
UCLA
UCLA Electronic Theses and Dissertations

Title
An Interactive Algorithm for Synchronizing From Burst Deletions

Permalink
https://escholarship.org/uc/item/70r0k5fw

Author
Jiang, Shuyang

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/70r0k5fw
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

An Interactive Algorithm for Synchronizing

From Burst Deletions

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

by

Shuyang Jiang

2018



c© Copyright by

Shuyang Jiang

2018



ABSTRACT OF THE THESIS

An Interactive Algorithm for Synchronizing

From Burst Deletions

by

Shuyang Jiang

Master of Science in Electrical Engineering

University of California, Los Angeles, 2018

Professor Lara Dolecek, Chair

We consider the synchronization between two distant nodes A and B that are connected

through a two-way communication channel. Node A contains file X, and node B contains

file Y that is generated through i.i.d. deletions from X. In previous work, a deterministic

polynomial-time protocol for reconstructing file X at node B is proposed, which has the

order-wise optimal rate and exponentially low probability of error.

In this thesis, we consider the case of burst deletions, which is more applicable in prac-

tical scenario compared with i.i.d. deletions. In order to model this new deletion pattern,

we use a stationary two-state Markov chain. Based on previous protocol, we offer a new

synchronization scheme specifically designed for burst deletion pattern. The experimental

result shows that our proposed protocol works well.

ii



The thesis of Shuyang Jiang is approved.

Jonathan Chau-Yan Kao

Tyson Condie

Lara Dolecek, Committee Chair

University of California, Los Angeles

2018

iii



To my father and mother

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The Burst Deletion Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Existing Protocol Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Matching Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Deletion Recovery Module . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 LDPC Decoder Module . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Protocol Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Matching Module Implementation . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Deletion Recovery Module Implementation . . . . . . . . . . . . . . . 30

4 New Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Matching Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



4.2.1 Correct and Incorrect Matches . . . . . . . . . . . . . . . . . . . . . . 39

4.2.2 Matching Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Burst Deletion Recovery Module . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Synchronizing From A Single Deletion Burst . . . . . . . . . . . . . . 42

4.3.2 Synchronizing From Few Number of Short Deletion Bursts . . . . . . 44

5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Comparison with the Protocol of Yazdi . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1 Summary of Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



LIST OF FIGURES

2.1 The proposed model for generating burst deletion pattern D. Di = 1 means that

the ith bit is deleted, and Di = 0 means that it is not deleted. . . . . . . . . . . 9

2.2 The examples of burst deletion patterns generated by the proposed Markov model

with n = 800 and various (p1, p2). (d,Bd, Bnd) with corresponding parameter set

is listed below each subfigure. The three burst deletion patterns located on the

diagonal subplots share the same average deletion rate. . . . . . . . . . . . . . . 14

2.3 Two examples of the burst deletion pattern generated by the proposed Markov

model. The parameter settings of (p1, p2) for the above one and the below one

are (0.9982, 0.82) and (0.9991, 0.82), respectively. . . . . . . . . . . . . . . . . . 17

3.1 (Yazdi, [14]) Illustration of the synchronization protocol. The original string X is

broken up into segment substrings Si, and pivot substrings Pi. User A sends the

pivot strings to the matching module, which matches them in the deleted string

Y as Pij . Between the matched pivots are the segments F i. It is the goal of the

deletion recovery module to synchronize these strings to the Si. The results are

sent to the LDPC decoder module, which corrects errors introduced in the first

two modules and produces the final reconstructed X̂. . . . . . . . . . . . . . . . 19

3.2 (Yazdi, [14]) Graph G with eight layers of vertices. The horizontal axis indicates

different layers and the vertical axis indicates the position of each vertex in string

Y that can take values from 1 to |Y |. The good and bad vertices are distinguished

by black and white colors, respectively. The first layer has only one vertex s and

the last layer has only one vertex t. As it is seen, all good vertices in the graph

are connected together and they form an s− t path, which is represented by the

dashed edges in the graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 (Yazdi, [14]) A matching graph in the practical setting. The parameters are set

as k = 100, β = 0.01, LS = 100, and LP = 6, 7, 8. Only the edges between

consecutive layers are depicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



3.4 Example of a run on the deletion recovery module, in which L′ and L respectively

denote the length of the string at A and B. At the first iteration (top line),

because L′ − L > 1, B requests a central delimiter from A. This delimiter

is matched on B, and the algorithm goes on recursively on both sides of the

delimiter. Parts of the string that are considered as synchronized are grayed out. 34

4.1 Example of a run on the burst deletion recovery module, in which C is the counter

for each substring. For the left half part, we have a substring with its counter

reaching Tburst = 2.. We invoke the single-deletion-burst synchronization algo-

rithm and request hash. Since hashes matches, we consider it to be synchronized.

For the right half part, there is another substring with its counter reaching Tburst.

However, due to the mismatch of the hashes, we continue to split this substring.

Parts of the string that are considered as synchronized are grayed out. . . . . . 46

viii



LIST OF TABLES

5.1 Comparison of the protocols of ours and Yazdi. X is an i.i.d. Bernoulli(0.5) binary

sequence of length n = 106. The burst deletion pattern, which is generated by

the proposed Markov model with (p1, p2) = (0.82, 0.9982), is applied to get Y .

The pivots have length 6, and the segments have 100. . . . . . . . . . . . . . . . 49

ix



CHAPTER 1

Introduction

Developing efficient algorithms to synchronize between different versions of files is a mean-

ingful problem with numerous applications. We consider a synchronization problem between

two distant nodes A and B that are connected through a two-way, error-free communication

channel. Node A contains a binary file X of length n, and node B contains a binary file Y

that is an edited version of X. The edits may consist of deletions, insertions and substitu-

tions of bits. Usually, the locations of edited bits are unknown to both nodes. We seek to

reconstruct file X at node B in an efficient way. For efficiency, we are mainly concerned with

the number of transmitted bits between the two nodes and the complexity of implementing

the protocol at nodes A and B. Also, as usual, we desire to reconstruct file X at node B

with the error probability that is vanishing when the length of file goes into infinity.

For simplicity, we limit the edits to deletions in the thesis. Below is an example of how

the file Y can be derived from file X by some deletions:

X = 00 1
D

01 1
D

00 0
D

1
D

0101 1
D

1, and

Y = 00010001011,

where deleted bits are denoted by D. We can see that the file Y is obtained from the original

file X by five deletions. The function of file synchronization is to recover the file X at node

B based on the file Y with the minimal amount of exchange information between node A

and node B. It is well known that synchronizing file strings can be viewed as a special case

of the general problem of object reconciliation [1].

1



1.1 Motivation

File synchronization is the subject of many practical applications, including data storage,

file sharing, and cloud applications. For example, as the popularity of cloud computing

grows, many technology companies, such as Google and Dropbox, are required to main-

tain exponentially growing data-storage systems. Because hard drives are prone to failure,

these companies must store many back-up copies of a file. Whenever files are changed, syn-

chronization between the changed file and the back-up copies should be performed. Also,

synchronization tools are necessary in daily devices. Changes made to a pdf file on a laptop

need to be synchronized with the corresponding one on a tablet or smart phone. Further-

more, synchronization tools are useful for video and sound editing, data deduplication, and

DNA sequencing.

A naive approach for synchronization is to simply transmit the entire file X from node A

to node B. However, the two files to be synchronized are usually very similar with inherent

redundancy. So the transmission of the whole file is very inefficient. A simple lower bound of

communication required to synchronize from the edits can be obtained by assuming that node

A knows the locations of the edits in file X. Then, the minimum exchange information is the

contents and positions of the edited bits. Hence, how to design an efficient synchronization

algorithm with the communication bandwidth close to this lower bound is very significant.

1.2 Existing Work

There has already been a large body of research work on synchronization of two remote files.

One kind of previous work has concentrated on synchronizing from a prescribed number

of edits between two files X and Y . In [2], Varshamov and Tenengolts presented a coding

scheme, which can recover from one asymmetric error. Later in [3], Levenshtein built upon

the coding scheme of Varshamov and Tenengolts and showed that Varshamov-Tenengolts

(VT) codes are capable of correcting a single insertion or deletion edit on binary file strings.

It is known that the family of VT codes with checksum parameter a = 0 have asymptotically

2



optimal rate (as the code length goes to infinity) and are conjectured to be optimal in all

cases. Tenengolts [4] altered the construction of the VT code to allow for the correction

of a single insertion or deletion on a non-binary string. Constructions of codes, which are

capable of correcting multiple insertion and deletions, are given in [5] and [6]. However, such

codes have a low rate. In the case of repetion errors, Dolecek [7] presents a code construction

based on a generalization of the VT codes, which is rate optimal.

All of the previously described works are focused on the one-way communication setting.

Instead of performing a one-directional transfer of information, the interaction between t-

wo nodes is introduced for the synchronization algorithms that can correct a fixed amount

of edits. The interaction allows the synchronization to be more efficient in terms of the

bandwidth at the cost of multiple rounds of communication. In [8], Orlitsky established

several fundamental bounds on the minimum number of transmitted bits under a permitted

number of communication rounds for a prescribed edit distance. This work was followed

by a series of works such as [9], [10] and [11], which give explicit protocols for interactive

communication. For the original file of length n with δ number of edits, Cormode [9] offered

an ε-error algorithm with c(ε)δ log3 n total transmitted bits 1, in which c(ε) is a constant

dependent on ε. In [10], Evfimievski gave out a protocol with the number of transimitted

bits polynomial in log n, log 1/ε, and δ. When the number of edits is unknown, Orlitsky

[11] showed that it needs at most δ log n + log 1/ε transimitted bits for the ε-error opti-

mal protocol. An explicit synchronization protocol is also given out in [11], which needs

2δ log n(log n + log log n + log 1/ε + log δ) transmitted bits. Venkataramanan [12] develope-

d a low-complexity synchronization scheme, which can correct δ = o(n/ log n) edits with

near-optimal communication rate. It uses a divide-and-conquer approach to isolate edits

and efficiently split the source sequence into substrings containing exactly one deletion or

insertion. Each of these substring is then synchronized using an optimal one-way algorithm

based on single-deletion correcting codes introduced by Varshamov and Tenengolts [2]. It

needs (4c+ 1)δ log n transmitted bits from node A to node B and 10(δ− 1) transmitted bits

from node B to node A for given positive number c. The authors generalized their results

1All logarithms in this thesis are in base 2.

3



in [13], in which the protocol is modified to deal with more general cases such as bursts,

substitution errors and limited rounds of communication.

More recently, there appears another branch of synchronization algorithms, which focus

on the case where the number of edits is proportional to the length of the file. This setting

is more typical in real world applications. In [14], a deterministic, polynomial-time synchro-

nization scheme is proposed. For this synchronization protocol, the edited file Y is obtained

from the binary uniform source file X by deleting each bit independently with the same small

probability β. It has order-optimal communication rate, polynomial computational complex-

ity and the error probability is exponentially low in the size of X. There are three parts in

the protocol: the matching module, the deletion recovery module and the LDPC decoder, in

which a key component module comes from the previously introduced algorithm proposed by

R. Venkataramanan [12]. Based on [14], several extensions to the synchronization protocol

have been proposed. In [15], F. Sala extended the protocol in [14] in three ways. The files

can be nonbinary and nonuniform instead of being binary uniform. And the edits can be

both insertions and deletions. C. Schoeny [16] introduced an adaptive algebraic code to the

original protocol, in order to increase the effciency in the presence of substitution errors.

