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Abstract

How do children’s representations of object categories change
as they grow older? As they learn about the world around
them, they also express what they know in the drawings they
make. Here, we examine drawings as a window into how chil-
dren represent familiar object categories, and how this changes
across childhood. We asked children (age 3-10 years) to draw
familiar object categories on an iPad. First, we analyzed their
semantic content, finding large and consistent gains in how
well children could produce drawings that are recognizable to
adults. Second, we quantified their perceptual similarity to
adult drawings using a pre-trained deep convolutional neural
network, allowing us to visualize the representational layout
of object categories across age groups using a common feature
basis. We found that the organization of object categories in
older children’s drawings were more similar to that of adults
than younger children’s drawings. This correspondence was
strong in the final layers of the neural network, showing that
older children’s drawings tend to capture the perceptual fea-
tures critical for adult recognition. We hypothesize that this
improvement reflects increasing convergence between chil-
dren’s representations of object categories and that of adults;
future work will examine how these age-related changes re-
late to children’s developing perceptual and motor capacities.
Broadly, these findings point to drawing as a rich source of
insight into how children represent object concepts.
Keywords: object representations; drawings; child develop-
ment

Introduction
As humans, we have many powerful tools to externalize what
we know, including language and gesture. One tool that
has been transformative for human cognition and culture is
graphical representation, which allows people to encode their
thoughts in a visible, durable format. Drawing is an important
case study in graphical representation, being a technique that
dates back 60,000 years (Hoffmann et al., 2018), well before
the emergence of symbolic writing systems, and is practiced
in many cultures.

In modern times, drawings are produced prolifically by
children from an early age, providing a rich source of po-
tential insight into their emerging understanding of the visual
world. For example, as children learn the diagnostic proper-
ties of objects they encounter, they might express this knowl-
edge in the drawings they make. How can we leverage this
natural behavior to understand how they learn abstractions
over their perceptual experience, such as object categories?

On the one hand, children quickly form sophisticated per-
ceptual representations of familiar objects, leveraging shape
information in conjunction with linguistic cues (Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002). Typically,
such learning is measured using discrete choices between
stimuli that vary along dimensions chosen by an experi-
menter. By contrast, drawing tasks both permit children to

include any information they consider relevant and can pro-
vide rich, high-dimensional information about the content
and structure of children’s perceptual representations. For ex-
ample, when presented with a target object to draw in which
a prominent feature is occluded (e.g., the handle of a mug is
turned away), children as young as 5 years of age frequently
include the occluded object part in their drawing anyway, dis-
playing the robustness of their internal representation to vari-
ation in viewpoint (Davis, 1983).

On the other hand, important developmental changes in
perceptual processing continue throughout childhood (for
reviews, see Juttner, Wakui, Petters, & Davidoff, 2016;
Nishimura, Scherf, & Behrmann, 2009). For example, young
children tend to categorize novel objects on the basis of
part-specific information, whereas older children addition-
ally recruit information about relationships between object
parts (Mash, 2006). Such differences are resonant with ev-
idence from children’s drawings: there appear to be dramatic
changes in how children encode semantically relevant infor-
mation in their drawings across age. Younger children (4-5
years) tend to include fewer cues in their drawings to dif-
ferentiate between target concepts (e.g., “adult” vs. “child”)
than older children, who enrich their drawings with more di-
agnostic part (Sitton & Light, 1992) or relational (Light &
Simmons, 1983) information.

