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BACKGROUND: Preclinical studies have demonstrated that low-dose carbon monoxide (CO)
can abrogate experimental lung fibrosis. To test the therapeutic role of inhaled CO, we
designed a clinical study in patients with idiopathic pulmonary fibrosis (IPF).

METHODS: We conducted a multicenter, phase IIa, double-blinded, sham-controlled, clinical
trial. Patients with IPF were randomized to treatment with inhaled CO at 100 to 200 parts per
million or to inhaled 21% oxygen for 2 h daily, twice weekly, for 12 weeks. The primary study
end point was the difference in change in matrix metalloproteinase-7 (MMP7) serum
concentration after 12 weeks of treatment. Secondary end points included pulmonary
function test measures, 6-min walk distance, rates of adverse events, acute exacerbation,
hospitalization and death, and quality of life measures.

RESULTS: Fifty-eight subjects were randomized to treatment with inhaled CO (n ¼ 29) or
placebo (n ¼ 29). Despite modest increases in CO blood levels, the change in MMP7 con-
centrations after 12 weeks of treatment did not significantly differ between the study arms
(MMP7 difference at week 12, �0.90 ng/mL; 95% CI, �4.18 to 2.38 ng/mL). No differences
were observed in physiologic measures, incidence of acute exacerbations, hospitalization,
death, or patient-reported outcomes. Importantly, no differences in distribution of adverse
events were noted between the treatment arms.

CONCLUSIONS: Inhaled CO is well tolerated and can be safely administered to patients with IPF
in the ambulatory setting; however, inhaledCOdid not result in significant changes in study end
points. Our findings support testing the efficacy of inhaled therapies in future IPF clinical trials.

TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01214187; URL: www.clinicaltrials.gov.
CHEST 2018; 153(1):94-104
KEY WORDS: carbon monoxide; idiopathic pulmonary fibrosis; inhaled therapy; IPF; MMP7
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Idiopathic pulmonary fibrosis (IPF) is a chronic,
progressive, fibrosing parenchymal lung disease with
increasing prevalence and rising mortality.1 Until
recently, lung transplantation was the only
intervention known to improve survival2; recent
clinical trials testing the efficacy of nintedanib3 and
pirfenidone4 have demonstrated that antifibrotic agents
reduce the rate of decline in lung function, may
decrease the risk of acute exacerbations, and potentially
improve survival in patients with IPF. Although these
groundbreaking trials signal a new era for the
treatment of progressive fibrotic lung diseases, the
modest improvement in lung function, the frequency
of significant side effects leading to discontinuation of
therapy, and the lack of improvement in quality of life
highlight the pressing need for the development of new
therapies.5

Carbon monoxide (CO) is an endogenously produced
diatomic gas that exerts diverse biologic functions,
including protection against oxidative injury and cell
death, inhibition of cell proliferation, suppression of
matrix production and inflammation, and increased
fibrinolysis, all of which are important in the
pathogenesis of pulmonary fibrosis.6,7 CO is made in
the body by heme oxygenase-1 (HO-1), one of the few
inducible molecules that can protect the lungs from
an increased oxidant burden under circumstances of
stress.8 HO-1 is ubiquitously expressed, and is
responsible for degradation of heme to biliverdin, free
iron, and CO. Although all three products of HO-1
activity have been shown to possess cytoprotective
properties, CO has been most extensively studied with
respect to its effects on lung disease. Tsuburai et al9

reported that adenoviral transfer of HO-1 protected
mice from bleomycin-induced fibrosis. Extending
these findings to CO, we have shown that low
concentrations (250 parts per million [ppm]) of
inhaled CO, even when administered for as little as 3
h/d after bleomycin treatment, can attenuate the
development of fibrosis.10 Mice treated with CO had
significantly lower fibrotic/reparative histology scores
Drs Rosas and Goldberg contributed equally to this manuscript.
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and Blood Institute, National Institutes of Health [Grant HL105371].
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than animals receiving bleomycin alone. Over the last
two decades, numerous studies have shown that CO
exerts cytoprotective effects in preclinical models of
organ injury developed in rodents, pigs, and
nonhuman primates.11 In humans, administration of
low-dose inhaled CO to healthy volunteers and
patients with COPD is well tolerated.12,13