Furthermore, the performace of the protocol is evaluated in [17], and significant gains over

a popular Unix utility rsync are reported. In a recent work by Ma [18], achievability bounds

were given on the communication rate for synchronization from deletions. The deletions are

viewed as the output of a Markov process, and hence the number of deletions is linear in the

file length.

In addition, there exist some practical synchronization tools, which are not based on

coding-theoretic ideas. One of such protocols is rsync [19]. This protocol is a UNIX-based

synchronization tool based on an algorithm which uses two hashes, one strong and one

weak. The edited file is split into segments of fixed length, and the rolling hash is applied to

each such segment as well as all consecutive segments in the original file. These hashes are

compared in order to match segments in the original and edited files. Matching segments

are checked for equality using the strong hash. If this hash fails, the entire segment is

sent to the edited version of the file. rsync is very robust and only requires one round of

4



communication. However, it can be in general very inefficient and the number of transmitted

bits can be exponentially larger than the optimal one. There are also some more specialized

synchronization tools, such as vsync [20], which is for the synchronization of video files.

1.3 Our Contribution

For some previous work that is focused on synchronizing from a fixed rate of edits between

two files X and Y , they assume that every bits of X is edited independently with the same

probability. However, in practical scenario, this i.i.d. pattern of edited bits is not applicable.

Burst edits can be a major source of mis-synchronization, as we often edit chunks of a file

rather than isolated bits. In this thesis, we focus on the file synchronization in the case of

burst edits. For simplicity, We let the source file X be binary and uniformly distributed,

and limit the edits to deletions. Possible extensions to the more general case of both burst

deletions and insertions will be discussed at the end of the thesis. In order to model the

burst deletions, we utilize a stationary two-state Markov chain. We will also discuss some

properties of this Markov model in detail, which shows that the proposed Markov chain

is suitable to model the burst deletions. Based on the given properties, we make some

assumptions to simplify our synchronization problem.

In [18], the Markov chain has already been used to model the burst deletions. However,

it does not offer any explicit, deterministic construction for the synchronization protocol.

We try to construct a valid, explicit protocol for synchronizing from burst deletions. Since

the burst deletion pattern destroys the divide-and-conquer approach of isolating deletions

used in [14], this protocol is not efficient any more. However, the framework of the protocol

in [14] is still inspiring for our work. We build our synchronization protocol based on the

work of [14], and the numerical results demonstrate that our proposed protocol works well

with a small communcation rate and lower number of interactive rounds.

The rest of the thesis is organized as follows. In Chapter 2, we present the problem

setting and discuss some useful properties of the proposed Markov chain model. In order to

simplify the synchronization problem in burst deletion setting, some assumptions are made.

5



In Chapter 3, we give out a review of the protocol in [14] by introducing the main purpose

of each module. In addition, we delve deeper into specific implementation details of the

protocol and some relevant mathematics behind the algorithm. Then, in Chapter 4, our new

synchronization protocol, which is designed for the case of burst deletions modeled by the

Markov chain, is presented. Chapter 5 contains some experiment results, which demonstrate

that our protocol works well. And the conclusion and some furture work is given in Chapter

6.

6



CHAPTER 2

Problem Setting

In this chapter, we formally state our problem for the synchronization from burst deletions.

Besides, in order to mathematically model the burst deletions, a stationary two-state Markov

chain is used. We also give out several useful properties of this mathematical model. From

these properties, we can see that the stationary Markov chain is a proper model to generate

the burst deletions. To highlight the main ideas and keep the exposition simple, we focus

on the case where the file that need to be synchronized is a binary sequence. The extension

to larger discrete alphabets is very straightforward.

2.1 Problem Statement

We first introduce some notations that need to be used throughout the thesis. We represent

a binary file string X of length n by X = (X1, X2, ..., Xn), in which Xi ∈ {0, 1}. For

1 ≤ i ≤ j ≤ n, X(i, j) is the substring (Xi, Xi+1, ..., Xj) of X. For a file string X, we let |X|

denote the length of X.

The deletion channel is a channel that can delete any subset of the bits of the input file

string. We let X and Y be the input and the output of the deletion channel respectively.

The set of deleted bits from the input file string is represented by a binary vector D =

(D1, D2, ..., Dn) of length |X|. We call D the deletion pattern. If Xi is deleted from X, we

have that Di = 1 and otherwise Di = 0. In this thesis, we consider the case of burst deletion

pattern, which tends to have bursts of consecutive 1’s. Below is an example of how the

output file string Y is generated from the input file string X and the burst deletion pattern

D.

7



Example 1. We have a file string X = (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0), and the burst deletion

pattern D = (0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0). Then we get the output file string Y (X,D) =

(1, 0, 1, 0, 0, 0).

At last, we give out the problem of file synchronization from burst deletions as follows:

Let node A contain a file that is represented by a binary string X of length n. Node B,

which is far away from node A, contain a file string Y of length m. Y is the output of a

deletion channel with input X and burst deletion pattern D. The burst deletion pattern

is unknown to both nodes A and B. That means that we do not know the contents and

positions of the deleted bits. We suppose that the source file string X is generated by an

i.i.d. Bernoulli source of parameter 1
2
, i.e., P (Xi = 1) = 1−P (Xi = 0) = 0.5. And the burst

deletion pattern is mathematically modeled as a stationary two-state Markov chain, which

will be discussed in detail in Section 2.2. We are interested in a synchronization algorithm

on a two-way, error-free channel between nodes A and B so that node B can recover file

string X from Y with a small probability of error at the end of the communication.

Next, we will discuss how to use a stationary two-state Markov chain as a mathematical

model for the desired burst deletion pattern.

2.2 The Burst Deletion Pattern

In practical applications, the deleted bits in the file string X usually appear in bursts.

In order to model this burst deletion pattern D = (D1, D2, ..., Dn), we use a stationary

two-state Markov chain. The transition probabilities P (Di = 0|Di−1 = 0) = 1 − P (Di =

1|Di−1 = 0) = p1, and P (Di = 1|Di−1 = 1) = 1 − P (Di = 0|Di−1 = 1) = p2, for al-

l i = 2, 3, ..., n. Hence, the transition matrix of the Markov chain is denoted as T =P (Di = 0|Di−1 = 0) P (Di = 0|Di−1 = 1)

P (Di = 1|Di−1 = 0) P (Di = 1|Di−1 = 1)

 =

 p1 1− p2

1− p1 p2

. D1 follows the stationary

distribution of the Markov chain, i.e., P (D1 = 1) = 1− P (D1 = 0) = (1− p1)/(2− p1 − p2).

The schematic diagram of this Markov chain model is shown in Figure 2.1. From the defi-

nitions of p1 and p2, we know that both of p1 and p2 should be very close to 1 to make the

8



D0 = 0 D1 = 0

D1 = 1

D2 = 0

D2 = 1

p1

p2

1  p2

1  p1

D3 = 0

D3 = 1

p1

p2

1  p2

1  p1

DL = 0

DL = 1

p1

p2

1  p2

1  p1

2

1 2

1

2

p

p p



 

1

1 2

1

2

p

p p



 

Figure 2.1: The proposed model for generating burst deletion pattern D. Di = 1 means that

the ith bit is deleted, and Di = 0 means that it is not deleted.

deleted bits appear in bursts.

Next, we will show some properties of the proposed Markov chain model for the burst

deletion pattern, which are useful for the mathematical analysis in later sections.

2.2.1 Properties

In some of previous works, the deletion pattern is the i.i.d. deletion pattern, which assumes

that every bit of input file string X is deleted independently and with probability β � 1.

From the property given below, we see that the i.i.d. deletion pattern can be also modeled by

our stationary two-state Markov chain model under some appropriate parameter selections.

Property 1. If 1 − p1 = p2 = β, the deletion pattern modeled by the proposed stationary

Markov chain model is i.i.d. deletion pattern with deletion probability β.

Proof. According to the definition of Markov model,

P (Di = 1) = P (Di = 1|Di−1 = 0)P (Di−1 = 0) + P (Di = 1|Di−1 = 1)P (Di−1 = 1)

= (1− p1)P (Di−1 = 0) + p2P (Di−1 = 1)

= β(P (Di−1 = 0) + P (Di−1 = 1))

= β = P (Di = 1|Di−1 = 0) = P (Di = 1|Di−1 = 1)

9



Similarly, we can get that

P (Di = 0) = P (Di = 0|Di−1 = 0)P (Di−1 = 0) + P (Di = 0|Di−1 = 1)P (Di−1 = 1)

= p1P (Di−1 = 0) + (1− p2)P (Di−1 = 1)

= (1− β)(P (Di−1 = 0) + P (Di−1 = 1))

= 1− β = P (Di = 0|Di−1 = 0) = P (Di = 0|Di−1 = 1)

Hence, P (Di) = P (Di|Di−1). Di is independent with Di−1, and they have the same distri-

bution with P (Di = 1) = 1− P (Di = 0) = β.

Remark 1. From Property 1, the proposed Markov chain model is suitable to generate both

the i.i.d. deletion pattern and the burst deletion pattern. However, the selection for parame-

ters p1 and p2 is different. For the i.i.d. deletion pattern, we have that 1− p1 = p2 = β � 1.

In contrast, for the burst deletion pattern, the parameters p1 and p2 should satisfy that

1− p1 � 1 and 1− p2 � 1. The main difference is about p2. In the i.i.d. deletion pattern,

every bit is deleted independently with a small probability β. Hence, the deleted bits should be

uniformly distributed in the whole file string. It is unlikely that two deleted bits are adjacent,

which means that p2 is very small. However, for the burst deletion pattern, many deleted

bits are adjacent to each other. So the parameter p2 should be very close to 1.

The next property demonstrates why the proposed Markov model is a good choice for

the burst deletion pattern. In statistics, the Ising model [22], which is a prototypical Markov

random field, is often used to generate a class of signals with nonzero entries distributed in

bursts. Since our Markov chain model is one-dimensional, we only consider one-dimensional

Ising model here. For a signal x ∈ Rn, its support is s = sp(x) ∈ {−1, 1}n, in which si = −1

for xi = 0 and si = 1 for xi 6= 0. Then, if s is distributed based on a one-dimensional Ising

model, its probablity density function (pdf) is as follows:

p(s;λ, λ′) = exp

{
n−1∑
i=1

λ′isisi+1 +
n∑
i=1

λisi − Zs(λ, λ
′)

}
, (2.1)

in which λ′i > 0 denotes the contribution from the relation of two adjacent entries si, si+1,

λi is the contribution of every si, and Zs(λ, λ
′) is a strictly convex function with respect to

10



λ and λ′ that normalizes the distribution so that it integrates to one. In general, the pdf of

the Ising model will be much large when s have bursts of consecutive −1’s and 1’s. Then,

we have the following property:

Property 2. The proposed Markov chain model for burst deletion pattern is a special case of

the Ising model. Specifically, when the support s in the Ising model and the deletion pattern

D in the proposed Markov chain model have the following mapping relation

si =

 1, Di = 1

−1, Di = 0

and the parameters of the Ising model is set as

λi =

 1
4

ln p2(1−p1)
p1(1−p2)

, i = 1, n;

1
2

ln p2
p1
, i = 2, ..., n− 1,

λ′i =
1

4
ln

p1p2

(1− p1)(1− p2)
, i = 1, ..., n− 1,

the Ising model degenerates to the proposed Markov chain model, which is equipped by concise

and meaningful parameters.