But while figurative drawings have long provided inspira-
tion for scientists investigating the representation of object
concepts in early life (Minsky & Papert, 1972), a major bar-
rier has been the lack of principled quantitative measures of
high-level perceptual information in drawings. As such, pre-
vious studies employing drawing tasks have typically relied
on qualitative assessments (Kosslyn, Heldmeyer, & Locklear,
1977) or ad hoc quantitative criteria (Goodenough, 1963).
Recent work in computational vision has validated the use of
pre-trained deep convolutional neural network (DCNN) mod-
els to quantitatively measure high-level perceptual informa-
tion in adult drawings (Fan, Yamins, & Turk-Browne, 2015).
Higher layers of these models both capture adult perceptual
judgments of object shape similarity (Kubilius, Bracci, & Op
de Beeck, 2016) and predict neural population responses in
categories throughout object-selective cortex (Yamins et al.,
2014). Thus, features learned by these models provide a prin-
cipled choice of basis for extracting perceptual features useful
for inferring object identity from children’s drawings.

Here we examine children’s drawings as a window into
how they represent familiar visual object categories, and how
this representation and its translation into graphical form
changes across childhood. To do so, we asked children (ages
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Figure 1: Example drawings made by children ages 4-10 of several object categories.

3-10 years) to draw a variety of object categories on a digital
tablet. Afterwards, adults attempted to recognize these draw-
ings in a forced-choice recognition task. In Part 1, we ex-
amine how this semantic information in children’s drawings
changes with age after factoring out low-level covariates re-
lated to motor production, such as how long they spend draw-
ing and how many strokes they use. In Part 2, we compare the
high-level perceptual features of drawings made by children
and adults by relating their representations in a pre-trained
DCNN model, allowing us to visualize the representational
layout of object categories across age groups using a com-
mon feature basis.

Part 1: Semantic information in children’s
drawings

Methods
Participants For the drawing task, children (N = 41, M =
6.9 years, range 4-10 years) were recruited at the San Jose
Children’s Discovery Museum. Either the child or their par-
ents verbally reported the child’s age. For the recognizability
experiment, 14 naive adults with US IP addresses were re-
cruited from Amazon Mechanical Turk and provided labels
for all drawings.

Stimuli Stimuli were words referring to 16 common object
categories: banana, boat, car, carrot, cat, chair, couch, cup,
flower, foot, frog, ice cream, phone, rabbit, shoe, train. These
categories were chosen such that they were: (1) likely to be
familiar to children, (2) spanned the animate/inanimate dis-
tinction, and (3) intuitively spanned a wide range of difficulty
(for example, flowers seem easier to draw than couches).

We also chose categories that are in the Google QuickDraw
database, which contains drawings made by adults in under
20 seconds, so that we could eventually compare children’s
drawings with ones made by adults.

Drawing Task Procedure We implemented a web-based
drawing game in HTML/Javascript using the paper.js library
and collected drawings using a touchscreen tablet on the floor
of the museum. At the beginning of each session, to famil-
iarize children with the task and touch interface, they were
prompted to draw a circle and a triangle. After completing
these two practice trials, they were cued to draw a randomly
selected object. On each trial, a text cue would appear (i.e.,
“Can you draw a [flower]?”) that the experimenter would
read out, (“What about a [flower]? Can you draw a [flower]?).
Then, a drawing canvas appeared (600 x 600 pixels) and chil-
dren had 30 seconds to make a drawing before moving onto
the next trial; pilot testing suggested that 30 seconds was
enough for many children to complete their drawings. Af-
ter each trial, the experimenter asked the child whether they
wanted to keep drawing or whether they were all done. In
all, we collected 286 drawings across the 16 categories. We
binned drawings into two rough age categories for item anal-
yses, with 115 drawings made by younger children (4-6 years
of age) and 171 drawings made by older children (7-10 years
of age).

Recognizability Task Procedure After collecting chil-
dren’s drawings, we presented them to naive adults to mea-
sure their recognizability. On each trial, participants saw a
drawing, and were asked “What does this look like?”, and re-
sponded by typing their response into a text box. Only labels
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from a restricted set of 21 options were accepted, comprising
the 16 drawn categories, 4 foil categories (bean, arm, person,
rock), and “cannot tell at all.” Drawings were presented in a
random order, and participants were not informed that these
drawings were produced by children.

