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Abstract

Visualizing Multimodal Uncertainty

in Ensemble Vector Fields

by

Brad Eric Hollister

Often times, simulations involve repeated runs where certain parameters, e.g. initial

and boundary conditions, or model parameters are varied slightly, in order to capture

the variability of the phenomenon being studied. The results are referred to as ensem-

bles. Ensembles are very attractive since they represent both the data values and their

uncertainty. Ensembles challenge us to extend traditional visualization assuming that

the ensemble represents the distribution of all possible simulation outcomes given an

input parameter space. Extending the traditional paradigm is also better suited for com-

plex data associated with ensemble vector fields (EVFs). Derived features of the EVF

allow for their summary visual analysis. This approach is related to traditional methods

of visualization for crisp fields but require the definition and calculation of additional

derived features of interest.

We first focus on a consolidated and extensible representation of EVF. A distin-

guishing aspect of this dissertation is the treatment of the values at each spatial point

of the ensemble field as forming a probability distribution function (PDF) that need

not conform to a Gaussian distribution. We present a new method for interpolation

xiii



of distributions of 2D vector fields, required for handling velocity distributions. We

also include velocity probability density information from the EVF in the feature set of

streamlines.

Another defining characteristic of this work is considering streamline information

content and geometrically based streamline clusters as a derived feature of EVF. We

apply a suitable and proven streamline clustering method first introduced to summarize

regions of crisp vector fields. Our contribution is redefining this method for use in EVF,

both for seed points over the spatial domain and for entire sub-regions of the EVF. We

also show correlation between the associated cluster counts and streamline information

content at seed points in the EVF.

Our goal is to enable simulation scientists and consumers of ensemble data sets,

such as weather forecasters, to visualize areas of predicted flow that are improperly

represented by a Gaussian simplification. The potential impact of this work ranges from

better representation of current weather prediction forecasts for public consumption to

the refinement of computational fluid dynamics (CFD) models.
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Chapter 1

Introduction

1.1 Motivation

Many applications in physical sciences, engineering, statistics, risk assessment and

decision science, etc. use Monte Carlo methods to model phenomena with uncertainty.

The input parameter space of the models is repeatedly sampled, and each sample set

solved using a deterministic model, to produce a possible outcome of the model. Each

possible outcome is called a realization, and the collection of realizations from repeated

runs is called an ensemble.

An everyday example is the weather forecast. Forecasts are usually obtained by

running Monte Carlo simulations on a number of weather models. Each model may in

turn be run with a set of input parameter whose values are drawn from a probability dis-

tribution associated with each parameter. An ensemble weather forecast may produce
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several fields such as temperature, humidity, pressure, and velocity. This gives rise to

ensemble scalar fields and EVFs. Each one is a distribution of values about the scalar

or vector variable at each location and time. Hence, ensembles encode both the data

and the uncertainty about the data.

Treatment of the different fields of an ensemble depends on the cardinality of the

field. Ensemble scalar fields may be summarized using parametric statistics in cer-

tain situations. For example, the mean field can be used as a proxy for the ensemble

scalar field, while the standard deviation field may be used as a representation for the

uncertainty of the scalar field. This works when the distribution can be adequately char-

acterized by parametric statistics. However, this is not always the case. In situations

where this assumption does not hold, non-parametric statistics may be computed and

mapped visually, or the spatial distributions themselves may be displayed.

Treatment of ensemble vectors at discrete locations may proceed in a similar fash-

ion. Ensemble mean and standard deviation at each location may be calculated and

mapped to uncertainty vector glyphs. Note that while some assumptions are imposed

on the input parameters e.g. Gaussian distribution, the EVF may not exhibit such prop-

erties. In fact, most of the interesting events happen when and where such assumptions

fall apart.
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1.2 Goals

The theme of this dissertation is to remove Gaussian assumption when applied to

EVF visualization. As a start, we first consider velocity distributions at each EVF grid

point of the ensemble simulation output. These distributions are multivariate. A two-

dimensional multimodal velocity distribution is shown in Fig. 1.1. Our first goal is to

evaluate and extend interpolation of non-parametric bivariate velocity PDF for efficient

use. Using interpolated PDF, we then extend traditional streamlines to incorporate

multimodal uncertainty encoded in the EVF. We take two approaches. One approach is

to directly use velocity PDF for advection. Another approach adds feature information

to each member streamline from the field PDF.

Figure 1.1: Kernel density estimate of a multimodal velocity distribution from an EVF
grid point. The EVF is derived from an ocean current simulation at a constant pressure
level. Marginal probabilities corresponding to the u and v velocity components are
projected onto the side walls.
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Figure 1.2: Three potential types of multimodality in an EVF: (1) The maroon areas in
this EVF show multimodal velocity distributions. The red flow lines were integrated
using peak velocities from PDF. (2) Bifurcating flow bundles from each realization are
shown using a spaghetti plot from a single seed location. (3) The yellow box highlights
an area of modal behavior in flow field as shown in schematic Fig. 1.4.

Figure 1.2 shows bundles of streamlines from each realization. These streamline

clusters represent multimodality in the EVF as seen in a traditional spaghetti plot. As

another goal, we characterize and quantify these modes for the entire spatial domain.

This will allow inspection of the entire EVF with regard to such multimodal flow.

A related purpose to the previous goal will be to visualize flow similarity in sub-

regions of the spatial domain. A schematic is shown in Fig. 1.3, where modes present

in the realizations are combined in the EVF as their mean value. Figure 1.4 considers

multiple modes in the EVF. By doing so, we acknowledge more than one primary flow

direction. The possibility of multiple possible flow is lost when only summary statistics

such as the mean field is used.
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Figure 1.3: The average of two modes of regional flow in the EVF is taken to be the
mean flow.

Figure 1.4: The union of two modes of regional flow in the EVF is taken to be a
multimodal distribution.

1.3 Overview

Summarizing EVF is the purpose of this dissertation. Such summaries are formu-

lated with particular goals, as discussed in section 1.2. Overcoming Gaussian simplifi-

cation and unimodal assumptions are key contributions. As a preview, our result shown

in Fig. 1.5 depicts non-parametric uncertainty from the EVF, and represents significant

improvement over traditional methods.

Our first approach is to show EVF as a field of non-parametric PDF, and then ob-

serve EVF uncertainty expressed using velocity density estimation. As a second ap-

proach, we treated EVF as separate realizations of which we compare member stream-

lines. All methods presented are meant to provide analysis of different EVF aspects.

After describing related works in chapter 2, this dissertation is divided into four
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(a) (b)

Figure 1.5: (a) Traditional “spaghetti” plot. (b) Streamlines rendered to show relative
non-parametric uncertainty derived from the EVF.

primary chapters. Chapter 3 describes a novel interpolation method for bivariate proba-

bility density estimates. Chapter 4 provides applications and analysis of using non-

parametric distributions in the context of ensemble visualization and reiterates our

method of PDF interpolation in a larger context. The subsequent chapter presents an

extension to traditional streamline visualization using the PDF from the EVF. In chap-

ter 6, we provide methods to visualize EVF transport similarity both for the entire field

and in selected regions. In the last chapter, we provide our conclusions and how each

method in this dissertation has a common theme related to EVF analysis. We also

suggest some possible directions for future research.
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Chapter 2

Background

2.1 Crisp Vector Fields

Crisp vector fields represent certain vector fields. Numerous methods are avail-

able to visualize vector fields both from local and global viewpoints, as described in

Laramee et al. [33]. Common methods of visualization are streamlines for steady flow

and pathlines for unsteady flow. Pathlines are calculated using integration methods such

as Euler, Runge-Kutta, etc. Stability of solutions is a key concern coupled with com-

putational time and storage. In general, dense seeding is required to derive meaningful

visualization using flowlines. Figure 2.1 depicts the directions that nvarious types of

vector field visualizations can be performed.

Integration must proceed to sufficient stopping criteria to cover the vector field do-

main fully. Dense seeding can be used to expose critical points in the vector field, along
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Figure 2.1: Classification of flow visualization techniques [33] - (left) direct, (middle-
left) texture-based, (middle-right) based on geometric objects, and (right) based on
geometric objects, and (right) feature-based.

with the classification of the critical point. Vector field singularity classes are: saddle

points, attracting/repelling nodes, attracting/repelling focii, and centers. Such topolog-

ical information is called feature extraction in vector fields, as Helman et al. discusses

in [22].

Dense field visualization of flowlines is accomplished with methods that seek to

simplify groupings of lines. A popular technique is line integral convolution (LIC) as

first done by Cabral et al. [8] and its many more recent variants. For uncertain vector

fields, such a technique is less useful, since LIC provides general notions of flow in

a single image. LIC is often used as a reference field for comparison. That reference

can be the mean or a single representative crisp realization. Laidlaw et al. have sur-

veyed various other ways of visualizing crisp vector fields [31]. Kuhn et al. employ

a camera-aligned method using triangle-strips to replace field lines [30]. Their width
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is dependent on flowline density. This has been utilized in real-time using OpenGL to

reduce streamline clutter.

2.1.1 Lagrangian Flow Classification

Lagrangian flow classification is based on material transport in vector fields, and

thus provides a global picture of the vector field, see Sadlo et al. [73]. A displacement

map, called the flow map Φ, is derived from the vector field using integration. Because

a (possibly time-varying) crisp vector field can be described with the differential Eq.

2.1, the flow map is subsequently defined in Eq. 2.2.

dx(t)
dt

= v(x(t), t) (2.1)

Φ(x(t);T ) = x(t +T ) (2.2)

Equation 2.2 describes the final location of a particle seeded at x at time t and

advected for an interval T . The field is not required to be time-varying and in such a

case, T simply refers to the number of integration steps forward or backward in the flow

map.
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2.1.2 Finite-time Lyapunov Exponent

Taking the largest eigenvalue of the left-Cauchy Green deformation tensor as in Eq.

2.3, we find the magnitude of the direction of greatest stretching in the flow medium

at x(t). The left-Cauchy Green deformation tensor removes effects of reference frame

rotations as might be present in the flow map gradient.

λmax(∇Φ(x(t);T )T
∇Φ(x(t);T )) (2.3)

The magnitude of maximum expansion, λmax in Eq. 2.4, is the largest eigenvalue

from Eq. 2.3. The Finite-time Lyapunov Exponent (FTLE) is a logarithmic scaling of

the magnitude of maximum expansion.

FT LE(x(t),T ) =
1
T

log
√

λmax (2.4)

FTLE can be viewed as a scalar field over the vector field domain as seen with a

tilted bar flow data set in Fig. 2.2. When the height ridges of this scalar field are found,

we get a topological representation of the regions that share in either a contractive or

expansive material property of the flow medium.

2.2 Ensemble Vector Fields

Ensemble vector fields (EVF) are uncertain vector fields derived from Monte Carlo

simulations. Repeated runs of the same simulation, with varying simulation input pa-
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Figure 2.2: FTLE computed for a tilted bar data set with total integration time of 1.0
second. From Schneider et al. [79].

rameters, produce member realizations that taken together, can be considered as a dis-

tribution of all possible, outcomes of the field for a given input parameter space. A

time-varying flow field can be described as in Eq. 2.5.

v : Ω× I→ Rd (2.5)

Using the notation in Hummel et al. v is defined over a spatial domain Ω ⊆ Rd

[23]. The time interval is I ⊆ R. An EVF is a set of m vector fields over the same

spatial domain and the ensemble space can be considered to be the intersection of all

such vector fields, ΩEV F = Ω1∩.,.∩Ωm and IEV F = Ω1∩...∩Im:

EV F : {1, ...,m}×ΩE × IE → Rd (2.6)

EV F(i, ., .) corresponds to the ith realization in our ensemble. We can see an exam-

ple of particle transport in an ensemble (Fig. 2.3).
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Run 1
(x, y)

Run 2
(x, y)

. . .
(x, y)

(x, y)(x, y)(x, y)

Figure 2.3: A particle started at identical positions in all vector fields of an ensemble
is transported to different final positions. Different locations in the ensemble lead to
stronger or weaker separation of particle positions. Notice the conceptual similarity
between ensemble divergence and individual member flow field divergence.

2.2.1 Finite-time Variance Analysis

A probabilstic variant of FTLE is called the FTVA, Eq. 2.7. It takes the covari-

ance matrix of particle positions advected over the ensemble domain from given seed

locations. It was first presented by Schneider et al. and is shown in Fig. 2.4 [79].

FTVA(x(t),T ) =
1
T

log
√

λmax(Cov(x(t);T )) (2.7)
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Figure 2.4: Stochastic integration from a starting point gives a distribution of end points
due to uncertainty. A principal component analysis of the start and end point distribu-
tions provides information about the maximum amount of stretching [79].

2.3 Clustering

The primary aim of our research is to identify multimodal similarity (i.e., more

than one cluster) in an EVF. To this end, we utilize multiple clustering algorithms. We

provide background on relevant clustering algorithms both for point data and trajecto-

ries. The use of the term trajectory in this work is used interchangeably with the term

streamline or pathline. Geometrically, a trajectory is represented as a polyline and the

same clustering methodology can be applied.

We also endeavor to minimize the need for prior information or assumptions about

the data, such as the number of possible clusters. Therefore, we omit discussion on

vector field k-means, a partition based trajectory clustering algorithm by Ferreira et al.

[15]. We do not use this approach as it requires an input parameter k which denotes the

number of output clusters. While we use Expectation-maximization [2] (EM) for point

data, where EM fits a specified number of radial basis functions (Gaussians), we are

less certain as to the number of similar trajectories that may exist and so employ more
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exploratory clustering approaches. It is worth considering the clustering survey papers

by Ilango et al. [25] and Estivill-Castro [14] which outline some general strategies.

A

B
C

N

Figure 2.5: Illustration of DBSCAN cluster analysis requiring minimum points con-
stituting a cluster to be three. Points around A are core points. Points B and C are
not core points, but are density-connected via the cluster of A (and thus belong to
this cluster). Point N is Noise, since it is neither a core point nor reachable from a
core point. DBSCAN also requires a maximum distance parameter ε that determines
density-connected points [13].

2.3.1 Point Data

Numerous point data clustering algorithms exist and can be sorted into the six

categories: partitioning models (e.g., k-means), hierarchical models (e.g., BIRCH),

density-based models (e.g., DBSCAN and OPTICS), grid-based models (e.g., STING),

distribution models (e.g., EM) and graph-based models (e.g., minimum spanning tree),

Pedregosa et al. [54].

We choose fitting Gaussian mixture models via EM and the density-based model,

DBSCAN, as our initial clustering methods for point data. Because we are investigating

material transport, such methods are most applicable as they represent clusters based

14



on Euclidean distance metrics. We provide a simple outline to the DBSCAN algorithm

in Fig. 2.5, as it is extended in the implementation of TRACLUS, a trajectory clustering

technique by Lee et al. [34].

2.3.2 Trajectories

This section briefly describes two prominent trajectory clustering algorithms, TR-

ACLUS and a feature-based approach presented by Lu et al. [40].

TRACLUS

TRACLUS is an extension of DBSCAN for trajectories. It generalizes Euclidean

distance to include parallel, angular, and linear distance for line segments. Using this

generalized distance, representative streamlines are calculated for clusters, by averag-

ing the individual line segments in a cluster. The results of using TRACLUS for a set

of hurricane tracks can be seen in Fig. 2.6.

Figure 2.6: TRACLUS clustering result for a hurricane data set [34].
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Feature-based Analysis

Another approach for streamline clustering is based on features. Lu et al. cluster

streamlines regardless of their location in the simulation field [40]. They measure the

amount of curvature or torsion in a streamline and then form sets based on the occur-

rence of those characteristics. An example is shown in Fig. 2.7.

Figure 2.7: Clustering results based on curvature distribution. The green cluster corre-
sponds to vortex flow and the red one corresponds to straight flow [40].
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Chapter 3

Bivariate Quantile Interpolation

Probability distribution functions (PDFs) may be estimated from members in an

ensemble. For an ensemble of 2D vector fields, this results in a bivariate PDF at each

location in the field. Vector field analysis and visualization, e.g. streamline calcula-

tion, require an interpolation to be defined over these 2D density estimates. Thus,

a non-parametric PDF interpolation must advect features as opposed to cross-fading

them, where arbitrary modalities in the distribution can be introduced. This is al-

ready achieved for 1D PDF interpolation via inverse cumulative distribution functions

(CDFs). However, there is no closed-form extension to bivariate PDF. This chapter

presents one such direct extension of the 1D closed-form solution for bivariates. We

show an example of physically-coupled components (velocity) and correlated random

variables. Our method does not require a complex implementation or expensive compu-

tation as does Displacement Interpolation [4]. Additionally, our method does not suffer
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from ambiguous pair-wise linear interpolants, as does Multivariate Gaussian Mixture

Model Interpolation (see chapter 4).

