̄ .
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Fig. 3.14 The error in the correlation exponent of the Poincaré sections as a func-
tion of µ̄ .
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do not match well. For the cases which were visually examined above, errλ1
= 0.1203,

errdL
= 0.1552, and errν = 0.0526 when µ̄ = 1.2, and errλ1

= 0.3680, errdL
= 2.810×10−4,

and errν = 0.2792 for µ̄ = 2.2. These values again fit with the determination that multiple
quantities are needed to properly assess the error between two chaotic responses.

One System Periodic and the Other Chaotic
The third case is when one system has a chaotic response and the other system has a

periodic response. In this situation it is not possible to compare the two systems as the L2

error breaks down for chaotic systems, and the Poincaré section for a periodic system will
be a single point, whereas the Poincaré section for a chaotic system will be Cantor-like, see
e.g. [50, 52]. For these reasons, it is clear the correlation between the two responses will
be nonexistent.

Study of Ki

All of the above analysis was done with specific values of the control parameters. If a
value of Ki = 10 was used instead, which was arbitrarily chosen, the Lyapunov exponents of
the hybrid system match those of the reference system much better, as seen by comparing
Fig. 3.3 and Fig. 3.15. This potentially indicates that an increase in the integral gain,
Ki, gives better matching between the reference and hybrid systems. To investigate this
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Fig. 3.15 The Lyapunov exponents for the reference and hybrid systems when
Ki = 10.
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further, the effects of changing the integral gain, Ki are examined. In the context of this
chapter, holding Kp constant and increasing Ki means the response of the controlled system
is quicker, but it becomes more oscillatory and less stable [47]. Thus, as Ki increases, the
magnitude error at the hybrid interface increases while the phase error decreases. However,
it is noted that this only applies for the simple PI controller used in this chapter. Three
specific values of µ̄ are used: µ̄ = 1.114,1.2,3.0. The first value was chosen because both
the hybrid and reference systems were periodic at Ki = 3, but the hybrid system is going
the opposite direction of the reference system. The second value was chosen because the
response is chaotic for both systems at Ki = 3. And the third value was chosen because the
reference response is periodic, while the hybrid response is chaotic at Ki = 3. For analyzing
the effect of changing Ki, the hybrid L2 error is used once the transients have died out and
the error has reached steady state:

Eh
2(τ = 1000)=

√∫
τ

0

(
θc −θp

)2 +(dθc
dτ

− dθp
dτ

)2√∫
τ

0 θ
2
c +
(dθc

dτ

)2
. (3.30)

Note that Eh
2 is normalized to the top piece of the hybrid pendulum. The hybrid L2 error

determines how well the two pieces of the hybrid pendulum are matching each other and is
an error measure that can be applied independent of the chaotic or periodic nature of either
system. As seen from Fig. 3.16, as Ki is increased, the hybrid L2 error decreases for all
three values of µ̄ , which makes sense because Ki affects the steady state response, thus the
two pieces should match better for larger values of Ki, see [47]. However, by looking at
the steady state L2 error in Fig. 3.17, it is noted that the L2 error does not decrease as Ki is
increased, in fact, all three values of µ̄ have different responses to increasing Ki.

For µ̄ = 1.114, the error approximately goes between three values as Ki increases. This
indicates that even though the hybrid pieces are matching each other better, the hybrid pen-
dulum is not always matching the reference pendulum better. In fact, the highest value
represents the hybrid pendulum spinning in the opposite direction of the reference pendu-
lum, the middle value represents the hybrid pendulum spinning in the same direction as
the reference pendulum, but taking a long time to reach the steady-state solution, and the
low value represents the hybrid pendulum spinning in the same direction as the reference
pendulum and reaching the steady-state solution more quickly.

For µ̄ = 1.2, the L2 error is not a good metric for analyzing the error. Instead, the
Poincaré sections are used, as shown in Fig. 3.18 (see Appendix B for θp and

dθp
dτ

plots).
From a close comparison of Figs. 3.8 and 3.18, with Ki = 10, the Poincaré sections match
better than when Ki = 3. This indicates that the hybrid response is better for larger values
of Ki. Evaluating the error metrics from before, errλ1

= 0.5722, errdL
= 0.0919, and errν =

0.0332. Comparing these values to those found before, the Lyapunov dimension error
and correlation exponent error have decreased, while the Lyapunov exponent error has
increased. This again indicates the need for multiple metrics to gauge the chaotic response
because even though it appears that increasing Ki made the hybrid response better, there is
actually a metric in which it became worse.
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2 error as a function of Ki for multiple values of µ̄ .
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Fig. 3.18 The Poincaré sections of the reference and hybrid systems for µ̄ = 1.2
and Ki = 10.

Finally, for µ̄ = 3.0, the L2 error sharply drops around Ki = 4. This occurs because
the hybrid system changes from chaotic to periodic, while the reference system is peri-
odic throughout. After the transition, the hybrid system has the same response type as the
reference system. The L2 error stays low because the hybrid system is traveling in the
same direction as the reference system, and does not change direction, unlike the case of
µ̄ = 1.114. This confirms, for the most part, the conclusion about the usage of Ki reached
from Fig. 3.15.

Discussion
From analyzing the reference and hybrid systems, there are three unique cases that

can arise when considering the responses of the reference and hybrid systems: (1) both
responses are periodic, (2) both responses are chaotic, and (3) one response is periodic
while the other is chaotic.

1. For the periodic-periodic case, sometimes the hybrid system tracks the reference
system well, low L2 error, and other times it does not track the reference system
well, high L2 error. However, in the case of high L2 error, it is noted that the two
systems experience similar motions, despite not tracking well, which is shown in
Fig. 3.5. This leads to a fundamental question of hybrid simulation: what does one
expect to get from hybrid simulation? If one hopes to get perfect tracking with hybrid
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simulation, while it is possible via adjustment of the control parameters, it is not to
be expected or assumed with a nonlinear system, and thus hybrid simulation loses its
utility if perfect tracking is the goal. If one wishes to understand the general response
of the dynamical system in that the same parts of the phase space are traversed and at
the same frequency, then hybrid simulation can still be useful, and the hybrid system
can provide a good representation of the reference system response. Put another
way, if one is content that the hybrid system experiences the same states as the true
system, independent of temporal ordering, then hybrid simulation retains its utility
in the nonlinear setting. While these statements do not align well with the current
application of hybrid simulation in practical cases, the objective of the dissertation is
to highlight potential issues with current applications.

2. This trend carries into the second case, where both systems are chaotic. In the first
example – µ̄ = 1.2 – poor time series matching was observed but there was good
matching of the Poincaré sections, indicating a clear correlation in the dynamics of
the two systems. And in the second example – µ̄ = 2.2 – there was good time series
matching, but little correlation between the two Poincaré sections. Thus, there is
a need to compare more than one aspect of the dynamics, for example the largest
Lyapunov exponents, the Lyapunov dimension, and the correlation exponent can be
used to analyze the correspondence between the responses. Using Fig. 3.8, it is clear
that responses are similar. Even though the time series of the reference and hybrid
systems do not follow each other closely, the allowable motions for each system are
closely related. Using Figs. 3.9 and 3.10, it is clear that the time series match well
even though the Poincaré sections are not similar, which still indicates that responses
of the reference and hybrid systems are correlated in the example. Thus, knowing
the response of the hybrid system does give an approximation of how the reference
system will respond. Again, as long as the exact trajectory is not needed, i.e. one
is satisfied that the system moves through the correct states at the correct sampling
frequency, then hybrid simulation is still useful for understanding the response of the
reference system. This information linked with the numerical error metrics agrees
with the conclusion made in the first case, in that one needs to be fully aware of what
one wants from hybrid simulation; exact matching may not be possible, however, it
is possible for hybrid simulation to properly reproduce certain dynamical quantities,
which can be just as useful.

3. Finally, for the third case – one system is periodic and the other is chaotic – it is not
useful to try and compare the two responses. For the periodic system, the response
will approach a periodic steady-state, whereas in the chaotic system, the response
will be an aperiodic solution. Thus all of the errors discussed in this chapter will
indicate large differences in the behavior of the response. However, if one can make
sure that both systems are behaving in the same manner, then that can be useful
as well. One way to help make both systems have the same type of response is to
increase the accuracy of the control scheme as seen by comparing Figs. 3.3 and 3.15.
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The three cases discussed were all examined within the context with a single value
of the integral gain, Ki, specifically Ki = 3. However, upon changing Ki one is able to
understand more about the nature of the hybrid response. In all cases, the error internal to
the hybrid system, Eh

2(τ = 1000), decreases as Ki is increased. Unfortunately, this does not
directly translate to better tracking between the hybrid and reference systems as seen, for
example, by comparing Figs. 3.16 and 3.17. In the case when both systems are periodic, it is
possible, as Ki increases, for the hybrid system to change from a counter-clockwise rotation
to a clockwise rotation and back. Notwithstanding, in almost all other instances, increasing
Ki produces a better hybrid result. However, one can not simply increase the value of
Ki to whatever one wishes, there are stability and physical constraints that determine the
feasible range of Ki, thus understanding how to effectively use the control parameters is of
great importance and here only one very simple control system has been examined since
the underlying set of outcomes is independent of this choice and better controllers will not
obviate the need to understand chaotic trajectories in the nonlinear case.

3.4 Conclusions
This chapter focused on the fundamental interface mismatch error that occurs during

nonlinear hybrid simulation. To study this intrinsic error the behavior of a kinematically
nonlinear hybrid system with a spring-mass-damper actuator system, controlled by a PI
controller was examined. This is a relatively simple model, but it allowed for a lot of
control over the study of the system. Most importantly, the setup was entirely theoretical
and provided a true reference against which one could compare hybrid results. In particular
it was found that:

1. In the nonlinear setting, hybrid simulation must account for three separate cases
where the hybrid system and true system can separately take on either periodic or
chaotic behavior.

2. The minimization of internal (interface) error does not necessarily mean that a hybrid
system will faithfully track the true system response.

3. When good tracking does not occur, hybrid simulation can still be useful if one mod-
ifies one’s objective to the notion that the hybrid system should move through the
same parts of the system’s state space at the same relative frequency.

4. In the case of chaotic system response, one needs to employ multiple metrics to
ensure adequate accuracy.

Overall, it is concluded that the application of hybrid simulation to nonlinear systems
is a delicate matter requiring an understanding of what one wishes to achieve, a knowledge
of the three possible outcomes, and the application of multiple metrics to ensure fidelity.
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Chapter 4
Hybrid Simulation Theory Applied to a
Crane Structure

4.1 Introduction
The next model problem used in this dissertation is the station boom crane. This system

has direct applications to a potential hybrid simulation experiment, in that understanding
the motion of a crane structure during an earthquake can be invaluable. However, ex-
perimentally testing a full crane structure is impractical. This chapter aims to provide a
framework for understanding how hybrid simulation affects the dynamical response of a
given structure, even when that structure is quite complicated with many degrees of free-
dom. Multiple models already exist for these types of cranes [35, 38, 51], and are used as
the basis for the model used in this chapter.

4.2 Crane System Setup: Equations of Motion

The Reference System
First, a model needs to be developed for the crane that will be used as a reference for

which all subsequent hybrid systems will be compared. The reference system (RS) is that
of a station boom crane. For the model in this chapter, the crane consists of a supporting
beam structure with eight degrees of freedom given by u1 to u8. Connected to the crane
structure is the crane cabin, which is a rigid body that can rotate about a pivot with a
prescribed angel α and a flexing angle δ from the supporting structure. A flexible boom is
connected to the cabin, and can pivot with respect to the cabin by some prescribed angle β

and a flexing angle γ . Finally, a payload point mass is attached to the end of the boom via
an extensible cable defined by a set of spherical polar coordinates, φ and θ and radius R. A
diagram of the described crane structure can be seen in Fig. 4.1. The crane can be excited
by ground motions in the 1-direction (ug1) and 2-direction (ug2).
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Fig. 4.1 A diagram of the Reference System (RS).

Next the equations of motion for RS need to be derived. To do this, Lagrange’s pre-
scription for the equations of motion are employed, given by Eq. (4.1) [48].

d
dt

(
∂T
∂

.
qi

)
− ∂T
∂qi +

∂U
∂qi +

∂D
∂

.
qi = 0, (4.1)

where[
qi]= [R φ θ γ u1 u2 u3 u4 u5 u6 u7 u8

]
. (4.2)

In this case, T is the kinetic energy, U is the potential energy, and D is the Rayleigh dissi-
pation function (see [52]), which are given by the following:

T =1
2

mmvm ·vm + 1
2

mbvb ·vb +
1
2

mrvr ·vr (4.3)

+ 1
2
ωb ·Jbωb +

1
2
ωr ·Jrωr +

1
2

4∑
j=1

.
ut

j ·M j
.
ut

j,
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U =mmgxm ·E3 +mbgxb ·E3 +mrgxr ·E3 (4.4)

+ 1
2

km(R−R0)
2 + 1

2
kbγ

2 + 1
2

4∑
j=1

u j ·K ju j,

D = 1
2

cm
.
R2 + 1

2
cb

.
γ

2 + 1
2

4∑
j=1

.
u j ·C j

.
u j, (4.5)

where mm, cm, and km are the mass, viscous damping constant, and stiffness of the pay-
load and it’s cable attachment, mb, cb, kb, and Jb are the mass, viscous damping constant,
stiffness, and rotational inertia matrix of the crane boom, mr and Jr are the mass and rota-
tional inertia matrix of the crane cabin, and M j, C j, and K j are the jth mass, damping, and
stiffness matrices for the crane supporting structure and are derived following the methods
outlined by Chopra [10]. And u j are the displacements for the supporting structure. The
index j goes from 1 to 4, one for each side of the supporting structure.