A major obstacle to the efficient design and execution
of clinical trials in IPF is the reliance on lung
physiology measurements (FVC), functional
outcomes (6-min walk distance), or hospitalization
and survival as primary outcome measures.14 These
measurements appear poorly responsive to therapy in
IPF (likely because of their slow rates of change),
and their use as primary end points requires the
design of clinical trials with relatively large
populations and of long duration. Molecular markers
that predict disease progression and/or survival are
attractive candidates for cohort enrichment (ie,
identifying subjects at increased risk of disease
progression) and may represent alternative molecular
outcomes that could demonstrate therapeutic
response more efficiently. Matrix metalloproteinase-7
(MMP7) is one of the most extensively studied
biomarkers in IPF. MMP7 levels are increased in the
lung and peripheral blood compartments of patients
with IPF.15 Several studies have independently
demonstrated that increases in peripheral blood
MMP7 levels are associated with increased disease
severity and reduced survival.16 Moreover, MMP7
plasma levels have been previously measured in a
phase I IPF clinical trial.17

Here we report the results of a phase IIa, randomized,
sham-controlled, multicenter study designed to test
the safety, tolerability, and efficacy of inhaled CO in
patients with IPF. We hypothesized that low-dose
inhaled CO could be safely administered in the
ambulatory setting, would reduce MMP7 serum
levels, and improve clinical indicators of disease
progression.

Methods

Subjects were randomized in a 1:1 fashion to treatment with inhaled
CO at 100 to 200 ppm, or to placebo administration of inhaled
21% oxygen. CO or placebo was administered under close
supervision twice weekly in the clinic setting, for 2 h per session, for
a total of 12 weeks, at eight participating clinical centers. Participants
were followed for up to 48 weeks after randomization. Study staff
was trained to monitor subjects for CO toxicity and to monitor
ambient CO levels during drug administration (subsequently
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discussed). All participants provided informed consent. Data safety
monitoring (Data Safety Monitoring Board) and site-specific
institutional review board approval at each of the participating sites
were obtained prior to study initiation and subject enrollment. All
participants provided informed consent.

Inclusion and Exclusion Criteria

Adults 18 to 85 years of age were considered eligible if their diagnoses
of IPF were made in accordance with published guidelines.18 Patients
with mild to moderate lung disease as defined by an FVC of
$ 50% predicted, measured in accordance with guidelines published
by the American Thoracic Society,19 and the absence of
supplemental oxygen requirement at rest, were eligible for study
participation. Subjects were excluded if they had evidence of active
infection within the month prior to screening, significant obstructive
respiratory defect (postbronchodilator ratio of FEV1/FVC <

70% predicted), supplemental oxygen requirement at rest (to
maintain an oxygen saturation > 88%), history of myocardial
infarction within 1 year prior to screening, heart failure within 3
years prior to screening, or cardiac arrhythmia requiring drug
therapy. Additionally, subjects were excluded if they were pregnant
or breastfeeding, participating in other IPF clinical trials, or actively
smoking within 4 weeks of screening (according to self-report).

Randomization

Randomization occurred via random assignment. The trial statistician
generated randomization codes using the permuted block method; a
block size of 12 was chosen. SAS 9.3 (SAS Institute) PROC PLAN
statement was used to generate the randomization schema. Opaque
randomization envelopes were prepared, sequentially numbered with
study identification, and used under the supervision of a designated
investigator at the Brigham and Women’s Hospital.

