
Page 1 of 46 

Managing Uncertainty: Forecasting Ocean Abundance of Klamath River Fall-Run 
Chinook Salmon (Oncorhynchus tshawytscha)  

Capstone Project 
By: Douglas D. Shaftel, Master of Advanced Studies Candidate 

Marine Biodiversity and Conservation 
Scripps Institution of Oceanography, UC San Diego 

June 2022 

Capstone Advisory Committee 

Chair: Keith Parker, M.S., Sr. Biologist, Yurok Tribe 
Samantha Murray, J.D., Scripps Institution of Oceanography 
Brice Semmens, Ph.D., Scripps Institution of Oceanography 

Andrew Thompson, Ph.D., NOAA Fisheries 

_____________________________________ 
Keith Parker, M.S. 

_____________________________________ 
Samantha Murray, Esq. 

_____________________________________ 
Dr. Brice Semmens 

_____________________________________ 
Dr. Andrew Thompson 



Page 2 of 46 

“How many fish are in the ocean, and where they are going to be at any one point in time, are the 
confounding questions of fisheries management.” 

-Ronnie M. Pierce, M.S., 1998.

Abstract

In 2011, when assessing the environmental impacts of allowing a minimal fishery during years of 
lower Chinook salmon abundance, the National Marine Fisheries Service noted that Pacific salmon 
preseason forecasts of ocean abundance, although variable, were unbiased over the long-term, with 
underestimates offsetting overestimates (PFMC 2011). Recent error in preseason forecasts of a 
critical Pacific salmon stock, the Klamath River Fall Chinook (KRFC), suggests that they are no 
longer unbiased. This project reviews the accuracy of forecasts of KRFC ocean abundance 
between 1985 and 2021 and arrives at four principal findings. First, overforecasts of ocean 
abundance have increased in frequency and magnitude. Second, KRFC salmon are maturing earlier 
in their life cycle. Third, increased maturation rates in ages 2 and 3 fish are predictive of increased 
error rates in ages 3 and 4 fish, respectively. Fourth, by using more recent brood years, we were 
able to achieve more accurate forecasts. These findings can inform potential modifications to the 
KRFC salmon forecasting model. They also highlight that salmon management approaches must 
be able to adapt to future changes in maturation timing.  

Introduction 

Chinook salmon (Oncorhynchus tshawytscha) are integral to the economic and cultural fabric of 
coastal and tribal communities on the West Coast (Satterthwaite et al. 2020; Winsor et al. 2021). 
The Klamath River Basin (Basin) (Figure 1) drains an area of 40,632 km comprising two main 
rivers, the Klamath and Trinity Rivers. The Klamath River straddles the border of Southern Oregon 
and Northern California, while the Trinity River lies to the south and in California only. The 
Klamath River is the second largest river in California (PFMC 2008; Quinones et al. 2014) and 
was historically among the most productive salmon rivers on the West Coast. 

Indigenous Peoples in the Basin have depended on salmon abundance since time immemorial 
(Pierce 1998). An apt metaphor used by the United States Supreme Court to describe access to 
salmon fisheries for tribes in the Pacific Northwest, that applies equally to tribes in the Basin, is 
that salmon were “not much less necessary to [their] existence… than the atmosphere they 
breathed”.1 Tribal members in the Basin are painfully aware of the decline in salmon abundance 
over the last several decades. In 2021, the Yurok tribal allotment was ~6,500 fish, which is 
effectively one fish per tribal member for the year. During an abundant season, between smoking, 
canning, and eating, some families utilize three to five salmon per week (Parker 2022). 

“I feel at this point, our elders don't even get their basic allotment that they need, 
… as much like all the people, but I mean, it was always a thing that you when you 
fish, your first fish, you … make sure your elders were taken care of, and they had 
enough salmon. But yeah, it's significantly declined. In my lifetime. I can, I would 

1 United States v. Winans, 198 U.S. 371, 381 (1905). 
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say it was probably in the 80s, is when I noticed it, probably mid-80s. Just a
decline.” 

-Fawn Murphy, Chairperson, Resighini Rancheria (Murphy 2022).

“It’s like gold if you can get some.” 

-Moonchay Dowd, Vice-Chairperson, Resighini Rancheria (Dowd, M. 2022).

When salmon numbers in the Basin are depressed, fishing interests and coastal communities in 
northern California and southern Oregon also suffer financially (PFMC 2008). In 2020, the 
California commercial salmon fishery, which is currently composed solely of Chinook salmon, 
generated ~$13.9 million from sales at the dock.2 The same year, there were 105 charter boats in 
northern California participating in the ocean recreational salmon fishery (PFMC 2022c). Many 
reside on the coasts specifically to have the opportunity to fish for salmon or work in industries 
that support the recreational salmon fisheries (Yarnall 2022). The opportunity to bond with a parent 
or child and receive or pass along a livelihood and enjoyment of fishing is invaluable. 

“But if you go from Monterey, all the way up to Crescent City in California, even 
Morrow Bay, having a salmon barbecue on the Fourth of July, or labor day …that's 
part of this culture of smoking salmon, giving away smoked salmon for gifts… and 
sharing it with your neighbors that can't go out and fish. That's part of the coastal 
communities’ culture, and there's not an economic price on that. How do you put a 
price on dad taking his young daughter, like the picture I showed, out there and 
having them catch a big fish… that’s why you live in a coastal community. And it's 
tough to put an economic price on that. You can't.”  