Proof. First, we define bi = exp(λ′i) and ai = exp(λi), and rewrite the pdf of the one-

dimensional Ising model (2.1) as

p(s; a,b) = C
n−1∏
i=1

b
sisi+1

i

n∏
i=1

asii (2.2)

Then from the definition of the proposed Markov chain model, it is also known that

p(s1) =


1−p2

2−p1−p2 , s1 = −1;

1−p1
2−p1−p2 , s1 = 1,

(2.3)

p(si = −1|si−1 = −1) = p1, i = 2, 3, ..., n (2.4)

p(si = 1|si−1 = 1) = p2, i = 2, 3, ..., n (2.5)

Our goal is to get the expressions of ai’s and bi’s and make (2.2) equal to (2.3), (2.4) and

(2.5). We first consider ai’s and bi’s for i = 2, 3, ..., n− 1.

11



for any three consecutive bits (si−1, si, si+1), we change its value from (−1, 1,−1) to

(−1,−1,−1). Then (2.2) is a−2
i b2

i b
2
i−1 times of its original value. From (2.3), (2.4) and (2.5),

we get that

a−2
i b2

i b
2
i−1 =

p2
1

(1− p1)(1− p2)
(2.6)

Similarly, we change (si−1, si, si+1) from (1,−1, 1) to (1, 1, 1), we have that

a2
i b

2
i b

2
i−1 =

p2
2

(1− p1)(1− p2)
(2.7)

Comparing the above two equations (2.6) and (2.7), we can derive that a4
i = p2

2/p
2
1, i.e.,

ai =
√
p2/p1 (for i = 2, 3, ..., n − 1). We further change (si−1, si, si+1) from (−1, 1, 1) to

(−1,−1, 1), it is known that

a−2
i b−2

i b2
i−1 =

p1

p2

(2.8)

Comparing (2.6) and (2.8), it can be seen that b4
i = p1p2/(1 − p1)(1 − p2), i.e., bi =

4
√
p1p2/(1− p1)(1− p2) (for i = 2, 3, ..., n− 1).

Following the similar approach, we can change the value of (s1, s2) and (sn−1, sn) and

get the expressions of a1, an and b1. After getting all the ai’s and bi’s, it can be easily

verified that (2.2) is always consistent with (2.3), (2.4) and (2.5). Hence, the Ising model is

equivalent to the proposed Markov chain model in this case.

Remark 2. In general, the parameters of the Ising model λ, λ′ are not unknown. Some

literature utilizes some statistical methods to decide these two parameters. By our proposed

Markov chain model, we use p1 and p2 to decide the unknown parameters λ, λ′ in the Ising

model, and hence can get the burst deletion pattern with high probability.

Then, we need to investigate how the parameters p1 and p2 in the Markov chain model

affect the overall deletion rate and the average length of bursts of non-deleted bits and

deleted bits. The following property answers this question, which is as follows:

Property 3. For the burst deletion pattern generated by the proposed Markov model, the

average deletion rate, the average length of bursts of non-deleted bits and deleted bits, which

12



are denoted by d, Bnd, and Bd respectively, follow

d =
1− p1

2− p1 − p2

, (2.9)

Bnd =
1

1− p1

, (2.10)

Bd =
1

1− p2

(2.11)

Proof. Since the proposed Markov model is already in the steady state, the probability of

Di = 1 for i = 1, 2, ..., n can be gotten as (1− p1)/(2− p1 − p2). That means that every bit

has the probability of (1 − p1)/(2 − p1 − p2) to be deleted on average. Then, the average

deletion rate for the whole file string is still (1− p1)/(2− p1 − p2).

Next, we show how the average length of bursts of non-deleted bits and deleted bits Bnd

and Bd are derived. For the probability of the length of a burst of deleted bits being l, which

is denoted as P (Bd = l), we can have the following equations:

P (Bd = l) = P (Bd = l − 1) ∗ p2

Then we also know that the sum of P (Bd = l) for all l = 1, 2, ... is 1, i.e.,

+∞∑
l=1

P (Bd = l) = 1

From the above two equations, we know that the length of a burst of deleted bits follows

a geometric distribution P (Bd = l) = (1 − p2)pl−1
2 . Hence, the average length of bursts of

deleted bits Bd is 1/(1− p2).

Similarly, we can know that the probability of the length of a burst of non-deleted bits

being l, which is denoted as P (Bnd = l), satisfies the following two equations:

P (Bnd = l) = P (Bnd = l − 1) ∗ p1

+∞∑
l=1

P (Bnd = l) = 1

We can also get that the length of a burst of non-deleted bits still follows a geometric

distribution P (Bnd = l) = (1− p1)pl−1
1 . And the average length of bursts of non-deleted bits

Bnd is 1/(1− p1).

13



0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D
0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

0 200 400 600 800

index

0

1

2

D

p
1

p
2

0.82

0.98

0.955

0.99 0.995

(0.027,5.6,200)

(0.182,11.1,50) (0.1,11.1,100) (0.053,11.1,200)

(0.053,5.6,100)

(0.308,22.2,50) (0.1,22.2,200)

(0.1,5.6,50)

(0.182,22.2,100)

0.91

Figure 2.2: The examples of burst deletion patterns generated by the proposed Markov

model with n = 800 and various (p1, p2). (d,Bd, Bnd) with corresponding parameter set

is listed below each subfigure. The three burst deletion patterns located on the diagonal

subplots share the same average deletion rate.

Several examples of burst deletion pattern generated by n = 800, and various (p1, p2)

are shown in Figure 2.2. Inside every row and every column, the average burst length of

deleted and non-deleted bits increase, respectively, with respect to p2 and p1. Moreover, the

three burst deletion patterns located on the diagonal subplots satisfy d = 0.1 and have 80

expected deleted bits.

At last, we will present a property of the Markov chain model, which tells us how to get

the probability of δ deleted bits within L consecutive bits.

Property 4. For a burst deletion pattern generated by the proposed Markov model, within

14



any L consecutive bits, the probability of the number of deleted bits ∆L = δ is

P (∆L = δ) =



1− p2

2− p1 − p2

pL−1
1 δ = 0

1

(2−p1− p2)(1−p1)

(
QL−δ,δ + 2(1− p1− p2)QL−δ−1,δ

+ (1− p1− p2)2QL−δ−2,δ

)
1 ≤ δ ≤ L

(2.12)

where

Qj,m =


(1− p1)m+1

m−1∑
n=0

(
m− 1

n

)(
m+ j − n
m− n

)
(
p1 + p2 − 1

1− p1

)n(1− p2)m−1−npj−m+1
1 j ≥ 0

0 j < 0

(2.13)

When 1−p1 = p2 = β, the deletion pattern generated by the proposed Markov model becomes

i.i.d. with deletion rate β (This can be seen from Property 1). And (2.12) is equivalent to

P (∆L = δ) =

(
L

δ

)
βδ(1− β)L−δ, (2.14)

which is the probability of δ deleted bits with L consecutive bits in the i.i.d. deletion pattern.

Proof. We denote the deletion pattern for any consecutive L bits as (Di, Di+1, ..., Di+L−1).

When the number of deleted bits ∆L is 0, we can easily get that

P (∆L = 0) = P (Di = 0) P (Di+1 = 0|Di = 0) ... P (Di+L−1 = 0|Di+L−2 = 0)

=
1− p2

2− p1 − p2

p1...p1

=
1− p2

2− p1 − p2

pL−1
1

However, for the case that ∆L > 0, the derivation becomes very complicated. We omit the

complete proof here. For more details, please refer to [21]. When 1 − p1 = p2 = β, we just

insert p1 and p2 into (2.12) and the result of (2.14) can be easily derived.

Above all, we find that the proposed Markov model for the burst deletion pattern has

many useful properties. From property 2, it shows that the Markov model is suitable to

generate the desired burst deletion pattern. There are still topics need to be studied on the

15



stationary two-state model. For example, it is important to build the relation between the

model and the real-world deletion patterns, and to estimate the parameters p1 and p2 from

specific scenario. However, this is beyond the scope of this thesis and is not included.

2.2.2 Assumptions

In order to simplify the file synchronization problem, we make two assumptions for the burst

deletion pattern:

(1) The length of every burst of deleted bits should be small (e.g., any length between 2

and 10 should be fine).

(2) The average percentage of the deleted bits is small (e.g., it might be 0.005, 0.01).

For assumption (1), it should be satisfied that 1/(1−p2) is a small positive number (e.g.,

a number smaller than 10). This can be seen from Property 3. In Property 3, we know that

the average length of bursts of deleted bits Bd = 1/(1 − p2). And the length of a burst of

deleted bits follows a geometric distribution. Hence, the length of most bursts of deleted

bits should be around 1/(1− p2). There are more bursts with length smaller than 1/(1− p2)

than bursts with length larger than 1/(1− p2). As for assumption (2), still from Property 3,

we get that the average percentage of the deleted bits is (1− p1)/(2− p1 − p2). This means

that 1− p1 � 1− p2.

Hence, due to the above two assumptions, we have the following requirements for the

parameters p1 and p2 of the proposed Markov model.

(1) p2 should satisfy that 1/(1− p2) is a positive number smaller than 10.

(2) For every fixed p2 (i.e., the average length of deletion bursts is constant), we consider

the case of various p1, which satisfies that 1− p1 � 1− p2.

At the last of this subsection, we gave out two examples of the burst deletion pattern,

which are generated by the proposed Markov model and satisfy the above two requirements

for the parameters. We first set (p1, p2) as (0.9982, 0.82). In this case, we have that 1/(1−
16



0 200 400 600 800 1000
Index

0

0.5

1

D

0 200 400 600 800 1000
Index

0

0.5

1

D

Figure 2.3: Two examples of the burst deletion pattern generated by the proposed Markov

model. The parameter settings of (p1, p2) for the above one and the below one are

(0.9982, 0.82) and (0.9991, 0.82), respectively.

p2) = 5.56 < 10 and 1 − p1 � 1 − p2. The average deletion rate is 0.01. One example of

the deletion pattern in this setting is shown in the above subfigure of Figure 2.3. It can

be seen that there are 3 deletion bursts, which are located at [45, 46, 47, 48, 49, 50, 51, 52],

[346] and [588, 589, 590, 591, 592]. All of the deletion bursts are of small length. And only a

small percentage of bits are deleted. Then, we change the setting of (p1, p2) to (0.9991, 0.82),

which still satisfies the two requirements for p1 and p2. At this time, the average deletion

rate becomes 0.005. The example is shown in the below subfigure of Figure 2.3. There are

2 deletion bursts located at [789, 790, 791] and [862, 863, 864].

17



CHAPTER 3

Existing Protocol Review

Since the synchronization protocol in [14] is very inspiring for the construction of the new

protocol, we present a review of the synchronization protocol in [14] before the new syn-

chronization algorithm is formally introduced. This protocol is consist of three modules: the

matching module, the deletion recovery module, and the LDPC decoder module. We first

take an overview of these three modules to know their individual roles in the whole synchro-

nization protocol. Also, some theoretical results are given out, which guarantee that the

protocol has order-optimal rate and its bit error probability is exponentially small in the size

of X. Then, by inspecting each module in more details, we will have a deeper understanding

of their implementation.

The problem setting of the synchronization protocol in [14] is same with ours, except for

the only difference in deletion pattern. In [14], the deletion pattern is i.i.d., which means

that every bit of the source file X is deleted independently and with the same probability

β � 1. Hence, the deleted bits are expected to be distributed uniformly in the whole file

string. The purpose of the synchronization protocol is to efficiently divide the files X and

Y into matching correlated segments so that each of matching segments only contain one

deletion. Then each matching segment can be synchronized by VT codes.

