UCLA

Posters

Title

Adaptive Sampling for Marine Microorganism Monitoring

Permalink

https://escholarship.org/uc/item/70q4t2h4

Authors

Bin Zhang David Caron Oberg et al.

Publication Date

2003

S Center for Embedded Networked Sensing

Adaptive Sampling for Marine Microorganism Monitoring

Bin Zhang, David Caron, Carl Oberg, Aristides Requicha, Beth Stauffer, Gaurav S. Sukhatme http://robotics.usc.edu/~itr

Introduction: Adaptive sampling algorithms for an underwater sensor network

Goals

- · Acquire the sensed data with
 - High spatial resolution
 - Few sample points
 - High energy efficiency
- · Develop efficient sampling algorithms for underwater sensing

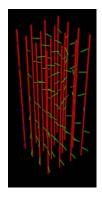
Application: Localize Thermoclines

- Microorganisms, such as Phytoplankton, can be exceedingly small (2-3μm)
- They have patchy distribution in the ocean on various spatial scales
- Light intensity (from above) and nutrients (from below) are important factors that limit their growth
- Thermoclines are regions that offer competitive trade-off between light and nutrients


Problem Description: How to find a maximum gradient in an efficient, scalable manner

- •How does one node communicate with the others?
- ·How to reduce energy consumption?
- •How to overcome a noisy environment?
- •How to overcome a local maxima and find a global gradient?

Distributed Algorithm for Maximum Gradient Detection


Proposed Solution: Find Local Maximum and Negotiate with Neighbors for a Global Maximum

- •Assumptions:
 - •Each node executes same algorithm
 - •All nodes are equally important
 - Only local communication is assumed
- Algorithm
 - Step1: Find Local Maximum
 - Binary Search
 - Polynomial Fitting
 - •Step2: Negotiate with neighbors for the global maximum gradient
 - •Step3: Move nodes to the place where there is maximum gradient
- •Simulation:
 - •All nodes can move independently
 - Any node can only talk to its neighbors
- •Testbeds:
 - •Tethered Sensor Array
 - •All sensors are fixed on a pole
 - •There are wires linking each sensor to PC
 - •Wireless Sensor Array
 - •Each node has its own CPU, Radio and Sensors
 - •All nodes are fixed on a pole
 - •Each node talks to its neighbors though radio

Experiment results for 24 hours on Tethered Testbed

- ---- the data collected by dense sampling (1 sample per inch)
- --- the thermocline found through binary search

Simulator (left) Tethered Testbed (middle) and Wireless Testbed (right)