3.1 Introduction

A fundamental operation used in most visualization algorithms is interpolation. In-

terpolation is used in workhorse visualization techniques such as marching cubes, direct

volume rendering, and streamline generation, and many other popular algorithms. Per-

forming interpolation is well defined when the data points and the interpolants are crisp.

However, this is not the case when the data points consist of a distribution.

With increasing interest in representing uncertainty in modeling and simulation with

techniques based on Monte Carlo methods, we are now faced with the challenge of

analyzing and visualizing ensemble fields. Ensemble fields are made up of individual

realizations, each a possible outcome, of the simulation. Assuming that the ensemble

fields are defined over a regular Cartesian grid, a popular approach is to treat all the

values at a given grid point from different realizations as a distribution. Recent works

in this area have primarily assumed that the distribution follow a Gaussian distribution.

Even more recent efforts have extended this to non-Gaussian distributions.

In this chapter, we extend a closed-form 1D probability distribution function inter-

polation method [68] that advects features for non-parametric probability distribution

functions (PDFs). It is essentially a method that interpolates quantiles of the corre-

sponding cumulative distribution functions (CDFs) and then solves for the interpolant
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PDF. However, until now, there was no direct extension to bivariate distributions, which

are needed to represent vector PDF interpolation.

This chapter addresses both physical vector fields (e.g. velocity, angular momen-

tum) and a vector of scalar fields (e.g. two scalar fields, for instance temperature and

humidity in a vector representation). Our interpolation method is general, and applies

to both types of vectors. Our method is necessary for physical vector fields that cannot

be decomposed into univariate distributions and for correlated random variables.

This work is motivated by the need for a non-parametric PDF interpolation that

scales to large data sets by employing variable computational cost for required levels

of accuracy. It is primarily applicable to multi-dimensional fields whose component

random variables are correlated. Uncorrelated random variables may be treated as uni-

variates.

3.2 Related Work

A nice overview of statistical techniques for spatial interpolation was presented

by Myers [45]. The techniques range from simple linear models with no covariance,

to those using spatial structure functions. The survey however does not include non-

parametric distribution interpolation. The paper does claim that interpolation is a solu-

tion to an inherently ill-posed problem, namely that it is a problem of prediction with

limited data. For that, multiple models with different purposes can be employed. A

more detailed survey [37], but focusing on geostatistical applications, compare meth-
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ods according to different criteria such as local vs. global support, deterministic vs.

stochastic, univariate vs multivariate, linear vs. nonlinear, etc. Among the methods that

consider stochastic data, they assume normal distribution.

Within the visualization community, there are also a number of recent publications

that address stochastic interpolation. Scheuermann, et al. [78] present a form of Krig-

ing interpolation of spatial data for Gaussian distributions using a parameter-based ap-

proach. This technique relies on computing a covariance matrix and that the underlying

data be formed from a Gaussian process. Pfaffelmoser et al. [56] visualize isosurfaces

via a raycasting scheme, and perform spatial interpolation assuming the data has a

Gaussian distribution at each location. Likewise, Pothkow et al. [61] discuss isocontour

visualization of normally distributed data. They interpolated between grid points using

the 0th and 1st moments without spatial correlation considerations. Their subsequent

work [63] considered the effects of spatial correlation in visualizing isosurfaces using

probabilistic marching cubes. An alternative method of looking at global correlation

structures in a hierarchical fashion was presented in [57].

When data do not follow a Gaussian distribution, a more general uncertainty model

is needed. Liu et al. [38] propose a Gaussian mixture to represent the distribution of

voxel values in air temperature data. They perform volume rendering on the data set and

interpolate between pairs of a fixed number of Gaussian components along cast rays. In

their study, they found that four Gaussian kernels are sufficient for a variety of data sets

that they examined. In addition, they support stationary and anisotropic correlations in
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the process, but at the expense of considering multimodal qualities of the probability

distributions at grid points. For non-parametric representations of non-Gaussian dis-

tributions, operations on the distributions require different handling. Love, et al. [39]

discuss two forms of a non-parametric interpolation method via convolution addition of

probability distributions as well as bin-wise addition. Pohl, et al., [60] first transform

the (discrete) distribution to Euclidean space via a set of Log Odds operations, where

they can then be manipulated using conventional addition and multiplication. Results

are then mapped back to probabilistic space via a reversible transform.

Uncertainty in vector fields is of great interest to at least two broad fields: envi-

ronmental science e.g. oceanography and meteorology [36, 35], and fiber tracking of

diffusion tensor magnetic resonance images (DT MRI). Both [80] and [3], discuss non-

Gaussian methods in these areas of research. Otto, et al. present analysis of 2D [48]

and 3D velocity fields [49] using particle advection, critical points, and segmentation

of field topology. Petz et al. [55] also analyze uncertain velocity fields modeled as

Gaussian random fields with spatial correlation.

There is a growing body of work on probabilistic fiber tracking. Unlike velocity

fields, the tracks here represent fiber connectivity from one region to another and are

obtained by integrating the major eigenvector field of symmetric DT MRI data set. The

main source of uncertainty can be attributed to inadequate resolution in the data acqui-

sition stage. However, there are numerous other sources as well [6]. While most of

the earlier works on probabilistic fiber tracking delved on the inadequacy of the simple
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tensor representation to show alternative trajectories due to multiple fiber populations

within a cell, more recent works are based on high angular resolution diffusion imaging

(HARDI) data which makes it is possible to describe fiber orientations using more so-

phisticated formulations such as spherical harmonics and multi-tensor representations.

In a recent paper, Jiao et al. [26] describe a local, icon-based presentation of an ensem-

ble field of fiber orientation distribution functions (ODF). The results of our work can

be used towards spatial analysis of such ensemble fields, for example.

There is much interest in the meteorological community to provide better visualiza-

tion of forecast data. Slingsby et al. [85], discuss how users interpret and use weather

data, specifically hurricane data. Storm path information are examined from historical

data. They draw attention to spatial and temporal clustering and its undervalued sta-

tus among those currently employing such visualization software. Weather forecasts

are usually based on an ensemble of predictions. For that, Potter et al. [64] describe a

framework for viewing stochastic information from ensembles. This package allows for

visualization of spaghetti plotting, etc. of weather data. Zhang, et al. [75] present Noo-

dles, a software package for displaying uncertainty in streamlines and other weather

data visualization for ensemble forecasting. Potter et al. [65] describe a software tool

to visualize two-dimensional sets of distribution data. It displays a contour of field PDF

values and allows for a normed difference between data PDFs and an ansatz selected by

the user. More recently, Phadke et al. [58] present two novel visualization methods for

ensembles. Primarily, they allow simultaneous viewing of multiple ensemble members.
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They also present a technique called Screen Door Tinting which applies value changes

to field points that show differences between ensembles.

From the point of view of users, Martin et al. [42] point out the difficulty of users to

identify hurricane directional movement and speed from current data visualization, or

directly on vector fields. In a similar study, Broad et al. [7], further emphasize interpre-

tation and usage of complex weather data. They show how a general interpretation of a

Gaussian distribution of hurricane direction prediction can lead to inaccurate views on

the probability within a cone of uncertainty. Clearly, if multimodal velocity distribu-

tion is calculated with such a broad region of uncertainty using a Gaussian assumption,

incorrect estimation of the probability of hurricane direction can occur, most specifi-

cally within the general population who can be greatly impacted by such interpretation.

A non-Gaussian consideration for vector field visualization together with a redesigned

visualization may rectify this issue to a degree.

The method presented by Liu et al. [38], which proposes a Gaussian mixture model,

is insufficient for bivariate PDF. Despite the use of a fixed number of Gaussian basis

functions for PDF estimates, the interpolation is only unambiguous for 1D PDF when

pairing Gaussian components by the order of their mean parameter. For 2D Gaussian

mixture models, there is no such ordering. It is possible to order bivariate Gaussian

components based on their mean probability, but this does not follow from the 1D case

of ordering based on the mean parameter value.

Displacement Interpolation, developed by Bonneel et al. [4], is a general method
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for multivariate PDF interpolation. It is shown to reduce to the 1D PDF interpolation

presented by Read [68]. It satisfies the advection of features by interpolating popu-

lations instead of cross-fading them. (Bonneel et al. provide an in-depth discussion

of this property in their paper.) It is based on solving for intermediate solutions to

the Earth Mover’s Distance, a minimum cost problem of transforming one PDF into

another. This method does not scale well to 2D field interpolation, however. It is com-

putationally costly, with current CPU implementations (using compiled code) taking

on the order of minutes to hours for interpolation between only two PDFs. In the form

presented by Bonneel et al., it is developed only for interpolation between two PDFs.

3.3 Bivariate Quantile Interpolation

3.3.1 Derivation

We extend a CDF based interpolation method for use with bivariate PDF, which

is needed for uncertain 2D velocity fields. The original 1D method was analytically

derived in [68], and is shown below. Here, F(x) is the CDF with its associated PDF,

f (x), as in Eq. 3.1.

F(x) =
∫ x

−∞

f (h)dh (3.1)

f0 and f1 are two known PDF used for the interpolation. Their CDF are F0 and F1,

respectively. The quantile y corresponds to both x0 and x1 in Eq. 3.2 and Eq. 3.3.
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F0(x0) = y (3.2)

F1(x1) = y (3.3)

F̄(x̄) is the interpolant CDF found from linearly interpolating between x0 and x1,

shown in Eq. 3.4 and Eq. 3.5.

x̄ = (1−α)x0 +αx1 (3.4)

F̄(x̄) = y (3.5)

Using F−1, we have F−1
0 (y) = x0, F−1

1 (y) = x1 and F̄−1(y) = x̄. Substituting these

results into equation 3.4 yields:

F̄−1(y) = (1−α)F−1
0 (y)+αF−1

1 (y) (3.6)

Knowing that dx = dF−1(y), dy = dF(x) and dx/dy = (dy/dx)−1, we have:

dF−1(y)
dy

=

[
dF(x)

dx

]−1

=
1

f (x)
(3.7)

Thus, applying d/dy to Eq. 3.6, and solving for f̄ (x̄) produces:
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f̄ (x̄) =
f0(x0) f1(x1)

(1−α) f1(x1)+α f0(x0)
(3.8)

Our contribution is the novel extension to 2D PDF interpolation. Equation 3.9 rep-

resents the 2D conceptual extension of Eq. 3.8. The parameter t ∈ [0,n] is introducted to

provide a unique one-to-one correspondence between x and y pairs on the correspond-

ing quantile curves from two bivariate PDFs f0 and f1, the known PDFs we interpolate

from.

f̄ (x̄(ti), ȳ(ti)) =
f0(x0(ti),y0(ti)) f1(x1(ti),y1(ti))

(1−α) f1(x1(ti),y1(ti))+α f0(x0(ti),y0(ti))
(3.9)

Additionally, α is the linear interpolation factor that determines the Euclidean dis-

tance in the scaled probability space of the interpolant [x̄(ti), ȳ(ti)]T . This relationship

is expressed in Eq. 3.10.

x0(ti)

y0(ti)

+α

x1(ti)− x0(ti)

y1(ti)− y0(ti)

=

x̄(ti)

ȳ(ti)

 (3.10)

The parameter t, is taken as the fraction of the arc length of the rectified quantile

curves from f0 and f1. The arc length L of curve C is defined as in Eq. 6.10 on the

interval [a,b]. ds2 = dx2 +dy2 for the infinitesimal line segment ds.

L(C) =
∫ b

a
ds =

∫ b

a

√
1+
(

dy
dx

)2

dx (3.11)
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For finite numerical approximations, where C is the image of a continuous function

l : [a,b]→ Rn, we have:

L(C) = sup
a=t0<t1<···<tn=b

n−1

∑
i=0

d(l(ti), l(ti+1)) (3.12)

All quantile curves are indexed with the same number n of finite ti, regardless of

the value of L(C). Effectively then, each [x(ti),y(ti)]T pair between curves are the same

fractional length of their curve.

Our method does not seek to minimize various metrics placed on mapped curve

segments. For instance, we do not minimize distance in the sample space between

paired samples on the quantile curves being interpolated but use the simpler heuristic

of arc length parameterization.

For interpolation within a grid cell, Eq. 3.9 can be extended using bilinear interpo-

lation via both α and β weights for the orthogonal directions of the grid. The α and β

weights within the unit cell are shown in Fig. 5.1.

0 1

2 3

α

β

Figure 3.1: Unit cell interpolation using both α and β .

In Eq. 3.13, we show the interpolation solved for the unit cell case. For brevity,

we omit the (x(ti),y(ti)) pairs associated with each PDF. Each vertex represents the
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estimated PDFs from the ensemble for those locations. Setting either α or β to zero

reduces to interpolation along a line.

f̄ =
f0 f1 f2 f3

f1 f2 f3 +αA+βB+αβC
(3.13)

A, B and C are shown in Eq. 3.14, Eq. 3.15 and Eq. 3.16, respectively.

A = f0 f2 f3− f1 f2 f3 (3.14)

B = f0 f1 f3− f1 f2 f3 (3.15)

C = f1 f2 f3− f0 f2 f3− f0 f1 f3 + f0 f1 f2 (3.16)

3.3.2 Algorithm

The major steps of the quantile interpolation method are shown in Fig. 4.5.

Stages gather samples and estimate density are implementation specific. We do not

cover their implementation details here and the user may choose varying approaches

depending on the data. For example, kernel density estimation (KDE) [84] with differ-

ent window settings can be used for density estimation.

For the CDF calculation stage, we collect (u,v) pairs for each requested quantile

curve. We use u and v to refer to the components of a 2D velocity vector, in place of x
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gather samples

estimate density

CDF calculation

parameterize quantiles

interpolate quantiles

evaluate interpolant PDF values

reconstruct PDF surface

Figure 3.2: Quantile PDF interpolation method. Dashed outline signifies core method
stages discussed.

Data: dob j, quantiles
Result: qpts
initialize qpts;
for i = dob j.min u to dob j.max u do

for j = dob j.min v to dob j.max v do
d = density in region (min u,min v) to (i, j);
foreach q in quantiles do

if q−TOL≤ d < q+TOL then
qpts[q].append((i, j));

end
end

end
end

Algorithm 1: CDF calculation.

and y from the previous section. The input to the routine is a data object that represents

the density estimate. The object supports returning the maximum and minimum values

for u and v and the density for given extents. The routine is shown in algorithm 1.

quantiles is the set of quantiles. dob j is the density object. qpts is a dictionary

of point lists, whose key is a quantile from quantiles and whose value is a list of

points. Each point is a (u,v) pair on the corresponding quantile within a tolerance

TOL. TOL=1÷2|quantiles|, where |quantiles| is the cardinality of quantiles. The in-
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tervals from dob j.min u to dob j.max u, and from dob j.min v to dob j.max v, are both

divided evenly by DIV, the number of divisions along each dimension. DIV can be

tuned for desired resolution and CPU timings. We show our choice for DIV in table 3.1

under integration mesh size.

Data: qpts, quantiles
Result: qcurves
initialize qcurves;
foreach q in quantiles do

cob j = interpolate curve for all pts in qpts[q];
foreach u in evenly spaced NUM PTS over interval
[qpts[q][0],qpts[q][index at list length−1]] do

qcurves[q].append((u,cob j(u));
end

end
Algorithm 2: Parameterize quantiles.

For the parameterize quantiles stage (see algorithm 2), we iterate through each

member of qpts and interpolate each individual curve using a curve object cob j, that

can later be evaluated to obtain any v indexed by u.

This routine returns qcurves, a list of points from a parameterization of a curve

represented by cob j. We approximate the parameter ti in Eq. 6.11 by evenly dividing the

entire interval of a quantile curve from an ortho-projection onto the u axis by NUM PTS

(the number of points chosen for parameterization). We then evaluate the cob j from this

interval of u values. We assume that the quantile curves are monotonically increasing

over the interval.

For interpolate quantiles see algorithm 3. This routine loops through all members of

quantiles and interpolates each parameterized point between corresponding quantiles.
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Data: dob j0, dob j1, dob j2, dob j3, qcurves0, qcurves1, qcurves2, qcurves3, α ,
β , quantiles

Result: ipd f
initialize iqcurves01;
initialize iqcurves23;
initialize ipd f ;
foreach q in quantiles do

foreach idx in qcurves0[q] do
vec01 = qcurves1[q][idx]−qcurves0[q][idx];
iqcurves01[q].append(α ∗ vec01);

end
foreach idx in qcurves2[q] do

vec23 = qcurves3[q][idx]−qcurves2[q][idx];
iqcurves23[q].append(α ∗ vec23);

end
foreach idx in qcurves01[q] do

vec = qcurves23[q][idx]−qcurves01[q][idx];
ipt = β ∗ vec;
idens = evalPDF(dob j0,dob j1,dob j2,dob j3,ipt,α ,β );
ipd f .append((ipt.u, ipt.v, idens));

end
end

Algorithm 3: Bilinear interpolation of quantile curves.

iqcurves store the interpolated points for interpolant quantiles. Using Eq. 3.10, we

calculate vec01 and vec23. vec follows in a similar fashion for β . dob j0, dob j1, dob j2

and dob j3 are the density objects associated with each unit cell vertex in Fig. 5.1. ipd f

is returned and is a list of surface points on the interpolated PDF.