3.1 Protocol Overview

In this section, we provide an overview of the synchronization protocol. A graphical illus-

tration of this protocol is presented in Figure 3.1. We can see that there are three modules

within the protocol: the matching module, the deletion recovery module, and the LDPC

18



Figure 3.1: (Yazdi, [14]) Illustration of the synchronization protocol. The original string X

is broken up into segment substrings Si, and pivot substrings Pi. User A sends the pivot

strings to the matching module, which matches them in the deleted string Y as Pij . Between

the matched pivots are the segments F i. It is the goal of the deletion recovery module to

synchronize these strings to the Si. The results are sent to the LDPC decoder module, which

corrects errors introduced in the first two modules and produces the final reconstructed X̂.

decoder module. These three module work in series, such that the input to the first module

is string Y and the output of the last module is the estimate X̂ of string X. There is no

interactivity between the two nodes for the matching module and the LDPC decoder module.

The interactivity only occurs in the deletion recovery module.

To begin, node A divides the file X into segment substring Si(1 ≤ i ≤ k) and pivot

19



substring Pi(1 ≤ i ≤ k − 1). Hence, the source file X is partitioned as follows:

X = S1, P1, S2, P2, ..., Sk−1, Pk−1, Sk,

where |Pi| = LP and |Si| = LS. We set LS = 1/β and LP = O(log(1/β)), and both nodes

A and B know the exact values of LS and LP . Note that the length of a pivot string LP is

much smaller than the length of a segment string LS. The length of the segment string LS

is selected in such a way that the expected number of deletions within each segment string

is on the order of 1. For the pivot string, its length is selected to be short enough that with

high probability they do not contain any deletions, but long enough to ensure that there are

very few copies of the pivots in the whole file string.

3.1.1 Matching Module

The first step of the synchronization protocol is performed by the matching module at node

B. As we can see from Figure 3.1, node A sends pivot strings P1, P2,..., Pk−1 to node B in

sequential order. After receiving all the pivot strings, the matching module attempts to find

the exact copies of Pi’s within file Y . There are three possible outcomes for each of the Pi’s:

(1) The matching module is able to successfully find the match corresponding to Pi in file

Y ;

(2) Any match for Pi is not found by the maching module;

(3) A match which does not correspond to the transmitted Pi is erroneously found.

We see that there are two cases for the unsuccessful match of Pi. The case of no matching

of Pi is due to the possible deletions within the pivot string. For the other case, it is because

that there are multiple matches for a pivot and it is not very apparent which match is the

correctly matched one. Hence, the matching module is responsible for resolving ambiguities

of multiple matches, and uses a graph-theoretic approach to find the most likely matches of

the pivot strings in Y based on the fact that the pivot strings were sent in order from file X.

20



Since the matching module is only able to find the matches for a subsets of Pi’s, we

denote these Pi’s as Pi1 , ..., Pik′−1
, 1 ≤ i1 < i2 < ... < ik′−1 ≤ k − 1, where k′ ≤ k. Based on

the positions of matched Pi’s, the matching module divides file Y into substrings as

Y = F 1, Pi1 , F 2, Pi2 , ..., F k′−1, Pik′−1
, F k′ .

The indices of matched pivots {i1, ..., ik′−1} are then sent back to node A 1, which accordingly

divides file X into

X = F1, Pi1 , F2, Pi2 , ..., Fk′−1, Pik′−1
, Fk′ ,

where Fj is the substring between pivot Pij−1
and Pij in X and can be written as

Fj = Sij−1+1, Pij−1+1, ..., Pij−1, Sij .

Notice that if Pij−1
and Pij are matched correctly in Y , F j can be derived from Fj by some

deletions. The detailed implementation of the matching module will be discussed in Section

3.2.1.

3.1.2 Deletion Recovery Module

After the matching of pivots between file X and Y , the problem of synchronizing the long

string Y with X is divided into multiple simpler problems of synchronizing F j with the

corresponding Fj. The goal of the deletion recovery module is to correct all the deletions

in the segment string Fj. In order to finish this, it uses the synchronization protocol of

Venkataramanan [12].

The key element of this synchronization protocol is the use of VT codes, which allows

us to correct a single insertion or deletion in a binary string. The algorithm uses a divide-

and-conquer approach. Every time we get an unsynchronized substring in Y , we compare

its length with the corresponding substring in X. if they have the same length, we assume

that they are synchronized. If their lengths differ by one, we just use the VT code to finish

the synchronization. If the difference of their lengths is larger than one, the synchronization

1In practice, in order to make the interactive communication only occur at the deletion recovery module,
we put off the sending of indices to the next module.

21



by using VT code is not possible. In this case, we divide this substring into two smaller

substrings. This divide-and-conquer approach can iteratively reduce the size of the matched

substrings until they can be synchronized by the VT code.

At the end of this step, the estimates of all Fj’s are formed based on the corresponding

F j’s. We denote these estimates of Fj’s as F̃j’s. Note that the length of F̃j is the same as

that of Fj. Then, an estimate of the source file X is gotten as:

X̃ = F̃1, Pi1 , F̃2, Pi2 , ..., F̃k′−1, Pik′−1
, F̃k′ .

This X̃ is the final output of the deletion recovery module, and will be sent to the next

module. We can see that X̃ has the same length as the source file X. The algorithm for the

implementation of this module will be explained with more details in Section 3.2.2.

3.1.3 LDPC Decoder Module

At the last step, the LDPC decoder module at node B, corrects any errors made in the

first two modules. There are two types of such errors. First, it is possible that the matching

module matches a pivot Pi at a wrong position due to multiple copies of this pivot in Y . If this

case occurs, substring F j and F j+1 may differ from the corresponding Fj and Fj+1 by a very

large number of deletions. Then, the synchronization protocol of Venkataramanan will not

work well and have a large error rate. Consequently, F̃j and F̃j+1 may be very different from

Fj and Fj+1, respectively. In addition, even two neighboring pivots are properly matched,

the synchronization algorithm for the deletion recovery module is not error-free. It is possible

for the algorithm to conclude that two substrings are synchronized when in fact they are

not.

Suppose that the total error of the first two synchronization modules is bounded by ζ,

i.e.,

P (F̃j 6= Fj) ≤ ζ.

Since the error rate over substring F̃j is an upper bound for the bit error rate of file X, we

can get that

P (X̃(i) 6= X(i)) ≤ ζ. (3.1)

22



In order to recover from errors of X̃, we use an LDPC decoder, which receives parity check

bits of a systematic LDPC code from node A. To avoid a potential nonuniformity of errors

over different bits of X̃, we can apply a random permutation π and its inverse permutation

π−1 at the input and the output of the LDPC decoder, respectively. Then, if the bit error

rate is bounded as (3.1) and a sufficient number of parity check bits are sent to the LDPC

decoder module, the output of the decoder will get a string X̂ with

P (X̂(i) 6= X(i)) ≤ 2−Ω(n),

which means that the bit error rate is exponentially small in the size of file X.

So far, we have taken an overview of the synchronization protocol in [14]. Next, we will

present some theoretical results, which demonstrates that the protocol has order-optimal

rate and very small bit error rate.

3.1.4 Theoretical Results

In [14], the author gave out the following theorem:

Theorem 1 (Yazdi, [14]). There exists a deterministic synchronization protocol between

nodes A and B on a two-way, error-free channel, that on average transmits O(nβ log 1
β
) bits

and generates an estimate X̂ = X̂(1), ..., X̂(n) of X at node B, such that P (X̂(i) 6= X(i)) ≤

2−Ω(n) for every 1 ≤ i ≤ n.

The main contribution of [14] is to prove the above theorem. The result is very remark-

able, since it proves that the protocol is optimal within a constant multiplicative factor for

the case of i.i.d. deletion pattern. From the perspective of information theory, it is known

that the optimal number of bits needed for the general problem of reconstructing a string X

given a string Y is the conditional entropy of X given Y : H(X|Y ). By applying the result of

[18] to i.i.d. deletion pattern, for a small value of β, the entropy H(X|Y ) can be estimated

as

H(X|Y ) = n(β log
1

β
+O(β)).

23



Therefore, any optimal synchronization protocol would need at least n(β log 1
β

+O(β)) trans-

mitted bits, thus showing the optimality of our protocol. However, to achive the rate specified

in the theorem, we need to know the parameter β ahead of time, which is not practical in

real world applications.

In [15], the authors generalized the scenario in [14] in three way. First, both insertions

and deletions are allowed for the edit channel (In [14], only deletion are allowed). Second,

the file X is no longer binary. Every symbol within file X comes from a general alphabet

|χ| = Q. Third, the symbols within the file X is not drawn from χ uniformly. They can be

drawn based on any generic distribution µ(x). Although this thesis also considers the case

of deletion-only edits, the theoretical results of [15] might be still inspiring for the extension

of our work. We give out the main theoretical result of [15] as follows:

Theorem 2 (Sala, [15]). In the problem setting involving files selected according to i.i.d.

(not necessarily uniform) distributions over arbitrary alphabets with fixed collision entropy

H2 > 0 affected by insertions and deletions, there exists a deterministic synchronization

protocol between users A and B on a two-way, error-free channel, that on average transmits

O( nq
H2
β log 1

β
) bits and generates an estimate X̂ = X̂(1), ..., X̂(n) of X at user B, such that

P (X̂(i) 6= X(i)) ≤ 2−Ω(n) for every 1 ≤ i ≤ n.

In the above theorem, H2 = − log
∑

x µ
2(x) is the collision entropy of string X, which

denotes the probability of two independent samples of µ(x) being equal. q is defined as

q = dlogQe. And β represents the total rate of edits, which is the sum of the rate of

insertions and deletions. Same with [14], to achieve this optimal communication rate requires

the knowledge of β in advance.

3.2 Protocol Implementation

In this section, we will take a closer look at the implementation details of the matching

module and the deletion recovery module.

24



3.2.1 Matching Module Implementation

The task of the matching module is to detect correct matches of Pi’s within the file Y . In

[14], a graph theoretic method is used to construct this module. The method make use of

a matching graph to get the matches of pivots. Before we formally introduce this matching

graph, we need to define the concepts of correct and incorrect matches.

3.2.1.1 Correct and Incorrect Matches

For each pivot string Pi in the file X, the deletion patterns that acts on them might be

different. Hence, we consider the following three cases:

(1) There is no deletion within Pi. In this case, the corresponding copy of Pi within file Y

is the correct match of Pi. All other copies of Pi in Y are considered incorrect matches

of Pi.

(2) There is at least two deletions within Pi. For this case, all copies of Pi within file Y

are considered incorrect matches.

(3) There is exactly one deletion within Pi. If this deletion can be seen as a deletion in the

neighboring segment string and no deletion in Pi (i.e., the deletion can be ”moved” to

the neighboring segment string), we call the corresponding copy of Pi in Y a correct

match of Pi and all other copies of Pi are incorrect matches of Pi. If this deletion can

not be ”moved” to the neighboring segment string, all copies of Pi within Y are called

incorrect matches.

For the cases of no deletion and at least two deletions, the definition of correct and incorrect

matches is very natural. Next, we will explain the definition of correct and incorrect matches

for the case of exact one deletion in more detail. Let us take a look at the following three

examples.

Example 2. in X, we have ..., 1,
∣∣∣0, 1, 1, 0, 1, 0,×0, 0,

∣∣∣︸ ︷︷ ︸
Pi

0, ..., in which the penultimate bit is

25



deleted from Pi. Then, in Y , we get the corresponding substring as ..., 1,
∣∣∣0, 1, 1, 0, 1, 0, 0, ∣∣∣0,︸ ︷︷ ︸

Pi

....