CO Dosing and Administration

Certified medical grade CO gas (single-use cylinder units with
predetermined CO gas concentration of 100 or 200 ppm) or oxygen
(21%) was delivered through a CPAP facemask at 15 L/min (Fig 1).
Noninvasive co-oximetry measurements were performed with a
Massimo device,20 correlated with measurement of CO levels via
arterial blood gas during the screening visit and performed at
multiple time points during subsequent dosing sessions (every
15 min during the 2-hour treatment session and 15 and 30 min
postdosing). Unblinded study staff monitored co-oximetry at
multiple time points and after each drug administration. CO dosage
was adjusted to maintain co-oximetry levels # 8% (see study
Figure 1 – Administration of CO or placebo: certified medical grade CO gas (s
or 200 ppm) or oxygen (21%) was delivered through a tight-fitting CPAP fac
expiratory valve to prevent accumulation and rebreathing of exhaled gas. ASC
per million.
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protocol in e-Appendix 1). Ambient air CO levels were measured in
real time by an industrial infrared CO analyzer.

Study End Points

The primary study end point was the difference in change in MMP7
serum concentration (ng/mL) after 12 weeks of inhaled CO therapy
or placebo. Peripheral blood samples were obtained and processed at
designated research visits at participating sites. Serum sample
aliquots were stored locally at �80�F and subsequently shipped in
dry ice to a Brigham and Women’s Hospital central laboratory for
processing. Serum MMP7 levels were measured using an enzyme-
linked immunosorbent assay kit (R&D Systems). Briefly, serum
samples were added in triplicate to 96-well plates coated with MMP7
antibody and then incubated at room temperature for 2 h.
Conjugated secondary antibody was added, and the plate was
incubated for another 2 h. Plates were then incubated with the
substrate solution for 1 h, and reaction was terminated with stop
solution. Concentration of MMP7 was calculated from a standard
curve using optical density (490 nm) measurements.

Secondary end points included the difference in change in MMP7
concentration after completion of the 12-month study and the
change in pulmonary function measurements, 6-min walk distance,
quality of life as assessed by the St. George’s Respiratory
Questionnaire,21 rates of acute exacerbations as defined by published
criteria22 and designated by site principle investigators, and rates of
adverse events, serious adverse events, hospitalization, and survival at
the completion of 12 weeks of treatment and at the completion of a
total of 48 weeks of follow-up. Analysis of end points was conducted
when all subjects completed the 12-week dosing period and at the
completion of 48-week follow-up.

Sample Size Calculation

The study was powered to detect a 2.4-ng/mL difference in mean
serum concentrations with a common SD of 2.2 ng/mL (effect size,
1.1) in the MMP7 level between treatment groups with two-sided a
of 0.05 and > 80% power. The calculation accounted for a loss to
follow-up rate of up to 15.5%.

Statistical Analysis
All analyses were performed according to the intention-to-treat
principle. All subjects were included in the analysis and assigned
to the randomly allocated treatment arm. Repeated-measure
analysis of variance was used to assess (1) mean change in serum
MMP7 levels over time, (2) group difference between placebo
ingle-use cylinder units with predetermined CO gas concentrations of 100
emask at 15 L/min. The mask was connected to tubing with a one-way
O ¼ ASCO Power Technologies; CO ¼ carbon monoxide; ppm ¼ parts
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and CO treatment, and (3) interaction between time and group
effect. The continuous secondary outcomes obtained at different
time points were analyzed using repeated-measure analysis of
variance. Tukey-Kramer adjustment was made to all post hoc
pairwise comparisons. The categorical secondary outcomes were
Assessed for eligi

Analyzed (n = 29)

Early Termination (n = 7)
      • Adverse Event (n = 6)
      • Death (n = 1) 

Allocated to CO (n = 29)
♦ Received allocated CO (n = 28)
♦ Did not receive allocated CO
    (given placebo in error) (n = 1) 

Enrollment

Allocat

Analys

Follow-

Randomized

Figure 2 – Flowchart of study enrollment: a total of 65 subjects were screened
placebo. See Figure 1 legend for expansion of abbreviation.