The evalutate PDF values stage is a direct calculation using Eq. 3.13, invoked dur-

ing interpolate quantiles as the method evalPDF.

For the final reconstruct PDF step, a reconstruction of the PDF surface is performed

using a suitable interpolation such as those available in SciPy [27] for irregular grid

data. In this study, we tessellate the input point set to three-dimensional simplices, and
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interpolate linearly on each simplex.

3.4 Results

Our implementation was written in Python, utilizing the SciPy package. All the

computations were performed on the CPU. The computer system used for running the

experiments was an Intel Core i7-3930k with 32 GB of RAM.

3.4.1 Synthetic Data

We construct a toy example consisting of a unimodal and bimodal distribution. Our

mean parameter(s) for the 2D PDFs are the mean vector µi = [u,v]T , where u and v are

the components aligned with the Cartesian x-y coordinate system. Spherical covariance

matrices are used, i.e. the covariance matrix designation is a multiple of the identity

matrix. The number of samples drawn from each distribution is 600 when estimating

the PDF for interpolation.

The unimodal distribution is defined as:

N1(µ1,Σ1),µ1 =

 0

−1

 ,Σ1 =

 1 0

0 1

 (3.17)

The bimodal distribution is the sum of two bivariate normals, where the first is

weighted 0.6 and the second is weighted 0.4:
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N3(µ3,Σ3),µ3 =

 2

1

 ,Σ3 =

 1 0

0 1

 (3.18)

N4(µ4,Σ4),µ4 =

 −2

−1

 ,Σ4 =

 1.5 0

0 1.5

 (3.19)

The parameters used for interpolation are in table 3.1. See table 3.2 for CPU tim-

ings. The results of interpolating between the synthetic PDFs are shown in Fig. 3.3.

Integration mesh size 200 x 200
Number of quantiles ≤ 100
Quantile curve interpolation Linear
Number of points per quantile 150
PDF surface interpolation Linear simplicial

Table 3.1: Parameters used for bivariate quantile interpolation.

CDF calculation 139.92
Quantile curve parameterization 0.02
Quantile curve interpolation 1.17
Interpolant PDF evaluation 6.22
PDF surface reconstruction 1.18

Table 3.2: Average CPU timings (in seconds) in toy example.

3.4.2 Application

Our ensemble data set covers a region of the Massachusetts Bay on the east coast

of the United States of America [39] and is provided by Dr. Lermusiaux from MIT.

The Massachusetts Bay volume in the study was divided into 53 x 90 grid with 16
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Figure 3.3: Interpolation from left (α = 0.0) to right (α = 1.0). Top row without surface
interpolation. Bottom row with surface interpolation.

depths. The depths at these 53 x 90 grid points vary significantly: depths as shallow as

90 meters and as deep as 196 meters were recorded. Our data is representative the of

environmental studies discussed in [36, 35].

We apply bivariate quantile interpolation to selected grid points over the spatial do-

main. We sub-sample at a quarter of the resolution of the original data, and keep the

hidden data points as the “known” distribution to compare against our interpolants at

α = 0.5. For velocity fields, it is possible to interpolate over the temporal-domain as

well. For instance, one could choose the same grid point but two different time-steps.

Additionally, it is possible to interpolate over space and time. The interpolation is gen-

eral and applicable to multiple scenarios. However, in this study, we show interpolation

between velocity PDF separated by space for the same value of time.

We choose two pairs of representative examples from the data for velocity. The

first pair is an interpolation well within the boundaries of the data set (at a depth of 90

meters). The second pair is an interpolation that includes multimodal distributions but

is along the boundary of the data set (at the same depth level). These interpolations are
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shown in Fig. 3.4 and Fig. 3.5 and referred to pair 1 and pair 2 in tables 3.3 and 3.4.

A third pair of PDFs use a vector of temperature and salt concentration (see Fig.

3.6 and tables 3.3, 3.4). The interpolation was performed at the same spatial location as

the first pair of PDFs. These variables were tested for correlation using the Spearman

rank-order correlation coefficient and the p-value to test for non-correlation [88]. For

our data these are ρ =−0.3093 and p-value= 8.946×10−15.

Our metric for the variation between an interpolant and the known grid point den-

sity estimate is Earth Mover’s Distance (EMD). EMD is a linear optimization initially

developed for supply-demand transportation. EMD minimizes the cost of transforming

one PDF into another by moving mass from one PDF to the other [72]. The transfor-

mation cost between two PDF P and Q is expressed by the following formulation:

EMD(P,Q) = min{F= fi j}
Σi, j fi jdi j

Σi, j fi j
(3.20)

where di j is a pre-defined ground distance between supplier i and consumer j, and

F = fi j is a set of flows which defines the amount of mass transported from supplier

i to consumer j. We use OpenCV’s implementation of EMD, with the L2-distance

parameter [5].

The EMD measured for our interpolation examples are listed in table 3.3. CPU

performance is listed in table 3.4.
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Figure 3.4: Pair 1 for simulation data using velocity components. Green distributions
represent KDEs at grid points in data set. Blue distributions represent results of inter-
polation. The top row (PDF 1) and bottom row (PDF 2) contain the known distributions
used for interpolation. We compare the second row density estimate with the third row
containing the interpolant density.
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Figure 3.5: Pair 2 for simulation data using velocity components. Green distributions
represent KDEs at grid points in data set. Blue distributions represent results of inter-
polation. The top row (PDF 1) and bottom row (PDF 2) contain the known distributions
used for interpolation. We compare the second row density estimate with the third row
containing the interpolant density.
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Figure 3.6: Pair 3 for simulation data using temperature and salt concentration. Green
distributions represent KDEs at grid points in data set. Blue distributions represent re-
sults of interpolation. The top row (PDF 1) and bottom row (PDF 2) contain the known
distributions used for interpolation. We compare the second row density estimate with
the third row containing the interpolant density.
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Distribution Pair 1 Pair 2 Pair 3
PDF 1 0.397509 0.473298 1.040877
Know PDF 0.317712 0.290578 0.351446
Interpolated PDF 1.362007 3.958944 5.588929
PDF 2 0.542557 0.729264 0.568048

Table 3.3: Earth mover’s distance measurements for simulation data shown in Fig. 3.4,
Fig. 3.5, and Fig. 3.6. We compute EMD for the interpolant at α = 0.0 in the entries of
the row labeled PDF 1. Similarly, we compute EMD at α = 1.0 in the row labeled PDF
2.

Algorithm Stage Pair 1 Pair 2 Pair 3
Avg. CDF calculation per PDF 154.34 135.88 84.403
Parameterization 0.010 0.010 0.017
Curve interpolation 1.29 1.28 0.679
Interpolant PDF evaluation 6.17 6.09 5.678
PDF surface reconstruction 1.14 1.31 0.979

Table 3.4: CPU timings (in seconds) for simulation data.

3.5 Discussion

EMD values measured in table 3.3 show good results for pair 1, but the EMD mea-

surement is higher for pair 2. The densities in pair 1 follow a smoother transition, while

we miss the bimodal distribution in the second example. Minimal EMD difference is

measured for surface interpolation alone in both cases. Pair 3 has slightly higher EMD

values overall, while there is still good agreement with the known and interpolated

distributions. This discrepancy is likely due to the slight clipping of the KDE (range

values) versus the fill value of zero for surface interpolation.

It was also found that the number of samples in a density estimate increase CPU

time for CDF calculation. This is due to the underlying implementation of SciPy and is

not addressed in this chapter.
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Various increases in efficiency could be gained by porting the density object imple-

mentation to compiled code. Interpolating points from quantile curves in parallel on the

GPU is another possible way to decrease execution time. An implementation may also

be chosen to store quantile curve calculations for increased interpolation efficiency.

Note that the number of quantiles may be less than or equal to the number requested,

as shown in table 3.1. A chosen CDF integration mesh resolution is not always suffi-

cient to capture the requested number of quantiles for a given distribution. Our imple-

mentation uses a fixed CDF integration mesh resolution.

Relaxing the assumption that quantile curves monotonically increase might allow

better interpolation for cases where this is not always true. However, most distributions

that we study have densities where this assumption is valid. In any case, this generality

in the algorithm would increase execution time.

The interpolation methods presented in this chapter do not account for spatial co-

variance with surrounding grid point distributions. We interpolate unique surface values

of individual PDFs which do not relate as a whole to surrounding PDFs when consid-

ered in isolation.

Interpolation is inherently ill-posed. The quality of the interpolants are dependent

on the smoothness of the underlying field. Therefore, procedures for measuring the

smoothness of ensemble data sets are important here, but also for calculating proba-

bilistic gradient fields. Such gradients are not easily defined for ensembles using finite

difference. In any case, such analysis constitutes further study.
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3.6 Conclusion

We presented a direct extension of 1D PDF interpolation using quantile interpola-

tion for the bivariate case. This interpolation is useful for interpolating within random

fields whose components are inseparable, such as 2D velocity PDF and other correlated

random variables. Further studies of visualization using interpolation will be facilitated

by such interpolation. Under circumstances where multiple scalar fields are interpo-

lated, a univariate approach is best for performance and to reduce over-smoothing in

density estimation [81] if the fields are uncorrelated.

While Gaussian Mixture Model Interpolation is ambiguous with respect to its pair-

wise interpolants, we have provided a better alternative. For 2D vector fields, Bivariate

Quantile Interpolation is faster than Displacement Interpolation and can be more easily

implemented.
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Chapter 4

Applications of Non-Gaussian Density

Estimates

A typical assumption is that ensemble data at each spatial location follows a Gaus-

sian distribution. We investigate the consequences of that assumption when distribu-

tions are non-Gaussian. A sufficiently acceptable interpolation scheme needs to be ad-

dressed for the interpolation of non-Gaussian distributions. We present two methods to

calculate interpolations between two arbitrary distributions and compare them against

two baseline methods. The first method uses a Gaussian Mixture Model (GMM) to

represent distributions. The second method is a non-parametric approach that interpo-

lates between quantiles in the cumulative distribution functions. The baseline methods

for comparison purposes are: (a) using a Gaussian representation and interpolating the

means and standard deviations, and (b) forming a new distribution based on the inter-
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polation of individual realizations of the ensemble. We show that the two proposed

non-Gaussian interpolation methods have the following behavior: the interpolated dis-

tributions do not decompose to more constituent Gaussian distributions than the highest

modality of those being interpolated, and do not have variances less than the smallest

variance from the grid points being interpolated. Finally, we compare these four inter-

polation methods when used in the analysis of scalar and vector fields of ensemble data

sets, particularly in areas where the distribution is non-Gaussian.

4.1 Introduction

A fundamental operation used in most visualization algorithms is interpolation. In-

terpolation is used in workhorse visualization techniques such as marching cubes, di-

rect volume rendering, and streamline generation, and many other popular algorithms.

Performing interpolation is well defined when the data points and the interpolants are

single valued, or crisp. However, this is not the case when the data points and the

interpolants are multivalued, or consist of a distribution.

With increasing interest in representing uncertainty in modeling and simulation with

techniques based on Monte Carlo methods, we are now faced with the challenge of

analyzing and visualizing ensemble fields. Ensemble fields are made up of individual

realizations, each a possible outcome, of the simulation. Assuming that the ensemble

fields are defined over a grid, a popular approach is to treat all the values at a given

grid point from different realizations as a multivalue or a distribution. Recent works
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in this area have primarily assumed that the multivalue follow a Gaussian distribution.

Even more recent efforts have tried to remove this assumption. In this chapter, we

examine two alternative interpolation methods that support non-Gaussian distributions

and compare them against two other baseline methods.

There are several reasons for considering a more general representation for mul-

tivalue aside from a Gaussian model. The assumption of a normal distribution ne-

glects the possibility that the multivalue represents overlapping sub-populations of data,

which by themselves can be considered Gaussian component distributions. These often

arise in various situations such as sub-voxel material classification for volume render-

ing, and ambiguity in resolving fiber orientation during DT-MRI tractography. Often

times, it is at these “mixing” regions where interesting things happen e.g. presence

or absence of a boundary, crossing or divergence of a path, etc. The distributions at

these regions exhibit multimodal profiles. Their consideration requires representation

of these distributions as non-Gaussian.

In this chapter, we adopt the terms crisp to mean single valued, whereas multivalued

is taken to mean a collection of values. The concept of multivalues is general enough

to represent (i) the collection of values of a variable at a particular location as reported

by different realizations in an ensemble, (ii) a probability distribution of the same set

of values represented as a probability density function (PDF) that requires the area

under the function to sum to one, and (iii) other representations e.g. as a signal. Using

the operator based approach for manipulating multivalues linear interpolations can be
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defined as:

M′ = (1−α)M1 +αM2 (4.1)

where M′, M1 and M2 are multivalues, α ∈ [0,1]. Note that (1−α) is a simple subtrac-

tion between 2 crisp values. The multiplication of a crisp value and a multivalue simply

scales each member of the multivalue and results in a multivalue. On the other hand,

the + operator between two multivalues can be defined according to the needs of the

application. Using this framework, one can also define and entertain other variations of

simple linear interpolations e.g.

f (M′) = (1−α) f (M1)+α f (M2) (4.2)

where f (.) operates on multivalue M, and + is appropriately defined.

The two interpolation methods examined in this chapter define f (.) as: (i) a gaussian

mixture model to represent M, and (ii) different quantiles of the PDF representing M.

We refer to interpolation using method (i) as GMM PDF interpolation, and method (ii)

as Quantile PDF interpolation. These are described later in section 6.4 and Quantile

PDF interpolation was the subject of chapter 3. The two baseline methods used to

compare these interpolations are: (i) one that uses a Gaussian representation of M –

interpolation is referred to as Gaussian PDF interpolation, and (ii) one that uses the

raw multivalues – interpolation is referred to as Ensemble PDF interpolation.

There are three main considerations in formulating the interpolation methods. Firstly,

45



if additional modes are introduced during interpolation, this would imply that new sub-

populations are somehow introduced during the process. While such populations may

exist, there is nothing in the data set to suggest this. So, we impose the condition

that the interpolation method cannot create additional modalities between known dis-

tributions. Secondly, a suitable interpolation method should not produce distributions

that have variance less than the smallest variance from the grid points being interpo-

lated between. As a contradiction, suppose that the interpolated distributions did in fact

have variances less than those at the grid points. This is undesirable since the interpo-

lated distributions should be less certain than at the observed grid point distributions,

and should therefore not have variances that are smaller than those observed at the grid

points. Thirdly, the method must naturally produce a total probability of 1.0. While one

approach is to normalize the sum of components treated separately, we present more

than one possible method that adheres to our specifications and that does not require

explicit normalization. Therefore, a good interpolation method should ensure that: (i)

no additional modes are introduced during the interpolation, (ii) the variance should

not be smaller during interpolation, and (iii) interpolated results are also probability

distributions.

4.2 Related Work

A nice overview of statistical techniques for spatial interpolation was presented

by Myers [45]. The techniques range from simple linear models with no covariance,
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to those using spatial structure functions. The survey however does not include non-

parametric distribution interpolation. The paper does claim that interpolation is a solu-

tion to an inherently ill-posed problem, namely that it is a problem of prediction with

limited data. For that, multiple models with different purposes can be employed. A

more detailed survey, but focusing on geostatistical applications, compare methods ac-

cording to different criteria such as local vs global support, deterministic vs stochastic,

univariate vs multivariate, linear vs nonlinear etc. Among the methods that consider

stochastic data, they assume normal distribution.

Within the visualization community, there are also a number of recent publications

that address stochastic interpolation. Scheuermann, et al. [78] present a form of Krig-

ing interpolation of spatial data for Gaussian distributions using a parameter-based ap-

proach. This technique relies on computing a covariance matrix and that the underlying

data be formed from a Gaussian process. Pfaffelmoser et al. [56] visualize isosurfaces

via a raycasting scheme, and perform spatial interpolation assuming the data has a

Gaussian distribution at each location. Likewise, Pöthkow et al. [61] discuss isocontour

visualization of normally distributed data. They interpolated between grid points using

the 0th and 1st moments without spatial correlation considerations. Their subsequent

work [63] considered the effects of spatial correlation in visualizing isosurfaces using

probabilistic marching cubes. An alternative method of looking at global correlation

structures in a hierarchical fashion was presented in [57].

When data do not follow a Gaussian distribution, a more general uncertainty model
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is needed. Liu et al. [38] propose a Gaussian mixture to represent the distribution of

voxel values in air temperature data. They perform volume rendering on the data set

and interpolate between pairs of a fixed number of Gaussians components along cast

rays. In their study, they found that four Gaussian kernels are sufficient for a variety

of data sets that they examined. For non-parametric representations of non-Gaussian

distributions, operations on the distributions require different handling. Love, et al. [39]

discuss two forms of a non-parametric interpolation method via convolution addition

of probability distributions as well as bin-wise addition. Pohl, et al. [60] first trans-

form the (discrete) distribution to Euclidean space via a set of Log Odds operations,

where they can then be manipulated using conventional addition and multiplication.