First, position vectors used to describe the motion of RS are defined:

xg = ug1E1 +ug2E2, (4.6)

which is the ground motion.

xs = 0.5(u1 +u5)E1 +0.5(u3 +u7)E2 +`qE3 +xg = xsE1 +ysE2 +`qE3, (4.7)

which is the position of the base of the crane cabin.

xr = `rE3 +xs, (4.8)

which is the center of mass of the crane cabin.

xa = `axr1 +`azE3 +xr, (4.9)

which is the position of the connection point of the boom.

xb = `bb1 +xa, (4.10)

which is the center of mass of the boom.

xt = `tb1 +xb, (4.11)

which is the position of the end of the boom.

xm = ReR +xt , (4.12)

which is the position of the payload.

[u j]= [u2 j−1 u2 j]
T , (4.13)
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which are the displacements of the supporting structure. Also,

xs =0.5(u1 +u5)+ug1, ys = 0.5(u3 +u7)+ug2, (4.14)

δ = 0.25
(

u1 −u5

lx
+ u3 −u7

ly

)
.

Also, the following vectors and rotation tensors are defined:

ri = R1Ei, (4.15)

where ri is the co-rotational basis of the crane cabin.

bi = R2ri, (4.16)

where bi is the co-rotational basis of the boom.

R1 =

cos(α +δ ) −sin(α +δ ) 0

sin(α +δ ) cos(α +δ ) 0

0 0 1


Ei⊗E j

(4.17)

is the rotation tensor from the Cartesian basis to the ri basis.

R2 =

cos(β +γ) 0 −sin(β +γ)

0 1 0

sin(β +γ) 0 cos(β +γ)


ri⊗r j

(4.18)

is the rotation tensor from the ri basis to the bi basis.

eR = cos(θ)sin(φ)E1 +cos(φ)E2 − sin(θ)sin(φ)E3, (4.19)

eφ = cos(θ)cos(φ)E1 − sin(φ)E2 − sin(θ)cos(φ)E3, (4.20)

and

eθ =−sin(θ)E1 −cos(θ)E3, (4.21)

define the spherical basis vectors used to define the position of the payload. Next the
velocity vectors for the system are defined:

vg =
.
ug1E1 +

.
ug2E2, (4.22)

vs = 0.5(
.
u1 +

.
u5)E1 +0.5(

.
u3 +

.
u7)E2 +vg =

.
xsE1 +

.
ysE2, (4.23)

vr = vs, (4.24)
va = `ax(

.
α +

.
δ )r2 +vr, (4.25)
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vb = `b(
.

β + .
γ)b3 +`b(

.
α +

.
δ )cos(β +γ)r2 +va, (4.26)

vt = `t(
.

β + .
γ)b3 +`t(

.
α +

.
δ )cos(β +γ)r2 +vb, (4.27)

vm =
.
ReR +R

.
θeφ +Rsin(φ)

.
θeθ+vt , (4.28)

[
.
ut

j]= [
.
u2 j−1

.
u2 j]

T −
{
[

.
ug1

.
ug1]

T if j is odd
[

.
ug2

.
ug2]

T if j is even,
(4.29)

where Eqs. (4.22)-(4.29) are the velocities of the positions defined in Eqs. (4.6)-(4.13).
Also, the angular velocities of the crane cabin and boom are

ωr = (
.

α +
.
δ )E3, (4.30)

and

ωb =−(
.

β + .
γ)r2 +ωr, (4.31)

respectively.
The previous equations give all of the necessary information to expand Eq. (4.1) to give

the 12 equations of motion that can then be solved using a numerical integrator.

The First Hybrid System
Next, the first hybrid system (HS1) model is setup. In this case, the hybrid split is

applied at the connection between the supporting structure and cabin, as can be seen in
Fig. 4.2. In this case, the supporting structure is considered the computational side, or C-
side, and everything else is considered the physical side, or P-side. By introducing this
hybrid split, three new degrees of freedom are introduced: xsp, ysp, and δp which are the
E1 position, E2 position, and rotation angle of the base of the crane cabin from the physical
side.

Again, the equations of motion for the first hybrid system are determined by Lagrange’s
prescription, given by

d
dt

(
∂T̂1

∂
.
q̂i

1

)
− ∂T̂1

∂q̂i
1
+ ∂Û1

∂q̂i
1
+ ∂D̂1

∂
.
q̂i

1
=F1p ·

∂vsp

∂
.
q̂i

1
+F1c ·

∂vsc

∂
.
q̂i

1
(4.32)

+M1p ·
∂ωrp

∂
.
q̂i

1
+M1c ·

∂ωrc

∂
.
q̂i

1
,

where[
q̂i

1
]= [R φ θ γ xsp ysp δp u1 u2 u3 u4 u5 u6 u7 u8

]
. (4.33)

Note, that a superposed hat (ˆ) is used to denote a quantity for a hybrid system. Where T̂1
is the kinetic energy for the first hybrid system. And similarly, Û1 is the potential energy
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Fig. 4.2 A diagram of the First Hybrid System (HS1).

and D̂1 is the Rayleigh dissipation function for the first hybrid system, and are defined as
follows:

T̂1 =
1
2

mmvm ·vm + 1
2

mbvb ·vb +
1
2

mrvr ·vr (4.34)

+ 1
2
ωb ·Jbωb +

1
2
ωr ·Jrωr +

1
2

4∑
j=1

.
ut

j ·M j
.
ut

j,

Û1 =mmgxm ·E3 +mbgxb ·E3 +mrgxr ·E3 (4.35)

+ 1
2

km(R−R0)
2 + 1

2
kbγ

2 + 1
2

4∑
j=1

u j ·K ju j,

D̂1 =
1
2

cm
.
R2 + 1

2
cb

.
γ

2 + 1
2

4∑
j=1

.
u j ·C j

.
u j. (4.36)
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Note that all of the physical quantities, such as masses, stiffness, lengths, etc. are the same
as those for RS. For HS1, the additional terms of F1p, F1c, M1p, and M1c are introduced in
to the equations of motion. In this case, F1p and M1p represent the force and moment read
by sensors on the physical substructure, and F1c and M1c are the force and moment used as
inputs to the computational model. The position vectors for HS1 are now defined:

xg = ug1E1 +ug2E2, (4.37)

xsc = 0.5(u1 +u5)E1 +0.5(u3 +u7)E2 +`qE3 +xg = xscE1 +yscE2 +`qE3, (4.38)

xsp = xspE1 +yspE2 +`qE3, (4.39)

xr = `rE3 +xsp, (4.40)

xa = `axr1p +`azE3 +xr, (4.41)

xb = `bb1 +xa, (4.42)
xt = `tb1 +xb, (4.43)

xm = ReR +xt , (4.44)

[u j]= [u2 j−1 u2 j]
T , (4.45)

where Eqs. (4.37)-(4.45) have the same physical meaning as their corresponding Eqs. (4.6)-
(4.13), except that xsc defines the position of the base of the crane cabin from the compu-
tational side and xsp defines the position of the base of the crane cabin from the physical
side. Where the following quantities are defined as:

xsc =0.5(u1 +u5)+ug1, ysc = 0.5(u3 +u7)+ug2, (4.46)

δc = 0.25
(

u1 −u5

lx
+ u3 −u7

ly

)
.

The following vectors and rotation tensors are defined as:

rip = R1pEi, (4.47)

where rip is the co-rotational basis for the crane cabin, which is on the physical side.

bi = R2rip, (4.48)

where bi is the co-rotational basis for the boom.

R1p =

cos(α +δp) −sin(α +δp) 0

sin(α +δp) cos(α +δp) 0

0 0 1


Ei⊗E j

(4.49)

is the rotation tensor from the Cartesian basis to the rip basis.

R2 =

cos(β +γ) 0 −sin(β +γ)

0 1 0

sin(β +γ) 0 cos(β +γ)


rip⊗r jp

(4.50)
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is the rotation tensor from the rip basis to the bi basis.

eR = cos(θ)sin(φ)E1 +cos(φ)E2 − sin(θ)sin(φ)E3, (4.51)

eφ = cos(θ)cos(φ)E1 − sin(φ)E2 − sin(θ)cos(φ)E3, (4.52)

and

eθ =−sin(θ)E1 −cos(θ)E3, (4.53)

define the spherical basis vectors to define the position of the payload. Next the velocity
vectors for HS1 are defined:

vg =
.
ug1E1 +

.
ug2E2, (4.54)

vsc = 0.5(
.
u1 +

.
u5)E1 +0.5(

.
u3 +

.
u7)E2 +vg =

.
xscE1 +

.
yscE2, (4.55)

vsp =
.
xspE1 +

.
yspE2, (4.56)

vr = vsp, (4.57)

va = `ax(
.

α +
.
δ p)r2p +vr, (4.58)

vb = `b(
.

β + .
γ)b3 +`b(

.
α +

.
δ p)cos(β +γ)r2p +va, (4.59)

vt = `t(
.

β + .
γ)b3 +`t(

.
α +

.
δ p)cos(β +γ)r2p +vb, (4.60)

vm =
.
ReR +R

.
θeφ +Rsin(φ)

.
θeθ+vt , (4.61)

[
.
ut

j]= [
.
u2 j−1

.
u2 j]

T −
{
[

.
ug1

.
ug1]

T if j is odd
[

.
ug2

.
ug2]

T if j is even,
(4.62)

where Eqs. (4.54)-(4.62) are the velocity vectors of the corresponding position vectors from
Eqs. (4.37)-(4.45). The following angular velocity vectors are defined as:

ωrc = (
.

α +
.
δ c)E3, (4.63)

which is the rotational velocity of the crane cabin from the computational side,

ωrp = (
.

α +
.
δ p)E3, (4.64)

which is the rotational velocity of the crane cabin from the physical side,

ωb =−(
.

β + .
γ)r2p +ωrp, (4.65)

which is the rotational velocity of the boom.
In the ideal setting (i.e. no sensor error), the following relations hold:

F1c ·E1 =−F1p ·E1, F1c ·E2 =−F1p ·E2, M1c ·E3 =−M1p ·E3. (4.66)
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However, at this point, there are not enough equations to fully determine the motion of
HS1. In order to get the remaining equations, a model for the error at the hybrid split is
required. For this chapter, the error is modeled as a spring-mass-damper system controlled
by a PI controller [47]. For the error model chosen, the definition of Drazin [20] for internal
boundary conditions is utilized, or

Dc[ûc1]
∣∣∣
Ic1

= Dp[ûp1]
∣∣∣
Ip1

. (4.67)

In this case ûc1 and ûp1 are given by

[ûc1]=
[
xsc ysc δc

]T
, [ûp1]=

[
xsp ysp δp

]T
, (4.68)

where the operators Dc[ûc1] and Dp[ûp1] have the following definitions:

Dc[ûc1]=
(

kaki +
(
kakp +caki

) d
dt

+cakp
d2

dt2

)
ûc1, (4.69)

and

Dp[ûp1]=
(

kaki +
(
ka(1+kp)+caki

) d
dt

+(ca(1+kp)
) d2

dt2 +ma
d3

dt3

)
ûp1, (4.70)

where the parameters ma, ca, and ka are the mass, damping constant, and stiffness of the
spring-mass-damper system used to model the actuator. The parameters kp and ki are the
proportional and integral gains of the PI controller. Now there are an equal number of
unknowns as there are equations, which allows one to solve the equations of motion for
HS1 with the use of a numerical integrator.

The Second Hybrid System
The second hybrid system (HS2) has the hybrid split applied to the boom-cabin joint. A

diagram of HS2 can be seen in Fig. 4.3. In this case, the supporting structure and cabin are
considered the physical substructure, P-side, and everything else is considered the com-
putational model, C-side. By introducing this hybrid split, three new degrees of freedom
are created: xac, yac, and δc, which are the E1 position, the E2 position, and rotation angle
of the connection point between the crane cabin and boom from the computational side.
Lagrange’s equations for HS2 are given by

d
dt

(
∂T̂2

∂
.
q̂i

2

)
− ∂T̂2

∂q̂i
2
+ ∂Û2

∂q̂i
2
+ ∂D̂2

∂
.
q̂i

2
=F2p ·

∂vap

∂
.
q̂i

2
+F2c ·

∂vac

∂
.
q̂i

2
(4.71)

+M2p ·
∂ωrp

∂
.
q̂i

2
+M2c ·

∂ωrc

∂
.
q̂i

2
,
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Fig. 4.3 A diagram of the Second Hybrid System (HS2).

where[
q̂i

2
]= [R φ θ γ xac yac δc u1 u2 u3 u4 u5 u6 u7 u8

]
. (4.72)

The kinetic energy, T̂2, the potential energy, Û2, and the Rayleigh dissipation function, D̂2,
are defined as follows:

T̂2 =
1
2

mmvm ·vm + 1
2

mbvb ·vb +
1
2

mrvr ·vr (4.73)

+ 1
2
ωb ·Jbωb +

1
2
ωr ·Jrωr +

1
2

4∑
j=1

.
ut

j ·M j
.
ut

j,

Û2 =mmgxm ·E3 +mbgxb ·E3 +mrgxr ·E3 (4.74)

+ 1
2

km(R−R0)
2 + 1

2
kbγ

2 + 1
2

4∑
j=1

u j ·K ju j,

D̂2 =
1
2

cm
.
R2 + 1

2
cb

.
γ

2 + 1
2

4∑
j=1

.
u j ·C j

.
u j. (4.75)
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For HS2, F2p, F2c, M2p, and M2c are introduced into the equations of motion. In this case,
F2p and M2p represent the force and moment read by sensors on the physical substructure,
and F2c and M2c are the force and moment used as inputs to the computational model. The
position vectors are now defined as:

xg = ug1E1 +ug2E2, (4.76)

xs = 0.5(u1 +u5)E1 +0.5(u3 +u7)E2 +`qE3 +xg = xspE1 +yspE2 +`qE3, (4.77)

xr = `rE3 +xs, (4.78)
xap = `axr1p +`azE3 +xr = xapE1 +yapE2 + (`q +`c +`az)E3, (4.79)

xac = xacE1 +yacE2 + (`q +`c +`az)E3, (4.80)

xb = `bb1 +xac, (4.81)
xt = `tb1 +xb, (4.82)

xm = ReR +xt , (4.83)

[u j]= [u2 j−1 u2 j]
T , (4.84)

where Eqs. (4.76)-(4.84) have the same physical meaning as the corresponding Eqs. (4.6)-
(4.13), except that xac is the position of the connection point between the crane cabin and
the boom from the computational side and xap is the position of the connection point be-
tween the crane cabin and the boom from the physical side. Where the followings quantities
are defined as:

xsp =0.5(u1 +u5)+ug1, ysp = 0.5(u3 +u7)+ug2, (4.85)

δp = 0.25
(

u1 −u5

lx
+ u3 −u7

ly

)
,

and

xap = xsp + lax cos(α +δp), yap = ysp + lax sin(α +δp). (4.86)

The following vectors and rotation tensors are also needed:

rip = R1pEi, (4.87)

where rip is the co-rotational basis of the crane cabin from the physical side.

ric = R1cEi, (4.88)

where ric is the co-rotational basis of the crane cabin from the computational side.

bi = R2ric, (4.89)

where bi is the co-rotational basis of the boom.