chestjournal.org
analyzed using either c2 or Fisher exact tests. Time to event
analyses were performed for mortality, acute exacerbations, and
hospitalization using Kaplan-Meier method and Cox proportional
hazards regression. All statistical analyses were conducted using
SAS 9.3.
Results

Study Enrollment and Patient Characteristics

Sixty-five subjects were screened in interstitial lung
disease clinics at eight academic pulmonary fibrosis
programs in the United States between December 1,
2011, and March 12, 2014. Fifty-eight subjects were
equally randomized to the CO treatment (n ¼ 29)
or placebo (n ¼ 29) groups. Of these, 51 subjects
(88%) completed the 12-week dosing period, 45
(77%) completed both the dosing and 48-week
follow-up periods, and 13 (22%) were prematurely
terminated (Fig 2). One subject randomized to the CO
group was administered 21% oxygen in the context of a
protocol deviation (Fig 2). This subject was included in
the CO group for the purposes of study analysis, as per
our intention-to-treat analysis plan. A post hoc analysis
with subject assignment per protocol did not yield
alternative results. Baseline demographics, imaging,
biopsy findings, and pulmonary function testing of
randomized subjects are outlined in Table 1. No
meaningful differences in baseline characteristics
were noted between subjects randomized to the two
study arms.
bility (N = 65)

Excluded (n = 7)
♦ Not meeting eligibility criteria (n = 7)

Analyzed (n = 29)

Early Termination (n = 6)
      • Adverse event (n = 1)
      • SAE (n = 1)
      • Death (n = 1)
      • Withdrawal (n = 3)

Allocated to placebo (n = 29)
♦ Received allocated placebo (n = 29)
♦ Did not receive allocated placebo 
     (withdrew consent before visit 2) (n = 1)

ion

is

Up

 (n = 58)

and 58 subjects were randomized in 1:1 fashion to receive inhaled CO or
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TABLE 1 ] Baseline Characteristics by Study Cohort

Characteristic CO Group (n ¼ 29) Placebo Group (n ¼ 29) P Value

Age, y 66.6 � 6.1 68.6 � 8.4 .3234

Male sex 25 (86.2) 22 (75.9) .5045

Ethnicity > .99

Hispanic or Latino 1 (3.5) 2 (6.9)

Other 28 (96.5) 27 (93.1)

Race .5125

White 25 (86.2) 27 (93.1)

Black 1 (3.4) 2 (6.9)

Asian 2 (7.0) 0 (0.0)

Other 1 (3.4) 0 (0.0)

HRCT scan .2790

UIP pattern 16 (55.2) 20 (69.0)

Possible UIP pattern 13 (44.8) 9 (31.0)

Biopsy availablea > .99

Definite UIP 16 (88.9) 17 (94.4)

Probable UIP 2 (11.1) 1 (5.6)

Predose carboxyhemoglobin, % 1.03 � 1.59 1.32 � 1.52 > .99

FVC, L 2.97 � 0.63 2.72 � 0.87 .9622

FVC % predicted 72.37 � 17.14 69.87 � 14.01 .9999

TLC % predicted 67.72 � 13.05 65.36 � 13.61 .9996

DLCO % predicted 40.82 � 12.28 41.46 � 13.95 > .99

Values are No. (%), mean � SD, or as otherwise indicated. CO ¼ carbon monoxide; DLCO ¼ diffusing capacity for carbon monoxide; HRCT ¼ high-resolution
CT; TLC ¼ total lung capacity; UIP ¼ usual diffusing capacity for carbon monoxide interstitial pneumonitis.
aCO group: n ¼ 18; placebo group: n ¼ 18.
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Figure 3 – Max COHB during drug administration by treatment group:
when all doses were averaged, the Max mean change in COHB levels
was significantly higher in the treatment group than placebo (P ¼ .02).
No significant differences in co-oximetry levels were observed at any
individual time point between the two study arms. COHB ¼ carbox-
yhemoglobin; Max ¼ maximum.
Carboxyhemoglobin Monitoring