Results are then mapped back to probabilistic space via a reversible transform. Read

[68] delineates a method to interpolate histograms via quantiles.

Uncertainty in vector fields is of great interest to at least two broad fields: meteo-

rological community and fiber tracking community. Most of the work to date assumes

Gaussian random fields. Otto, et al. present analysis of 2D [48] and 3D velocity fields

[49] using particle advection, critical points, and segmentation of field topology. Petz et

al. [55] also analyze uncertain velocity fields modeled as Gaussian random fields with

spatial correlation.

There is a growing body of work on probabilistic fiber tracking. Unlike velocity

fields, the tracks here represent fiber connectivity from one region to another and are

obtained by integrating the major eigenvector field. The main source of uncertainty
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can be attributed to inadequate resolution in the data acquisition stage of diffusion ten-

sor MRI. However, there are numerous other sources as well [6]. While most of the

earlier works on probabilistic fiber tracking delved on the inadequacy of the simple

tensor representation to show alternative trajectories due to multiple fiber populations

within a cell, more recent works are based on high angular resolution diffusion imaging

(HARDI) data which makes it is possible to describe fiber orientations using more so-

phisticated formulations such as spherical harmonics and multi-tensor representations.

In a recent paper, Jiao et al. [26] describe a local, icon-based presentation of an ensem-

ble field of fiber orientation distribution functions (ODF). The results of our work can

be used towards spatial analysis of such ensemble fields, for example.

There is much interest in the meteorological communityto provide better visualiza-

tion of forecast data. Slingsby et al. [85], discuss how users interpret and use weather

data, specifically hurricane data. Storm path information are examined from historical

data. They draw attention to spatial and temporal clustering and its undervalued sta-

tus among those currently employing such visualization software. Weather forecasts

are usually based on an ensemble of predictions. For that, Potter et al. [64] describe a

framework for viewing stochastic information from ensembles. This package allows for

visualization of spaghetti plotting, etc. of weather data. Zhang, et al. [75] present Noo-

dles, a software package for displaying uncertainty in streamlines and other weather

data visualization for ensemble forecasting. Potter et al. [65] describe a software tool

to visualize two-dimensional sets of distribution data. It displays a contour of field PDF
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values and allows for a normed difference between data PDFs and an ansatz selected

by the user. More recently, Phadke et al. [58] present two novel visualization methods

for ensembles. Primarily, they allow simultaneous viewing of multiple ensemble mem-

bers. They also present a technique called “Screen Door Tinting” which applies value

changes to field points that show differences between ensembles.

From the point of view of users, Martin et al. [42] point out the difficulty of users to

identify hurricane directional movement and speed from current data visualization, or

directly on vector fields. In a similar study, Broad et al. [7], further emphasize interpre-

tation and usage of complex weather data. They show how a general interpretation of a

Gaussian distribution of hurricane direction prediction can lead to inaccurate views on

the probability within a “cone of uncertainty.” Clearly, if multimodal velocity distribu-

tion is calculated with such a broad region of uncertainty using a Gaussian assumption,

incorrect estimation of the probability of hurricane direction can occur, most specifi-

cally within the general population who can be greatly impacted by such interpretation.

A non-Gaussian consideration for vector field visualization together with a redesigned

visualization may rectify this issue to a degree. We hope that with the results presented

in this chapter, we will be able to extend such visualizations to consider non-Gaussian

mixing regions.
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4.3 Gaussian Interpolation

In this section, we briefly summarize alternative strategies of performing spatial

interpolation for distributions that are assumed to be Gaussian. In this discussion, we

consider linear interpolation between two univariate Gaussian distributions. The inter-

polation parameter α indicates both the parameterized spatial distance and the para-

metric interpolation distance between the two distributions.

First, it is possible to interpolate Gaussian parameters: the mean, standard devia-

tion (and other moments) independently. The interpolants remain Gaussian and can be

reconstructed based on interpolated parameters. This method is simple yet allows for

smooth translation of mode and smoothly varying moments as can be seen in Fig. 4.1.

Gaussian PDF interpolation in this work refers to this variant of Gaussian interpola-

tion.

Figure 4.1: Intermediate interpolants (black dashed curves) travel from the blue to the
green Gaussian curve.

When the distribution is represented by samples rather than by Gaussian parame-

ters, another approach is to interpolate the samples directly rather than fitting it with a

51



Gaussian first. Here, samples drawn from each distribution are interpolated indepen-

dently. For a random variable B (representing samples drawn from the blue curve),

let the random sample Y1,Y2, ...,Yn be n independent and identically distributed (i.i.d.)

variables. Similarly, a random sample from G (representing samples drawn from the

green curve) are the n i.i.d. variables Y1+n,Y2+n, ...,Y2n. The total number of all pos-

sible sample interpolants is the count of all possible pairings between the members

of the random samples, i.e. the cardinality of the Cartesian product: |{Y1,Y2, ...,Yn}×

{Y1+n,Y2+n, ...,Y2n}|, for any given α ∈ [0,1]. This method of PDF interpolation allows

translation of mode but variance is potentially less than either the B or G distribution

during interpolation. Figure 4.2 shows an instance of sample pairings between two

PDFs and the resulting PDF interpolants. In this example, there are interpolants that

have variance less than the distributions being interpolated.

Thirdly, there is “probabilistic interpolation,” also referred to as histogram interpo-

lation. This method normalizes the range of the grid point distributions. For each “bin,”

frequencies are interpolated. With this approach, the PDF at one grid point morphs into

the the PDF at the other grid point. In Fig. 4.3, the interpolant at α = 0.5 is bimodal.

This third method might be suitable for some applications, such as volume render-

ing materials where a cell might contain multiple materials. That is, when one considers

the situation where the populations are predominantly of different types on either side

of a boundary, but is made up of both populations at the boundary region, then inter-

polations that increase the modality of the distributions might be desirable. On the
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(a) One set of sample pairs drawn indepen-
dently from the distribution on the left (blue
dots) and the distribution on the right (green
dots).

(b) Intermediate interpolants (black dashed
curves) show smaller variance than end points
distributions.

Figure 4.2: Sample interpolation for a given instance of distribution sample pairings.
(a) Shows pairings and (b) depicts interpolants with dashed lines.

other hand, when one considers the transport or transition of a population or mixture of

populations e.g. volume of water at different temperatures, across some distance then

we do not want to increase the modality of the interpolant distributions. In this work,

we consider the latter design criterion as we consider interpolation of non-Gaussian

distributions.
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Figure 4.3: An interpolant can become multimodal between unimodal distributions as
shown by the dashed black interpolant at α = 0.5.

4.4 Non-Gaussian Interpolation

We present two techniques for the linear interpolation of PDFs as represented by

a GMM and a non-parametric quantile model. These techniques directly apply to the

standard unit reference cell, where each grid point represents a distribution from an

ensemble.

4.4.1 GMM Interpolation

Our first approach is to linearly interpolate Gaussian parameters for a Gaussian

Mixture Model (GMM) as outlined in Fig. 4.4. The final step may be optional de-

pending on the application, as indicated by the dotted arrow and box. We describe

fitting components and interpolating parameters in this section. Gathering samples is

implementation specific and is influenced by the data source.

The fit components stage from Fig. 4.4 requires modeling the samples with Gaussian

components.The GMM can be extracted using the Expectation-maximization (EM) al-
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gorithm [1, 2, 67] in order to derive a mixture from the starting samples using m Gaus-

sian components. The mixture is denoted as the random variable Vg located at grid

point location g, where g⊂ {p|p⊂Rn,n ∈N,0 < n≤ 3}. The GMM is determined by

a linear combination of Gaussian basis functions Φi:

Vg =
m

∑
i=1

aiΦi (4.3)

m

∑
i=1

ai = 1 (4.4)

Φi = N (µi,σ
2
i ) (4.5)

In the next stage of the method, interpolate parameters, we first determine the how

to pair each Gaussian component from different grid point distributions. For the sepa-

rate grid points g0 and g1, whose Euclidean norm ||g0−g1||= 1, we pair corresponding

Φi from V0 and V1 (located at g0 and g1, respectively). The pairing heuristic for Gaus-

sian components between each end point is based on a one-dimensional linear scale.

For univariates, in order to minimize interpolation distance between the mean of paired

Gaussian components, we allow sub-steps in which a possible re-pairing ranked by

sorted Gaussian means takes place. In the multivariate case, we pair and sort based on

the weight of each Gaussian.

We calculate α , and the interpolant Gaussian component parameters: µ̄i, σ̄2
i and

their associated weights āi using Eqs. 4.6 through 4.9. Another index is used for each
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Figure 4.4: Gaussian Mixture Model interpolation method. Dashed outline signifies
core method stages primarily discussed in this chapter. Dotted arrow and box signify
optional stage.

component to denote which Vg it is from. Therefore, we have µ0,i, σ2
0,i and a0,i from V0.

µ1,i, σ2
1,i and a1,i are from V1.

α = ||p−g0|| (4.6)

µ̄i = (1−α)µ0,i +αµ1,i (4.7)

σ̄
2
i = (1−α)σ2

0,i +ασ
2
1,i (4.8)

āi = (1−α)a0,i +αa1,i (4.9)

Thus, our interpolant PDF is V̄p at location p, defined on a line segment of unit

length and with end points g0 and g1.

This interpolation method meets our design criteria. Interpolant PDFs will not have

greater modality than end point distributions since we require a constant number of

Gaussian components to be interpolated. Therefore no additional modes can be present
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in the interpolants. Linear interpolation of variances from components produce GMM

interpolants whose component variances are bounded by those at the end points. Mean

interpolation difference is minimized for univariates. Probability interpolation differ-

ence between components is minimized for multivariates. The interpolated weights will

always sum to one. This is ensured, as long as the total of the weights at every α equal

one, as we require. Because EM only returns weights that sum to one, and we only

make one-to-one pairings with a fixed and the same number of Gaussian components

at each end point, then any number of re-pairings will also have total weights equal to

one.

4.4.2 Quantile Interpolation

The quantile interpolation method overview is shown in Fig. 4.5. This method was

first introduced in chapter 3.

Stages gather samples and estimate density are implementation specific. We do not

cover their implementation details here and the user may choose varying approaches

depending on the data. For example, kernel density estimation (KDE) with different

window setting techniques can be used for density estimation.

During the determine quantiles stage, we compute the random value from the cumu-

lative distribution function (CDF) that will return the desired quantile. The interpolate

quantiles phase from Fig. 4.5 utilizes a linear interpolation between quantiles q0 and q1

of the cumulative density functions (CDF) of V0 and V1. This is expressed in Eq. 4.10
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Figure 4.5: Quantile interpolation method. Dashed outline signifies core method stages
discussed in the chapter.

and uses α from Eq. 4.6.

q̄ = (1−α)q0 +αq1 (4.10)

In the evaluate interpolant PDF values step, both grid point distributions’ quantiles

evaluate to the same cumulative density of the interpolant CDF over the sample space

variable s:

∫ q̄

−∞

V̄p(s)ds =
∫ q0

−∞

V0(s)ds =
∫ q1

−∞

V1(s)ds (4.11)

Each interpolant probability value for the interpolant’s qth quantile can be evaluated

using the following expression (see [68] for a complete derivation):
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V̄p(q̄) =
V0(q0)V1(q1)

(1−α)V1(q1)+αV0(q0)
(4.12)

While we can find a unique random value to obtain a desired quantile for univari-

ates, this is not true for the bivariate (or multivariate) case. For the bivariate case, the

determine quantiles stage requires that we sum over the two-dimensional sample space

of the PDF estimate in order to collect (u, v) sample pairs that correspond to the same

cumulative density. We do this only at the end points g0 and g1. Note that integration of

density is performed over a discretized grid and compared within a specified tolerance

of the quantile value.

The result of the determine quantile step is a set of points that have the same quan-

tile. These points form a curve which we parameterize and refer to as a quantile curve.

In the interpolate quantiles stage, we take corresponding points (u0,v0) and (u1,v1) on

the curves from g0 and g1, respectively and find (ū, v̄) along a line between (u0,v0) and

(u1,v1) depending on α . The resulting interpolant is obtained using Eq. 4.13.

V̄p(ū, v̄) =
V0(u0,v0)V1(u1,v1)

(1−α)V1(u1,v1)+αV0(u0,v0)
(4.13)

For the final reconstruct PDF step, a reconstruction of the PDF curve or surface

is performed using a suitable interpolation such as those available using [27]. For

our study, we tessellate the input point set to n-dimensional simplices, and interpolate

linearly on each simplex. Unlike the GMM method, PDF modes can only be estimated
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with a continuous curve or surface. In the case of infinitely many interpolant PDF data

points, the surface reconstruction approaches a true PDF.

Figure 4.6: Univariate interpolant from α=0.0 to α=1.0: GMM (red), Quantile (blue),
Ensemble (green) and Gaussian (purple).

Interpolant PDFs will not have greater modality than end point distributions. In-

flection points on the CDFs will only split and merge corresponding to the modality at

the end points. Linear interpolation of the quantiles ensures this. In order for additional

modes to form at interpolants, quantiles would have to interpolate to values outside

of the range set by the end point PDF quantile values during the interpolation. Since
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this can not occur using linear interpolation, additional modes do not occur with this

method.

Variance of the interpolants for Quantile interpolation is never greater than either

end point distributions. The interpolants have quantiles located “between” the end point

PDF quantiles in the associated sample space defined by the end point distributions. If

the interpolated quantiles were to take on values outside of their bounds set by the end

point PDFs, then the variance constraint would be violated. However, linear interpola-

tion does not allow that to happen. It can also be shown that Quantile interpolation is

similar to sample based interpolation discussed in section 4.3. The method interpolates

paired samples based on ordered samples from both end point PDFs by cumulative

density. In this way, no vertical cross-section of the interpolated samples has variance

that is less than the least variance from either end point PDF in the interpolation.

4.5 Results

In the results below, we use four Gaussian components for GMM PDF interpolation

as suggested by Liu et al. [38].

4.5.1 Ground “Truth” Comparison

We examine the behavior of our interpolation methods in Fig. 4.6 for a one-dimensional

case between two non-Gaussian distributions. Six hundred samples are used to form a

fixed-width kernel density estimate (FKDE [24]) at each end point. Our ground “truth”
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is derived from a linear interpolation of realizations. We then form a non-parametric

distribution of each ensemble member interpolant using FKDE.

Figure 4.6 qualitatively shows that both quantile and GMM PDF interpolations are

quite similar to our ground truth ensemble PDF interpolation. On the other hand, the

simple Gaussian PDF interpolation shows marked difference from our ground truth.

To obtain a more quantitative measure, we calculate the symmetric Kullback-Leibler

(SKL) divergence which gives us a measure of dissimilarity between two distributions.

Eq. 4.14 is the SKL between probability distributions P and Q.

DSKL(P‖Q) = ∑
i

ln
(

P(i)
Q(i)

)
P(i)+∑

i
ln
(

Q(i)
P(i)

)
Q(i) (4.14)

SKL is computed from α = 0.0 to α = 1.0 for each PDF interpolation method. For

each method, we compute and average 100 such SKL comparisons to remove mea-

surement noise due to sampling and EM fitting. Because the SKL results for Gaussian

interpolants are an order of magnitude greater than both GMM and Quantile PDF in-

terpolants, we show the Gaussian SKL measurements separately. In Fig. 4.7, we can

easily see that Quantile interpolants (blue line) have the least SKL values, while both

GMM (red line) and Gaussian (purple line) have larger entropies. The color scheme

used for each PDF interpolation method in Figs. 4.6 and 4.7 are used for the remainder

of this chapter.

Entropy at α = 0.0 and α = 1.0 are due entirely to the accuracy of the estimation

and are not due to any of the interpolation methods. For intermediate α values, the SKL
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entropy is a combination of the entropy due to estimation errors and the entropy due

to difference between the ensemble interpolant and the GMM, Quantile or Gaussian

interpolant. Unfortunately, since density estimate and fitting of Gaussian components

are needed to form the distributions at the end points, and we do not know how the

estimation or fitting error varies as a function of α , we cannot distinguish between

entropy due interpolation and those due to estimation or fitting.

Interestingly, as can be seen in Fig. 4.7 (b) for Gaussian interpolants, entropy at

α = 1.0 is less than any intermediate α . Quantile PDF interpolants are almost identical

with ensemble interpolants and entropy is greatest at α = 0.0 where estimation en-

tropy is larger than for any interpolants. Quantile PDF interpolation effectively orders

the samples by their cumulative probability. This corresponds closely with ensemble

physical simulations per ensemble member.