R1p =

cos(α +δp) −sin(α +δp) 0

sin(α +δp) cos(α +δp) 0

0 0 1


Ei⊗E j

(4.90)
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is the rotation tensor from the Cartesian basis to the rip basis.

R1c =

cos(α +δc) −sin(α +δc) 0

sin(α +δc) cos(α +δc) 0

0 0 1


Ei⊗E j

(4.91)

is the rotation tensor from the Cartesian basis to the ric basis.

R2 =

cos(β +γ) 0 −sin(β +γ)

0 1 0

sin(β +γ) 0 cos(β +γ)


ric⊗r jc

(4.92)

is the rotation tensor from the ric basis to the bi basis.

eR = cos(θ)sin(φ)E1 +cos(φ)E2 − sin(θ)sin(φ)E3, (4.93)

eφ = cos(θ)cos(φ)E1 − sin(φ)E2 − sin(θ)cos(φ)E3, (4.94)

and

eθ =−sin(θ)E1 −cos(θ)E3, (4.95)

define the spherical basis vectors to define the position of the payload. And the required
velocity vectors:

vg =
.
ug1E1 +

.
ug2E2, (4.96)

vsp = 0.5(
.
u1 +

.
u5)E1 +0.5(

.
u3 +

.
u7)E2 +vg =

.
xspE1 +

.
yspE2, (4.97)

vr = vsp, (4.98)

vap = `ax(
.

α +
.
δ p)r2p +vr, (4.99)

vac =
.
xacE1 +

.
yacE2, (4.100)

vb = `b(
.

β + .
γ)b3 +`b(

.
α +

.
δ c)cos(β +γ)r2c +vac, (4.101)

vt = `t(
.

β + .
γ)b3 +`t(

.
α +

.
δ c)cos(β +γ)r2c +vb, (4.102)

vm =
.
ReR +R

.
θeφ +Rsin(φ)

.
θeθ+vt , (4.103)

[
.
ut

j]= [
.
u2 j−1

.
u2 j]

T −
{
[

.
ug1

.
ug1]

T if j is odd
[

.
ug2

.
ug2]

T if j is even,
(4.104)

where Eqs. (4.96)-(4.104) are the velocities of the positions from Eqs. (4.76)-(4.84). Also,
the following angular velocity vectors are defined as:

ωrc = (
.

α +
.
δ c)E3, (4.105)
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which is the angular velocity of the crane cabin from the computational side,

ωrp = (
.

α +
.
δ p)E3, (4.106)

which is the angular velocity of the crane cabin from the physical side,

ωb =−(
.

β + .
γ)r2c +ωrc, (4.107)

which is the angular velocity of the boom.
In the ideal setting, the following relations hold:

F2c ·E1 =−F2p ·E1, F2c ·E2 =−F2p ·E2, M2c ·E3 =−M2p ·E3. (4.108)

Again, at this point, there are not enough equations to match the number of unknowns. To
get the remaining equations, a model for the error at the split is required. Similar to HS1,
the error is modeled as a spring-mass-damper system controlled by a PI controller:

Dc[ûc2]
∣∣∣
Ic2

= Dp[ûp2]
∣∣∣
Ip2

. (4.109)

In this case ûc2 and ûp2 are given by

[ûc2]=
[
xac yac δc

]T
, [ûp2]=

[
xap yap δp

]T
, (4.110)

where the operators Dc[ûc2] and Dp[ûp2] have the following definitions:

Dc[ûc2]=
(

kaki +
(
kakp +caki

) d
dt

+cakp
d2

dt2

)
ûc2, (4.111)

and

Dp[ûp2]=
(

kaki +
(
ka(1+kp)+caki

) d
dt

+(ca(1+kp)
) d2

dt2 +ma
d3

dt3

)
ûp2, (4.112)

where the parameters are the same as those for HS1. There are now a sufficient number of
equations to solve for the motion of HS2.

The Third Hybrid System
For the third hybrid system (HS3), there are two hybrid splits. The first split is at the

connection between the supporting structure and the cabin. The second split is at the con-
nection between the cabin and the boom. In this case the cabin is considered the physical
substructure, P-side, and everything else is considered the computational model, C-side.
Introducing these hybrid splits introduces six new degrees of freedom: xsp, ysp, δp, xac, yac,
and δc2. Where xsp, ysp, and δpare the E1 position, E2 position, and rotation angle of the
base of the crane cabin from the physical side and xac, yac, and δc2 are the E1 position, the
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E1
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M2c

F2c
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M1c
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r3c

u1
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α + δp

Fig. 4.4 A diagram of the Third Hybrid System (HS3).

E2 position, and rotation angle of the connection point between the crane cabin and boom
from the computational side. A figure of HS3 is shown in Fig. 4.4, where the two hybrid
splits can clearly be seen. Note that HS3 is a combination of HS1 and HS2, in that it has
both of the hybrid splits from the previous two hybrid systems.

Lagrange’s equation are given by the following:

d
dt

(
∂T̂3

∂
.
q̂i

3

)
− ∂T̂3

∂q̂i
3
+ ∂Û3

∂q̂i
3
+ ∂D̂3

∂
.
q̂i

3
=F1p ·

∂vsp

∂
.
q̂i

3
+F1c ·

∂vsc

∂
.
q̂i

3
+M1p ·

∂ωrp

∂
.
q̂i

3
(4.113)

+M1c ·
∂ωrc

∂
.
q̂i

3
+F2p ·

∂vap

∂
.
q̂i

3
+F2c ·

∂vac

∂
.
q̂i

3

+M2p ·
∂ωrp

∂
.
q̂i

3
+M2c ·

∂ωrc

∂
.
q̂i

3
,

where[
q̂i

3
]= [R φ θ γ xsp ysp δp xac yac δc2 u1 u2 u3 u4 u5 u6 u7 u8

]
.

(4.114)
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Similarly for the third hybrid system, the kinetic energy is denoted by T̂3, the potential
energy is denoted by Û3, and the Rayleigh dissipation function is denoted by D̂3, and are
defined as follows:

Û3 =mmgxm ·E3 +mbgxb ·E3 +mrgxr ·E3 (4.115)

+ 1
2

km(R−R0)
2 + 1

2
kbγ

2 + 1
2

4∑
j=1

u j ·K ju j,

T̂3 =
1
2

mmvm ·vm + 1
2

mbvb ·vb +
1
2

mrvr ·vr (4.116)

+ 1
2
ωb ·Jbωb +

1
2
ωr ·Jrωr +

1
2

4∑
j=1

.
ut

j ·M j
.
ut

j,

D̂3 =
1
2

cm
.
R2 + 1

2
cb

.
γ

2 + 1
2

4∑
j=1

.
u j ·C j

.
u j. (4.117)

In this case, F1p, F1c, M1p, M1c, F2p, F2c, M2p, and M2c are introduced into the equations
of motion, which all follow the same definitions as those from HS1 and HS2. The position
vectors are defined as:

xg = ug1E1 +ug2E2, (4.118)

xsc = 0.5(u1 +u5)E1 +0.5(u3 +u7)E2 +`qE3 +xg = xscE1 +yscE2 +`qE3, (4.119)

xsp = xspE1 +yspE2 +`qE3, (4.120)

xr = `rE3 +xsp, (4.121)

xap = `axr1p +`azE3 +xr, (4.122)

xac = xacE1 +yacE2 + (`q +`c +`az)E3, (4.123)

xb = `bb1 +xac, (4.124)
xt = `tb1 +xb, (4.125)

xm = ReR +xt , (4.126)

[u j]= [u2 j−1 u2 j]
T , (4.127)

where Eqs. (4.118)-(4.127) all have the same physical meaning as their corresponding
Eqs. (4.6)-(4.13), except that xsc defines the position of the base of the crane cabin from
the computational side and xsp defines the position of the base of the crane cabin from the
physical side and xac is the position of the connection point between the crane cabin and the
boom from the computational side and xap is the position of the connection point between
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the crane cabin and the boom from the physical side. Also, the following quantities are
defined as:

xsc =0.5(u1 +u5)+ug1, ysc = 0.5(u3 +u7)+ug2, (4.128)

δc = 0.25
(

u1 −u5

lx
+ u3 −u7

ly

)
.

The required vectors and rotation tensors are given by:

rip = R1pEi, (4.129)

where rip is the co-rotational basis of the crane cabin from the physical side.

ric = R1cEi, (4.130)

where ric is the co-rotational basis of the crane cabin from the computational side.

bi = R2ric, (4.131)

where bi is the co-rotational basis of the boom.

R1p =

cos(α +δp) −sin(α +δp) 0

sin(α +δp) cos(α +δp) 0

0 0 1


Ei⊗E j

(4.132)

is the rotation tensor from the Cartesian basis to the rip basis.

R1c =

cos(α +δc2) −sin(α +δc2) 0

sin(α +δc2) cos(α +δc2) 0

0 0 1


Ei⊗E j

(4.133)

is the rotation tensor from the Cartesian basis to the ric basis.

R2 =

cos(β +γ) 0 −sin(β +γ)

0 1 0

sin(β +γ) 0 cos(β +γ)


ric⊗r jc

(4.134)

is the rotation tensor from the ric basis to the bi basis.

eR = cos(θ)sin(φ)E1 +cos(φ)E2 − sin(θ)sin(φ)E3, (4.135)

eφ = cos(θ)cos(φ)E1 − sin(φ)E2 − sin(θ)cos(φ)E3, (4.136)
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and

eθ =−sin(θ)E1 −cos(θ)E3, (4.137)

define the spherical basis vectors to define the position of the payload. Finally, the velocity
vectors are as follows:

vg =
.
ug1E1 +

.
ug2E2, (4.138)

vsc = 0.5(
.
u1 +

.
u5)E1 +0.5(

.
u3 +

.
u7)E2 +vg =

.
xscE1 +

.
yscE2, (4.139)

vsp =
.
xspE1 +

.
yspE2, (4.140)

vr = vsp, (4.141)

vap = `ax(
.

α +
.
δ p)r2p +vr, (4.142)

vac =
.
xacE1 +

.
yacE2, (4.143)

vb = `b(
.

β + .
γ)b3 +`b(

.
α +

.
δ c2)cos(β +γ)r2c +vac, (4.144)

vt = `t(
.

β + .
γ)b3 +`t(

.
α +

.
δ c2)cos(β +γ)r2c +vb, (4.145)

vm =
.
ReR +R

.
θeφ +Rsin(φ)

.
θeθ+vt , (4.146)

[
.
ut

j]= [
.
u2 j−1

.
u2 j]

T −
{
[

.
ug1

.
ug1]

T if j is odd
[

.
ug2

.
ug2]

T if j is even,
(4.147)

where Eqs. (4.138)-(4.147) are the velocities of the positions from Eqs. (4.118)-(4.127).
Also, the following angular velocity vectors are given by:

ωrc = (
.

α +
.
δ c2)E3, (4.148)

which is the angular velocity of the crane cabin from the computational side,

ωrp = (
.

α +
.
δ p)E3, (4.149)

which is the angular velocity of the crane cabin from the physical side,

ωb =−(
.

β + .
γ)r2c +ωrc, (4.150)

which is the angular velocity of the boom.
In the ideal setting, the following relations hold:

F1c ·E1 =−F1p ·E1, F1c ·E2 =−F1p ·E2, M1c ·E3 =−M1p ·E3. (4.151)

and

F2c ·E1 =−F2p ·E1, F2c ·E2 =−F2p ·E2, M2c ·E3 =−M2p ·E3. (4.152)

As was the case for HS1 and HS2, there are not enough equations to properly solve for the
motion of HS3. To do this, the same error model described before is utilized: a spring-
mass-damper system controlled by a PI controller. The equations for which are given by

Dc[ûc3]
∣∣∣
Ic3

= Dp[ûp3]
∣∣∣
Ip3

. (4.153)
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In this case ûc3 and ûp3 are given by

[ûc3]=
[
xsc ysc δc xac yac δc2

]T
, (4.154)

[ûp3]=
[
xsp ysp δp xap yap δp2

]T
,

where the operators Dc[ûc3] and Dp[ûp3] have the following definitions:

Dc[ûc3]=
(

kaki +
(
kakp +caki

) d
dt

+cakp
d2

dt2

)
ûc3, (4.155)

and

Dp[ûp3]=
(

kaki +
(
ka(1+kp)+caki

) d
dt

+(ca(1+kp)
) d2

dt2 +ma
d3

dt3

)
ûp3, (4.156)

where the parameters are the same as those mentioned for HS1. The system is subject to
the following constraints:

xap = xsp + lax cos(α +δp), yap = ysp + lax sin(α +δp), δp = δp2, (4.157)

in order to maintain rigid body motion for the cabin. All of the previous equations give the
necessary equations to solve for the motion of HS3.