Model Fitting Our goal was to measure how children’s
ability to convey semantically relevant information in their
drawings changes with age. We anticipated that their draw-
ings may also vary along other dimensions more directly re-
lated to the motor production demands of the task, such as the
amount of time spent drawing, the number of strokes used,
and amount of ink (i.e., mean pixel intensity of sketch).

In order to assess whether children’s ability to produce rec-
ognizable drawings increased with age, independent of these
low-level covariates, we fit a generalized linear mixed-effects
model, with scaled age (specified in years), drawing duration,
amount of ink used, and number of strokes as fixed effects,
and with random intercepts for each individual child and ob-
ject category. The dependent variable was whether adults rec-
ognized a given drawing.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.861 0.321 2.680 0.007

Age 0.956 0.174 5.497 0.000
Drawing time 0.338 0.109 3.105 0.002

Amount of ink 0.014 0.080 0.179 0.858
Num. strokes -0.289 0.098 -2.959 0.003

Table 1: Model coefficients of a GLMM predicting the rec-
ognizability of each drawing.
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Figure 2: Proportion of drawings recognized in each object
category. The dashed line represents chance performance. Er-
ror bars represent non-parametric 95 % confidence intervals.

Results
We found that drawing recognizability generally increased
with age (see Figure 3), although there was substantial vari-
ability across categories in how well children could produce

recognizable drawings. For example, children of all ages
produced drawings of cats that were readily recognizable as
“cats,” but few children of any age produced drawings that
were recognizable as “shoes” (see Figure 2).

Was this difference due to greater semantic information
in older children’s drawings, or to the possibility that older
children may have put more time and effort into their draw-
ings? Our mixed-effects model revealed that recognizability
of drawings reliably increased with age when controlling for
these low-level covariates — the amount of time spent draw-
ing, the number of strokes, and total ink used (β = 0.96, SE =
0.17, Z = 5.5), and accounting for variation across object cat-
egories and individual children. All model coefficients can
be seen in Table 1. Adding interaction terms between age and
these low-level covariates did little to decrease the effect of
age on recognizability (β = 0.94, SE = 0.18, Z = 5.4).

Taken together, these results show large and consistent
gains in how well children can produce recognizable draw-
ings across this age range, although younger children still
produced drawings that could be recognized well above
chance by adult viewers.

Part 2: Perceptual information in children’s
drawings

In the previous section, we found that children’s drawings
generally contained sufficient semantic information to sup-
port recognition by adult viewers, although older children’s
drawings were consistently more recognizable. What is the
nature of the developmental changes that underlie older chil-
dren’s enhanced ability to produce recognizable drawings (at
least to adult viewers)? And how might children’s draw-
ings provide a window into their perceptual representations
of these objects?

We hypothesized that this improvement reflects an increas-
ing convergence in the perceptual content in children and
adult’s drawings, derived from their internal object repre-
sentations. A pre-requisite for this hypothesis is that older
children’s drawings are more perceptually similar to adults’
drawings than younger children’s drawings. We thus ex-
tracted the high-level perceptual features of drawings made
by children and adults using a pre-trained deep convolutional
neural network (Simonyan & Zisserman, 2014). These fea-
tures form a common basis for representing complex shape
similarity – including the presence of diagnostic object parts
(e.g., legs, handles) – and a basis from which object iden-
tity can be easily derived (Kubilius et al., 2016). We then use
these high-level features to evaluate how similar the represen-
tational layout of object categories is between children’s and
adults’ drawings. Insofar as the similarity of the representa-
tional layout is higher for older children than younger chil-
dren, this could explain why adults are more accurate in rec-
ognizing their drawings. As a sanity check, we also explored
how similar children and adult’s drawings are in each layer of
the model. Earlier layers reflect local image properties (e.g.,
edge orientations) which are then successively transformed
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Figure 3: The proportion of adults who recognized each drawing is plotted as a function of child’s age, the number of strokes,
amount of ink used, and the time spent creating each drawing. Each dot represents an individual drawing; dots in the right three
plots are colored by the age of the drawer.

and combined to yield the more abstract mid-level features
(e.g., curvature) and higher-level features represented in later
layers. Thus, these layer-wise analyses can reveal how sim-
ilar children and adult’s drawings are in terms of more ba-
sic statistics—e.g., if both childrens’ and adult’s drawings of
phones are “boxier” than their drawings of apples.