Figure 4.8 shows a linear interpolation between two bivariate distributions. At the

top of the figure, we have a bimodal distribution and at the bottom of the figure, we

have a unimodal distribution. Some tears on the interpolant PDF can be observed in

column (b) due to insufficient data samples.

4.5.2 Synthetic Data

For covariant random variables, we describe interpolation in a synthetic velocity

field where the velocity components are the bivariate random variables under consider-

ation. In order to show the effect of considering a bivariate bimodal distribution when
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(a) GMM and Quantile SKL

(b) Gaussian SKL

Figure 4.7: Ten measurements of the SKL divergence for univariate interpolants from
α=0.0 to α=1.0. Values are averaged from 100 independent comparisons. Entropy is
shown on vertical axes and α on horizontal axes.

advecting in a velocity vector field, we construct a toy example consisting of a 3 x 3

grid where all grid points are defined as unimodal except the center grid point, which

is defined by a bimodal distribution. Our mean parameter(s) for the velocity PDFs

are the mean velocity vector µi = [u,v]T , where u and v are the velocity components

aligned with the Cartesian x-y coordinate system. The left half and the top center of the

grid is defined by a normal bivariate. Spherical covariance matrices are used, i.e. the

covariance matrix designation is a multiple of the identity matrix.
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(a) (b)

Figure 4.8: One-dimensional PDF interpolation using (a) GMM and (b) Quantile from
a bimodal bivariate (α = 0.0) at the top to a unimodal bivariate (α = 1.0) at the bottom.
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N1(µ1,Σ1),µ1 =

 0

−1

 ,Σ1 =

 1 0

0 1

 (4.15)

The right side of the grid is defined by:

N2(µ2,Σ2),µ2 =

 0

1

 ,Σ2 =

 1 0

0 1

 (4.16)

And, the center grid point is the Gaussian mixture of the following two bivariate

normals where the first is weighted 0.6 and the second is weighted 0.4:

N3(µ3,Σ3),µ3 =

 2

1

 ,Σ3 =

 1 0

0 1

 (4.17)

N4(µ4,Σ4),µ4 =

 −2

−1

 ,Σ4 =

 1.5 0

0 1.5

 (4.18)

We show the results of interpolating between a bimodal and a unimodal bivariate

distribution in Fig. 4.8. The Quantile interpolants can be seen to have more pronounced

modal separation. There are two discernible modes in all Quantile interpolants while

the GMM interpolants are smoother and most lack multimodality. One noticeable ar-

tifact with the Quantile interpolants are “missing” lower quantiles. See section 4.6 for

more details.

For visualizing uncertain vector fields, particularly where the distributions are non-
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Gaussian and more specifically multimodal, and therefore presenting multiple possible

trajectories, we propose the use of modal curves. While spaghetti plots show bundles

or clusters of (possibly intersecting) streamlines, we want modal curves to be parsi-

monious representations of the major trajectories of the flow, where major is taken to

mean the top b most likely directions. That is, we allow modal curves to bifurcate, if

along its path, the curve encounters a distribution that is significantly multimodal. To

construct modal curves, we seed and advect massless particles much like conventional

streamlines but using the interpolated PDF to make decisions. That is, we advect us-

ing the velocity corresponding to the highest peak of a bivariate (for 2D) distribution.

Modal curves are allowed to bifurcate along PDF modes after a minimum number of

advection steps. Advection is performed as usual, using the fourth-order Runge-Kutta

method. Each branch is a separate traditional streamline in the sense that branches are

seeded at the branch point and advected forward or backward in the velocity field using

the same direction as the parent branch. In order to reduce clutter, we remove branches

according to criteria outlined in algorithm 4. Figure 4.9 shows results using b = 2.

We prune branches that cross over one another with one exception. Modal curves

do not prune themselves at crossings that occur between “root” curves. Up to two

“root” modal flow curves may advect from the seed point in either forward or backward

integration. Both will be of the same age, i.e. have the same total advection steps at the

end of an update cycle.

Pruning is performed to disallow ambiguation of primary flow paths and to keep
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while not at end of the branching modal flow curve list do
advect current branch by taking vector from distribution that forms smallest angle
between itself and previous velocity taken by current branch;
if new advection position crosses branch that is older and it is not the root then

mark current branch and all of its descendents for removal;
continue;

else
mark modal flow curve that was crossed by current modal flow curve and all of
its descendents for removal

end
if current modal flow curve’s position prior to its own advection has encountered an
interpolated multimodal distribution and its minimum number of advection steps
have been reached for another bifurcation then

create and advect new modal flow curve along remaining highest probable
velocity and add new branch to list;
if new advection position of new branch crosses another modal flow curve then

remove new branch modal flow curve from list;
end

process modal flow curve branches marked for removal

Algorithm 4: Advection for modal flow curves

computation to a minimum while allowing “feeler” breadth-search paths earlier in ad-

vection which can then be discontinued. Thus, we allow for the greatest divergence of

advections along modes in PDF interpolants.

The GMM modal curves shown in Fig. 4.9 (top) contain only two branched for-

ward advected curves, while for the Quantile modal curves in Fig. 4.9 (bottom), there

are three branches, two root branches and a third child branch. Through monitoring

intermediate advections, it was noted that all child branches encountered intersections

and were subsequently pruned for the GMM advection. This can be explained by con-

sidering the entropy inherent in the GMM PDF interpolation method. GMM based

modal curves tend to have more “noise” associated with their paths due to variations
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in Gaussian component parameter fitting (EM) at grid point PDFs. Thus, modal curves

branching between maximal divergent branches (such as those shown at the bottom of

Fig. 4.9) often are completely pruned. In the toy example, the Quantile PDF interpo-

lation method when applied, preserved one of the child branches and was not pruned

because its path did not coincide with the rightmost root curve. Depiction of the most

divergent flow paths are still observed in both methods, however.

Figure 4.9: Toy example modal curves for (top) GMM and (bottom) Quantile PDF
interpolation. Black dot denotes seed point. Mean vector is shown at grid points.

69



4.5.3 Simulation Data

Next, we provide verification of the interpolation methods and consideration of

non-Gaussianity using simulation data. Our ensemble data-set covers a region of the

Massachusetts Bay on the east coast of the United States of America [39] and is pro-

vided by Dr. Lermusiaux from MIT. The Massachusetts Bay volume in the study was

divided into 53 x 90 grid with 16 depths. The depths at these 53 x 90 grid points vary

significantly: depths as shallow as 90 meters and as deep as 196 meters were recorded.

We use level zero, or the shallowest depth level in the ensemble and created visualiza-

tions using the temperature and velocity fields only.

The results of the GMM and Quantile PDF interpolation methods are shown for the

level crossing probability (LCP) [61] at 35 degrees Fahrenheit (Fig. 4.10), using Eq.

4.20 in a mostly non-Gaussian region of the temperature field. Figure 4.11 shows the

Shapiro-Wilk p-values for normality in the region where LCP is interpolated. Higher

p-values of the Shapiro-Wilk test denote greater likelihood of a normal distribution.

This region represents the lowest Gaussianity measured for the univariate temperature

distributions at level zero of the ensemble data.

Quantile interpolated LCP matches closely with the Ensemble interpolated LCP.

GMM interpolated LCP contains the most noise of all the interpolation methods and its

probabilistic level set is also the most diffuse. The interpolated Gaussian assumption

and the GMM interpolated LCP resemble each other more closely than do the Quantile

and Ensemble interpolants.
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(a) Gaussian PDF interpolation (b) Ensemble PDF interpolation

(c) GMM PDF interpolation (d) Quantile PDF interpolation

(e) LCP probability (left-to-right values
range from 0.0 to 1.0)

Figure 4.10: LCP using (a) Gaussian, (b) Ensemble, (c) GMM and (d) Quantile PDF
interpolation methods.
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We use Eqs. 4.19 and 4.20 to calculate the LCP. Point p is a spatial location in the

field, θ is the isovalue and Vp is a random variable at location p. Vp is the interpolated

temperature distribution at p. Equation 4.20 is determined by considering whether the

cumulative probability at the isovalue for the interpolated PDF is 0.5 at location p. This

formulation can be derived from [61].

Figure 4.11: Temperature field Gaussianity as measured with Shapiro-Wilk test for
normality. Shapiro-Wilk test produce p-values that range from 0.0 to 1.0. Higher p-
values (white) denote greater likelihood of a normal distribution.

Fp(θ) =
∫

θ

−∞

Vp(s)ds (4.19)

LCPp = 1−Fp(θ)
4− (1−Fp(θ))

4 (4.20)

Next, we examine the modal curves using all four methods and compare against

the spaghetti plots in Fig. 4.13. The Gaussian modal curves (purple) tend to follow the

primary bundle of the spaghetti plots but do not branch because of the single mode.

The ensemble modal curves (green) show similar behavior but with branching. Sim-
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ilarly, GMM (red) and Quantile (blue) modal curves bifurcate, but miss some of the

streamline bundles of the spaghetti plots. The Quantile PDF interpolant modal curves

have the closest paths in the rightmost part of the plot and GMM has a closer corre-

spondence with the ensemble modal curves with its leftmost branches. There are two

primary coherent bundles at the leftmost region of the spaghetti plots, where Quantile

modal curves depict one bundle and GMM the other. Small variations in locality of the

advections place both sets of modal curves closer to either streamline cluster and local

modes dominate directional flow.

Figure 4.12: Representative non-Gaussian grid point (p-value = 4.6×10−4)

Note that the bivariate velocity Gaussianity is very low in our data set, where a

typical example of a grid point distribution having relatively low variance along the

direction of the minor eigenvector of its covariance matrix as compared to the major

eigenvector direction (see Fig. 4.12). Also note that non-Gaussianity alone is not suffi-

cient for deciding whether modal curves should bifurcate or not. We also need a test for

multimodality. We achieve this based on size and separation of peaks. If one considers
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(a) Gaussian PDF interpolation method (b) Ensemble PDF interpolation method

(c) GMM PDF interpolation method (d) Quantile PDF interpolation method

(e) Shapiro-Wilk p-value colorbar (left-to-
right values range from 0.0 to 1.0)

Figure 4.13: Modal curves produced using (a) Gaussian, (b) Ensemble, (c) GMM and
(d) Quantile PDF interpolation methods. White curves are spaghetti plots of stream-
lines. The greenish background represents land. The brownish-red background denotes
bivariate multimodality greater than one. The black-gray-white background shows the
p-values from the Shapiro-Wilk test (e), where higher p-values denote greater likeli-
hood of a normal distribution. Most of the distributions in this region are multimodal
non-Gaussian distributions.
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multimodal marginal distributions individually, it is possible to generate samples that

do not belong in the original bivariate distribution. Hence, it is important to consider

the bivariate distribution itself rather than its marginals.

In Fig. 4.13, p-values are displayed for the Shapiro-Wilk test for Gaussianity along

with modality from a Gaussian radial basis function (RBF) estimation. Each PDF has a

set M of fitted Gaussian mean parameters. We calculate the greatest difference between

any two Gaussian component means as a measure of multimodality. This is defined as

follows: let R = M×M, r ∈ R.

For all two-dimensional ensemble velocity values at a grid point, there are values:

umin,vmin,umax and vmax that represent the minima and maxima of the velocity compo-

nents. Let the velocity sample extent γ , be defined as in Eq. 4.21.

γ = ‖(|umax−umin|, |vmax− vmin|)T ‖ (4.21)

Multimodality of PDF at a grid point is considered to be true or f alse depending

on the following condition in Eq. 4.22, where our weighting factor is 0.10. This is a

heuristic that ensures adequate separation of Gaussian components in the mixture.

multimodal =


true if maxD > 0.10γ

f alse if maxD≤ 0.10γ

(4.22)

The modal curves use only local ensemble information (PDF modes) for advection.

Thus, they do not always bifurcate along bundles of ensemble streamlines. Figure 4.14
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shows good separation along ensemble streamline bundles but was only reproducible

with GMM PDF interpolation (likely due to over-smoothing of multimodality from

density estimation with bivariates).

Figure 4.14: GMM modal curve exhibiting bifurcation with ensemble spaghetti plots.

We can also observe that modal curves do not always align themselves with regions

of higher density of spaghetti plots. One of the contributing factors, if not the main

contributing factor, is because we do not account for spatial covariance in our PDF

interpolation. Streamlines in spaghetti plots are created from individual realizations

where neighboring velocity information is available. The corresponding (i.e. pairing

of) velocity information is lost in the PDF representation of the ensemble.

4.6 Discussion

Based on our limited investigation, Quantile interpolation is the method of choice

for the case of univariate interpolation of non-Gaussian distributions since it provides

the best SKL score when compared to the ensemble PDF interpolants as baseline.

Both GMM and Quantile PDF methods rely on having a good density estimate
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either through EM or FKDE. However, Quantile PDF interpolation is particularly sus-

ceptible to the “curse of dimensionality” as one goes from univariate to multivariate

interpolation. More data is needed to estimate the density. In our study, we use six

hundred realizations for interpolating both univariate and bivariate joint distributions.

Since PDF surface accuracy is proportional to the number of realizations, sample alias-

ing at lower frequencies may cause excess smoothing and can obscure modality. Aside

from FKDE, there are other estimation methods such as adaptive kernel or projection

pursuit density estimation [24] that can yield potentially better results with a limited

number of samples for multivariates.

Limited samples also have adverse consequences during the integration stage for

finding quantiles, where the sample space resolution needs to be increased in order to

detect finer gradations of density per unit sample area. The complexity is proportional

to nd , where d is the dimension of the joint probability and n is the resolution of the

sample space. Larger sample spacing can degrade high frequency probability surface

detail. Such loss of detail may cause tearing in the reconstructed PDF because of in-

complete quantile information during surface interpolation as can be seen in Fig. 4.8.

This is not seen for univariates in our study but has been encountered for bivariates.

In contrast, because GMM will fit a given number of Gaussians to the data, GMM

interpolation is less susceptible to over-smoothing of the density estimate due to lack of

data. Hence it can detect modality (up to the number of Gaussian components) better

than Quantile interpolation, but at the cost of accuracy associated with RBF. Another
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consideration is that the GMM at each grid point can be performed in a preprocess-

ing step and its interpolation will outperform Quantile interpolation in terms of fewer

computations required per interpolant.

The interpolation methods presented in this chapter do not account for spatial co-

variance with surrounding grid point distributions. With GMM, we dismiss PDF-wide

summary parameters that simplify covariance measurements and as a consequence we

do not currently have heuristics for paired Gaussian component covariance. In the

quantile case, we are interpolating unique surface values of individual PDFs which do

not relate as a whole to surrounding PDFs when considered in isolation.

From our example of a two-dimensional univariate interpolation, we used LCP to

visualize a probabilistic temperature field. Since LCP is determined based on the CDF,

we can apply it directly to non-Gaussian fields.

4.7 Conclusion

This chapter investigated two PDF interpolation methods for both univariate and

bivariate non-Gaussian distributions, in one and two dimensional space, and compared

them against two baseline methods. The fundamental problem with PDF interpolation

is that there is no unique path or set of intermediate interpolations between PDFs (es-

pecially in the more general case of non-Gaussian distributions). Our methods assume

no prior knowledge of the ensemble data, in order to be more broadly applicable.

The interpolation methods presented in this chapter are designed to have certain
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properties: variance should be bounded by the variances at grid points, no additional

modes are introduced during interpolation, and the interpolants are PDFs. Using LCP

and modal flow curves, we compared the results of the 4 interpolation methods on ran-

dom fields exhibiting non-Gaussian distributions and their effects on the visualizations.

The Quantile PDF interpolation appears to offer the best fitting interpolants relative

to the ensemble. However, it suffers from the “curse of dimensionality.” Improvements

to this method can come in the form of alternative ways to estimate density e.g. pro-

jection based methods that can capture multimodality with smaller sample sets. Hybrid

methods that take advantage of both GMM and Quantile interpolation is also another

area to be explored. We currently do not include spatial covariance in PDF interpola-

tion, and is another area of further investigation. Also, while we started out focusing

on non-Gaussian distributions, the modality of the distribution is perhaps more signif-

icant particularly. In the results presented here, we used an ad-hoc method for testing

the modality of a distribution. There are more formal multimodality tests that can be

incorporated in the future [17].

Ensembles, when considered as a random field of (simulation) measurements, in-

stead of merely disparate parallel field data, offers promise for a much better insight

into the nature of the ensemble when all members are visualized as their aggregate. Us-

ing interpolation on the grid point PDF directly provides a method for using the results

of ensemble data in this more consolidated view. Additionally, if ensemble data can be

stored as random field data exclusively, with better insight into the ensemble informa-
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tion, this approach may prove more viable than conventional methods (spaghetti plots

for example) which are in large use today. Finally, the results presented in this chapter

is but the first step in analyzing and visualizing uncertainty in random fields.
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Chapter 5

Streamline Likelihood

Traditional spaghetti plots from ensemble data provide no explicit information as

to the likelihood of the realization flow paths. While intuitive assessment can be used

when visualizing streamline density directly in such a plot, the display is often clut-

tered and difficult to interpret. We present a method to measure and visualize member

streamline likelihood from an ensemble of vector fields. The method incorporates ve-

locity probability density as a feature along each member streamline. We show visual-

izations of two different data sets using the proposed method.