4.3 Analysis
For the analysis of the crane structure, all of the physical dimensions defined in the pre-

vious section need to be defined, along with a set of initial conditions for time integration.
See Appendix C for all of the physical data, initial conditions, and other constants. Note
that all values represent non-dimensionlized values. The majority of the analysis consists
of evaluating how a harmonic displacement applied at the base of the structure affects the
hybrid responses of the three different hybrid systems. To accomplish this, ug2 is defined
as

ug2 = Acos(Ωt), (4.158)

where A is the amplitude of the displacement and Ω is the angular frequency of the displace-
ment, with A = 0.1 and Ω varying from 0.1 to 10 with a step size of 0.05. The equations
of motion for each system are integrated numerically using the Dormand-Prince method,
which is a type of the Runge-Kutta ODE solver [15]. A tolerance of 10−7 was used when
evaluating the Dormand-Prince method. This method is a standard method used to evaluate
non-stiff equations with medium accuracy.

Throughout the analysis, the L2 norm [36] is used to evaluate the error. There are three
different types of L2 errors that are used in this chapter:
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1. Whole System Error: when both reference system and hybrid system have equivalent
quantities to compare.

EWS
• (t)=

√∫ t
0 ‖a•− â•‖2√∫ t

0 ‖a•‖2
, (4.159)

where a• and â• are the state vectors for the reference and hybrid systems respectively
for some physical quantities represented by •. And ‖•‖ is the standard 2-norm of a
vector.

2. Hybrid Interface Error: when the hybrid system has equivalent quantities on the C-
side and P-side that both need to be compared to the reference system.

EHI
• (t)=

√∫ t
0 ‖a•− âc•‖2 +‖a•− âp•‖2√∫ t

0 ‖a•‖2
, (4.160)

where a•, âc•, and âp• are state vectors of the reference, computational side, and
physical side, respectively, for some quantity represented by •.

3. Hybrid System Error: the error between equivalent quantities on the C-side and P-
side, which is the error at the hybrid interfaces.

EHS
• (t)=

√∫ t
0 ‖âc•− âp•‖2√∫ t

0 ‖âc•‖2
, (4.161)

where âc•, and âp• are state vectors of the computational side and physical side,
respectively, for some quantity represented by •. Note, this type of error is not de-
pendent upon the reference system.

Note, that in all three cases, the error is normalized, in the first two cases, to the reference
system, and for the third case, to the C-side. Whole system errors are computed for the
states of the system (as, âs) and the total energy of the system (aE , âE). Hybrid interface
errors and hybrid system errors are computed for δ (aδ , âcδ , âpδ ), xs (ax, âcx, âpx), and ys
(ay, âcy, âpy). See Appendix D for definitions of all of the previously mentioned vectors. In
order to let all of the L2 errors approach a steady-state value, the L2 errors for the following
figures are all computed out to a value of t = 1000.

Figures 4.5-4.12 show all of the L2 errors for the different properties mentioned earlier.
From examining these figures, fairly smooth curves for the all of the L2 errors except around
Ω = 1.75 and Ω = 5.4 are seen. First, the analysis ignores the areas around Ω = 1.75 and
Ω = 5.4, and analysis of the cause and impact of those two regions comes afterward.
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Fig. 4.5 The Whole System Error of the total energy for all three hybrid systems
as a function of Ω.

Comparing the Reference System to the Hybrid Systems
While excluding the regions around Ω = 1.75 and Ω = 5.4, it is noticed that the errors

tend to be the smallest towards Ω = 0, and get larger as Ω = 10. This makes sense because,
as the frequency is increased, it is harder for the controller to maintain dynamic matching
between both the C-side and P-side, which leads to larger errors. This effect is clearly
shown in Figs. 4.10 and 4.11, which shows that the error between equivalent quantities
on the C-side and P-side are approximately growing with Ω. It is noted that in some
cases the L2 error goes above 1, which is over 100% error, for example HS2 in Fig. 4.6,
which indicates poor matching between the reference and hybrid systems. However, by
examining Fig. 4.5, it can be seen that – even for higher frequencies – the error for HS2
never goes above 0.04, or 4%. This is interesting in that the states are not matching very
well between the two systems, however, the total energy of the two systems is matching
fairly well. This result is similar to one found by Drazin and Govindjee [18], indicating that
different aspects of hybrid simulation can be accurate, while others can be inaccurate. This
leads to a question of what is desired from hybrid simulation, and what can one reasonable
expect from a hybrid simulation response. From comparing Figs. 4.5 and 4.6, it can be
seen that the errors for all three systems are typically much smaller for EWS

E than for EWS
s .

Since the EWS
s represents how well the entire motion of the hybrid system matches that of
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Fig. 4.6 The Whole System Error of the states for all three hybrid systems as a
function of Ω.

the reference system, it is clear that the total energy of the system matches better than the
actual motion of the system. Thus, even though it may seem like the hybrid simulation is
not representative of the true dynamics – especially for the case of HS2 when EWS

s goes
above 1 – it can still provide accurate results for other physical properties of the system,
in this case the total energy. This reinforces the conclusion that to fully utilize hybrid
simulation, sometimes it is beneficial to look at as many physical quantities as possible,
because the actual motion may not be as accurate as one would like to believe.

Comparing the Hybrid Systems to Each Other
From examining Figs. 4.5-4.12, it is clear that HS1, HS2, and HS3 all have unique error

responses for all of the properties shown. This indicates that the location of the hybrid split
affects the results produced from a hybrid simulation. For example, all of the L2 errors for
HS1 never goes above 0.4, whereas HS3 typically has a larger L2 error than HS1, yet never
goes above 0.7, and HS2 typically has the largest error, and in many cases goes above 1.
From these results it seems that, on average, HS1 provides the best results, followed by
HS3, and HS2 is the worst. This may be somewhat surprising, in that HS3 has two hybrid
splits, whereas HS2 only has one, and one might expect that having only one hybrid split
would imply that there is less chance for error to be introduced into the system. However,
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Fig. 4.7 The Hybrid Interface Error of δ for all three hybrid systems as a function
of Ω.

the results show that more hybrid splits does not directly correlate to more error in the
hybrid system. This implies that there are good and bad locations to create a hybrid split,
where a good hybrid split location will be one that minimizes error introduced into the
hybrid system, and a bad hybrid split location is one that will cause the error in the system
to rise quickly. For instance, HS1 is the best hybrid system since it has the least amount of
error in all three of the error metrics. This indicates that it has a good hybrid split location,
or a hybrid split location that does not alter the system dynamics a great deal. Similarly,
HS2 is the worst hybrid system, since it has the most error in all three of the error metrics.
This indicates that it has a bad hybrid split location, or a split location that drastically
changes the system dynamics. Since HS3 has the both split locations (the ones used by
HS1 and HS2), it indicates that HS3 should have both a good and bad hybrid split location.
Since HS3 is in between HS1 and HS2, when it comes to L2 errors, it might indicate that
good and bad locations have an averaging effect.

Analyzing the Frequency Response
From Figs. 4.5-4.12, there are fairly smooth curves for all of the L2 errors except around

Ω = 1.75 and Ω = 5.4, which have what seem to be random spikes in the error. To try to
better understand the error spikes, the frequency response of the unforced system (ug2 = 0)
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Fig. 4.8 The Hybrid Interface Error of xs for all three hybrid systems as a function
of Ω.

is analyzed. The frequency responses for all four systems are shown in Fig. 4.13, where
it can be seen that there are frequency peaks around Ω = 1.75 and Ω = 5.4. This indicates
that resonant frequencies of the system are causing the spikes in the L2 error curves. These
error spikes are similar to the error spikes found by Drazin et. al. [20] and Bakhaty et.
al. [4], which were typically located near resonant frequencies of the system. Due to the
appearance of error spikes in simple linear systems with constant error, as well as in this
chapter with a nonlinear multi-degree of freedom system with basic PI controller, it seems
to imply that error spikes near resonant frequencies are a fundamental aspect of hybrid
simulation. This makes it clear that hybrid simulation has a hard time dealing with the
resonant frequencies of a system, and one should be aware of this and try to avoid exciting
the resonant frequencies when administering a hybrid simulation experiment in order to
avoid any unnecessary error. However, it worth noting that all four systems have nearly
identical frequency responses, as seen in Fig. 4.13, which indicates that the hybrid split did
not change the frequency response of the system, and leaves the resonant frequencies intact.
This can be an invaluable resource, in that, one can use the hybrid system to determine the
resonant frequencies without actually having the reference system.
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Fig. 4.9 The Hybrid Interface Error of ys for all three hybrid systems as a function
of Ω.

Discussion
In the previous section, different aspects of a theoretical hybrid simulation setup were

analyzed. While there were situations in which the results of a hybrid test were comparable
to that of the reference test, there were numerous occasions in which the hybrid results
did not match the reference system. This indicates that the use of hybrid simulation to
effectively test different mechanical systems and structures is not guaranteed, but rather
requires careful consideration of how the hybrid system is constructed. As has been seen, it
is possible for something as simple as the location of the hybrid split to drastically change
the outcome of a hybrid test. It has also been seen that certain physical properties match
fairly well while other properties do not match at all. However, all of this was determined
with knowledge of the reference system. In an actual hybrid experiment, the reference sys-
tem response most likely will not be known, which would make it impossible to calculate
errors similar to those in this chapter. For this reason, a hybrid experiment needs to be
well thought out beforehand to make sure that all error inducing situations are reduced as
much as possible. In addition, a hybrid test should look at as many physical quantities as
possible, such as displacements, velocities, energies, frequencies, etc., because this will
give the user a greater chance at receiving useful and accurate data. If possible, it seems
advisable to conduct as many hybrid tests as possible for a single mechanical system. By
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Fig. 4.10 The Hybrid System Error of δ for all three hybrid systems as a function
of Ω.

doing this, there will then be multiple sets of data that can be compared to see if there is
any correlation between the sets of data, which would potentially point in the direction of
the reference response. Finally, with more data from multiple hybrid tests, it will provide
possible ranges of motion that the mechanical system will experience; in essence creating
bounds on the motion that will be useful for designing systems or structures that utilize the
core component of original hybrid test.

4.4 Conclusions
This chapter aimed to expand upon the theoretical knowledge of hybrid simulation. It

utilized a best case scenario for errors that might occur in a hybrid simulation experiment,
namely systematic magnitude and phase mismatch at the hybrid interface through the ap-
plication of a PI controller. While this is by no means a comprehensive list of all possible
errors that might occur, it gives a good starting point. This chapter tested a multi-degree
of freedom, nonlinear, crane structure with a theoretical hybrid simulation setup developed
previously [4, 18, 20]. From this setup, three different hybrid systems were created: one
with the split between the cabin and supporting structure, one with the split between the
cabin and the boom, and one with both hybrid splits. The hybrid systems can be compared
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Fig. 4.11 The Hybrid System Error of xs for all three hybrid systems as a function
of Ω.

to the reference system as well as to each other in order to determine the effectiveness of
each of the hybrid systems. In previous chapters, it was found that hybrid simulation can
produce accurate results, but those were done with very simple linear or single degree of
freedom nonlinear systems. This chapter explored the effects of how hybrid simulation
scales with the size and complexity of the structure. While analyzing the hybrid systems,
many correlations to previous chapters were found, such as the error spikes in the frequency
domains [4, 20], as well as the fact that certain dynamical properties can be accurately de-
scribed by a hybrid test while others can not [18]. This shows that the results and analysis
from even the simple systems maintains its relevancy, even for more complicated struc-
tures. From comparing the hybrid systems to each other, it was found that the location of
the hybrid splits, as well as how many hybrid splits there are, can have a significant im-
pact on the overall results. This makes it critical that one fully understands the situation in
which they are conducting a hybrid test. Thus, overall it can be seen that hybrid simulation
can be quite effective if used properly and if proper care is taken when setting up the actual
hybrid test.

73



CHAPTER 4. HYBRID SIMULATION THEORY APPLIED TO A CRANE
STRUCTURE

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 
HS1
HS2
HS3

Ω

E
H
S

y
(1
00
0)

Fig. 4.12 The Hybrid System Error of ys for all three hybrid systems as a function
of Ω.

74



CHAPTER 4. HYBRID SIMULATION THEORY APPLIED TO A CRANE
STRUCTURE

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

−4

 

 
RS
HS1
HS2
HS3

5 5.2 5.4 5.6 5.8 6
0

0.5

1

1.5

2

2.5

3
x 10

−5

Ω

A
m
p
li
tu
d
e

Fig. 4.13 Frequency response of the unforced system. The insert is a zoomed-in
section around the peak near Ω = 5.4.

75



Chapter 5
A Nonlinear Kinetic Model for
Multi-Stage Friction Pendulum Systems

5.1 Introduction
This chapter aims to expand upon the current models for Multi-Stage Friction Pendulum

systems (MSFPs), which will incorporate the full kinetics, with no linearization assump-
tions and no restrictions on the overall motion. A rigorous use of vectors to describe the
kinematics of the internal sliders will help to clarify the overall motion of MSFPs. This
will also aid in the setup of the kinetics of the MSFPs, as well as facilitating the modeling
of multi-directional motion. The model to be developed will incorporate full vectorially-
described motion with trajectories constrained to the configuration manifold as defined by
mathematically precise constraints. Constructing the model in this way directly facilitates
a number of modeling advances and naturally leads to robust numerical approximations.
The advantages of the model will be (1) it will be a geometrically fully nonlinear model;
(2) it will be able to naturally handle multi-directional motions, including complex rotary
motions on the sliding surfaces, top and bottom plate rotations, etc.; (3) by construction,
it will be fully dynamic and allow for rate dependent analysis; and (4) it will be modular
and permit the use of advanced friction models. This chapter will apply the vectorized mo-
tion to that of the triple friction pendulum system, a type of MSFP, as a benchmark for the
new model, but will be done in such a way that allows for easy expansion to other, more
complicated MSFP systems.