The maximum carboxyhemoglobin level measured
during each treatment ranged from 2.24% � 2.2% to
3.82% � 2.79% in the CO group and 1.75% � 1.78% to
2.62% � 2.70% in the placebo group. There was
evidence that the maximum mean change in
carboxyhemoglobin levels was significantly higher in the
treatment group than the placebo group (P ¼ .02);
however, no significant differences in co-oximetry levels
were observed at any individual time point between the
two study arms (Fig 3). Twenty-eight out of a total of 29
subjects randomized to treatment with CO received at
least one dose of 200 ppm. During the treatment visits,
mean maximum carboxyhemoglobin levels for subjects
treated with 200 ppm ranged from 2.41 � 2.01 to 3.67
� 2.76, which was similar to that reported for all doses
administered in the treatment group.

Analysis of the Primary End Point

There was no significant difference in the change of serum
MMP7 concentrations between theCO-treated group and
placebo after the 12-week dosing period (P¼ .207). Least
98 Original Research
squares mean for change from baseline to week 12
was �0.15 ng/mL (95% CI, �1.31 to 1.01) for the CO
group and 0.88 ng/mL (95% CI, �0.25 to 2.02) for the
[ 1 5 3 # 1 CHES T J A N U A R Y 2 0 1 8 ]



placebo group. Although over the course of the study
there was a significant change in MMP7 levels when
combining both groups (P ¼ .006), no significant
differences inMMP7 levels were observed between groups
after the 48-week follow-up period (P ¼ .815) (Fig 4).

Analysis of Secondary End Points

Although there was evidence of decline in FVC
(P ¼ .002), total lung capacity (P ¼ .0001), and diffusing
capacity of the lungs for carbon monoxide (DLCO)
(P ¼ .0006) over the course of the study when
combining both groups, there was no evidence that the
change in measurement of FVC percent predicted was
influenced by treatment at either completion of
treatment (P ¼ .574) or study completion (P ¼ .262).
Least squares mean for change from baseline to week 12
was �1.57% (95% CI, �3.38% to 0.23%) in the CO
group and �0.84% (95% CI, �2.65% to 0.96%) in the
placebo group (Fig 5). Least squares mean for change
from end of treatment to study completion
was �2.53% (95% CI, �5.83 to 0.78) in the CO group
and �4.45 (95% CI, �7.67 to �1.22) in the placebo
group. No differences were observed when absolute FVC
values were used for the analysis over the course of the
study. We also did not observe a treatment effect over
time in TLC percent predicted values at completion of
treatment (P ¼ .59) or at study completion (P ¼ .641).
Least squares mean for change from baseline to week 12
was �2.29% (95% CI, �4.53% to �0.05%) in the CO
group and �1.44% (95% CI, �3.63% to 0.76%) in the
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Figure 4 – Primary end point, MMP-7 serum concentration, during the
study period by treatment group: although MMP-7 levels overall
significantly increased over time combining the two groups (P ¼ .006),
there was no significant difference observed in the primary study end
point of reduction in serum MMP-7 levels between the carbon
monoxide-treated group and placebo after the 12-wk dosing period.
MMP-7 ¼ matrix metalloproteinase-7.
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placebo group. Least squares mean for change from end
of treatment to study completion
was �3.06 (95% CI, �5.91 to �0.21) in the CO group
and �4.46 (95% CI, �7.20 to �1.72) in the placebo
group. Similarly, the change in DLCO percent predicted
values was not different between groups at the
completion of treatment (P ¼ .740) or at study
completion (P ¼ .904). Least squares mean for change
from baseline to week 12 was 1.10% (95% CI, �1.72% to
3.93%) in the CO group and 0.46% (95% CI, �2.18% to
3.10%) in the placebo group. Least squares mean for
change from end of treatment to study completion
was �4.90% (95% CI, �8.63 to �1.17) in the CO group
and �5.93 (95% CI, �9.47 to �2.40) in the placebo
group. Finally, we did observe a significant change over
time in the 6-min walk distance in both groups at both
treatment completion (P ¼ .010) and study completion
(P ¼ .010). Least squares mean for change from baseline
to week 12 was 35.54 m (95% CI, �61.24 to �9.85 m) in
the CO group and 12.92 m (95% CI, �12.78 to 38.61 m)
in the placebo group (Fig 5). Least squares mean for
change from end of treatment to study completion was
20.24 m (95% CI, �10.94 to 51.43 m) in the CO group
and �55.56 m (95% CI, �86.46 to �24.67 m) in the
placebo group.
Patient-Reported Outcomes