5.1 Introduction

Ensemble vector fields (EVF) are common within the simulation community. Si-

multaneously rendering streamlines from multiple realizations leads to a “spaghetti”

plot that is generally cluttered and difficult to interpret. Most current methodologies
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summarize flow probability at the level of streamline geometry [43, 71]. These ap-

proaches are often restricted to parametric assumptions.

Our method uses the EVF to derive a varying feature along a streamline as a func-

tion of location. It is based on velocity density estimates from the EVF using non-

parametric statistics. The sum of this feature along a streamline provides a streamline

“likelihood” metric. This metric can then be used to compare streamlines from a data

set. Our method allows users to affect rendering in at least two important ways: (1)

clutter reduction and (2) uncertainty visualization.

5.2 Related Work

An overview of current methods for representing uncertainty in vector fields is given

in [66]. Otto, et al. present analysis of 2D [48] and 3D velocity fields [49] with un-

certainty approximated by Gaussian distributions. Our study uses non-parametric esti-

mates of velocity. Pothkow et al. [62] discuss the application of non-parametric meth-

ods for uncertainty visualization. A variance based FTLE-like method for unsteady

uncertain vector fields was first presented in [79]. Adaption of probabilistic and sum-

mary statistics are discussed in the survey paper [47]. Hummel et al. [23] was the

first work to apply FTVA from [79] to address EVF visualization. Instead of analyz-

ing only the particle deposition via FTVA, this chapter evaluates all locations along

streamline data. Kuhn et al. [30] provided a method to render streamlines by scaling

opacity over bill-board streamline segments. Although their method is quite effective
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at reducing streamline clutter in crisp fields, our method uses uncertainty data to rank

streamlines for rendering. Grottel et al. and Lampe et al. use non-parametric densities

for scatter plots and trajectory data but not for EVF [19, 32]. Mirzargar et al. extend

boxplots to curves for ensemble streamlines and hurricane track data [43]. Our method

does not use streamline geometry to assign likelihood as they do. In [71], the authors

present methods to visualize bundles of HARDI fibers using fiber encompassing hulls.

Methods employing glyphs and information visualization techniques for ensembles are

discussed in [76, 59, 12]. In [16], the authors cluster streamlines by fitting derived vec-

tor fields based on the streamline data itself. Our method works in reverse, where we

derive features from the EVF and assign them to streamlines for further analysis.

5.3 Background

A time-varying flow field can be described as: v : Ω× I→ Rd . v is defined over a

spatial domain Ω⊆Rd , where the spatial dimension is d. The time interval is I⊆R. An

ensemble E is a set of m vector fields. The ensemble space is considered the intersection

of all such vector fields, ΩE = Ω1∩...∩Ωm and IE = I1∩...∩Im.

E : {1, ...,m}×ΩE × IE → Rd (5.1)

We define the kernel density estimation (KDE) prior to discussing our KDE-based vi-

sualization. KDE is an often used approach to obtain a non-parametric estimation of
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data density [52, 70]. Given a set of m univariate data samples xi, 1≤ i≤ m, the KDE

fh(x) is determined as:

f̂h(x) =
1

mh

m

∑
i=1

K(
x− xi

h
) =

1
m

m

∑
i=1

Kh(x− xi) (5.2)

based on a kernel function K and a bandwidth parameter h. The multi-dimensional

KDE is defined in Eqs. 5.3:

f̂H(x) =
1
m

n

∑
i=1

KH(x−xi),KH(x) = |H|−
1
2 κ(H−

1
2 x) (5.3)

where κ is a multi-variate kernel function that integrates to unity. H is a symmetric

and positive definite bandwidth matrix. We use a Gaussian kernel with a bandwidth

determined via Scott’s Rule. Both selections are standard “rules of thumb” for multi-

variate data sets [82].

5.4 Methods

We start with a set of streamlines (each with a corresponding member in the EVF).

For the ith streamline of m members, we consider it a set of points in ΩEV F , Pi =

{p0,p1, ...,pn} with n integration steps. We can construct line segments between each

point p j and p j+1, for a poly-line representation: Si = {l1, l2, ..., ln}. Streamlines to be

analyzed in the EVF belong to the set S = {S1,S2, ...,Sm}. For each l j ∈ Si, we seek

to obtain the feature-vector Fi = { f (l1), f (l2), ..., f (ln)} corresponding to streamline Si.
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We do this for each Si ∈ S.

Location p j−1 ∈ Pi, is the starting point p for l j ∈ Si. We find the set of interpolated

velocities {v̄1, v̄2, ..., v̄m} at location p j−1, where v̄i is the ith member’s velocity at p j−1.

We then compute a multi-variate KDE, with {v̄1, v̄2, ..., v̄m}, as the density estimate for

the random variable Vj−1. Vj−1 is the distribution of velocities at location p j−1. For

the line segment l j ∈ Si, we obtain its feature from the EVF as: f (l j) = Prob(vi− ε ≤

Vj−1 ≤ vi + ε), such that 0 ≤ f (l j) ≤ 1 . ε should be a small relative to the range of

samples.

gp0 gp1

gp2 gp3

α

β

Figure 5.1: Unit cell interpolation using both α and β to interpolate within grid points
gp0...gp3.

When deriving our probability density estimate for velocities, we first interpolate

each velocity vector within a unit cell for each member i. See Fig. 5.1. Each grid point

contains all the ensemble members’ velocities at that point.

The features Fi are added to assign a ranking for each Si ∈ S. We term the rank

of streamline Si as: streamline likelihood. The streamline rankings can be displayed,

used to reduce the number of streamlines for visualization, or the user may focus visu-

alization on a particular range of likelihoods. Our results display likelihood rank. To

render Si, a color-map for velocity density is used. We also render overall likelihood

with transparency as a ratio of streamline likelihood to greatest likelihood in S. For

85



rendering individual streamlines, the line segment thickness is set to a minimum value.

Its width is scaled by Fi
max(F)−min(F) , where F is from all S.

5.5 Experiments

5.5.1 Implementation

Our results were obtained from code written in Python, utilizing the SciPy package

[11]. The PC system used an Intel Core i7-3930k with 32 GB of RAM. All Python

scripts were run as single-threaded processes.

5.5.2 Data Sets

Ocean Simulation Ensemble This data set covers a region of the Massachusetts

Bay on the east coast of the United States of America [39, 35]. The Massachusetts Bay

volume in the study was divided into 53 x 90 grid with 16 depths. The depths at these

53 x 90 grid points vary significantly: depths as shallow as 90 meters and as deep as

196 meters were recorded.

Lock-exchange Simulation Ensemble The initial conditions are heavy fluid on

one side and light fluid on the other, separated by a barrier [86]. The lock-exchange

data has the following parameters: 128 x 128 grid with velocity measurements, 1000

realizations.
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(a) (b)

Figure 5.2: Lock-exchange data. All 1000 streamlines seeded at coordinates (60,60).
Background: mean vector-field LIC. (a) Conventional “spaghetti” plot. (b) Streamlines
rendered to show relative likelihoods as derived from EVF. Color-bar applies to (b)
only. Opacity is proportional to likelihood in (b).

5.5.3 Results

Figure 5.2a shows a traditional plot with no likelihood ranking as compared to Fig.

5.2b, that color codes the overall likelihood for each streamline. Streamlines are back-

ward integrated. We show 1000 streamlines rendered simultaneously over the mean-

field LIC. In Fig. 5.2b, there is a clear distinction in flow paths of individual streamlines.

There is also a clear division in flow behavior not easily seen in Fig. 5.2a. Figure 5.2b

shows that most of the streamlines flowing to the right have generally lower likelihoods.

However, flow that circulates to the left contains streamlines with more variance in total

likelihood. Streamline likelihood is not entirely defined by geometric location. Using

our method, it is due to small variations in velocity probability along a streamline.

Figure 5.3 shows streamlines from Fig. 5.2 with local features. Each integration

step has its velocity density rendered via color and thickness. The streamline in Fig.
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(a) (b) (c)

Figure 5.3: Streamlines show velocity probability density feature along their trajec-
tories. (a) Top one-percent with opacity scaled for overall likelihood, (b) higher-than-
average member, and (c) lower-than-average member from Fig. 5.2.

(a) (b)

Figure 5.4: Ocean simulation data. All 600 streamlines seeded at coordinates (48,30).
(a) Conventional “spaghetti” plot. (b) Streamlines rendered to show relative likelihoods
as derived from EVF. Color-bar applies to (b) only. Opacity is proportional to likelihood
in (b).
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(a) (b) (c)

Figure 5.5: Streamlines show velocity probability density feature along their trajec-
tories. (a) Top one-percent with opacity scaled for overall likelihood, (b) higher-than-
average member, and (c) lower-than-average member from Fig. 5.4.

5.3b shows higher velocity density values along its path, while the streamline in Fig.

5.3c illustrates lower velocity densities along its trajectory. This information is not

shown in the traditional plot of Fig. 5.2a.

Figure 5.4 and Fig. 5.5 show surface currents for the ocean data. Streamlines are

both forward and backward integrated. There are streamlines with overall less likeli-

hood that have similar partial trajectories with streamlines of higher likelihood. This

view of streamline likelihood is not discernible using methods based entirely on stream-

line geometry. For instance, there are streamlines with low overall likelihood that would

be included geometrically in the upper bundle to the right of the seed location in Fig.

5.4. Fig. 5.5 shows that streamlines terminating near the seed point tend to have higher

overall likelihoods due to the high velocity probability density for those paths.
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5.6 Conclusion

We have provided a method to extract features from an EVF for streamline analysis.

The method is based on finding velocity density estimates at locations along streamlines

and is not limited to parametric assumptions. Member vector fields are readily stored

as an ordered list and thus KDE are easily constructed. While we have shown results

for 2D data sets, it should be straightforward to extend our method to 3D vector fields.

Besides the use cases shown in the results, another application of our method in-

cludes reduction in storage of pre-computed streamline data. Finite-time Variance

Analysis [23], and other statistical post-processing, can benefit by using our method

to remove less significant streamlines from consideration.

For future work, we plan to investigate additional rendering approaches using stream-

line likelihood along with further exploration of the potential use cases already men-

tioned.
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Chapter 6

Transport Similarity

Currently, there is no method for visual analysis of ensemble vector fields (EVF)

that provide identification of flow trends and general flow similarity over the extent of

transport across ensemble members. Finite-time Variance Analysis (FTVA) provides

flow structure information only on particle distributions at the termination of stream-

line integration. In this chapter, we first present a flow structure based on streamline

clustering. Second, we discuss a method using streamline clustering to provide infor-

mation of flow coherence at corresponding spatial regions in the EVF. We consider the

regions where bifurcation in flow trends among the EVF members occur. We will also

discuss how both methods can be used as a sequential framework for EVF analysis, by

using the results of the scalar flow structure to find regions of member flow dissimilarity

for further analysis.
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6.1 Introduction

Ensembles of vector field data, as produced via Computational Fluid Dynamics

(CFD) simulations, are now common within the simulation community, in order to

represent the output of a fluid model using distributions of input parameters [86]. The

variation in parameter selection can represent uncertainty about boundary conditions,

densities or other relevant input.

As a consequence, we are now faced with the challenge of analyzing and visualiz-

ing ensemble vector fields (EVF). EVF are made up of individual realizations, each a

possible outcome, of the simulation. Flow has traditionally been visualized by advec-

tion of mass-less particles, e.g streamline integration, in a certain vector field. There

are many methods to analyze single instance vector fields and quantify their flow.

When extending those methods to ensembles, multiple problems arise. For one,

statistical variation likely exists between the members of an EVF. A key visualization

problem is first detecting and then displaying that variation. Most importantly, we

want to draw attention to significant trends among members. Modes of flow coherence

(e.g., trends) should ideally be considered over the full extent of flow: (1) initially, for

identification, between the entire paths of each particle’s movement sharing a common

seed location within the field and then (2) subsequently, within known regions of the

field where the modes of variation are clearly evident, as determined from the results

of the initial consideration.

Until now, such methods as Finite-time Variance Analysis (FTVA) [79] have been
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employed to quantify global flow variation in an ensemble. Such methods only investi-

gate variation in the flow through a given seed location at the termination of integration,

via the principal components of the covariance matrix computed from the positions of

particle deposition. Transport separation, however, may occur anywhere along stream-

lines with a common seed over the ensemble. FTVA, therefore, overlooks potentially

important bifurcation between members.

In this work, we provide the following contributions:

• We utilize proven and efficient streamline clustering methods [9] to characterize,

on the scale of the entire field, the flow coherence and bifurcation of the ensem-

ble.

• We quantify via a two-stage streamline clustering method using representative

streamlines from their cluster, the degree of flow coherence in regions of known

bifurcation across the ensemble members.

• We show how both methods can be used together by first employing the flow

structure to identify potential bifurcation and then the exploration of the regions

of bifurcation.

6.2 Related Work

Much work had been done to define and identify global features of flow fields for

crisp vector fields. Relevant publications are summarized here.
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Lagrangian Coherent Structures (LCS) are a broad class of feature identification for

the fluid medium [53]. Perhaps the first notable example is the Finite-time Lyaponov

Exponent (FTLE) fields [21] for steady and unsteady vector field visualization.

Generalization of LCS has been discussed in depth [29]. Frameworks for flow field

structure definition and visualization have been laid out in [74]. There, the authors dis-

cuss pathline predicate definitions relevant for given investigations of flow phenomena.

A variance based FTLE-like method for unsteady uncertain vector fields was first

presented in [79]. This method reports the spatial second moment of particle desti-

nation, using the principal components of their covariance matrix as a result of initial

uncertainty in the vector field. Theisel et al. [50], [51] examined uncertain vector field

topology using Gaussian uncertainty. Analysis of streamline separation at infinity using

time-discrete Markov Chains was explored in [69], in order to remove the finite-time

requirements from [79].

While the papers discussed so far did not utilize EVF, adaption of probabilistic and

summary statistics are discussed in the survey paper [47]. Hummel et al. [23] was the

first work to apply FTVA from [79] to address EVF visualization. Their paper also used

a Minimum Spanning Tree (MST) to detect and visualize trends in particle destinations

at finite-time.

With novel numerical schemes to generate ensemble data using non-Gaussian input

parameters [86] and [77], techniques to show the subtle variation and modality in output

EVF is becoming increasing needed from the visualization community.
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Similar to our work but not appropriate for flow trend detection, are several stream-

line clustering methods. In [34], the authors extend the point-based clustering algorithm

called Density-based Spatial Clustering of Applications with Noise (DBSCAN) to line

segments. They applied this method to find representative trajectories in hurricane track

data. In [40], the authors use curvature distribution of a field of streamlines to find shape

similarity. Neither of these studies are ensemble based, but use crisp vector fields.

Chen et al. [9] provide an efficient two-stage streamline clustering method based

on spatial properties. The first-stage groups streamlines using k-means for feature vec-

tors comprised of the start-point, mid-point, and destination-point of streamlines. Their

second-stage finds sub-clusters from the first-stage, based on linear and angular en-

tropy. They summarize flow in regions by finding representative streamlines closest to

cluster centroids. Evaluation of fiber clustering methods for diffusion tensor imaging

is discussed in [44]. It was from this study that [9] gave an approximate and efficient

method.

Guo et al. outline a framework in [20] to provide an interactive assessment of en-

semble variation. They call their system eFLAA (ensemble Flow Line Advection and

Analysis). They present a novel parallel computation for calculating streamline spatial

difference over an ensemble and then visualizing the differences. They compute vari-

ous features of their ensembles (e.g., carbon dioxide concentration) along streamlines

whose variation meets a given threshold.

Mirzargar et al. [43] extend boxplots to curves. They apply their method to quan-
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tify and visualize ensemble streamlines and hurricane track data. While they show the

band-depth for individual streamlines, they do not delineate bifurcation between mem-

ber streamlines. Their method is not directly applicable to a dense-field summary of

streamline data.

6.3 Background

We briefly describe the current methods for extracting flow structure from crisp

vector fields and EVF. We also discuss information entropy as related to streamline

identification and its potential use for EVF statistics.

6.3.1 Flow Classification

Flow classification is based on material transport in vector fields, and thus provides

a global picture of the vector field. The flow map Φ is derived from the vector field

using integration.

Φ(x(t);T ) = x(t +T ) (6.1)

Equation 6.1 describes the final location of a particle seeded at x at time t and advected

for an interval T . The field is not required to be time-varying and in such a case, T

simply refers to the number of integration steps forward or backward in Φ.
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6.3.2 Finite-time Lyapunov Exponent

Taking the largest eigenvalue of the right-Cauchy Green deformation tensor, Eq.