5.2 Triple Friction Pendulum: Equations of Motion
First, the equations of motion for the TFP are defined, as this will allow one to see

patterns in the equations so that they can be easily expanded to more complicated MSFPs.
Figure 5.1 shows a cross-sectional view of the TFP used in this chapter.
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Fig. 5.1 (a) Diagram of a Triple Friction Pendulum (TFP) model. (b) Expanded
view of the TFP.

Kinematics
In order to define the equations of motion, the position vectors of all of the important

locations in the TFP need to be defined, such as center of mass of each bearing. Each
bearing will have its own set of co-rotational basis vectors defined using sets of 1-2-3
Euler angles [48], all relative to the previous bearing. It is worth noting that the Euler
angle singularity for the 1-2-3 set occurs when the second rotation angle – in this chapter
defined as θα – is equal to ±π

2 [48]. In order to avoid this singularity, θα is restricted to
θα ∈ (−π

2 ,
π

2 ), which is well within the operating regime of MSFPs. By taking advantage of
the axial symmetry of the bearings, only the 1-2 Euler angles are needed to define the basis
vectors. Figure 5.2 shows graphically how the basis vectors are constructed from 1-2-3
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Euler angles for the first set of Euler angles. The co-rotational basis are defined as:

t1
i = R1Ei, t2

i = R2t1
i , t3

i = R3t2
i , t4

i = R4t3
i , t5

i = R5t4
i , (5.1)

with the following rotation tensors:

R1 = R(ψ1,θ1;Ei), R2 = R(ψ2,θ2;t1
i ), R3 = R(ψ3,θ3;t2

i ), (5.2)

R4 = R(ψ4,θ4;t3
i ), R5 = R(ψ5,θ5;t4

i ).

Each rotation tensor can be broken down into a series of two rotations as follows:

R(ψ1,θ1;Ei)= L2(θ1;t1′
i )L1(ψ1;Ei), (5.3)

where the individual rotations have the following definitions:

L1(ψ1;Ei)=cos(ψ1)(E2 ⊗E2 +E3 ⊗E3) (5.4)
+ sin(ψ1)(E3 ⊗E2 −E2 ⊗E3)+E1 ⊗E1,

and

L2(θ1;t1′
i )=cos(θ1)(t

1′
3 ⊗ t1′

3 + t1′
1 ⊗ t1′

1 ) (5.5)

+ sin(θ1)(t
1′
1 ⊗ t1′

3 − t1′
3 ⊗ t1′

1 )+ t1′
2 ⊗ t1′

2 ,

where the intermediate co-rotational basis, t1′
i , is defined as

t1′
i = L1(ψ1;Ei)Ei. (5.6)

The co-rotational basis, tα
i , is applied to the center of mass of the α bearing, an example

for bearings 1 and 2 can be seen in Fig. 5.3.

t1
′

2
t1

′
3

E2

E3

t13
t11

t1
′

3

t1
′

1

ψ1

t11

t12

θ1 φ1

Fig. 5.2 The 2-D change of coordinates from the 1-2-3 Euler angles. Note that
in each 2-D coordinate system shown, there is a third unit vector point-
ing out of the page following the right-hand rule about which the 2-D
coordinate system is rotating.

The position vectors will all be defined relative to the previous bearing using these co-
rotational bases, starting from the ground contact point with the bottom bearing, defined as
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t21

t23

t11

t13

E1

E3

Fig. 5.3 Locations of the co-rotational basis vectors for the first two bearings.
Note that for each coordinate system shown, there is a third vector point-
ing into the page following the right-hand rule.

r01, going all the way to the top of the final bearing, defined as r55. Figures 5.1 and 5.4
show what all of the physical quantities represent, as well as the physical locations of some
of the required position vectors.

All of the required position vectors are defined as follows:

r01 = ug1E1 +ug2E2 +ug3E3, (5.7)

which is the ground contact point of bearing one,

r1 = r01 + z1t1
3, (5.8)

which is the center of mass of bearing one,

r11 = r1 + (`1 − z1)t
1
3, (5.9)

which is the center top of bearing one,

r1c = r11 +R1t1
3, (5.10)

which is the center of the sphere created by the sliding surface with radius R1,

r12 = r1c −R1t2
3, (5.11)

which is the center bottom of bearing two,

r2 = r12 + z2t2
3, (5.12)
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Fig. 5.4 Sliding angles for all four sliding surfaces.

which is the center of mass of bearing two,

r22 = r2 + (`2 − z2)t
2
3, (5.13)

which is the center top of bearing two,

r2c = r22 +R2t2
3, (5.14)

which is the center of the sphere created by the sliding surface with radius R2,

r23 = r2c −R2t3
3, (5.15)

which is the center bottom of bearing three,

r3 = r23 + z3t3
3, (5.16)
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which is the center of mass of bearing three,

r33 = r3 + (`3 − z3)t
3
3, (5.17)

which is the center top of bearing three,

r3c = r33 −R3t3
3, (5.18)

which is the center of the sphere created by the sliding surface with radius R3,

r34 = r3c +R3t4
3, (5.19)

which is the center bottom of bearing four,

r4 = r34 + (`4 − z4)t
4
3, (5.20)

which is the center of mass of bearing four,

r44 = r4 + z4t4
3, (5.21)

which is the center top of bearing four,

r4c = r44 −R4t4
3, (5.22)

which is the center of the sphere created by the sliding surface with radius R4,

r45 = r4c +R4t5
3, (5.23)

which is center bottom of bearing five,

r5 = r45 + (`5 − z5)t
5
3, (5.24)

which is the center of mass of bearing five and,

r55 = r5 + z5t5
3, (5.25)

which is the center top of bearing five.
Now that all of the relevant position vectors have been defined, the velocity vectors

associated with each position vector need to be defined. In addition, the angular velocities
of each bearing are needed:

ω1 =
.
θ1t1

2 +
.
ψ1E1, (5.26)

which is the angular velocity of bearing one excluding any rotation about the axis of sym-
metry,

ωt
1 =

.
φ 1t1

3 +ω1, (5.27)
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which is the total angular velocity of bearing one,

ω2 =
.
θ2t2

2 +
.
ψ2t1

1 +ω1, (5.28)

which is the angular velocity of bearing two excluding any rotation about the axis of sym-
metry,

ωt
2 =

.
φ 2t2

3 +ω2, (5.29)

which is the total angular velocity of bearing two,

ω3 =
.
θ3t3

2 +
.
ψ3t2

1 +ω2, (5.30)

which is the angular velocity of bearing three excluding any rotation about the axis of
symmetry,

ωt
3 =

.
φ 3t3

3 +ω3, (5.31)

which is the total angular velocity of bearing three,

ω4 =
.
θ4t4

2 +
.
ψ4t3

1 +ω3, (5.32)

which is the angular velocity of bearing four excluding any rotation about the axis of sym-
metry,

ωt
4 =

.
φ 4t4

3 +ω4, (5.33)

which is the total angular velocity of bearing four,

ω5 =
.
θ5t5

2 +
.
ψ5t4

1 +ω4, (5.34)

which is the angular velocity of bearing five excluding any rotation about the axis of sym-
metry and

ωt
5 =

.
φ 5t5

3 +ω5, (5.35)

which is the total angular velocity of bearing five. And, using the following relations,
.
t1
i =ω1 × t1

i ,
.
t2
i =ω2 × t2

i ,
.
t3
i =ω3 × t3

i ,
.
t4
i =ω4 × t4

i ,
.
t5
i =ω5 × t5

i , (5.36)

the velocity vectors are defined as follows:

v01 =
.
ug1E1 +

.
ug2E2 +

.
ug3E3, (5.37)

v1 = v01 + z1ω1 × t1
3, (5.38)

v11 = v1 + (`1 − z1)ω1 × t1
3, (5.39)

v1c = v11 +R1ω1 × t1
3, (5.40)
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v12 = v1c −R1ω2 × t2
3, (5.41)

v2 = v12 + z2ω2 × t2
3, (5.42)

v22 = v2 + (`2 − z2)ω2 × t2
3, (5.43)

v2c = v22 +R2ω2 × t2
3, (5.44)

v23 = v2c −R2ω3 × t3
3, (5.45)

v3 = v23 + z3ω3 × t3
3, (5.46)

v33 = v3 + (`3 − z3)ω3 × t3
3, (5.47)

v3c = v33 −R3ω3 × t3
3, (5.48)

v34 = v3c +R3ω4 × t4
3, (5.49)

v4 = v34 + (`4 − z4)ω4 × t4
3, (5.50)

v44 = v4 + z4ω4 × t4
3, (5.51)

v4c = v44 −R4ω4 × t4
3, (5.52)

v45 = v4c +R4ω5 × t5
3, (5.53)

v5 = v45 + (`5 − z5)ω5 × t5
3, (5.54)

v55 = v5 + z5ω5 × t5
3, (5.55)

where Eqs. (5.37)-(5.55) are the velocity vectors of the corresponding position vectors in
Eqs. (5.7)-(5.25). Next, the following angular acceleration vectors are required:

.
ω1 =

..
θ1t1

2 +ω1 ×
.
θ1t1

2 +
..
ψ1E1, (5.56)

.
ωt

1 =
..
φ 1t1

3 +ω1 ×
.

φ 1t1
3 +

.
ω1, (5.57)

.
ω2 =

..
θ2t2

2 +ω2 ×
.
θ2t2

2 +
..
ψ2t1

1 +ω1 ×
.
ψ2t1

1 +
.
ω1, (5.58)

.
ωt

2 =
..
φ 2t2

3 +ω2 ×
.

φ 2t2
3 +

.
ω2, (5.59)

.
ω3 =

..
θ3t3

2 +ω3 ×
.
θ3t3

2 +
..
ψ3t2

1 +ω2 ×
.
ψ3t2

1 +
.
ω2, (5.60)

.
ωt

3 =
..
φ 3t3

3 +ω3 ×
.

φ 3t3
3 +

.
ω3, (5.61)

.
ω4 =

..
θ4t4

2 +ω4 ×
.
θ4t4

2 +
..
ψ4t3

1 +ω3 ×
.
ψ4t3

1 +
.
ω3, (5.62)

.
ωt

4 =
..
φ 4t4

3 +ω3 ×
.

φ 4t4
3 +

.
ω4, (5.63)

.
ω5 =

..
θ5t5

2 +ω4 ×
.
θ5t5

2 +
..
ψ5t4

1 +ω3 ×
.
ψ5t4

1 +ω4, (5.64)
.
ωt

5 =
..
φ 5t5

3 +ω4 ×
.

φ 5t5
3 +

.
ω5, (5.65)

where Eqs. (5.56)-(5.65) are the angular acceleration vectors of the corresponding angular
velocity vectors in Eqs. (5.26)-(5.35). Finally, the acceleration vectors of each of the above
listed velocity vectors are defined as follows:

.
v01 =

..
ug1E1 +

..
ug2E2 +

..
ug3E3, (5.66)

.
v1 =

.
v01 + z1

.
ω1 × t1

3 + z1ω1 × (ω1 × t1
3), (5.67)
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.
v11 =

.
v1 + (`1 − z1)

.
ω1 × t1

3 + (`1 − z1)ω1 × (ω1 × t1
3), (5.68)

.
v1c =

.
v11 +R1

.
ω1 × t1

3 +R1ω1 × (ω1 × t1
3), (5.69)

.
v12 =

.
v1c −R1

.
ω2 × t2

3 −R1ω2 × (ω2 × t2
3), (5.70)

.
v2 =

.
v12 + z2

.
ω2 × t2

3 + z2ω2 × (ω2 × t2
3), (5.71)

.
v22 =

.
v2 + (`2 − z2)

.
ω2 × t2

3 + (`2 − z2)ω2 × (ω2 × t2
3), (5.72)

.
v2c =

.
v22 +R2

.
ω2 × t2

3 +R2ω2 × (ω2 × t2
3), (5.73)

.
v23 =

.
v2c −R2

.
ω3 × t3

3 −R2ω3 × (ω3 × t3
3), (5.74)

.
v3 =

.
v23 + z3

.
ω3 × t3

3 + z3ω3 × (ω3 × t3
3), (5.75)

.
v33 =

.
v3 + (`3 − z3)

.
ω3 × t3

3 + (`3 − z3)ω3 × (ω3 × t3
3), (5.76)

.
v3c =

.
v33 −R3

.
ω3 × t3

3 −R3ω3 × (ω3 × t3
3), (5.77)

.
v34 =

.
v3c +R3

.
ω4 × t4

3 +R3ω4 × (ω4 × t4
3), (5.78)

.
v4 =

.
v34 + (`4 − z4)

.
ω4 × t4

3 + (`4 − z4)ω4 × (ω4 × t4
3), (5.79)

.
v44 =

.
v4 + z4

.
ω4 × t4

3 + z4ω4 × (ω4 × t4
3), (5.80)

.
v4c =

.
v44 −R4

.
ω4 × t4

3 −R4ω4 × (ω4 × t4
3), (5.81)

.
v45 =

.
v4c +R4

.
ω5 × t5

3 +R4ω5 × (ω5 × t5
3), (5.82)

.
v5 =

.
v45 + (`5 − z5)

.
ω5 × t5

3 + (`5 − z5)ω5 × (ω5 × t5
3), (5.83)

.
v55 =

.
v5 + z5

.
ω5 × t5

3 + z5ω5 × (ω5 × t5
3), (5.84)

where Eqs. (5.66)-(5.84) are the acceleration vectors of the corresponding position vec-
tors in Eqs. (5.7)-(5.25). The following vectors are all of the required vectors to properly
describe the kinematics of the TFP.