There was no evidence that change in St. George’s
Respiratory Questionnaire scores was influenced by
treatment at either treatment completion (P ¼ .812) or
study completion (P ¼ .126). Least squares mean for
change from baseline to week 12 was �2.12
(95% CI, �5.53 to 1.28) in the CO group and �1.55
(95% CI, �4.99 to 1.89) in the placebo group (Fig 6).
Least squares mean for change from end of treatment to
study completion was 4.32 (95% CI, �0.09 to 8.73) in
the CO group and 7.92 (95% CI, 3.45 to 12.40) in the
placebo group.

No differences were observed in the incidence of acute
exacerbation, hospitalization, death, or patient-reported
outcomes between study groups. Six subjects withdrew
from participation during the course of the study
because of worsening pulmonary symptoms or disease
progression, two in the placebo group and four in the
treatment group. One acute exacerbation of IPF was
reported during the course of the study, occurring in a
patient receiving CO, but no significant differences in
the distribution of acute exacerbations were observed.
Three of the subjects who withdrew ultimately died, two
in the placebo group and one in the treatment group.
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Figure 5 – A-D, Secondary end points, (A) FVC, (B) TLC, (C) DLCO, and (D) 6-min walk distance: no significant differences were observed in measures
diffusing capacity for carbon monoxide of pulmonary function or 6-min walk distance between the two treatment arms after the 12-wk dosing period or
after 12-mo of follow-up. DLCO ¼ diffusing capacity for carbon monoxide; TLC ¼ total lung capacity.
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Figure 6 – Self-reported outcomes: no significant differences were
observed in scores on the St. George’s Respiratory Questionnaire between
the two treatment arms after the 12-wk dosing period or after 12-mo of
follow-up.
Subjects that withdrew had a statistically significant
(P ¼ .0258) reduced DLCO (24.75 � 1.71) compared with
the remaining participants in the treatment arm (43.39
� 11.20). No other differences in baseline clinical
characteristics were observed.

Adverse Events

A total of 254 nonserious adverse events from 51
subjects were reported during the course of the study.
The most common reports were respiratory adverse
events; study subjects reported 37% and 38% adverse
events in the CO and placebo treatment arms,
respectively (Table 2). A total of 17 serious adverse
events from 10 subjects were reported during the study
period. These included five reports of IPF disease
progression, two reports of pneumonia, and one report
each of worsening dyspnea, acute pancreatitis, acute
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TABLE 2 ] Nonserious Adverse Events by Cohort

Organ System CO Group (119 events) Placebo Group (135 events)

Respiratory/thoracic/mediastinal 44 (36.97) 51 (37.78)

Nervous system 11 (9.24) 13 (9.63)

Gastrointestinal 11 (9.24) 11 (8.15)

Musculoskeletal/connective tissue 10 (8.40) 7 (5.19)

Cardiac 3 (2.52) 11 (8.15)

Infection 7 (5.88) 7 (5.19)

Skin/subcutaneous 9 (7.56) 3 (2.22)

General/administration site 2 (1.68) 7 (5.19)

Injury/procedural 4 (3.36) 3 (2.22)

Renal/urinary 4 (3.36) 3 (2.22)

Metabolism/nutrition 3 (2.52) 3 (2.22)