6.2, we find the magnitude of the direction of greatest stretching in the flow medium at

x(t). The tensor removes effects of reference frame rotations in ∇Φ.

λmax(∇Φ(x(t);T )T
∇Φ(x(t);T )) (6.2)

The finite-time Lyapunov exponent is a logarithmic scaling of the maximum direction

(Eq. 6.3).

FT LE(x(t),T ) =
1
T

log
√

λmax (6.3)

FTLE is a scalar field over the vector field domain. Finding its height ridges provides a

topological skeleton of the regions in contraction or expansion.

6.3.3 Ensemble Vector Fields

Ensemble vector fields (EVF) are uncertain vector fields derived from variations

between multiple instances (or runs) of an experimental/observation space (i.e., a con-

tainer or geographical volume for inspection and the related starting conditions, com-

putational model, and fluid characteristics). Repeated runs of the same simulation, with

varying simulation input parameters, produce member realizations that taken together

can be considered as a distribution of all possible outcomes of the field for a given set
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of parameters. For the purposes of this study, we limit our definition of an EVF to the

definition given in Hummel et al. [23].

In that definition, a time-varying flow field can be described as in Eq. 6.4, where v

is defined over a spatial domain Ω⊆ Rd .

v : Ω× I→ Rd (6.4)

The time interval is I ⊆ R. An EVF is a set of m vector fields over the same spatial

domain and the ensemble space can be considered to be the intersection of all such

vector fields, ΩEV F = Ω1∩...∩Ωm and IEV F = I1∩...∩Im.

EV F : {1, ...,m}×ΩEV F × IEV F → Rd (6.5)

EV F(i, ., .) corresponds to the i-th realization in our ensemble. We can see an example

of particle transport in an ensemble (Fig. 6.1).

6.3.4 Finite-time Variance Analysis

A probabilistic variant of FTLE is called the FTVA, Eq. 6.6. It takes the covari-

ance matrix of particle positions advected over the ensemble domain from given seed

locations. It was first presented by Schneider et al. [79].

FTVA(x(t),T ) =
1
T

log
√

λmax(Cov(x(t);T )) (6.6)
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Run 1
(x, y)

Run 2
(x, y)

. . .
(x, y)

(x, y)(x, y)(x, y)

Figure 6.1: Streamlines seeded at the same positions in all members of the EVF have
different transport paths. Seeds in the EVF lead to stronger or weaker path trends. Note
that this is similar to FTVA for EVF, but that streamlines may terminate with weak
separation but have strong separation anywhere along their trajectories. Here, the green
streamline branches from the blue and red streamlines, but all terminate with weak
variance.

6.3.5 Streamline Information Entropy

Many works have used information theory [83] applied to streamline geometry [18],

[40], [41] for the purposes of selecting streamlines. In this study, we are interested in

summarizing streamlines from the EVF with a common seed. We use this summary in

two ways. First, it is used to weight the sampling frequency of points along streamlines

(i.e., a higher sampling frequency captures greater streamline variability). Second, we

utilize entropy as a reference map to better understand the overall variation in streamline

geometry from the EVF.

We use both linear and angular streamline entropy [9]. Equation 6.7 represents the

linear entropy [18], EL, of single streamline. LS is its total length and m the number of
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pt=0
qt=0
rt=0

pt=0.5

qt=0.5rt=0.5 pt=1

qt=1

rt=1

Feature Vectors
p: < pt=0, . . . , pt=0.5, . . . , pt=1 >
q: < qt=0, . . . ,qt=0.5, . . . ,qt=1 >
r: < rt=0, . . . ,rt=0.5, . . . ,rt=1 >

.. .

Figure 6.2: Shown here are three example streamlines all starting at the same location.
We use at least the beginning, middle, and end locations. Other points used in the
feature vector are evenly spaced over the approximated arc length and registered.

positions available from the numerical integration. D j is the length of the j-th segment.

EL =− 1
log2(m+1)

m

∑
j=0

D j

LS
log2

D j

LS
(6.7)

Equation 6.8 represents the angular entropy [41], with A j the angle of the line segment

j, LA is the total angular variation along the streamline (e.g. the sum of the absolute

values of the A j), and EA the total angular entropy for the streamline.

EA =− 1
log2(m)

m−1

∑
j=0

A j

LA
log2

A j

LA
(6.8)

Both of these metrics summarize the degree of variation in a streamline over its entire

path.

6.4 Methods

We first describe our method for extracting a cluster-based flow structure from an

EVF. Second, we provide an exploratory region-based EVF similarity metric based on
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the same underlying streamline clustering method.

In section 6.5, we show how the results from our flow structure can guide a user

to probe more deeply into the regions that give rise to global bifurcation in transport

among the members.

6.4.1 Cluster-based Flow Map

For a seed in the simulation domain ΩEV F , we define a feature vector to represent

each streamline. We sample position as a spatial feature. The number of features in-

cluded are at a minimum the initial, middle, and terminal positions of a streamline.

Streamline clusters are found for each seed in ΩEV F , where a velocity value has been

stored from the simulation. This result is similar to Φ. The cluster map ΦC, is repre-

sented as:

ΦC(x) = |CS|, CS = {c1, ...,cn} (6.9)

where x is the location of the seeded streamlines, CS is the set of all streamline clusters

ci, i is an integer such that 0≤ i≤ n, and n the number of clusters. |CS| is the cardinality

of the finite set CS. Set ci contains the similar streamline feature vectors seeded at x.

We use the mean linear EL, and mean angular entropy EA of a population of stream-

lines to determine the frequency of sampling. The following steps are performed in

computing ΦC(x) for each x:

Step 1 Lookup precomputed EL for x.
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Step 2 Lookup precomputed EA for x.

Step 3 Calculate the number of streamline sample points, ∝
(
EL +EA

)
.

Step 4 For each streamline, assign a feature vector.

Step 5 Perform DBSCAN on all streamline feature vectors.

Step 6 Record the number of clusters found in ΦC.

The number of regularly sampled features is proportional to the mean linear and

angular entropy (see step 3 above). We linearly interpolate the number of samples

between a minimum and a maximum positive integer and take the floor of the result.

The upper-limit on the number of samples is dependent on the data or user constraints.

The α for interpolation is equal to the ratio of the average of the linear and angular

entropy (at the seed) to the absolute value of the difference between the maximum and

minimum total entropy (linear and angular entropy combined) from the data set.

Because we desire to detect bundles of streamlines that may start out together, di-

verge, and finally converge over the ensemble members, we need to sample spatial

features that are registered between the streamlines. Note that our method of clustering

is inspired by [9]. They found sub-clusters based on entropy from initially group-

ing streamlines sampled at three spatial locations each. We use streamline entropy to

determine sample frequency for streamlines at a seed. In Fig. 6.2, the blue and red

streamlines are spatially similar. However, if the minimum three points are used for the

feature vector, all streamlines in the example would be found in a single cluster.
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6.4.2 Spatial Feature Registration

Streamline registration of spatial features is accomplished via an approximation of

arc length. t is a real number on the interval [0,1] and is considered a fraction of the

total arc length of a curve (streamline). The arc length L of curve S is defined as in Eq.

6.10 on the interval [a,b]. ds2 = dx2 +dy2, for the infinitesimal line segment ds.

LS =
∫ b

a
ds =

∫ b

a

√
1+
(

dy
dx

)2

dx (6.10)

A

B
C

N

Figure 6.3: Illustration of DBSCAN cluster analysis requiring minimum points consti-
tuting a cluster. Points around A are core points. Points B and C are not core points,
but are density-connected via the cluster of A (and thus belong to this cluster). Point N
is Noise, since it is neither a core point nor reachable from a core point. DBSCAN also
requires a maximum distance parameter ε that determines density-connected points
[13].

S is the streamline from which we have a set of points derived from numerical

integration in the vector field. l can be considered an ordered list of those points and

can be accessed by index i. For our finite approximation, when n is the number of

points from integration, we have:
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LS =
n−1

∑
i=0

dist(l(i), l(i+1)) (6.11)

where dist is the Euclidean distance between two points. Parameter t then, is the frac-

tion of LS we wish to consider for comparison between a registered set of streamlines.

6.4.3 Cluster Parameter Selection

Hummel et al. used a MST for terminal point trend clustering [23]. That study

reported using a fraction of the average length of streamlines for the minimum distance

between clusters.

We apply DBSCAN to assign cluster labels to member streamlines. Refer to Fig.

6.3 for the algorithm description. DBSCAN takes two parameters: ε , the maximum

distance between features in a cluster, and minPts, the minimum number of data points

in a cluster. The value for ε can be chosen by using a k-distance graph, plotting the

distance to the k = minPts nearest neighbor. Good values of ε are where this plot shows

a strong bend. If ε is chosen too small, a large part of the data will not be clustered.

Whereas for a too high value of ε , clusters will merge and the majority of objects will

be in the same cluster [13].

We, however, take an approach similar to [23], setting the minimum distance be-

tween clusters to be related to their spatial domain. We use five percent of the diagonal

distance across the full simulation domain as ε . For p-values, most authors refer to sta-

tistically significant as P < 0.05 [46]. Thus, five percent presents itself as a good “rule-
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of-thumb” for the fraction of the domain. We do not use the length of the streamlines

themselves because we apply our clustering to multiple points along the steamlines. ε

needs to be a function of the spatial domain size instead.

Ester et al. recommends minPts ≥ D+1, where D is the dimension of the data set

[13]. Karami et al. provide adaptive strategies for parameter selection but at significant

computational overhead [28]. In our study, minPts is set to five percent of the training

data set size (e.g. the number of streamlines for a seed).

6.4.4 Region-based EVF Flow Similarity

In Fig. 6.4, EVF exhibit regional flow coherency when representative flow lines for

the region can themselves be clustered.

(a) (b) (c)

Figure 6.4: Schematic for observing regional clustering across ensemble members. (a)
and (b) represent separate realizations with the upper quadrant (heavy outline) consid-
ered. (c) EVF union of members (a) and (b). Arrows are representative flow for the
region.

We summarize the possible combinations of coherence over the ensemble mem-

bers in Fig. 6.5. The lower-left quadrant: coherent flow in individual members and
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among members. Lower-right: incoherent flow in members but coherent among mem-

bers. Upper-left: coherent flow in members but incoherent among members, and in the

upper-right, incoherent flow in individual members and among members.

Figure 6.5: Matrix showing primary combinations of EVF flow similarity. Each box
shows hypothetical representative flow (arrows) for a given region in a member of the
vector field.

We utilize the following steps to summarize flow in a region from the EVF. After

steps 1 through 4 are complete, ensemble flow coherence is visualized in a region using

representative streamlines.

Step 1 Define a spatial region (⊂ΩEV F ) for inspection.

Step 2 Gather precomputed streamline segments spanning the region.

Step 3 For each member, cluster streamline segments.

Step 4 Assign a representative streamline per cluster by using the streamline closest

to the cluster centroid via Euclidean distance.
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6.5 Experiments

6.5.1 Implementation

Our results were obtained from code written in Python, utilizing the SciPy package,

Sci-kit Learn [27], and HDF5 [10] via H5py [11]. The PC system used an Intel Core i7-

3930k with 32 GB of RAM. All Python scripts were run as single-threaded processes.

Tables 6.1 and 6.2 show compute times for algorithms used in this study. Time spend

on file I/O is excluded. We omit timings for regional analysis, since compute times vary

widely based on dimensions of the selected area.

data set resolution members time steps flow map FTVA
Lock 128x128 20 1100 30375.94s 206.69s
Ocean 53x90 30 1100 9285.76s 54.09s

Stir 152x152 15 1100 32126.12s 335.73s

Table 6.1: Timings for flow maps and FTVA pre-computation for the data sets in this
study. Number of members reflects the members used in the computations and not
necessarily the total available members. In cases where less members are used than
available, those members used were randomly chosen from the available set. Compute
times are dependent on number of ensemble members and field resolutions.

6.5.2 Data Sets

Lock-exchange The initial conditions are heavy fluid on one side and light fluid on

the other, separated by a barrier (the lock) [86]. At initial time, that barrier is removed,

and the flow is allowed to evolve. See Fig. 6.6a. Initial uncertainty originates from

not knowing the position of the interface between the two fluids. In other words, the
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data set term. 3 pts. 13 pts. var. pts. entropy
Lock 389.23s 22523.08s 23900.47s 23086.69s 20359.93s
Ocean 97.32s 4590.12s 4704.98s 3581.92s 11842.21s

Stir 602.34s 31761.07s 32555.85s 14291.28s 28710.68s

Table 6.2: Timings for pre-computation of clustering for terminal points (term.) and
multiple streamline samples (3 pts., 13 pts., and variable pts. between 3 and 13) for
the data sets in this study. Included is the total calculation time of the linear and an-
gular entropy pre-computations. Compute times are dependent on number of ensemble
members and field resolutions. Identical resolution and number of members used for
these timings are shown in table 6.1.

volumes of heavy and light fluid on each side is not exactly known, and the initial

barrier slides left and right accordingly. At the start of the simulation, the probability

distribution of the position of the barrier is Gaussian. Therefore, after infinite time, it

is expected that the barrier is characterized by a similar Gaussian distribution, but with

the light fluid on top of the heavy one, and with the variance of distribution stretched if

the size of the whole lock domain is not square. However, the probability distributions

of the interface or the dominant dynamics in between this start and infinite time are not

assumed Gaussian. The lock-exchange data has the following parameters: 128 x 128

grid with velocity measurements, 1000 realizations.

Ocean This data set covers a region of the Massachusetts Bay on the east coast of

the United States of America [39, 35]. See Fig. 6.6b. The Massachusetts Bay volume

in the study was divided into 53 x 90 grid with 16 depths. The depths at these 53 x 90

grid points vary significantly: depths as shallow as 90 meters and as deep as 196 meters

were recorded. The important visualization concern for this data set is understanding

where ocean current streamlines seeded at the same location split into distinct paths
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(a) (b) (c)

Figure 6.6: Single member velocity magnitude fields from, (a) Lock-exchange data, (b)
Ocean data, and (c) Industrial Stirring data.

in different realizations. For example, streamlines may deviate geometrically between

their common seed positions and their individual termination position in a set of stream-

lines from multiple realizations, but still have similarly located terminal positions. See

Fig. 6.7.

Industrial Stirring The stirring data set is a set of 15 two-dimensional flow fields

resulting from the simulation of mixing in a stirring apparatus [23]. See Fig. 6.6c.

The device consists of two counter-rotating pairs of mixing rods that stir a medium

in a cylindrical tank. The ensemble was generated by slightly varying the viscosity

of the fluid to investigate mixing quality of the device for a range of different fluids.

The primary question for this data set regards the effectiveness of the stirring process.

An ensemble visualization is expected to be able to identify regions where the mixing

quality is high or low throughout the ensemble.
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Figure 6.7: Member streamline bifurcation between members in ocean data set. Seed
location is at the red cross marker. Streamlines separate along their trajectories forming
two distinct clusters as seen in the central border selected region in yellow. However,
the distribution of their terminal positions alone (FTVA) do not account for these sepa-
rate bundles, especially as seen in the spread of the terminal positions in the upper-right
and lower-left of the Fig. (additional yellow boxes).

6.5.3 Results and Analysis

This study does not use individual member variances (FTLE) in the consideration

of FTVA [23], but compares our new visualizations to FTVA only. Using FTLE gen-

eralizes the application of FTVA to sensitivity between otherwise identical simulation

runs (where variations due to numerical error and other noise-based variation is poten-

tially present). Perhaps a more informative metric on FTVA, and streamline clustering

in general, is streamline entropy, as discussed in section 6.4. Thus, our visualizations

refer to both average linear and angular entropy maps, as well as FTVA maps, for inter-

pretation of streamline clustering and sampling frequency for individual streamlines.

Lock-exchange The first data set to be evaluated is the lock-exchange simulation
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.8: Comparison of transport visual summaries for the lock-exchange data set.
Methods from [23] are along first row separated by the horizontal line. The vertical line
separates entropy maps on the left and cluster results on the right half of the Fig. (a)
FTVA for forward integrated streamlines. (b) FTVA for backward integrated stream-
lines. (c) Number of trend clusters from terminal positions in forward integration. (d)
Number of trend clusters from terminal positions in backward integration. (d) Map of
average linear streamline entropies for ensemble. (e) Map of average angular streamline
entropies for ensemble. (f) Streamline clusters sampled at three points per streamline.
(g) Streamline clusters sampled at ten additional points per streamline. (h) Gradient
magnitude for linear entropy map. (i) Gradient magnitude for angular entropy map.
(j) Sample map, i.e. the map of the points sampled on each streamline for their cor-
responding seed location. (k) Cluster map for streamlines sampled variably based on
entropy. (Note: color bars for sample and cluster maps contains discrete colors labeled
from top to bottom in increasing order.)
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(a) (b) (c) (d) (e)

Figure 6.9: Streamline clusters for an incoherent flow region in lock-exchange data
set. (a) Region location (shown by white box selected rectangle) from lock-exchange
velocity magnitude field. (b) All streamlines from a single member. (c) First cluster
from (a) with representative streamline. (d) Second cluster from (b) with representative
streamline. Representative streamlines are highlighted in red. (e) Plot of representative
streamlines for 20 members, each a random color.