Methods
Participants Participants included those who participated
in the first round of data collection, as well as an additional
25 children recruited in the same way as in Part 1.

Drawing dataset In our second round of data collection,
our goal was to expand the number of categories included in
our model-based feature analyses, so we included an addi-
tional 22 categories. Across both rounds of data collection,
we recorded 462 drawings from 66 children across a broad
age range. However, due to the limited amount of data in
each category for each age, in subsequent analyses we divide
drawing data into two coarse age categories: younger chil-
dren (aged 3-6 years) and older children (aged 7-10 years).
We thus restricted the following analyses to the 27 categories
where we had at least 3 drawings in both younger and older
age groups, yielding 191 drawings by younger children and
205 drawings by older children. Including a minimum num-
ber of drawings per class and age category ensured robust
estimates of category-level feature information in drawings.

To complement the children’s drawing dataset, we obtained
a random sample of 100 adult drawings from each of the cat-
egories above from the Google Quickdraw dataset (https:
//quickdraw.withgoogle.com/data). Prior to analysis,
we cropped all sketch images to contain only the sketch, ap-
plied uniform padding (10px), and rescaled them to the same
size (3x224x224).

Deep convolutional neural network model We used a
standard, pre-trained implementation of the VGG-19 archi-

tecture (Simonyan & Zisserman, 2014) to extract features
from sketches at layers across several depths in the network.
Specifically, we analyzed feature activations in the first five
pooling layers, as well as the first two fully-connected layers.
Each image elicits a pattern of feature activations at every
layer in the model. Here, we sum across the spatial position
of the image filters to reduce dimensionality; thus, each pat-
tern is equivalent to a vector in a feature space with the same
number of dimensions as convolutional filters in that layer.

Representational Similarity Analyses Separately for the
younger children, older children, and adult drawing datasets,
we averaged the feature vectors within each object category
in both pixel space and for a given layer of VGG-19 and
then computed a layer-specific matrix of the Pearson corre-
lation distances between these average vectors across cate-
gories (Kriegeskorte, Mur, & Bandettini, 2008). Formally,
this entailed computing:

RDM(R)i j = 1−
cov(~ri,~r j)√

var(~ri) · var(~r j)
,

where~ri and~r j are the mean feature vectors for the ith and jth
object categories, respectively, where R represents the corre-
lation between two categories (e.g., rabbits and shoes).

Each of these 27x27 representational dissimilarity matrices
(RDM) provides a compact description of the layout of ob-
jects in the high-dimensional feature space inherent to each
layer of the model. Following Kriegeskorte et al. (2008),
we measured the similarity between object representations
in different layers by computing the Spearman rank correla-
tions between the RDMs for those corresponding layers. Esti-
mates of standard error for the Spearman correlation between
RDMs were generated by jackknife resampling of the 27 ob-
ject categories. To estimate the noise ceiling, we repeated this
same procedure with an equivalently sized, random sample of
adult drawings.
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Figure 4: Representational dissimilarity matrices (RDMs) in the highest layer of VGG-19 (FC7) for drawings made by younger
children (3-6 years), older children (7-10 years), and adults.
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Figure 5: Spearman’s correlation between representational
dissimilarity matrices (RDMs) of drawings produced by
adults vs. other adults, adults vs. older children, and between
adults vs. younger children at each layer of VGG-19.