We can see that the deletion within Pi can (only) be moved to the segment string that is af-

ter Pi. Hence, there is one correct match for Pi. All the other copies of this Pi in Y are

considered as incorrect matches.

Example 3. in X, we have ..., 0,
∣∣∣0, 0, 0, 0, 0, 0,×0, 0,

∣∣∣︸ ︷︷ ︸
Pi

0, ..., in which the penultimate bit is

deleted from Pi. Then, in Y , we get the corresponding substring as ..., 0,
∣∣∣0, 0, 0, 0, 0, 0, 0, ∣∣∣0,︸ ︷︷ ︸

Pi

...

(or ..., 0,
∣∣∣0, 0, 0, 0, 0, 0, 0, ∣∣∣︸ ︷︷ ︸

Pi

0, ...).

We can see that the deletion within Pi can be moved to the segment string that is after Pi or

the segment string that is before Pi. In this case, there are two correct matches for Pi. All

the other copies of this Pi in Y are considered as incorrect matches.

Example 4. in X, we have ..., 1,
∣∣∣0, 1, 1, 0, 1, 0,×0, 0,

∣∣∣︸ ︷︷ ︸
Pi

1, ..., in which the penultimate bit is

deleted from Pi. Then, in Y , we get the corresponding substring as ..., 1,
∣∣∣0, 1, 1, 0, 1, 0, 0, ∣∣∣1, ....

It can seen that the deletion within Pi can not be moved to the neighboring segment string.

Hence, there is no correct match for Pi.

Notice that there might be zero, one or two correct matches for Pi in the case of exact one

deletion within Pi. In the case of at least two deletions within Pi, it might still be possible

to move the deletions from Pi to the neighboring segment string. However, the probability

of these cases is very small and hence we count these matches as incorrect matches.

At last, we present some theoretical results about the occurrence of correct matches for

Pi’s. Defining R = 1− LPβ + 2β, we have the following three theorems.

Theorem 3 (Yazdi, [14]). For a random string X and a random deletion pattern D, on

average, the number of pivots with at least one correct match in Y is (R + o(β))k.

Theorem 4 (Yazdi, [14]). For a random string X and a random deletion pattern D, with

probability 1− 2−Ω(n), there are (R + o(β))k pivots with at least one correct match in Y .

26



Theorem 5 (Yazdi, [14]). For a random string X and a random deletion pattern D, with

probability 1− 2−Ω(n), there are o(β)k pivots with two correct matches in Y .

From the above theorems, we can get that most of Pi’s has at least one correct match.

This inspire us to construct an efficient matching module, which can detect the correct

matches of these Pi’s.

3.2.1.2 Matching Graph

Now, we begin to construct the matching graph. We define a graph G(V,E) which has k+ 1

layers of vertices denoted as Λ0,Λ1, ...,Λk. Each vertex in layer Λi, 1 ≤ i ≤ k−1, represents a

match of pivot Pi in Y . We further introduce two auxiliary vertices s and t, where Λ0 = {s}

and Λk = {t}. Vertices s and t represent the start and the end of string Y , respectively.

We call a vertex in Λi a good (bad) vertex if it corresponds to a correct (incorrect) match

of Pi within Y . In order to detect the correct matches of Pi’s, we need to find good vertices

in graph G. For that, we define an edge set E such that the good vertices are distinguished

by their connectivity in the graph.

For two vertices u ∈ Λi and v ∈ Λj with i < j, we define the distance between u and v,

which is denoted as Dis(u, v), as the number of bits between the matches of two pivots that

correspond to u and v. Since the edits are limited to deletions, the distance between any

two good vertices u and v are at most (j − i− 1)LP + (j − i)LS. Also, it can be easily seen

that the least value of the distance between two good vertices u and v is −1.

Hence, we get the edge set E of graph G as follows. For any two vertices u ∈ Λi and

v ∈ Λj with i < j, we connect these two vertices if and only if

−1 ≤ Dis(u, v) ≤ (j − i− 1)LP + (j − i)LS. (3.2)

Therefore, all pairs of good vertices from different layers are connected together. By defini-

tion, we know that s and t are auxiliary good vertices. Hence, good vertices across different

layers form an s-t path in graph G. Nevertheless, there are potentially many other pairs of

vertices that satisfy the condition (3.2) and are connected together. An example of graph G

27



Figure 3.2: (Yazdi, [14]) Graph G with eight layers of vertices. The horizontal axis indicates

different layers and the vertical axis indicates the position of each vertex in string Y that

can take values from 1 to |Y |. The good and bad vertices are distinguished by black and

white colors, respectively. The first layer has only one vertex s and the last layer has only

one vertex t. As it is seen, all good vertices in the graph are connected together and they

form an s− t path, which is represented by the dashed edges in the graph.

with eight layers and its edge set defined by (3.2) is shown in Figure 3.2.

In [14], the authors prove that any s− t path of appropriate length in grapg G is formed

mostly of good vertices with a very high probability, which is stated as follows:

Theorem 6 (Yazdi, [14]). Let X be a random input string to a deletion channel and D

be a random deletion pattern. Let Y be the string obtained from X and D. Let G denote

the matching graph corresponding to Y . Then, for LP ≥ 11 + 2 log 1
β

, with probability at

least 1 − 2−Ω(n), all paths from s to t with (1 − LPβ + 2β)k + o(β)k vertices, have at least

28



Figure 3.3: (Yazdi, [14]) A matching graph in the practical setting. The parameters are set

as k = 100, β = 0.01, LS = 100, and LP = 6, 7, 8. Only the edges between consecutive layers

are depicted.

(1− LPβ + 2β)k + o(β)k − βk good vertices.

The above theorem has a very meaningful algorithmic implication. If we find any s − t

path with (1− LPβ + 2β)k + o(β)k vertices, we get many good vertices on this path. Since

finding such a path is computationally tractable, getting a large fraction of good vertices

(i.e., correct matches of pivots) is also a tractable task. A matching graph in the practical

setting is presented in Figure 3.3, which verifies the result of the above theorem. As it is

shown from the figure, for small LP , there are many edges in the graph and potentially

many s − t paths do not share many vertices with the correct path. When LP is larger,

many irrelevant edges disappear and the only remaining path is the one formed by most

good vertices. We observe that LP = 8 is sufficient to detect good vertices on the matching

graph G.

3.2.1.3 Practical Implementation

Next, we discuss the explicit implementation of the graph-based algorithm for the matching

module. From Theorem 6, we can see that it is enough to find an s− t path with (1−LPβ+

2β)k + o(β)k vertices (with a not small LP ) to detect a large number of correct matches for

pivots in file Y . This problem can be considered as a shortest path problem in a directed

graph, which is solved in polynomial time. The detailed procedure is as follows.

29



First, we keep only the vertices that have an edge to vertex t and remove all other

vertices. This step does not eliminate any good vertex since all good vertices are connected

to vertex t. We denote the resulting graph as G̃. Then, we try to find the longest s− t path

in G̃. Because all good vertices are connected together and form an s − t path of length

(1−LPβ+2β)k+o(β)k, the longest path in G̃ has at least (1−LPβ+2β)k+o(β)k vertices.

At last, we keep only the first (1 − LPβ + 2β)k + o(β)k vertices in the longest path. Since

each vertex in G̃ is connected to vertex t, the resulting vertices from this step form a path

with (1 − LPβ + 2β)k + o(β)k vertices from s to t. As shown in [14], the computational

complexity of the matching map is upper bounded by O(n4β6).

3.2.2 Deletion Recovery Module Implementation

Once the pivots have been matched, the problem of synchronizing two large files X and Y

is divided into independent synchronizations of each short segment string. The goal of the

deletion recovery module is to correct all the deletions within each segment string. It uses

the algorithm in [12], which is suitable for our case. Since a key component of the algorithm

in [12] is a one-way single deletion correcting algorithm, we first give out an introduction of

it before presenting the algorithm of [12].

3.2.2.1 Synchronizing From One Deletion

Here, we describe how to optimally synchronize from a single deletion. This one-way single

deletion synchronization algorithm 2 is based on the use of VT codes, which is defined as

follows:

Definition 1. For code length n and integer a ∈ {0, 1, ..., n}, the VT code V Ta(n) consists

of all binary vectors X = (x1, x2, ..., xn) satisfying

n∑
i=1

ixi ≡ a mod (n+ 1)

2Although this algorithm is also able to correct a single insertion with a small modification, we ignore
this part since we only focus on the deletion-only case.

30



An example of VT code with n = 5 and a = 0 is:

Example 5. V T0(5) is consist of the following codes:

V T0(5) = {(x1, x2, x3, x4, x5) :
5∑
i=1

ixi mod 6 = 0}

= {00000, 10001, 01010, 11011, 11100, 00111}.

For any a ∈ {0, 1, ..., n}, the code V Ta(n) can be used to communicate reliably over a

channel that introduces one deletion. The decoding algorithm for V Ta(n), which is proposed

by Levenshtein in [3], is reproduced below.

1. Suppose that a codeword X ∈ V Ta(n) is transmitted, the channel deletes the bit in

position p, and Y is received. Let there be L0 0’s and L1 1’s to the left of the deleted

bit, and R0 0’s and R1 1’s to the right of the deleted bit (with p = 1 + L0 + L1).

2. The channel decoder computes the weight of Y given by wt(Y ) = L1 + R1, and the

new checksum
∑

i iyi. If the deleted bit is 0, the new checksum is smaller than the

checksum of X by an amount R1. If the deleted bit is 1, the new checksum is smaller

by an amount p+R1 = 1 + L0 + L1 +R1 = 1 + wt(Y ) + L0.

Define the deficiency D(Y ) of the new checksum as the amount by which it is smaller

than the next larger integer of the form k(n + 1) + a, for some integer k. Thus, if a

0 was deleted the deficiency D(Y ) = R1, which is less than wt(Y ); if a 1 was deleted

D(Y ) = 1 + wt(Y ) + L0, which is greater than wt(Y ).

3. If the deficiency D(Y ) is less than or equal to wt(Y ), the decoder determines that a 0

was deleted, and restores it just to the left of the rightmost R1 1’s. Otherwise a 1 was

deleted and the decoder restores it just to the right of the leftmost L0 0’s.

To illustrate the above decoding procedure, we give out two examples as follows.

Example 6. Assuming that X = (1, 0, 0, 0, 1) ∈ V T0(5) is transmitted over the channel.

And the second bit in X is deleted, which results in Y = (1, 0, 0, 1). The checksum of Y is

5, and the deficiency D = 6 − 5 = 1 < wt(Y ) = 2. The decoder inserts a 0 to the left of

rightmost D = 1 1’s and get (1, 0, 0, 0, 1).

31



Example 7. We still assume that the transimitted code is X = (1, 0, 0, 0, 1) ∈ V T0(5). We

delete the last bit of X and get Y = (1, 0, 0, 0). Then the new check sum of Y is 1, and the

deficiency D = 6− 1 = 5 > wt(Y ) = 1. The decoder inserts a 1 to the right of the leftmost

D − 1− wt(Y ) = 3 0’s and get (1, 0, 0, 0, 1).

It should be noted that the 0 is restored in the fourth position while the original deleted

bit is in the second position. The decoding algorithm of VT code exploits the fact that a

deleted bit can be restored at any position within the correct run. And it always restores a

deleted 0 at the end of the correct run, and a deleted 1 at the beginning of the correct run.