(a) (b) (c) (d)

Figure 6.10: Streamline clusters for a coherent flow region. (a) Region location (shown
by white box selected rectangle) from lock-exchange velocity magnitude field. (b)
All streamlines from single member. (c) Single cluster with representative from (b).
Representative streamlines are highlighted in red. (d) Plot of representative streamlines
for 20 members, each a random color.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.11: Comparison of transport visual summaries for the Massachusetts Bay data
set at surface level. Methods from [23] are along first row separated by the horizon-
tal line. The vertical line separates entropy maps on the left and cluster results on the
right half of the Fig. (a) FTVA for forward integrated streamlines. (b) FTVA for back-
ward integrated streamlines. (c) Number of trend clusters from terminal positions in
forward integration. (d) Number of trend clusters from terminal positions in backward
integration. (e) Map of average linear streamline entropies for ensemble. (f) Map of
average angular streamline entropies for ensemble. (g) Streamline clusters sampled at
three points per streamline. (h) Streamline clusters sampled at ten additional points
per streamline. (i) Gradient magnitude for linear entropy map. (j) Gradient magnitude
for angular entropy map. (k) Sample map, i.e. the map of the points sampled on each
streamline for their corresponding seed location. (l) Cluster map for streamlines sam-
pled variably based on entropy. (Note: color bars for sample and cluster maps contains
discrete colors labeled from top to bottom in increasing order.)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.12: Comparison of transport visual summaries for the industrial stirring data
set. Methods from [23] are along first row separated by the horizontal line. The ver-
tical line separates entropy maps on the left and cluster results on the right half of the
Fig. (a) FTVA for forward integrated streamlines. (b) FTVA for backward integrated
streamlines. (c) Number of trend clusters from terminal positions in forward integra-
tion. (d) Number of trend clusters from terminal positions in backward integration. (e)
Map of average linear streamline entropies for ensemble. (f) Map of average angular
streamline entropies for ensemble. (g) Streamline clusters sampled at three points per
streamline. (h) Streamline clusters sampled at ten additional points per streamline. (i)
Gradient magnitude for linear entropy map. (j) Gradient magnitude for angular entropy
map. (k) Sample map, i.e. the map of the points sampled on each streamline for their
corresponding seed location. (l) Cluster map for streamlines sampled variably based on
entropy. (Note: color bars for sample and cluster maps contains discrete colors labeled
from top to bottom in increasing order. Also notice that all fields shown in this Fig. are
slightly truncated in their upper right corner from Fig. 6.6c. We use the intersection of
the simulation region for all members in the ensemble.)
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ensemble. The most interesting aspects of the flow occur at the mixing interface be-

tween the two fluids. Figure 6.8a and Fig. 6.8b, show FTVA applied for forward and

backward integration, respectively. Figure 6.8c and Fig. 6.8d display the terminal posi-

tion clusters. Our methods of clustering entire streamlines are shown in Fig. 6.8f (three

sample points for all streamlines) and Fig. 6.8g (ten additional sample points along each

streamline). Similar flow patterns are seen using both methods, although our method

captures aspects of both terminal end point distributions with either streamline sam-

pling frequency. As we increase the sampling rate used in Fig. 6.8f to the one used in

Fig. 6.8g, there are areas where cluster counts increase and are not seen using terminal

positions alone. These clusters arise due to variations captured by using more samples

and thus detect trends of overall streamline geometry.

When consulting the linear entropy map (Fig. 6.8d), the pattern of the flow field

where both variance and distinct flow trends emerge is summarized for the lock-exchange

data. Small field differences occurring in angular entropy are seen in Fig. 6.8e, provid-

ing a nearly constant field except near the transitions in entropy in the upper-left and

lower-right corners of the domain. This indicates that the number of clusters and vari-

ances we see in the flow occur primarily from variation along streamline lengths, i.e.

their linear entropy. However, when both linear and angular entropy inform the sam-

pling frequency for streamlines, the overall higher magnitude of angular entropy (in this

example) dominates the influence on sampling frequency for streamlines in the interior

of the domain. The cluster map using variable sampling between a minimum of three
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samples and a maximum of thirteen samples (Fig. 6.8k), shows a result consistent with

the uniform sampling in Fig. 6.8h. (The number samples for streamlines at each seed

location is shown in Fig. 6.8j.) Finally, we see from the magnitude of the gradient of

the linear entropy map (Fig. 6.8h), that a larger number of clusters are found for stream-

lines with seed locations near the gradient ridges. Where linear entropy changes over

the domain, we see streamline geometry variance over the ensemble members (and thus

streamline trends).

We now investigate regions from the lock-exchange simulation domain. We show

this for two separate regions using the method outlined in section 6.4.4. We can see re-

gional clustering in Fig. 6.9, for a region exhibiting incoherent flow patters within each

member of the region. This is similar to the lower-left quadrant of Fig. 6.5. The flow is

simplified using representative streamlines for the region. If we track the streamlines as

entering from the bottom of the selected region, some of the representative streamlines

flow more from top to bottom that veering to the right or left. Thus, we consider three

distinct flow trends from the members of the ensemble for this region.

In contrast, Fig. 6.10 displays more regional coherence of the type shown in the

lower-left quadrant of Fig. 6.5. The region has a single representative streamline per

member. The summary streamlines also show little variation as shown in Fig. 6.10d.

There is coherence both within the region per member, and between members, for a

strong overall coherence in the ensemble.

This similarity is different than that shown in Fig. 6.8. In the full-field analysis, we
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do not know where in the field trends occur, only that they do for particular seeds. When

applying streamline clustering for a region, we show the EVF giving rise to trends seen

mapped to seed locations as in Fig. 6.8. However, this insight is limited to the region

itself and the trends produced by flow through the region may be mapped to more than

one seed, either within the region itself or outside it. We will next show two more data

sets, using our method applied to the entire field as we did for the lock-exchange in Fig.

6.8.

Ocean Figure 6.11 is analogous to Fig. 6.8, but shows results for the ocean data.

The primary variance occurs in the central region of the simulation domain for both

integration directions. This is somewhat intuitive, since streamlines seeded there have

the potential to cover a larger area and thus their terminal positions to differ over greater

distances. The trend/clustering analysis for terminal points is shown in Fig. 6.11c and

Fig. 6.11d, for forward and backward integration respectively.

Our streamline clustering method provides a much higher sensitivity for visualizing

trends in the streamlines than conventional FTVA. The number of clusters increase

from Fig. 6.11f to 6.11g at the higher sampling frequency. This is due to detecting

more variation on the streamlines and seeing a higher resolution of the trends. Figure

6.11a through Fig. 6.11d fail to detect most of the flow behavior that occurs near the

upper coastal region and the flow trends present there, i.e. flow bundles that separate

along the intermediate positions of the streamlines but have similar positions at their

terminal positions. See Fig. 6.7 for an example of this.
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In Fig. 6.11d and 6.11e, it can be seen that streamlines seeded centrally have higher

average streamline entropy (linear and angular). Again, we see more clusters near the

ridges in the gradient magnitudes of Fig. 6.11h and Fig. 6.11i. Near the center of the

domain, the number of the clusters drops to zero in Fig. 6.11g (the higher streamline

sampling frequency). The lack of trends for these seeds is not seen in Fig. 6.11c and

Fig. 6.11d (and in the lower sampling rate of our method in Fig. 6.11f). Our method

uncovers the highly variable and chaotic flow mapped to this seeding region. This

behavior is also shown when adaptive sampling is applied in Fig. 6.11k.

Industrial Stirring Figure 6.12 applies the same method to the industrial mixing

simulation ensemble. As discussed in [23], the design of the stirring machinery shows

needed improvement due to the low variance in much of the domain via FTVA. This is

corroborated and repeated here in Fig. 6.12a and Fig. 6.12b. The trend analysis from

[23] additionally shows much of the domain possessing at least two clusters of terminal

particle positions for both the forward and backward integration.

Our method shown in Fig. 6.12d through Fig. 6.12k, sharply contrasts parts of the

previous analysis from [23]. We find even in regions of high variance, little evidence

of good transport. As can be seen in Fig. 6.12d and Fig. 6.12e, there are irregular do-

main regions showing very low average linear and angular streamline entropy. (This

is most evident in the ovoid structure to the far-right middle section of the domain.)

Interestingly, the region along the lower-left of the cylindrical tank possesses high av-

erage entropy, but little to no clusters (see Fig. 6.12f, Fig. 6.12g and Fig. 6.12k). This
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would appear to contradict the regions with low entropy and also no clusters, except for

the fact that we had already observed that regions with a high number of trends gen-

erally occur at the ridges of the gradient magnitudes of the entropy maps. We see that

this region with high entropy in the lower-left of the domain also exhibits low gradient

magnitude (not a region containing a ridge) and thus agrees with the earlier assessment.

There is little difference between the average linear and angular entropy maps for

this data set (Fig. 6.12d and Fig. 6.12e) and this signature may be useful for classifying

such overall behavior. In regions of the flow that both have low average entropy and low

levels of cluster count, we would want to improve the overall transport. This analysis

may suggest that a potential geometrical or material design might be implemented to

prevent lack of agitation at the fluid and paddle points of contact, since this behavior

is consistent across the ensemble where fluids of varying parameters of viscosity were

used in the simulation.

6.6 Conclusion

In this chapter, we first presented a flow structure based on streamline clustering

over their spatial extent. Using the mean linear and angular streamline entropy maps,

we showed that where variations in entropy is greatest, there is in general a correspond-

ingly high number of clusters for those streamlines.

Preliminary results revealed that related methods of trajectory similarity/clustering

did not capture the behavior of spatial bifurcation or flow bundling as we had antici-
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pated. For example, TRACLUS [34] is a direct extension of DBSCAN to line-segment

data. TRACLUS tends to cluster trajectories without regard to individual path integrity,

and often finds patterns in partitioned segments of the initial streamlines instead.

We followed our analysis of flow structure by investigating flow coherence at re-

gions of bifurcation in a 2D EVF. Finally, we discussed how both methods can be used

in a sequential framework for EVF analysis. The methods presented here are not lim-

ited to steady-flow. For the purpose of clarity in this initial study, we chose to focus on

a single time-step in the simulation.

Future work will employ better adaptive strategies for streamline sampling fre-

quency and incorporate multiple similarity metrics. Additionally, new methods of re-

gion analysis over the entire simulation domain may prove useful via algorithmic versus

manual inspection.
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Chapter 7

Conclusions and Future Work

Our work has been concerned with summarizing EVF. Such summaries must be

created with a particular set of goals, since there is no one all-encompassing view. Our

first approach was to show EVF as a field of non-parametric PDF, and then observe

EVF uncertainty expressed using velocity density estimation. As a second approach,

we treated EVF as separate realizations of which we compare member streamlines.

All methods presented in this work have had the purpose of providing analysis and

visualization of similarity (or difference) within an EVF.

7.1 Summary

Chapter 3 discussed our interpolation method, Bivariate Quantile Interpolation, to

address multivariate data for EVF. The method computes faster than other methods

(Displacement Interpolation), and our method is meant to address issues of EVF vi-

121



sualization. There are multiple directions to pursue for further investigation of PDF

interpolation. This problem is not directly related to ensemble visualization, but visu-

alization research will be the beneficiary of future developments. Some of the areas

exposed by our work are discussed in section 7.2.

Chapter 4 applied Bivariate Quantile Interpolation to EVF, and compared the re-

sults with a Gaussian Mixture Model PDF interpolation. With visualization as the fo-

cus, other aspects of general function interpolation were not considered in our studies.

We addressed the uncertainty in streamlines that flow through a given location in chap-

ter 5. We provided a method to reduce clutter in the traditional “spaghetti” plot and to

rank streamlines from the member realizations based on their probability derived from

the vector field PDF.

In chapter 6, we applied streamline clustering to an entire EVF. This analysis and

visualization was both for flow through regularly spaced seeds in the EVF and for spec-

ified regions. The approach taken for both analyses was similar, and cluster analysis

assigned cluster centroids as representative of the cluster streamlines. However, while

our analysis for streamlines through single locations over the field provided a full EVF

summary, our regional analysis did not. We suggest potential methods for investigating

region EVF similarity at the end of the next section.
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7.2 Future Work

Gradients provide information about how a field changes over its spatial domain.

The gradient of a scalar field produces a vector field. Similarly, vector field gradients

are second-order tensor fields. It is not obvious how to express gradients of PDF fields

as is now done with finite difference for scalar or vector fields. How might this new

type of gradient be calculated? How could the result be used in an analysis of PDF

interpolants? Love et al. [39] provide a statistical analysis of operators for multivalue

data sets. Such operators are statistical summaries of sample data. Their statistical

evaluations show the sensitivity of the operators to a particular data set. Thus, a similar

set of statistical measures for the usefulness of a particular interpolation method for

multivariate distributions would be useful as well.

Another problem left unsolved is to calculate possible error for non-parametric in-

terpolants. It is likely to be at least approximately the sum of possible error of all the

linear interpolation for sample pairs in the non-parameteric interpolants that comprise

the KDE’s. Once a definition of a PDF gradient is found, there is the application of

finding the largest gradients (distance between interpolators) and showing that possible

error for interpolation is proportional to that interval, as scalar linear interpolation anal-

ysis shows for scalar fields. The primary goal of linear interpolation is to find “least”

distance travel for interpolants. If they are scalar, this is a simple Euclidean line. For

PDF, we are summarizing a population of values (some of which may be vectors).

EVF exhibit variation between member realizations. Aspects in their variation can
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be derived in multiple ways, such as in Finite Time Variance Analysis (FTVA) [23] for

the entire field, using Curve Box-plots [43] for flow through a single location in the

field, or via the methods of chapters 5 and 6. Another possible approach is to consider

all streamlines in the EVF and their intersection with cells of the spatial domain.

This potential algorithm would start with all streamlines seeded at each grid cell

from the EVF. An outline is shown in algorithm 5. A streamline should at least have

the following meta-data: seed grid cell id and a realization id. This is represented with

a three-tuple, i.e. (x,y,member).

foreach streamline in all streamlines do
foreach point on current streamline do

lookup cell containing point and record streamline at cell
end

end

Algorithm 5: Algorithm outline for determining streamlines passing through a cell
in the EVF.

Gathering the three-tuples for each cell is a precomputation step just as streamline

generation, but separate from it. We can then derive various similarity metrics based on

a cell’s list of three-tuples.

More importantly, we can look at the streamline geometry for the set of streamlines

that enter a cell. For example, we could consider the curvature of all streamlines found

entering a cell, in the region of the cell. The higher the variance of the curvature, the

less agreement we have in the EVF at that cell. Even more simply, instead of curvature,

using just the direction vector (could be scalar if 2D flow, i.e. 0 to 360 degrees). This

would allow a check whether there is parallel or crossing flow. It is worth exploring
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various rendering approaches, but as a first step, HyperLIC [87] may allow the capture

of the principal directional flow in a cell for the EVF.
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[63] Kai Pöthkow, Britta Weber, and Hans-Christian Hege. Probabilistic marching

cubes. In Proceedings of the 13th Eurographics / IEEE - VGTC conference on Vi-

sualization, EuroVis’11, pages 931–940, Aire-la-Ville, Switzerland, Switzerland,

2011. Eurographics Association.

[64] K. Potter, A. Wilson, P. Bremer, D. Williams, C. Doutriaux, V. Pascucci, and

C. Johnson. Ensemble-Vis: A framework for the statistical visualization of en-

semble data. In IEEE Workshop on Knowledge Discovery from Climate Data:

Prediction, Extremes., pages 233–240, 2009.

[65] Kristin Potter, Robert M. Kirby, Dongbin Xiu, and Chris R. Johnson. Interac-

tive visualization of probability and cumulative density function. International

Journal for Uncertainty Quantification, 2(4):397 – 412, 2012.

[66] Kristin Potter, Paul Rosen, and Chris R Johnson. From quantification to visu-

alization: A taxonomy of uncertainty visualization approaches. In Uncertainty

Quantification in Scientific Computing, pages 226–249. Springer, 2012.

135



[67] R Development Core Team. R: A Language and Environment for Statistical Com-

puting. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN

3-900051-07-0.

[68] A.L. Read. Linear interpolation of histograms. Nuclear Instruments and Methods

in Physics Research, pages 357–360, 1999.

[69] Wieland Reich and Gerik Scheuermann. Analysis of streamline separation at in-

finity using time-discrete markov chains. Visualization and Computer Graphics,

IEEE Transactions on, 18(12):2140–2148, 2012.

[70] Murray Rosenblatt et al. Remarks on some nonparametric estimates of a density

function. The Annals of Mathematical Statistics, 27(3):832–837, 1956.
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