Eye 2 (1.68) 3 (2.22)

Vascular 1 (0.84) 3 (2.22)

Reproductive/breast 0 (0) 2 (1.48)

Neoplasm 1 (0.84) 0 (0)

Blood/lymphatic 1 (0.84) 0 (0)

Ear/labyrinth 0 (0) 1 (0.74)

Investigations 4 (3.36) 3 (2.22)

Surgical and medical procedures 2 (1.68) 4 (2.96)

Values are No. of events (% of events). See Table 1 legend for expansion of abbreviation.
coronary syndrome, worsening cirrhosis, colonic
obstruction, and hyponatremia. Site investigators
determined that these adverse events were not related to
the study drug. No statistically significant differences in
the distribution of adverse events or serious adverse
events were noted between treatment arms.
Discussion
Despite encouraging preclinical studies examining the
efficacy of CO therapy in fibrotic lung disease, in our
randomized, multicenter, sham-controlled study, we
observed no significant improvement in prespecified
primary or secondary study end points after a 12-week
treatment regimen with inhaled CO. Specifically, no
statistically significant differences were observed in
pulmonary function testing, functional assessments, or
patient-reported outcomes between subjects receiving
CO and those receiving ambient oxygen.

A large number of molecular biomarkers have been
associated with a diagnosis of IPF; however, only a
limited number of peripheral blood proteins have been
associated with a decline in lung function and reduced
survival in patients with IPF. These prognostic
biomarkers include several alveolar epithelial (MMP7
chestjournal.org
and surfactant protein D [SP-D]) and macrophage-
derived proteins (C-C Motif Chemokine Ligand 18
[CCL-18]). Of note MMP7 has been implicated in the
pathogenesis of IPF23; furthermore, we have shown that
MMP7 levels are increased in lung tissue, BAL fluid, and
the peripheral blood compartment of patients with IPF
when compared with control subjects.15 Additionally,
several groups have shown that increased MMP7 levels
are associated with reduced survival,16 and a recent
study suggests that metalloproteinase degradation
products are both increased and correlate with increased
mortality in patients with IPF.24 Taken together, these
findings suggest that select biomarkers may have value
as surrogate molecular end points in clinical trials. In
this trial, we choose MMP7 above other molecular
markers because it may identify patients at risk for
disease progression and its predictive attributes have
been independently validated, suggesting a potential role
as a therapeutic biomarker. However, in the present
study, there was no difference in change in MMP7
concentration between study groups after the 12-week
dosing period, or after 48 weeks of follow-up.

Although an overall treatment effect on the walk
distance was not observed over the course of this study,
a significant interaction effect between time and
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treatment was observed after both the 12-week dosing
period and the completion of the study. These findings
could in part be accounted for by a longitudinal decline
in walk distance over the 12-week course of treatment
in the treated group, which was observed to recover
from week 12 to study conclusion, or by the observed
decline in the 6-min walk distance from the end of the
treatment period to study conclusion in the placebo
group, which was not observed in the treated group
(Fig 5).

A number of observational and interventional studies
suggest that inhaled CO can be safely administered.
Stewart et al12 performed 25 exposures to known CO
concentrations in healthy volunteers; an 8-h exposure to
inhaled CO at 100 ppm resulted in carboxyhemoglobin
levels ranging from 11% to 13%. Similarly, Ren et al25

exposed 11 normal volunteers to a CO regimen aiming
to maintain a carboxyhemoglobin level of 10% for 8 h;
carboxyhemoglobin levels ranged from 9.1% to
10.5% (mean, 9.7%). Finally, Zevin et al26 exposed
healthy volunteers to CO inhalations at 1,200 to 1,500
ppm once every minute for 10 min, and repeated
inhalations once every 45 min for 16 h. The authors
reported a mean carboxyhemoglobin of 5% � 1%.