Based on the above discussion of VT code, we can easily get a one-way single-deletion-

correcting synchronization algorithm. In our setting, the length-n string X is at node A,

while the node B has string Y , which is obtained by deleting one bit from X. To synchronize,

node A only need to send the checksum of X modulo (n+ 1) to node B. After receiving this

value, say a, node B decodes string Y to a codeword in V Ta(n) according to the decoding

procedure listed above. We can see that this decoded codeword is equal to X.

During the whole synchronization algorithm, the only message that is needed to sent from

node A to node B is a =
∑

i ixi mod (n + 1). We call a as the VT syndrome of X. Since

a ∈ {0, 1, ..., n}, the number of transmitted bits is log(n + 1) bits. This is asymptotically

optimal. If Y is obtained from X by a single insertion, an algorithm to synchronize Y to

X can be easily derived in a similar fashion. The main difference is that we now use the

excess in the checksum of Y (instead of the deficiency) and compare it to its weight. Since

we focus on deletion edits in this thesis, the discussion about this single-insertion-correcting

synchronization algorithm is omitted here.

3.2.2.2 Synchronizing From Multiple Deletions

Next, we begin to discuss the explicit synchronization algorithm in [12]. We find that the

synchronization protocol of [12] can deal with the case of both insertions and deletions.

However, the edits that we are concerned with are limited to deletions. Hence, we only give

out the algorithm that is designed for deletion-only edits.

32



The main idea of the synchronization algorithm is to use a divide-and-conquer approach

to isolate deletions. Then, the whole file string is broken into many substrings, each of

which contains only one deletion. Then we can use the VT syndrome to synchronize these

substrings. The algorithm is achieved recursively in the following manner (we reproduce the

algorithm procedure from [12]):

1. Node A maintains an unresolved list LX , whose entries are the yet-to-be-synchronized

substrings of X. The list is initialized to be LX = {X}. Node B maintains a corre-

sponding list LY , initialized to {Y }.

2. In each round, node A sends ma anchor bits around the center of each substring in

LX to node B, which tries to align these bits as close as possible to the center of the

corresponding substring in LY . If a match is found, the aligned anchor bits split the

substring into two pieces. For each of these pieces:

• If the number of deletions is zero, the piece has been synchronized.

• If the number of deletions is one, node B requests the VT syndrome of this piece

for synchronization.

• If the number of deletions is greater than one, node B puts this piece in LY . Node

A puts its corresponding piece in LX .

If one or more of the anchor bits is among the deletions, node B may not be able to

align the anchor bits. In this case, in the next round node B requests another set of

ma anchor bits for the substring; this set is chosen adjacent to a previously sent set of

anchor bits, as close to the center of the substring as possible. This process continues

until node B is able to align a set of anchor bits for that substring.

3. The process continues until LY (or LX) is empty.

Figure 3.4 illustrates the process of the algorithm. Besides, we add a few more rules to

the above synchronization procedure.

33



L -L=3>1

Request delimiter

L -L=2>1 delimiter L -L=1

Request VT-syndromeRequest delimiter

L -L=2 delimiterL -L=0 match match

L -L=1 L -L=1 match

Request delimiter

delimiter

delimitermatchdelimiterdelimiter

Request VTS Request VTS

Figure 3.4: Example of a run on the deletion recovery module, in which L′ and L respectively

denote the length of the string at A andB. At the first iteration (top line), because L′−L > 1,

B requests a central delimiter from A. This delimiter is matched on B, and the algorithm

goes on recursively on both sides of the delimiter. Parts of the string that are considered as

synchronized are grayed out.

1. When node B receives ma anchor bits to be aligned within a substring of length l, it

searches for a match within a window of length κ
√
l around the middle of its substring,

where κ ≥ 1 is a constant.

2. If no matches for the anchor bits are found within this window, node B requests an

additional set of anchor bits from a pre-arranged location, chosen as described above.

3. If multiple matches for the anchor are found within the window, node B chooses the

match closest to the center of the substring.

4. Whenever an anchor needs to be sent for a piece whose length is less than Lma, node

B just sends the piece in full. Here L > 1 is a pre-specified constant.

5. Whenever the total number of bits transmitted in the course of the algorithm exceeds

αn (for some pre-specified α ∈ (0, 1)), we terminate the algorithm and send the entire

X sequence.

34



At last, we list out a theorem, which characterizes the performance of the synchronization

algorithm in the deletion recovery module.

Theorem 7 (Venkataramanan, [12]). Suppose there are d deletions, where d ∼ o( n
logn

). The

positions of the deletions are random and ma = c log n anchor bits are used for alignment

each time they are requested. (c ≥ 1.)

(a) The probability of error, i.e., the probability that the protocol synchronizes incorrectly

is at most d logn
2nc .

(b) If NA→B(d) (NB→A(d)) denotes the number of bits transmitted from node A (node B)

to node B (node A), then

ENA→B(d) < (2c+ 1)d log n,

ENB→A(d) < 8(d− 1).

(c) The probability that the algorithm terminates after r rounds is at least (1−(d+1)2−r)d.

In particular, the probability that the protocol has not terminated after k+2 log d rounds

is 2−k + o(2−k). Consequently, the expected number of rounds taken by the protocol to

terminate is approximately 4 + 2 log d.

35



CHAPTER 4

New Protocol

In practice, deletions in files ofter appear in bursts, for example, a paragraph of text is

deleted, or several consecutive frames of video are cut. Hence, the i.i.d. deletion pattern

assumed in the protocol of Yazdi [14] is not applicable. Since the protocol of Yazdi is

optimized for i.i.d. deletions, it might not work very well for the real files. Therefore, it is

very significant to utilize the burst nature of deletions in the design of the synchronization

algorithm.

In this Chapter, we propose a new synchronization protocol, which can correct bursts of

deletions in an efficient way. We build our synchronization algorithm based on the work of

Yazdi, and use the same framework with it. Similarly, the new protocol is also consist of

three modules: the matching module, the burst deletion recovery module, and the LDPC

decoder module. Next, A brief description of the proposed protocol is presented. Then, we

will give out more details about the implementation of the matching module and the burst

deletion recovery module to get a closer look at our protocol.

4.1 Protocol Overview

First, we take an overview of the new synchronization protocol. The framework of our

protocol is the same with the protocol of Yazdi [14], which is shown in Figure 3.1 at Chapter

3. The main difference is that we replace the deletion recovery module with the burst deletion

recovery module. This new module adopts a new algorithm to correct the burst deletions

within each segment substrings, which is much more efficient than the algorithm [12] used

in the protocol of Yazdi.

36



In a similar fashion, node A partitions the file X into segment substring Si (1 ≤ i ≤ k)

and pivot substring Pi (1 ≤ i ≤ k − 1). Then, file X becomes as follows:

X = S1, P1, S2, P2, ..., Sk−1, Pk−1, Sk,

in which |Si| = LS = 1/d(p1, p2) and |Pi| = LP = O(log(1/d(p1, p2))). d(p1, p2) is the average

deletion rate, which is equal to (1− p1)/(2− p1 − p2) from Property 3 of the burst deletion

pattern. We choose the length of the segment string LS = 1/d(p1, p2) so that the average

number of deletion burst within each segment string is around 1 − p2, which means that

most of segment strings has very few deletion bursts (zero, one or two bursts). This can

be derived as follows. From Property 3, we already know that the average length of bursts

of non-deleted bits and deleted bits are 1/(1 − p1) and 1/(1 − p2) respectively. Hence, the

average number of deletion burst can be estimated as LS/ (1/(1− p1) + 1/(1− p2)) = 1−p2.

Then, node A sends pivot strings P1, P2, ..., Pk−1 to node B in order. And the matching

module attemps to find the correct copies of these pivots within file Y . After the matching

process, we get file Y as

Y = F 1, Pi1 , F 2, Pi2 , ..., F k′−1, Pik′−1
, F k′ .

We then send back the indices of matched pivots {i1, ..., ik′−1} to node A and get file X as

X = F1, Pi1 , F2, Pi2 , ..., Fk′−1, Pik′−1
, Fk′ ,

So far, we have gotten many pairs of segment strings {(F j, Fj), j = 1, 2, ..., k′}. If both

Pij−1
and Pij are matched correctly in Y , F j can be derived from Fj by very few bursts

of deletions. Then, we need to synchronize F j with the corresponding Fj, which is fin-

ished by the burst deletion recovery module. Since the burst nature of deletions destroys

the divide-and-conquer approach to isolate deletions, the algorithm of Venkataramanan [12]

used in the previous deletion recovery module is no longer efficient. In our burst deletion

recovery module, a new synchronization algorithm, which is adapted from the algorithm of

Venkataramanan, is used. It is verified that this new synchronization protocol works well

when there are very few short bursts of deletions for each segment string 1. At the end of

1From assumption (1) in Chapter 2, we know that the length of every deletion burst is small.

37



this step, we recover the estimates of all Fj’s from F j’s. And an estimate of the original file

X is gotten as:

X̃ = F̃1, Pi1 , F̃2, Pi2 , ..., F̃k′−1, Pik′−1
, F̃k′ ,

which has the same length with file X. At the last step, we use the LDPC decoder module

to correct the residual errors made in the first two modules.

Up to now, we have taken an overview of the new synchronization protocol. Next, we

present a theorem in [18], which gives out the minimum rate of any synchronization algorithm

under the burst deletion channel modeled by Markov chain.

Theorem 8 (Ma, [18]). We consider the synchronization algorithm under the burst deletion

channel, which is modeled by the stationary Markov chain. if 1− p1 � 1 and p2 is fixed, for

any ε > 0, we have the minimum communation rate

Rmin(p1, p2) = −(1−p1) log(1−p1)+(1−p1)

(
1 + h2(1− p2)

1− p2

+ log e− C
)

+O((1−p1)2−ε),

(4.1)

where C =
∑∞

l=1 2−l−1l log l ≈ 1.29, and h2(x) = −x log x− (1− x) log(1− x).

The above theorem considers the case of that 1− p1 � 1 and p2 is fixed, which coincides

with our assumptions given in section 2.2.2. From this theorem, we can get the lower bound

of communication rate for our new synchronization protocol. We will show how our new

protocol is close to this lower bound in Chapter 5.

In the following sections, we give further details into the matching module and the burst

deletion recovery module.

4.2 Matching Module

Adapting the matching module from the case of i.i.d. deletion pattern in [14] to our scenario

of burst deletion pattern is quite straightforward. The construction of the matching graph

and some relevant mathematical analysis can be made in a very similar fashion. Next, we

take a closer look at it.

38



4.2.1 Correct and Incorrect Matches

For any pivot Pi, there might be many matches for it within file Y . Because of this, we need

to define what is the correct match of Pi. Based on the number of deletions that acts on

each pivot string, we have the following two case (instead of three cases in the i.i.d. deletion

pattern):

(1) There is no deletion within Pi. Then, the corresponding copy of Pi in Y is the correct

match while all other copies of Pi are incorrect matches.

(2) There is at least one deletion within Pi. Then, all copies of Pi in Y are incorrect

matches.

Here, we do not consider the case where exact one deletion occurs in Pi, since the probability

of one deletion in Pi is much smaller in burst deletion case compared with i.i.d. deletion

case.

Next, Similar to the theoretical analysis about the occurrence of correct matches for

Pi, we have the following two Lemmas (for simplicity, we denote the average deletion rate

d(p1, p2) = (1− p1)/(2− p1 − p2) as d hereafter).