Normal Forces
In order to look at the full kinetics of the TFP, all of the forces acting, both internally

and externally, on the TFP need to be fully described. The first set of forces that act on
the TFP are the internal normal forces. From a moment balance, the normal forces will
not necessarily be acting at the center point of the contact between bearings [53], which
requires another set of 1-2 Euler angles to define the location of each internal normal force.
These Euler angles and their associated basis vectors shall be denoted with a superscribed
˜ , such as ψ̃1 and t̃1

1. The basis vectors for each normal force position is given as

t̃1
i = R̃1t1

i , t̃2
i = R̃2t2

i , t̃3
i = R̃3t3

i , t̃4
i = R̃4t4

i , (5.85)

where

R̃1 = R(ψ̃1, θ̃1;t1
i ), R̃2 = R(ψ̃2, θ̃2;t2

i ), (5.86)

R̃3 = R(ψ̃3, θ̃3;t3
i ), R̃4 = R(ψ̃4, θ̃4;t4

i ),
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where R has the same definition as in Eq. (5.3). The position of each normal force is
defined as:

r̃1 = r1c −R1t̃1
3, (5.87)

which is the position of the normal force on the sliding surface with radius R1,

r̃2 = r2c −R2t̃2
3, (5.88)

which is the position of the normal force on the sliding surface with radius R2,

r̃3 = r3c +R3t̃3
3, (5.89)

which is the position of the normal force on the sliding surface with radius R3,

r̃4 = r4c +R4t̃4
3, (5.90)

which is the position of the normal force on the sliding surface with radius R4. Finally, the
normal forces are defined as

N1 = N1t̃1
3, N2 = N2t̃2

3, N3 = N3t̃3
3, N4 = N4t̃4

3, (5.91)

where Nα are the magnitudes of the normal forces. This is all of the required information
to define the internal normal forces.

Friction Forces
The next set of forces acting on the TFP are the friction forces that act between bearings

at each of the sliding surfaces. The friction forces act at the same locations as the normal
forces, thus they will use the same set of basis vectors and Euler angles previously defined.
The dynamic friction forces act in the plane normal to the normal forces and are defined as

F f 1 =−µ1N1f̃1, F f 2 =−µ2N2f̃2, F f 3 =−µ3N3f̃3, F f 4 =−µ4N4f̃4, (5.92)

where µα are the coefficient of frictions for each pair of sliding surfaces and the f̃α vectors
define the direction in which the friction forces act and are given by,

f̃1 =Y1t̃1
1 +Z1t̃1

2, f̃2 =Y2t̃2
1 +Z2t̃2

2, (5.93)

f̃3 =Y3t̃3
1 +Z3t̃3

2, f̃4 =Y4t̃4
1 +Z4t̃4

2,

where the Yα and Zα are used to define the direction of the friction forces in the plane
normal to the normal forces. These values are determined using a modified Bouc-Wen
model for biaxial hysteresis [49, 34], given as follows:

.
Y 1 =

R1

R0

(
(1−a1Y 2

1 )ũ1 −b1Y1Z1ṽ1

)
a1 =

{
1, Y1ũ1 > 0
0, Y1ũ1 ≤ 0

(5.94)

.
Z1 =

R1

R0

(
(1−b1Z2

1)ṽ1 −a1Y1Z1ũ1

)
b1 =

{
1, Z1ṽ1 > 0
0, Z1ṽ1 ≤ 0
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.
Y 2 =

R2

R0

(
(1−a2Y 2

2 )ũ2 −b2Y2Z2ṽ2

)
a2 =

{
1, Y2ũ2 > 0
0, Y2ũ2 ≤ 0

(5.95)

.
Z2 =

R2

R0

(
(1−b2Z2

2)ṽ2 −a2Y2Z2ũ2

)
b2 =

{
1, Z2ṽ2 > 0
0, Z2ṽ2 ≤ 0

.
Y 3 =

R3

R0

(
(1−a3Y 2

3 )ũ3 −b3Y3Z3ṽ3

)
a3 =

{
1, Y3ũ3 > 0
0, Y3ũ3 ≤ 0

(5.96)

.
Z3 =

R3

R0

(
(1−b3Z2

3)ṽ3 −a3Y3Z3ũ3

)
b3 =

{
1, Z3ṽ3 > 0
0, Z3ṽ3 ≤ 0

.
Y 4 =

R4

R0

(
(1−a4Y 2

4 )ũ4 −b4Y4Z4ṽ4

)
a4 =

{
1, Y4ũ4 > 0
0, Y4ũ4 ≤ 0

(5.97)

.
Z4 =

R4

R0

(
(1−b4Z2

4)ṽ4 −a4Y4Z4ũ4

)
b4 =

{
1, Z4ṽ4 > 0
0, Z4ṽ4 ≤ 0

where R0 is the yield radius and ũα and ṽα are the orthogonal in-plane components of the
relative velocity at the point where the friction forces act and are given by

ũ1 = ṽ1 · t̃1
1, ṽ1 = ṽ1 · t̃1

2, ũ2 = ṽ2 · t̃2
1, ṽ2 = ṽ2 · t̃2

2 (5.98)

ũ3 = ṽ3 · t̃3
1, ṽ3 = ṽ3 · t̃3

2, ũ4 = ṽ4 · t̃4
1, ṽ4 = ṽ4 · t̃4

2,

where ṽα are the relative velocity vectors at the points where the friction forces act and are
given by

ṽ1 =−R1(ω
t
2 −ωt

1)× t̃1
3, ṽ2 =−R2(ω

t
3 −ωt

2)× t̃2
3, (5.99)

ṽ3 = R3(ω
t
4 −ωt

3)× t̃3
3, ṽ4 = R4(ω

t
5 −ωt

4)× t̃4
3.

This gives all of the necessary information to fully define the friction forces.

Contact Forces
The last set of forces acting on the TFP are the forces that occur when two bearings

contact one another when the maximum sliding displacement has been reached for a given
sliding surface. To model this force, a spring-damper system will be imposed at the contact
point. First, the amount of relative sliding between bearings for each sliding surface is
given as

s1 = R1 cos−1 (t1
3 · t2

3
)
, s2 = R2 cos−1 (t2

3 · t3
3
)
, (5.100)

s3 = R3 cos−1 (t3
3 · t4

3
)
, s4 = R4 cos−1 (t4

3 · t5
3
)
.
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The gap functions are then defined as

g1 = sc1 − s1, g2 = sc2 − s2, g3 = sc3 − s3, g4 = sc4 − s4, (5.101)

where scα is the maximum sliding displacement before contact. Thus, if gα is positive,
there is no contact, and if gα is negative, there is contact. The velocity of the gap is defined
as

γ1 =
.
g1, γ2 =

.
g2, γ3 =

.
g3, γ4 =

.
g4. (5.102)

The magnitude of the contact forces become

Fc1 =
{

0 ,g1 > 0
kc1g1 +cc1γ1 ,g1 ≤ 0

(5.103)

Fc2 =
{

0 ,g2 > 0
kc2g2 +cc2γ2 ,g2 ≤ 0

(5.104)

Fc3 =
{

0 ,g3 > 0
kc3g3 +cc3γ3 ,g3 ≤ 0

(5.105)

Fc4 =
{

0 ,g4 > 0
kc4g4 +cc4γ4 ,g4 ≤ 0

(5.106)

where kcα and ccα are, respectively, the stiffness and damping constants for the contact
forces. And the contact forces become

Fc1 = Fc1f̄1, Fc2 = Fc2f̄2, Fc3 = Fc3f̄3, Fc4 = Fc4f̄4, (5.107)

where the direction of the normal forces are given by

f̄1 =
(t1

3 · t2
1)t

2
1 + (t1

3 · t2
2)t

2
2√

(t1
3 · t2

1)
2 + (t1

3 · t2
2)

2
, f̄2 =

(t2
3 · t3

1)t
3
1 + (t2

3 · t3
2)t

3
2√

(t2
3 · t3

1)
2 + (t2

3 · t3
2)

2
, (5.108)

f̄3 =
(t4

3 · t3
1)t

3
1 + (t4

3 · t3
2)t

3
2√

(t4
3 · t3

1)
2 + (t4

3 · t3
2)

2
, f̄4 =

(t5
3 · t4

1)t
4
1 + (t5

3 · t4
2)t

4
2√

(t5
3 · t4

1)
2 + (t5

3 · t4
2)

2
.

The contact forces will act at the following positions:

r̄1 = r2f̄1 + p2t2
3 +r12, r̄2 = r3f̄2 + p3t3

3 +r23, (5.109)

r̄3 = r3f̄3 − p3t3
3 +r33, r̄4 = r4f̄4 − p4t4

3 +r44.

All of the required information needed to define the contact forces between the bearings
has now been defined.
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Equations of Motion
Now that all of the required kinematics and forces have been defined, the equations of

motion for the TFP can be established. In this model, it is assumed that the motion of the
base bearing is fully prescribed, meaning ug1, ug2, ug3, ψ1, θ1, and φ1, and all required time
derivatives, are provided. It is also assumed that the force and moment on the top bearing
– Ftop and Mtop – are also provided. From a balance of linear momentum applied to each
of the bearings, the following equations are defined:

m2
.
v2 = N1 +F f 1 +Fc1 −N2 −F f 2 −Fc2 −m2gE3, (5.110)

m3
.
v3 = N2 +F f 2 +Fc2 −N3 −F f 3 −Fc3 −m3gE3, (5.111)

m4
.
v4 = N3 +F f 3 +Fc3 −N4 −F f 4 −Fc4 −m4gE3, (5.112)

m5
.
v5 = N4 +F f 4 +Fc4 +Ftop −m5gE3, (5.113)

where g is the gravitational acceleration and mα is the mass of the bearing. After applying
a balance of angular momentum to each bearing, the following equations are defined:

J2
.
ωt

2 +ωt
2 ×J2ω

t
2 =(r̃1 −r2)× (N1 +F f 1)− (r̃2 −r2)× (N2 +F f 2) (5.114)

+ (r̄1 −r2)×Fc1 − (r̄2 −r2)×Fc2,

J3
.
ωt

3 +ωt
3 ×J3ω

t
3 =(r̃2 −r3)× (N2 +F f 2)− (r̃3 −r3)× (N3 +F f 3) (5.115)

+ (r̄2 −r3)×Fc2 − (r̄3 −r3)×Fc3,

J4
.
ωt

4 +ωt
4 ×J4ω

t
4 =(r̃3 −r4)× (N3 +F f 3)− (r̃4 −r4)× (N4 +F f 4) (5.116)

+ (r̄3 −r4)×Fc3 − (r̄4 −r4)×Fc4,

J5
.
ωt

5 +ωt
5 ×J5ω

t
5 =(r̃4 −r5)× (N4 +F f 4)+ (r̄4 −r5)×Fc4 (5.117)

+ (r55 −r5)×Ftop +Mtop,

where Jα is the mass moment of inertia tensor for each of the bearings, and is defined as

Jα =
3∑

i=1

λ
α
i tα

i ⊗ tα
i , (5.118)

where λ
α
i are the principal moments of inertia of each bearing.

Eqs. (5.110)-(5.117) provide 24 independent equations for the 24 unknowns, which are[ ..
ψ2

..
θ2

..
φ 2

..
ψ3

..
θ3

..
φ 3

..
ψ4

..
θ4

..
φ 4

..
ψ5

..
θ5

..
φ 5

ψ̃1 θ̃1 ψ̃2 θ̃2 ψ̃3 θ̃3 ψ̃4 θ̃4 N1 N2 N3 N4

]
(5.119)

Note that the equations are non-linear in the unknowns and must be solved using an
iterative solver, such as Newton’s method. After which, a time integrator, such as the
Runge-Kutta methods, can be used to solve for the time-history of the TFP.
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5.3 Expanding to MSFPs
In the previous section, the equations of motion for the TFP are defined, but now those

equations will be expanded to MSFPs with any number of bearings. Assume that there is
a MSFP with n bearings, which means there are n−1 sliding surfaces, and of those n−1
sliding surfaces, m are concave up and p= n−1−m are concave down. Let α be a counting
parameter that runs from 1 to m, let β be another counting parameter that runs from m+1
to n−1, and let γ be a third counting parameter that runs from 1 to n−1. Note that for the
TFP of the previous section n= 5, m= 2, and p= 2, thus α = 1,2, β = 3,4, and γ = 1,2,3,4.
Using the previous definitions, all of the necessary equations to describe the motion of an
MSFP can be compactly written, where the position vectors become

r01 = ug1E1 +ug2E2 +ug3E3, (5.120)

r1 = r01 + z1t1
3, (5.121)

r11 = r1 + (`1 − z1)t
1
3, (5.122)

rαc = rα,α +Rα tα
3 , (5.123)

rα,α+1 = rαc −Rα tα+1
3 , (5.124)

rα+1 = rα,α+1 + zα+1tα+1
3 , (5.125)

rα+1,α+1 = rα+1 + (`α+1 − zα+1)t
α+1
3 , (5.126)

rβc = rβ ,β −Rβ tβ

3 , (5.127)

rβ ,β+1 = rβc +Rβ tβ+1
3 , (5.128)

rβ+1 = rβ ,β+1 + (`β+1 − zβ+1)t
β+1
3 , (5.129)

rβ+1,β+1 = rβ+1 + zβ+1tβ+1
3 , (5.130)

where all position vectors here have similar physical representations as those from Eqs (5.7)-
(5.25). Similar representations exist for the velocity and acceleration vectors. The angular
velocity vectors become

ω1 =
.
θ1t1

2 +
.
ψ1E1, ω

t
1 =

.
φ 1t1

3 +ω1, (5.131)

ωγ+1 =
.
θγ+1tγ+1

2 + .
ψγ+1tγ

1 +ωγ , ω
t
γ+1 =

.
φ γ+1tγ+1

3 +ωγ+1,

where the angular velocity vectors have similar physical meaning as the corresponding
vectors from Eqs. (5.26)-(5.35). Similar representations exist for the angular acceleration
vectors. The normal force basis becomes

t̃γ

i = R̃γ tγ

i (5.132)

with the normal forces acting at the following positions:

r̃α = rαc −Rα t̃α
3 , r̃β = rβc +Rβ t̃β

3 . (5.133)
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The normal forces are then given as

Nγ = Nγ t̃γ

3. (5.134)

Next, the friction forces become

F f γ =−µγNγ f̃γ (5.135)

where the direction of the friction forces come from

f̃γ =Yγ t̃γ

1 +Zγ t̃γ

2, (5.136)

and

.
Y γ =

Rγ

R0

(
(1−aγY 2

γ )ũγ −bγYγZγ ṽγ

)
aγ =

{
1, Yγ ũγ > 0
0, Yγ ũγ ≤ 0

(5.137)

.
Zγ =

Rγ

R0

(
(1−bγZ2

γ )ṽγ −aγYγZγ ũγ

)
bγ =

{
1, Zγ ṽγ > 0
0, Zγ ṽγ ≤ 0

.