Ours is the first study to demonstrate the feasibility
and safety of administration of inhaled CO in patients
with IPF. Our study cohort appeared to be
representative of patients with IPF in general, with a
significant decline in lung function parameters such as
FVC, total lung capacity, and DLCO during the study
period. In the setting of a rigorous dosing and
monitoring schedule in this cohort, 88% of subjects
completed the study treatment regimen and
77% completed the 48-week follow-up period.
Administration of CO was well tolerated and not
associated with increased adverse events. In general,
development of CO therapeutics is limited by data on
neurologic and cardiovascular toxicities associated with
accidental exposure to high ambient CO levels.27

Importantly, we did not observe an increase in
neurologic or cardiovascular events in the CO-treated
arm when compared with the placebo group.
Moreover, we did not find increased rates of
hospitalization from any cause or an increase in all-
cause mortality associated with CO treatment. Taken
together with safety findings reported in prior phase I
studies, our data suggest that inhaled therapies can be
safely administered to patients with IPF in the
ambulatory setting under appropriate monitoring
conditions.
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A number of preclinical studies have outlined the
homeostatic properties of endogenous CO and
therapeutic benefits of CO in diverse pathologic
conditions.7,11 In a lung fibrosis model, mice treated
with intratracheal bleomycin and exposed to
low-concentration inhaled CO had significantly lower
hydroxyproline accumulation than control mice exposed
to ambient air.10 This in vivo study demonstrated that
CO modulates key pathologic profibrotic processes,
including synthesis and deposition of extracellular
matrix, mesenchymal cell proliferation, and
cytoprotection. The well-documented beneficial effects
of CO have led to the design of several phase I and II
clinical trials in COPD,13 acute lung injury (No.
NCT02425579), pulmonary arterial hypertension
(No. NCT01523548), and kidney transplantation (No.
NCT00531856). However, these findings did not
translate to significant improvement in either biomarker
or clinical end points in the present study.

Several aspects of the study design should be considered
when interpreting the lack of therapeutic efficacy. First,
absence of safety data in the IPF population and a
potential narrow therapeutic index prompted us to
implement a conservative dosing algorithm to achieve
CO blood levels # 8% (see Methods). The average
maximum carboxyhemoglobin level in the treatment
arm was 3.82% � 2.79% and differed by only
1.2% compared with placebo. In a recent clinical trial of
patients with stable COPD, subjects were treated with
inhaled CO at 100 to 125 ppm for 2 h/d on 4 consecutive
days. This produced a mean maximal individual
carboxyhemoglobin level of 4.5%.13 Because baseline
carboxyhemoglobin levels of 3% have been reported in
some urban areas,28 and levels as high as 10% to
15% may be observed in asymptomatic chronic
smokers,29 it is possible that in this trial subjects may
have been underdosed. Additional dose titration studies
are required to determine the concentration of inhaled
CO required to achieve mean carboxyhemoglobin levels
of 6 to 8. Second, study subjects were treated twice a
week for a total of 12 weeks. This limited dosing period
was chosen to test tolerance and improve compliance
with study visits. It is plausible that more frequent
dosing (ie, daily) and longer treatment duration (ie,
6-12 months) would be more likely to improve study
outcomes. Third, we hypothesized that a molecular
surrogate end point (ie, MMP7) could be more sensitive
than traditional study end points (ie, FVC). Although
overall we observed an increase in MMP7 levels over the
48-week study period, it remains unclear if MMP7 is a
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potential CO therapeutic target. Fourth, findings from a
recent phase II clinical trial in IPF suggest that a large
study population is required to elicit an efficacy signal
when using traditional primary end points such as
FVC.30 These findings also suggest that our phase IIa
study may have been underpowered to detect differences
in traditional clinical end points.
chestjournal.org
In summary, we have shown that low-dose inhaled CO
is well tolerated and can be safely administered to
patients with IPF in the ambulatory setting. Further
studies are needed to determine the appropriate dosing
and administration schedules to achieve therapeutic
local and/or systemic concentrations of inhaled
therapies, and to fully assess their effectiveness in IPF.
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