Lemma 1. With probability at least 1 − LPd + o(d), Pi has no deletion and there is one

correct match for Pi within Y .

Proof. For the pivot string of length LP , the probability of no deletion within the pivot

string is (1− d)pLP−1
1 . Since d = 1−p1

2−p1−p2 , we have that 1− p1 < d. Also, It can be seen that

LP = O(log 1
d
)� 1

d
< 1

1−p1 . Then, we get that

(1− d)pLP−1
1 = (1− d)(1− (1− p1))LP−1

= (1− d)(1− (1− p1)(LP − 1) + o(1− p1))

= 1− (1− p1)(LP − 1)− d+ d(1− p1)(LP − 1) + o(1− p1)

> 1− d(LP − 1)− d+ o(1− p1)

= 1− LPd+ o(d)

39



Lemma 2. With probability at most LPd+ o(d), Pi has at least one deletion and there is no

correct match for Pi within Y .

Proof. we can know that the probability of at least one deletion within the pivot string is

1− (1− d)pLP−1
1 < 1− (1− LPd+ o(d)) = LPd+ o(d)

Similarly, we define R = 1− LPd. From the preceding lemmas, we conclude that

Theorem 9. For a random string X and a random burst deletion pattern D defined in

Chapter 2, on average, the number of pivots with one correct match in Y is at least (R +

o(d))k.

Theorem 10. For a random string X and a random burst deletion pattern D defined in

Chapter 2, with probability 1− 2−Ω(n), there are at least (R + o(d))k pivots with one correct

match in Y .

The proof of the above two theorems is quite similar to that of the corresponding theorems

in [14]. For details, please refer to [14]. From the theorems, we can see that most of pivots

has one correct match in Y in the case of burst deletion pattern. Hence, finding a good

matching graph to detect these correct matches is very important.

4.2.2 Matching Graph

Note that both our work and the work of Yazdi in [14] focus on the deletion-only edits.

Furthermore, we find that the theoretical results about the occurence of correct matches of

Pi in the previous section are quite simiar with those in [14]. This inspires us to use the

same matching graph to find the correct matches of Pi in the burst deletion case. However,

some slight modifications should be made as follows:

40



- The condition (3.2) is changed as 0 ≤ Dis(u, v) ≤ (j − i − 1)LP + (j − i)LS. This is

due to the small different definition of correct and incorrect matches for Pi.

- We need to find an s− t path of length (1−LPd)k + o(d)k in the matching graph (In

[14], this length is (1− LPβ + 2β)k + o(β)k).

The numerical experiment shows that, for a proper LP , all s − t paths with length

(1−LPd)k+ o(d)k is formed mostly of good vertices with a very high probability. However,

to get a theoretical guarantee of this, which is similar to Theorem 6, is difficult and beyond

the scope of our work. We will discuss the possibility of finishing theoretical work about the

matching graph at the end of this thesis.

For details of the construction and the implementation of the matching map, please refer

to Section 3.2.1.2 and 3.2.1.3.

4.3 Burst Deletion Recovery Module

After the matching of pivots, we have divided the problem of synchronizing X and Y into

many subproblems. for each subproblem, we need to synchronize a segment string in Y to

its orignial one in X. Since most of pivots can be correctly matched, we expect that most

of segment strings are of length around 1/d. Furthermore, We already know that most of

segment strings in Y can be derived from the corresponding ones in X by very few (usually

zero, one or two) short bursts of deletions. The goal of the burst deletion recovery module

is to correct these short bursts of deletions within each segment string. Because the divide-

and-conquer approach to isolate deletions is very inefficient in the case of burst deletion, we

use a new algorithm, which is adapted from the algorithm of Venkataramanan in [12], for

the burst deletion recovery module.

Before introduing this new algorithm, we need to describe a method to efficiently syn-

chronizing from a single burst of deletions of known length, which is a key submodule of the

new algorithm.

41



4.3.1 Synchronizing From A Single Deletion Burst

In this section, we make an introduction of a single-deletion-burst synchronization algorithm,

which is first proposed by Venkataramanan in [13].

Suppose that Y at node B is obtained from X of length n at node A by deleting a single

burst of B bits. In order to get a lower bound on the number of bits required for synchro-

nization, we assume that node A knows the exact location of the burst deletion. Then, the

minimal information needed to be sent are the starting position of the burst and the con-

tent of deleted bits. Hence, the minimal number of bits required for synchronization can be

bounded below by B+log n. Later in this section, We will show that the expected number of

transmitted bits for the introduced single-deletion-burst synchronization algorithm is within

a small factor of this lower bound.

Now, let us divide each of X and Y into B substrings as follows.

Xk = (xk, xB+k, x2B+k, ...), k = 1, 2, ..., B

Y k = (yk, yB+k, y2B+k, ...), k = 1, 2, ..., B

To illustrate the above division of string X and Y , we give out an example.

Example 8. We have X = 10011 1001000111. After a burst of B = 3 deletions (shown in

italics), we get Y = 101001000111. Then we have the three substrings of X and Y as

X1 = 11001, X2 = 01001, X3 = 01101,

Y 1 = 1001, Y 2 = 0001, Y 3 = 1101.

Observe that each of substrings Xk undergoes exactly one deletion to get Y k. When-

ever we have a single burst deletion of B bits, Xk and Y k differ by exactly one deletion.

Furthermore, the positions of the deletions in the substrings Xk, k = 1, 2, ..., B are highly

correlated. As we enumerate the substrings Xk from k = 1 to k = B, the position of the

deletion is non-increasing and can decrease at most once. The correlation between positions

of deletions suggests a synchronization algorithm as follows.

42



Node B first synchronize Y 1 to X1 by receiving the VT syndrome of X1 from node A,

and sends back the position of deletion j back to node A. Then, node A sends the bits in

positions j−1 and j ofXk, k = 2, ..., B, and nodeB reconstruct eachXk from Y k, k = 2, ..., B

accordingly. This finishes the synchronization of Y to X. In this synchronization algorithm,

it assumes that the position of deletion in X1 can be exactly determined. However, this is

not alway possible, since the VT code always inserts a deleted bit either at the beginning or

the end of the run containing it.

To address the above issue, we modify the first round of the algorithm as follows. First,

node A sends the VT syndromes of both the first and last substring (X1 and XB) to node

B. Then, node B synchronizes Y 1 and Y B to X1 and XB respectively. It can be known that

the deletion in X1 occurs in the run of positions j1 to l1, and the deletion in XB occurs in the

run of position jB to lB. From the correlation between positions of deletions given above, we

know that the positions of deletions in X i, i = 2, 3, ..., B−1 are between j∗ = max{j1−1, jB}

and l∗ = min{l1, lB + 1}. Hence, node A only needs to send the bits in positions j∗ to l∗ of

Xk, k = 2, 3, ..., B − 1.

Based on the above discussion, we give out the final algorithm for exact synchronization

from a single deletion burst of length B as follows.

(1) Node A sends the VT syndrome of X1 and XB. (requires 2 log(1 + n/B) bits)

(2) Node B synchronizes Y 1 to X1, and Y B to XB. Then node B sends back j∗ and l∗,

defined as above, to node A. (requires 2 log(n/B) bits)

(3) Node A sends bits in positions j∗ through l∗ of Xk, k = 2, 3, ..., B − 1. (requires

(l∗ − j∗ + 1)(B − 2) bits). And node B reconstruct each Xk from Y k, k = 2, ..., B − 1

accordingly.

At last, we present a theorem, which characterizes the expected number of bits required

for the above single-deletion-burst synchronization algorithm.

Theorem 11 (Venkataramanan, [13]). Let X be a uniformly random binary sequence of

length n. Let Y be obtained via a single burst of deletions of length B, with the starting

43



location of the burst being uniformly random. Then for sufficiently large n, the expected

number of bits sent by the node A in the synchronization algorithm satisfies

ENA→B > 2 log(1 + n/B) + (2− 1/B)(B − 2)

ENA→B ≤ 2 log(1 + n/B) + 3(B − 2)

The expected number of bits sent by the node B is 2 log(n/(2B))

The above theorem verifies that the communication rate of the introduced single-deletion-

burst synchronization algorithm is within a small factor of the lower bound.

4.3.2 Synchronizing From Few Number of Short Deletion Bursts

Next, we introduce the new algorithm used in the burst deletion recovery module. This

algorithm, which is adapted from the algorithm of Venkataramanan in [12] (uses a divide-

and-conquer approach to isolate deletions), is very suitable for our case of few number of

short deletion bursts.

We still use the divide-and-conquer approach in the new algorithm. However, it is for

a different purpose. When a substring with only one short deletion burst is split into two

pieces by the anchor bits, we know that one piece has no deletion and the other piece has the

same number of deletions with this substring. In contrast, when a substring with multiple

short deletion bursts is split into two pieces, it is more likely that both of two pieces contain

some deletions. Hence, if a substring is split for Tburst (e.g., 2) times and we always have

that one piece has no deletion and the other one has the same number of deletions with

the original substring, we hypothesize that this substring only contains one deletion burst.

Then, we invoke the single-deletion-burst synchronization algorithm in 4.3.1, and use the

hash to verify. If the hashes agree, we declare the substring synchronized. Otherwise, we

infer that the deletions is not in a burst, and continue to split the substring.

We summary our new algorithm as follows:

1. Node A maintains an unresolved list LX , whose entries are the yet-to-be-synchronized

substrings of X. The list is initialized to be LX = {X}. Node B maintains a corre-

44



sponding list LY , initialized to {Y }. Besides, we set a counter for each substring in

LY . Initially, the counter for Y is set as CY = 0.

2. In each round, node A sends ma anchor bits around the center of each substring in

LX to node B, which tries to align these bits as close as possible to the center of

the corresponding substring in LY . If a match is found, the aligned anchor bits split

the substring str0 into two pieces str1 and str2 (We assume that node B and A

automatically remove str0 and the corresponding substring from the lists if anchor

bits are matched). For str1 and str2:

• If both of two pieces have some deletions, node B put str1 and str2 in LY . Node

A puts the corresponding two pieces in LX . The counters for these two piece are

set as Cstr1 = Cstr2 = 0.

• If one piece str1 has no deletion, and the other piece str2 has the same number

of deletions with str0, we set the counter for str2 as Cstr2 = Cstr0 + 1. Then,

if Cstr2 reaches Tburst, we invoke the single-deletion-burst synchronization algo-

rithm in 4.3.1, and use the hash to verify. If hashes agree, we declare piece str2

synchronized. If hashes do not agree, we set Cstr2 = 0. In the case of either

(Cstr2 < Tburst) or (Cstr2 = Tburst but hashes do not agree), node B put str2 in

LY , And node A puts the corresponding piece in LX .

If one or more of the anchor bits is among the deletions, node B may not be able to

align the anchor bits. In this case, in the next round node B requests another set of

ma anchor bits for the substring; this set is chosen adjacent to a previously sent set of

anchor bits, as close to the center of the substring as possible. This process continues

until node B is able to align a set of anchor bits for that substring.

3. The process continues until LY (or LX) is empty.

Figure 4.1 illustrates the process of the algorithm. The rules for the synchronization

protocol of Venkataramanan [12] are still useful for our new algorithm. For completeness of

our algorithm, we reproduce these rules here.