The relative velocity at the point that the friction forces act is then defined as

ṽα =−Rα(ω
t
α+1 −ωt

α)× t̃α
3 , ṽβ = Rβ (ω

t
β+1 −ωt

β
)× t̃β

3 . (5.138)

The sliding displacements and gap functions for each sliding surface become

sγ = Rγ cos−1 (tγ

3 · tγ+1
3
)
, (5.139)

and

gγ = scγ − sγ , (5.140)

which makes the contact forces

Fcγ = Fcγ f̄γ , (5.141)

where the magnitude of the contact forces are given by

Fcγ =
{

0 ,gγ > 0
kcγgγ +ccγγγ ,gγ ≤ 0

, (5.142)

and the direction of the contact forces are given by

f̄α = (tα
3 · tα+1

1 )tα+1
1 + (tα

3 · tα+1
2 )tα+1

2√
(tα

3 · tα+1
1 )2 + (tα

3 · tα+1
2 )2

, (5.143)

f̄β = (tβ+1
3 · tβ

1 )t
β

1 + (tβ+1
3 · tβ

2 )t
β

2√
(tβ+1

3 · tβ

1 )
2 + (tβ+1

3 · tβ

2 )
2
.
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The contact forces will act at the following positions:

r̄α = rα+1f̄α + pα+1tα+1
3 +rα,α+1, r̄β = rβ f̄β − pβ tβ

3 +rβ ,β . (5.144)

Finally, the equations of motion become

mγ+1
.
vγ+1 = Nγ +F f γ +Fcγ −Nγ+1 −F f γ+1 −Fcγ+1 −mγ+1gE3, (5.145)

and

Jγ+1
.
ωt

γ+1 +ωt
γ+1 ×Jγ+1ω

t
γ+1 =(r̃γ −rγ+1)× (Nγ +F f γ) (5.146)

− (r̃γ+1 −rγ+1)× (Nγ+1 +F f γ+1)

+ (r̄γ −rγ+1)×Fcγ − (r̄γ+1 −rγ+1)×Fcγ+1,

except that the top bearing has a modified set of equations to account for the applied force
and moment – Ftop and Mtop – on the top bearing, given as

mn
.
vn = Nn−1 +F f n−1 +Fcn−1 +Ftop −mngE3, (5.147)

and

Jn
.
ωt

n +ωt
n ×Jnω

t
n =(r̃n−1 −rn)× (Nn−1 +F f n−1)+ (r̄n−1 −rn)×Fcn−1 (5.148)

+ (rn,n −rn)×Ftop +Mtop.

Using the above listed definitions, one can readily establish the equations of motion for any
basic type of MSFP.

5.4 Analysis of the Triple Friction Pendulum Model
In order to test the effectiveness of this model for MSFPs, the analysis will focus on the

TFP as there are many experimental and theoretical results for that system [7, 25, 26, 53].
Due to the non-linearity of the equations of motion for the TFP – Eqs. (5.110)-(5.117) –
an iterative solver must be utilized to solve for the unknowns shown in Eq. (5.119). In this
chapter, Newton’s method is used to solve for the unknowns. Once the system unknowns
have been determined, a system of ODEs has to be solved to get the time-history of the TFP.
The time integrator used for all of the analysis will be that of the Dormand-Prince method,
which is a type of Runge-Kutta ODE solver [15]. All of the physical quantities used for the
following analysis can be found in Appendix E. For all the following simulations, a ground
motion will be prescribed for the bottom bearing and a normal force, a restoring force and
a restoring moment will be applied to the top bearing unless otherwise stated.
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Uni-directional Ground Motions
For the uni-directional ground motions, a model based on the one used by Fenz and

Constantinou [25] will be used and all of the physical data can be found in Appendix E.1.
For the standard models of TFPs – R1 = R4 > R2 = R3, µ2 = µ3 < µ1 < µ4 – it has been well
established that there are five stages to the motion [7, 25, 26, 53] when there is a ground
motion in only one direction:

Stage I: There is motion only on surfaces 2 and 3.

Stage II: Motion on surface 2 stops and begins on surface 1, thus all motion is on
surfaces 1 and 3.

Stage III: Motion on surface 3 stops and begins on surface 4, thus all motion is on
surfaces 1 and 4.

Stage IV: The sliding capacity of surface 1 is reached and sliding begins on surface
2, thus all motion is on surfaces 2 and 4.

Stage V: The sliding capacity of surface 4 is reached and sliding begins on surface
3, thus all motion is on surfaces 3 and 4. This stage ends when the sliding capacities
of both surfaces 2 and 3 are reached.

By running the kinetic model with a uni-directional motion – ug1 = 0.05t2 m and all
other prescribed motions set to zero – and imposing a restoring force and moment on the
top bearing, this five stage behavior is recreated, as seen in Fig. 5.5, where

Ftop
N is the

restoring force on the top bearing, Ftop, normalized to the applied normal force, N. Note
that the relative angle between bearings is defined as δγ = cos−1 (cos(ψγ+1)cos(θγ+1)

)
.

In order to test the hysteresis in this model, a uni-directional periodic ground motion
– ug1 = Acos(2π f t) m – is applied to the system. The same tests as those used in [25]
for the standard TFP will be used in this section, which will allow for a direct comparison
of results. Table 5.1 shows the list of tests. The force-displacement curves are shown in

Test # N, (kN) f , (Hz) A, (mm)

1 112 0.10 1.2

2 112 0.04 25

3 112 0.013 75

4 112 0.0088 115

5 112 0.0072 140

Table 5.1 Tests used for uni-directional ground motions.
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Fig. 5.5 (a) Force/displacement curve for the TFP for a uni-directional motion.
(b) Relative angle of each bearing for a uni-directional motion.

Fig. 5.6, and by comparing them to similar figures in [25, 26], it can be seen that the kinetic
model has the appropriate hysteresis behavior. For the analytical models developed in [25],

−0.1 −0.05 0 0.05 0.1 0.15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 

 
V
IV
III
II
I

ug1 (m)

F
to

p
,1

N

Fig. 5.6 Hysteresis loop for uni-directional motions for ground motions in the five
stages of motion.
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they note that their forces on the top bearing when the first and fourth sliding surfaces
reach their limits – Fdr1 and Fdr4 – underestimate the force recorded from the experiment.
The values for u∗, u∗∗, udr1, udr4, Fdr1 and Fdr4 are shown in Table 5.2, where u∗ is the
displacement at which the TFP transitions from Stage I to Stage II, u∗∗ is the displacement
at which the TFP transitions from Stage II to Stage III, udr1 is the displacement at which
the TFP transitions from Stage III to Stage IV, udr4 is the displacement at which the TFP
transitions from Stage IV to Stage V, Fdr1 is the force at which the TFP transitions from
Stage III to Stage IV, and Fdr4 is the force at which the TFP transitions from Stage IV
to Stage V [26]. From Table 5.2 it can be seen that the kinetic model matches all of
these values fairly well, and the kinetic model actually slightly overestimates Fdr1 and
Fdr4, yet are still much closer to the experimental values than the analytical values. The

Analytical† Experimental† Kinetic Model

u∗ (mm) 0.1 2 1.9

u∗∗ (mm) 38.4 42 49

udr1 (mm) 92.1 90 87

udr4 (mm) 130.4 130 134

Fdr1
N 0.161 0.173 0.175

Fdr4
N 0.240 0.272 0.275

† Analytical and Experimental values come from the Regime V Data from [25].

Table 5.2 Comparison of Analytical Model, Experimental, and Kinetic Model
values.

overestimation of Fdr4 is most likely due to using a constant set of µγ values as opposed
to changing the friction coefficients with different stages. Thus, it is shown that for larger
displacements the kinetic model can more accurately predict the response of an actual TFP,
which is due to the fact that there is no linearization approximation, which becomes less
accurate as the amplitude of motion increases.

For all of the previous tests, a normal force of N = 112 kN was used. However, it is
useful to see how changing N affects the dynamic response of the TFP, as this will give a
sense of the inertial effects of the model. To do this, the variance between two tests will be
measured with an L2-norm [36], given by

V (η)=

√∫ umax
0 ‖d−dre f ‖2√∫ umax

0 ‖dre f ‖2
, (5.149)

where V (η) is the variance as a function of η , η is the ratio of the applied normal force
to the weight of the TFP, W , excluding the bottom bearing, umax is the maximum applied
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ground displacement, and d is given as

[d]=
[
δ1 δ2 δ3 δ4

]T
, (5.150)

and dre f is the test with the largest normal force, Nmax, to which all other tests will be
compared. For this chapter, Nmax = 1 MN and W = 90.64 N. Note that ‖•‖ is the standard
2-norm.
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Fig. 5.7 The variance between two tests as a function of η on a semi-log scale.

The variance V (η) is shown in Fig. 5.7, in which it can be seen that the variance is
very small for large values of η , but as η decreases, the variance increases until it reaches a
steady state around η = 10−2. Typically values for η will be very large in practice, meaning
that the inertial effects can be neglected. However, in the event of uplift [54], part of the
TFP will be experiencing no normal force or N = η = 0, and from Fig. 5.7 it can be seen in
that scenario the inertial effects play a major role.

Uni-directional Ground Motions for Unusual TFP Properties
Another utility of the model presented in this chapter is the lack of assumptions used

to develop the model. This allows for a new and unique TFP to be analyzed by this model.
For example, the unusual TFP described in [53] has µ2 = µ3 > µ1 = µ4. While a TFP with
this property can not be analyzed properly by the models presented by Fenz and Constanti-
nou [26] or that of Becker and Mahin [7], it can be analyzed by the nonlinear kinetic model.
Using the same physical properties described in Appendix E.1, except that µ1 = µ4 = 0.064
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and µ2 = µ3 = 0.168, the kinetic model can be tested against the results found by Sarlis
and Constantinou [53] by applying a uni-directional ground motion of ug1 = Acos(2π f t),
where A = 0.14 m and f = 0.02 Hz. Figure 5.8 shows the force/displacement curve for the
unusual TFP. By comparing Fig. 5.8 to similar figures in [53], it can be seen that the kinetic
model accurately models the behavior of the unusual TFP.
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Fig. 5.8 Force/displacement curve for the unusual TFP.

Bi-Directional Ground Motions
Next, the kinetic model is tested with bi-directional ground motions. In the case of

bi-directional ground motions, a model based on the one used by Becker and Mahin [7] is
used and all of the necessary physical data can be found in Appendix E.2. The first test
is a circular ground motion: ug1 = Acos(Ωt) and ug2 = Asin(Ωt) and all other prescribed
motions set to zero. For the circular ground motion tests, Ω = 0.1 rad/s is used, along with
six values for A: A = 0.12,0.1,0.07,0.04,0.01,0.007. This gives a basic ground motion to
make sure that the kinetic model has the proper hysteresis loops as the bearings move in two
directions. Figure 5.9 shows the hysteresis loops for both the E1 and E2 directions as well as
the force curves on the top bearing when a circular ground motion is applied. By comparing
these curves to similar ones by Becker and Mahin [7], it can be seen that the kinetic model
is acting appropriately for a simple bi-directional ground motion. Next, a more complicated
ground motion, that of a figure-eight, is applied: ug1 = Asin(Ωt) and ug2 = Asin(2Ωt) and
all other prescribed motions set to zero. Again, Ω = 0.1 is used, along with the same six
values of A as for the circular motion: A = 0.12,0.1,0.07,0.04,0.01,0.007. Figure 5.10
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Fig. 5.9 Hysteresis loops and force curves for a circular ground motion.

shows the hysteresis loops for both the E1 and E2 directions as well as the force curves on
the top bearing when a figure-eight ground motion is applied. By comparing the curves in
Fig. 5.10 to similar curves by Becker and Mahin [7], it can be seen that the kinetic model
is accurately predicting the behavior of the TFP for this complicated ground motion.
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Fig. 5.10 Hysteresis loops and force curves for a figure-eight ground motion.
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5.5 Conclusions and Future Work
While there have been other kinetic models [53], those kinetic models linearize the

TFP which reduces the accuracy for larger displacements. They can also only handle uni-
directional ground motions, which means they can not account for the more complicated
bi-directional ground motions. Meanwhile, there are models that can handle bi-directional
ground motion [7]. Again, they linearize the model and, as shown in [54], they lack the
capability to handle non-standard TFP bearings. The model presented in this chapter, as
shown in the previous section, can work for both uni-directional and bi-directional ground
motions with no linearization assumption. For that reason, in the case of uni-directional
ground motions, it was shown that the nonlinear model can more accurately predict the ex-
perimental values than previous analytical models. The only assumption that the nonlinear
kinetic model makes is that the bearings are axisymmetric. Thus, this model can be used
to analyze the simplest, as well as the more complicated ground motions that one would
like to test. While not specifically analyzed in this chapter, the nonlinear kinetic model can
handle initial rotations of the top and bottom bearings, similar to that described in [6].