Results

To compare the representational layout of object categories
across age groups, we examined the similarity between
RDMs for each age group (i.e., younger children, older chil-
dren, and adults) in the final layer of VGG-19, shown in Fig-
ure 4. Here, each cell represents the correlation distance be-
tween two categories in this layer of the network; lighter col-
ors indicate pairs of categories that are further apart in fea-
ture space; darker colors indicate pairs of categories that are
closer. For visualization purposes, categories are ordered ac-
cording to the clusters that appear in the data. Inspecting
the similarity structure for adults, drawings of living things

(rabbits, frogs, flowers, etc.) elicited the most similar repre-
sentations, evident in a cluster in the middle of the RDM.
While there are some intuitive category clusters (bus–car–
train), other clusters seem less intuitive at first blush (carrot–
chair–ice cream–fork)—yet note that these categories tend to
have a similar aspect ratio. Importantly, this perceptual sim-
ilarity structure was echoed in children’s drawings of these
same object categories.

We then examined these correlations between RDMs at
each layer of the network, which are plotted in Figure 5 rel-
ative to the comparison between two samples of adult draw-
ings, representing the noise ceiling. We found that older chil-
dren’s and adults’ RDMs were more similar than younger
children’s and adult’s RDMs across all layers, and that simi-
larity plateaued in mid-to-high-level convolutional layers (see
Figure 5). These results suggest that the particular choice
of model layer does not affect the relative similarity between
older children’s and adults’ RDMs vs. younger children’s and
adults’ RDMs. Nonetheless, adults’ and children’s drawings
were dissimilar in pixel space for both age groups (adults
vs. older children, r = .07; vs. younger children, r = .07).
Children’s and adults’ drawings appear to share many of the
perceptual features useful for object recognition.

General Discussion
What do children’s drawings reveal about their object repre-
sentations? We approached this question by analyzing the se-
mantic and perceptual content of children’s drawings across
childhood. We found that the capacity to quickly produce
drawings that communicate category information improves
with age, even when factoring out low-level motor covariates.
In addition, we found that drawings from older vs. younger
children were more similar to adult drawings in a deep con-
volutional neural network trained to recognize objects, sug-
gesting that older children’s drawings also contain more of
the perceptual features relevant for recognition. Children
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and adults may be accessing similar category representations
when asked to “draw a chair” and communicating this repre-
sentation through their drawings.

A natural question is how any age-related differences in
drawings are related to children’s ability to control and plan
their hand movements. While drawing recognizability in-
creased with age when accounting for the low-level motor
covariates, these measures likely only partially estimate chil-
dren’s motor abilities. We plan to measure both children’s and
adult’s ability to perform orthogonal fine motor tasks (e.g.,
tracing a complex shape) to understand how motor develop-
ments influence the drawings that children produce.

At the same time, children are also continuously learn-
ing about new object categories and their properties. How
might this learning affect children’s internal representations
(and drawings) of different object categories? One possi-
bility is that the bulk of the development change revolves
around building more detailed representations: children may
be learning the suite of visual features and object parts that
are diagnostic of various object categories. On this account,
learning what tigers tend to look like does not change chil-
dren’s perceptual representations of cheetahs—or how they
draw them. A second possibility is that learning about new
categories actually changes the similarity structure of chil-
dren’s visual object concepts (Goldstone, Lippa, & Shiffrin,
2001). Finally, as children learn about the hierarchical struc-
ture of object categories (i.e., living thing–animal–mammal–
dog) and their typical properties (e.g., most mammals have
four legs) this might differentially change which visual fea-
tures take precedence in their internal representations. Future
work that links children’s categorization abilities with their
drawing behaviors will help explore these possibilities.

This work integrates novel methods to investigate chil-
dren’s internal representations of object categories and how
they are linked to their developing perceptual, cognitive, and
motor abilities. We propose that a full understanding of how
we come to produce visual abstractions will help uncover the
factors that shape adult object representations.

All data and code for these analyses are available at
https://github.com/brialorelle/kiddraw
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