45



C=0

Request delimiter

C=0 delimiter C=0

Request delimiterRequest delimiter

C=1 delimitermatch C=1

match C=2 match

Request delimiter

delimiter

delimitermatchdelimiterdelimiter

Invoke and hash

match match matchdelimitermatchdelimiterdelimiter

delimiter

delimiter

delimiter

match

Request delimiter

delimiter match

matchdelimiter

C=2

diff

Invoke and hash

Request delimiter

Deletion burst

Figure 4.1: Example of a run on the burst deletion recovery module, in which C is the counter

for each substring. For the left half part, we have a substring with its counter reaching

Tburst = 2.. We invoke the single-deletion-burst synchronization algorithm and request hash.

Since hashes matches, we consider it to be synchronized. For the right half part, there

is another substring with its counter reaching Tburst. However, due to the mismatch of

the hashes, we continue to split this substring. Parts of the string that are considered as

synchronized are grayed out.

1. When node B receives ma anchor bits to be aligned within a substring of length l, it

searches for a match within a window of length κ
√
l around the middle of its substring,

where κ ≥ 1 is a constant.

2. If no matches for the anchor bits are found within this window, node B requests an

additional set of anchor bits from a pre-arranged location, chosen as described above.

3. If multiple matches for the anchor are found within the window, node B chooses the

match closest to the center of the substring.

4. Whenever an anchor needs to be sent for a piece whose length is less than Lma, node

B just sends the piece in full. Here L > 1 is a pre-specified constant.

46



5. Whenever the total number of bits transmitted in the course of the algorithm exceeds

αn (for some pre-specified α ∈ (0, 1)), we terminate the algorithm and send the entire

X sequence.

47



CHAPTER 5

Experimental Results

In this Chapter, we report some experimental results about our new protocol, which is

specifically designed for the burst deletion case. To determine the relative communication

efficiency of the proposed protocol, we compare it with some other synchronization algorithm.

In our experiment setting, we use the protocol of Yazdi [14] as the reference algorithm.

Note that the communication efficience involves both the total number of transimitted

bits and the number of rounds of interactivity. In some applications where the sources may

be connected by a high-latency link, the number of interactive rounds is limited. Hence, we

are mostly interested in minimizing the total amount of information transmitted and keeping

the number of communication rounds low enough.

5.1 Comparison with the Protocol of Yazdi

Recall that our proposed synchronization protocol is adapted from the protocol of Yazdi.

We use the same matching module and adopt a new algorithm in the burst deletion recov-

ery module. Thus, the improvement of our new protocol can be largely attributed to this

redesigned new algorithm.

In order to compare the performance of two protocols, the following setup is used for the

numerical experiment:

• File X is an i.i.d. Bernoulli(0.5) binary sequence of length n = 106.

• File Y is derived by applying a burst deletion pattern to file X. This burst deletion pat-

tern is generated by a stationary Markov chain with parameter (p1, p2) = (0.82, 0.9982).

48



No. of rounds Total No. of transmitted bits

Our protocol 4 38k

The protocol of Yazdi 9 45k

Table 5.1: Comparison of the protocols of ours and Yazdi. X is an i.i.d. Bernoulli(0.5)

binary sequence of length n = 106. The burst deletion pattern, which is generated by the

proposed Markov model with (p1, p2) = (0.82, 0.9982), is applied to get Y . The pivots have

length 6, and the segments have 100.

• For the matching module of both our protocol and the protocol of Yazdi, the length of

segment string and pivot string are set as LS = 100 and LP = 6.

• The number of anchor bits is 4, and the hash length for our protocol is 10 bits.

• Tburst is set as 2 for our protocol.

• Each case are averaged over 1000 runs of simulations.

Table 5.1 shows the result. We see that the number of bits required for our protocols is

fewer than the protocol of Yazdi. Furthermore, the number of interactive rounds reduces from

9 to 4. The protocol of Yazdi split the strings until each string contains only a single deletion.

Hence, the number of rounds is comparable to the logarithm of the segment length. For our

new protocol, it invokes the single-deletion-burst synchronization algorithm if we have the

case that one substring has no deletion and the other has the same amount of deletions with

original string for Tburst rounds. Therefore, the saving of rounds for our protocol is roughly

logLS − Tburst.

We further notice that the minimum communication rate in (4.1) for (p1, p2) = (0.82, 0.9982)

is Rmin = 0.0335. That means that the minimum number of transmitted bits is nRmin =

33.5k. So the communication rate of our protocol is close to this lower bound.

49



CHAPTER 6

Conclusion

6.1 Summary of Our Work

In this thesis, we proposed a new synchronization protocol, which is specifically designed

for the burst deletion case. In order to model this burst deletion pattern, we adopt the

stationary two-state Markov chain model with the appropriately seleted parameters. And

the experiment results demonstrate that our new protocol has lower communication rate and

fewer rounds of interactivity.

Nowadays, there is a large amount of research work about the synchronization problem.

However, very few of them is focused on burst edits. Some recently proposed synchronization

algorithms assume that the edits is independent and uniformly distributed on the whole file

string. But in practical scenarios, this assumption does not hold in general. Burst edits is

more often. Hence, those protocols optimized for non-burst edits might be inefficient when

they are used for read edit pattern. Our proposed synchronization protocol make use of the

burst nature of edits (we limit edits to deletions in the thesis), and hence works well for

burst deletion case. This new protocol is gotten based on the work of Yazdi. The framework

of the proposed protocol is same with the protocol of Yazdi while some submodules within

the protocol are accordingly adjusted to be more suitable for the burst deletion correction.

In addition, to make the burst deletion pattern mathematically tractable, we propose to

use the stationary two-state Markov chain to model it. We give out many useful properties

of the Markov chain, and show that the desired burst deletion pattern can be generated by

choosing appropriate parameters. Also, some simplifying assumptions are made to make our

protocol more efficient and some relecant mathematical analysis more tractable.

50



6.2 Future Work

One important extension of our work is the design of synchronization protocol that are

capable of recovering from both burst deletions and insertions. In order to model burst

deletions and insertions, we need to use three-state Markov chain model defined as follows.

T =


p1 1− p2 1− p2

1−p1
2

p2 0

1−p1
2

0 p2

 ,
in which p1 = P (Di = 0|Di−1 = 0), p2 = P (Di = 1|Di−1 = 1) = P (Di = 2|Di−1 = 2).

Di = 0, 1, 2 means that the ith bit is kept, deleted or inserted respectively. Some similar

assumptions can be made to simplify the synchronization problem. However, to adapt the

matching module to the case of burst deletions and insertions is somewhat challenging.

Based on the proposed protocol, some theoretical work can be done to guarantee the

communication efficiency of our protocol. From the theoretical results that is finished now

(see section 4.2.1), we find that the average deletion rate d = (1− p1)/(1− p1− p2) plays the

same role as β does in some theorems. Hence, many theorems in the i.i.d. deletion pattern

may be generalized to the case of burst deletion pattern by replacing β with d. However,

whether this is feasible need more mathematical proof, which should be very complicated.

In some cases, we might not need exact synchronization. Hence, the design of the ap-

proximate synchronization algorithm based our protocol is also meaningful. By allowing the

reconstructed file a bit different from the original file, the communication rate of the protocol

is expected to be smaller.

51



REFERENCES

[1] M. Mitzenmacher and G. Varghese, “The complexity of object reconciliation, and open
problems related to set difference and coding,” in Proc. IEEE 50th Allerton Conf. Com-
mun., Control, Comput., Monticello, IL, USA, Oct. 2012, pp. 1126-1132.

[2] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single asymmetric errors,”
Autom. Remote Control, vol. 26, no. 2, pp. 288-292, 1965.

[3] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and reversals
(in Russian),” Soviet Phys. Doklady, vol. 163, no. 4, pp. 845-848, 1965.

[4] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (Corresp.),”
IEEE Trans. Inf. Theory, vol. IT-30, no. 5, pp. 766-769, Sep. 1984.

[5] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,”
IEEE Trans. Inf. Theory, vol. 48, no. 1, pp. 305-308, Jan. 2002.

[6] K. A. S. Abdel-Ghaffar, F. Paluncic, H. C. Ferreira, and W. A. Clarke, “On Helbergs
generalization of the Levenshtein code for multiple deletion/insertion error correction,”
IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1804-1808, Mar. 2012.

[7] L. Dolecek and V. Anantharam, “Repetition error correcting sets: Explicit constructions
and prefixing methods,” SIAM J. Discrete Math., vol. 23, no. 4, pp. 2120-2146, Jan. 2010.

[8] A. Orlitsky, “Interactive communication of balanced distributions and of correlated files,”
SIAM J. Discrete Math., vol. 6, no. 4, pp. 548-564, 1993.

[9] G. Cormode, M. Paterson, S. C. Sahinalp, and U. Vishkin, “Communication complexity
of document exchange,” in Proc. 11th Annu. ACMSIAM Symp. Discrete Algorithms, San
Francisco, CA, USA, Jan. 2000, pp. 197-206.

[10] A. V. Evfimievski, “A probabilistic algorithm for updating files over a communication
link,” in Proc. 9th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), San Francisco,
CA, USA, Jan. 1998, pp. 300-305.

[11] A. Orlitsky and K. Viswanathan, “Practical protocols for interactive communication,”
in Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, USA, Jun. 2001, p. 115.

[12] R. Venkataramanan, H. Zhang, and K. Ramchandran, “Interactive lowcomplexity codes
for synchronization from deletions and insertions,” in Proc. IEEE 48th Allerton Conf.
Commun., Control, Comput., Monticello, IL, USA, Sep./Oct. 2010, pp. 1412-1419.

[13] R. Venkataramanan, V. N. Swamy, and K. Ramchandran, “Low-complexity interactive
algorithms for synchronization from deletions, insertions and substitutions,” IEEE Trans.
Inf. Theory, vol. 61, pp. 5670-5689, Oct. 2015.

52



[14] S. M. S. Tabatabaei Yazdi, and L. Dolecek, “A deterministic polynomial-time protocol
for synchronizing from deletions,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 397-409,
Jan. 2014.

[15] F. Sala, C. Schoeny, N. Bitouz, and L. Dolecek, “Synchronizing files from a large number
of insertions and deletions,” IEEE Trans. Communications, vol. 64, pp. 2258-2273, Jun.
2016.

[16] C. Schoeny, N. Bitouz, F. Sala, and L. Dolecek, “Efficient file synchronization: exten-
sions and simulations,” in Signals Systems and Computers 2014 48th Asilomar Conference
on, pp. 2129-2133, 2014.

[17] N. Bitouz, F. Sala, S. M. S. Tabatabaei Yazdi, and L. Dolecek, “A practical framework
for efficient file synchronization,” in Proc. 51st Annu. Allerton Conf. Commun., Control,
Comput., pp. 1213-1220, Oct. 2013.

[18] N. Ma, K. Ramchandran, and D. Tse, “Efficient file synchronization: a distributed
source coding approach,” in Proc. IEEE Int. Symp. Inf. Theory, pp. 583-587, 2011-
Jul./Aug.

[19] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D. dissertation,
Dept. Comput. Sci., Austral. Nat. Univ., Canberra, Australia, 2000.

[20] H. Zhang, C. Yeo, and K. Ramchandran, “VSYNC: A novel video file synchronization
protocol, in Proc. 16th ACM Int. Conf. Multimedia, Vancouver, BC, Canada, Oct. 2008,
pp. 757-760.

[21] B. Brainerd and S. M. Chang, “Number of occurrences in two-state Markov chains, with
an application in linguistics,” Canad. J. Statist., vol. 10, no. 3, pp. 225-231, 1982.

[22] B. M. McCoy and T. T. Wu. “The two-dimensional Ising model.” Harvard Univ. Press,
1973.

53