The nonlinear kinetic model has the capability to be connected numerically to models
of different superstructures, such as frames, trusses, or any type of finite element model.
This allows one to model an entire system, including the TFP, in one complete simulation,
while accounting for the non-linear and inertial nature of the TFP.

However, this model is far from complete. For instance, only constant values of the
friction coefficients, µγ , were used while it has been shown that these values are dependent
on multiple factors, such as speed, temperature, and pressure [37]. Implementing these
more complicated friction coefficients is a straight forward process that can be added to
this model. The nonlinear kinetic model does not account for uplift or tilting of bearings,
yet that behavior has been shown to occur in TFP experiments [54]. However, this model
can be equipped to handle uplift or tilting by adding the necessary degrees of freedom to
Eq. (5.119). It was also shown that the inertial effects of the bearing will have a major role
in the event of uplift, thus starting from a model that already incorporates inertia will make
handling uplift less complicated.

Finally, all of the previous analyses can be conducted with any type of MSFP by the
method presented earlier in this chapter, allowing for more complicated testing of different
types of Friction Pendulum seismic isolators.

For all of the reasons previously stated, the model presented in this chapter is an all-
in-one model that is the most capable and accurate model for MSFPs available and can be
easily updated to handle different types of friction models as well as extra forces that may
be applied to the internal bearings.
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Chapter 6
Concluding Remarks

6.1 Summary of Results
The field of structural mechanics progresses every day, but it needs to progress equally

in all facets: experiments, modeling and theoretical analysis. However, in the fields of
hybrid simulation and multi-slider friction bearings, the modeling and theoretical analysis
has lagged behind the advances made by experimentation, thus leading to the need for the
work presented in this dissertation.

This dissertation developed novel approaches to the theoretical analysis of hybrid sim-
ulation. Specifically, it was shown that there are limitations and constraints that occur
naturally from applying a hybrid split to a mechanical system including large errors around
the natural frequencies of the reference system and how better controllers may not neces-
sarily produce better results. These limitations and constraints are present in all of the test
cases presented in this dissertation, from the simple linear model, all the way to the nonlin-
ear multi-degree of freedom system. The fact that similar results show up for these vastly
different systems, even when the system exhibits chaotic behavior, shows that there is a
fundamental effect that a hybrid split has a dynamical system. The L2 norm was utilized
in all three test cases to understand the error present in hybrid simulation, which allows for
easy comparison between all of the results, excluding, of course, the case of chaotic be-
havior. Thus, understanding those effects plays a critical role in how one creates a hybrid
simulation experiment in an attempt to reduce any errors, as well as how one analyses the
results of a hybrid simulation experiment knowing that errors will be present. For instance,
the likelihood of ever achieving a perfect dynamical response from a hybrid system is not
very good, however, the fundamental aspects of the dynamics are preserved if appropriate
care is taken when preforming a hybrid simulation experiment.

An advanced model for a MSFP was also presented in this dissertation. The model
started from existing models and incorporated those features as well as new and unique
features to create this advanced model. Namely, this model incorporates inertial effects, bi-
directional ground motions, and nonlinear internal motions to create this all-in-one model.
It was shown that, due to the lack of assumptions while constructing the model, it can
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handle all of the current modeling needs out there, and can, in some cases, be even more
accurate than current models, thus demonstrating its utility.

6.2 Future Work
While this dissertation provided new and interesting insights into the modeling and

analysis of hybrid simulation and MSFPs, there exist more research aspects that can be
considered. For instance, the models for hybrid simulation all utilized either constant er-
rors or simply PI controllers for the error model. There are better control systems out there
in the literature which may provide more insight into the effect of the control scheme on
the dynamical response of a hybrid system. Also, even though a multi-degree of freedom
model was used in this dissertation, it still only had twelve degrees of freedom, where
many hybrid simulation experiments can have orders of magnitude more degrees of free-
dom. Similarly, the most hybrid splits any one system had in this dissertation was two,
whereas one could foresee a need for many more hybrid splits. Understanding how the
error is affected by more hybrid splits would also be invaluable. As for the MSFPs, the
model shown here does not incorporate uplift conditions between bearings, which is a well
documented phenomenon in experimental tests. Thus, it would be beneficial to incorpo-
rate uplift conditions, as well as tilting of the bearings, into the model. While the model
presented in this dissertation utilized constant values for the friction coefficient, there are
models with representations of the friction coefficient that depend on the speed, tempera-
ture, and pressure at the contact interfaces. Finally, implementation of the MSFP model in
computational platforms, such as OpenSees, would also be a beneficial task.
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Appendix A
Beam Material Constants and Physical
Parameters

For analysis of the pinned-pinned beam in Chapter 2, the beam is assumed to be a
square steel beam with material constants and dimensions listed in Table A.1 [16].

E E0 E∞ A I l ρ M̄

2×1011 N
m2 2×1011 N

m2 1011 N
m2 0.04 m2 A2

12 m4 10 m 7800×A kg
m 104 N

m2

Table A.1 Material constants and dimensions used for fixed-free bar systems.
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Appendix B
θp and dθp

dτ
Plots

In Chapter 3, the dynamical response of the C part of the hybrid system is consistently
compared to the reference system. In this appendix, comparison plots using the dynamical
response of the P part are provided. This is provided for completeness. All conclusions
made from the plots in Chapter 3 remain true.
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Fig. B.1 The state space trajectories for the reference and hybrid systems with
µ̄ = 1.114. Compare to Fig. 3.5.
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Fig. B.2 The angular velocity time series of the reference and hybrid systems for
µ̄ = 1.2. Compare to Fig. 3.6.
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Fig. B.3 A zoomed-in plot of the angular velocity time series of the reference and
hybrid systems for µ̄ = 1.2. Compare to Fig. 3.7.
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Fig. B.4 The Poincaré sections of the reference and hybrid systems for µ̄ = 1.2.
Compare to Fig. 3.8.
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Fig. B.5 The angular velocity time series of the reference and hybrid systems for
µ̄ = 2.2. Compare to Fig. 3.9.
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Fig. B.6 A zoomed-in plot of the angular velocity time series of the reference and
hybrid systems for µ̄ = 2.2. Compare to Fig. 3.10.
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Fig. B.7 The Poincaré sections of the reference and hybrid systems for µ̄ = 2.2.
Compare to Fig. 3.11.
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Fig. B.8 The Poincaré sections of the reference and hybrid systems for µ̄ = 1.2
and Ki = 10. Compare to Fig. 3.18.
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Appendix C
Physical Data for the Crane Structures

The following tables provide all of the numerical values used for the crane structures in
Chapter 4, along with g= 9.8. All values were chosen in an attempt to approximate a scaled
down crane structure and are considered dimensionless. Note, for the initial conditions used
for time integration, all non-zero values are shown in Table C.5, with the exception of ug2,
whose definition is provided within Chapter 4.

`x `y `s `r `ax `az `b `t R0

0.25 0.25 3 0.75 0.05 0.05 1 1 3

Table C.1 All lengths used for the crane systems.

M j mr mb mm Jr Jb

[
9.36 0

0 18.72

]
Ei⊗E j

19.5 3.9 0.78

4.0625 0 0
0 4.0625 0
0 0 0.8125


ri⊗r j

0.0016 0 0
0 1.308 0
0 0 1.308


bi⊗b j

Table C.2 All masses and inertias used for the crane systems.
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APPENDIX C. PHYSICAL DATA FOR THE CRANE STRUCTURES

K j kb km C j cb cm

[
2023.3 −2201.5
−2201.5 4562.5

]
Ei⊗E j

2.6×106 4.19×107
[

39.96 −0.02
−0.02 79.93

]
Ei⊗E j

191.21 342.96

Table C.3 All stiffnesses and damping constants used for the crane systems.

ma ca ka kp ki

1 156.5 245.25 10 55

Table C.4 All constants used for hybrid control.

R φ θ α β ugx

3 1.47 1.47 0.25 0.5 1

Table C.5 All non-zero initial conditions.
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Appendix D
Error State Vectors

In order to define the error state vectors used in Chapter 4, let ad be the vector of
displacements, then

[ad]=
[
R φ θ γ u1 u2 u3 u4 u5 u6 u7 u8

]T
, (D.1)

and equivalently for âd , where all the quantities in Eq. (D.1) have the same meaning as in
Section 4.2. And let av =

.
ad , where the superposed dot (

.• )indicates a time derivative of
the given quantity. Then,

[as]=
[
ad av

]T
, (D.2)

Similarly for âs. Then, the total energy vectors are given as

[aE ]=
[
E
]
, (D.3)

where E = T +U . See Section 4.2 for definitions of T and U . And equivalently for âE .
Finally, the vectors for δ , x, and y, are given by

[aδ ]=
[
δ

.
δ

]T
, [âcδ ]=

[
δc

.
δ c

]T
, [âpδ ]=

[
δp

.
δ p

]T
, (D.4)

[ax]=
[
xs

.
xs

]T
, [âcx]=

[
xsc

.
xsc

]T
, [âpx]=

[
xsp

.
xsp

]T
, (D.5)

[ay]=
[
ys

.
ys

]T
, [âcy]=

[
ysc

.
ysc

]T
, [âpy]=

[
ysp

.
ysp

]T
, (D.6)

where xs, ys, and δ are the E1 position, the E2 position, and rotation angle of the crane
cabin for the reference system, xsc, ysc, and δc are the E1 position, the E2 position, and
rotation angle of the crane cabin for the hybrid systems from the computational side, and
xsp, ysp, and δp are the E1 position, the E2 position, and rotation angle of the crane cabin
for the hybrid systems from the physical side.
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Appendix E
Physical Data for the Triple Friction
Pendulums

The following tables provide all of the numerical values used throughout Chapter 5,
along with g = 9.8 m/s2 .

E.1 Uni-directional Ground Motions
All values chosen for uni-directional ground motions were based on the data provided

by Fenz and Constantinou [25] in order to allow for direct comparison of results.

R1 R2 R3 R4 R0 r2 r3 r4

0.473 m 0.076 m 0.076 m 0.473 m 5×10−5 m 0.051 m 0.0255 m 0.051 m

`1 `2 `3 `4 `5 p2 p3 p4

0.013 m 0.015 m 0.046 m 0.015 m 0.013 m 0.0028 m 0.0044 m 0.0028 m

z2 z3 z4 z5 sc1 sc2 sc3 sc4

0.0075 m 0.023 m 0.0075 m 0.0065 m 0.065 m 0.0215 m 0.0215 m 0.065 m

Table E.1 All lengths used for uni-directional ground motions.
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APPENDIX E. PHYSICAL DATA FOR THE TRIPLE FRICTION PENDULUMS

m2 m3 m4 m5

0.45 kg 0.34 kg 0.45 kg 8.0 kg

Table E.2 All masses used for uni-directional ground motions.

J2 J3

3.01 0 0

0 3.01 0

0 0 5.85


t2
i ⊗t2

j

×10−4 kg ·m2

1.15 0 0

0 1.15 0

0 0 1.11


t3
i ⊗t3

j

×10−4 kg ·m2

J4 J5

3.01 0 0

0 3.01 0

0 0 5.85


t4
i ⊗t4

j

×10−4 kg ·m2

3.14 0 0

0 3.14 0

0 0 6.25


t5
i ⊗t5

j

×10−2 kg ·m2

Table E.3 All inertias used for uni-directional ground motions.

kcγ ktop ccγ ctop µ1 µ2 µ3 µ4

107 N/m 106 N/m 5 N · s/m 5 N · s/m 0.03 0.017 0.017 0.107

Table E.4 All stiffnesses and damping constants used for uni-directional ground
motions.
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APPENDIX E. PHYSICAL DATA FOR THE TRIPLE FRICTION PENDULUMS

E.2 Bi-Directional Ground Motions
All values chosen for bi-directional ground motions were based on the data provided

by Becker and Mahin [7] in order to allow for direct comparison of results.

R1 R2 R3 R4 R0 r2 r3 r4

0.9906 m 0.0762 m 0.0762 m 0.9906 m 5×10−5 m 0.0381 m 0.0191 m 0.0381 m

`1 `2 `3 `4 `5 p2 p3 p4

0.011 m 0.0127 m 0.0254 m 0.0127 m 0.011 m 0.00073 m 0.0024 m 0.00073 m

z2 z3 z4 z5 sc1 sc2 sc3 sc4

0.0063 m 0.0127 m 0.0063 m 0.0055 m 0.0918 m 0.0135 m 0.0135 m 0.0918 m

Table E.5 All lengths used for bi-directional ground motions.

m2 m3 m4 m5

0.45 kg 0.34 kg 0.45 kg 8.0 kg

Table E.6 All masses used for bi-directional ground motions.
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APPENDIX E. PHYSICAL DATA FOR THE TRIPLE FRICTION PENDULUMS

J2 J3

1.69 0 0

0 1.69 0

0 0 3.27


t2
i ⊗t2

j

×10−4 kg ·m2

4.91 0 0

0 4.91 0

0 0 6.17


t3
i ⊗t3

j

×10−5 kg ·m2

J4 J5

1.69 0 0

0 1.69 0

0 0 3.27


t4
i ⊗t4

j

×10−4 kg ·m2

3.93 0 0

0 3.93 0

0 0 7.84


t5
i ⊗t5

j

×10−2 kg ·m2

Table E.7 All inertias used for bi-directional ground motions.

kcγ ktop ccγ ctop µ1 µ2 µ3 µ4

107 N/m 106 N/m 5 N · s/m 5 N · s/m 0.118 0.036 0.036 0.137

Table E.8 All stiffnesses and damping constants used for bi-directional ground
motions.
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