-Jim Yarnall, California sport fisheries representative to PFMC Salmon
Advisory Subpanel (Yarnall 2022).

2 https://www.fisheries.noaa.gov/foss/f?p=215:200:1927708574888::NO:RP:: (last visited June 6, 2022)
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Figure 1. Klamath River Basin map (PFMC 2019b) 

As anadromous fish, Chinook salmon contribute ecological value “by providing food for predators, 
scavengers, and decomposers, and nutrient transport for forest ecosystems” (PFMC 2008; 
Ohlberger et al. 2016). Because of their large size – historically Chinook salmon frequently 
weighed as much as 80 lbs. – their carcasses contribute substantial amounts of marine-derived 
nutrients to terrestrial ecosystems (Dowd, K. 2022; Parker 2022).  

“...if you take a map of the Pacific Northwest of all the conifer forests, especially 
redwood trees, and you overlay all the salmon return rivers, you'll see how they 
overlap. That's by design, because over millions of years, these conifer forests, like 
these coastal redwood trees outside my window right now, depend upon the return 
of the salmon every year to absorb those marine-derived nutrients.” 

- Keith Parker, Sr. Fisheries Biologist, Yurok Tribe (Parker 2022).

 Klamath River Fall Chinook Salmon and Declining Abundance 

Today, the largest Chinook stock in the Basin is the fall-run, referred to as the Klamath River Fall 
Chinook (KRFC).3 A “stock” is a group of reproductively isolated interbreeding individuals 

3 Historically, it was the spring run that constituted the largest run in the Basin. It was the first run that 
returned from the oceans and, due to higher river water levels in the spring, Spring Chinook were able to 
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(Nehlsen 1991).4 The KRFC stock is composed of fish of varying ages that inhabit a variety of
natal streams. A significant portion of the stock is composed of fish from the Iron Gate and Trinity 
River hatcheries. Within the Basin are two distinct Evolutionarily Significant Units (ESUs); the 
Southern Oregon - Northern California Coastal (SONCC) and the Upper Klamath – Trinity River 
(UKTR) ESUs. The SONCC fish inhabit the lower Klamath River and tributaries from the ocean 
to the confluence of the Trinity River. The UKTR fish inhabit the Upper Klamath River and all of 
the Trinity River Basin (Kinziger 2013). 

KRFC salmon have retained genetic diversity associated with many wild populations. This 
contrasts with the genetic structure of Chinook salmon in the California Central Valley, which has 
been homogenized by hatchery supplementation (Kinziger et al. 2013). There also remains a 
significant genetic distinction between the spring and fall runs of Klamath River Chinook salmon, 
including a run with heterozygotes that contain both the spring and fall-run alleles (Thompson et 
al. 2018). 

Anadromous salmon throughout California have experienced severe declines in abundance over 
the last century, which has negatively impacted commercial, sport, and subsistence fisheries 
(CDFW 2020). In 2012, scientists predicted that, should the then-observable trends in population 
declines continue, 78% of all salmonid taxa (including steelhead and trout) will no longer exist in 
California within the coming decades (Katz et al. 2012). Historically, the Basin was home to 55 
separate taxa of salmonids, but now chum salmon (O. keta) and pink salmon (O. gorbuscha) face 
local extinction, as do spring Chinook salmon (Quinones et al. 2014).  

Among the primary pressures that have resulted in Chinook salmon decline are habitat 
degradation, adverse effects of hatchery supplementation, fishing, and exacerbation of these 
pressures by climate change (Katz et al. 2012; Okey et al. 2014).  

“Without Chinook salmon, all the habitat issues on the inland side would be swept 
under the rug, I'm afraid.”  

- Jim Yarnall, California sport fisheries representative to PFMC Salmon Advisory
Subpanel (Yarnall 2022).

Access to former salmon habitat in the upper reaches of the Klamath River Basin has long been 
blocked on the Klamath River by the construction of the Copco Dam #1 (1917) and the Iron Gate 
Dam (1962), and on the Trinity River by the Lewiston Dam (1963). Four dams in the Klamath 
River in California and Oregon are scheduled to be removed in 2023 (ODFW 2021). In addition 
to providing access to historic habitats, the dam removal should result in a greater volume and rate 
of water flow (ODFW 2021). Due to these dam removals and associated habitat restoration plans, 

travel hundreds of miles upriver to spawn in the headwaters. Spring Chinook salmon have higher fat content 
than other runs. (Parker 2022). Wild stocks of the spring run have dwindled to the point that, between 1981-
2011, the average count of spring Chinook on the South Fork Trinity River was 253 fish (CBD 2011). 
4 Because salmon have adapted to the local conditions of their natal streams, the loss of a stock undermines 
genetic diversity. For this reason, management focuses on sustaining the population of salmon stocks 
(Nehlsen 1991).  
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Klamath River stocks may be well-positioned to recover some extent of historic abundance
(Quinones et al. 2014; Yarnall 2022). 

Fisheries for Chinook salmon from the Basin have become increasingly dependent on production 
from hatcheries constructed adjacent to the Iron Gate and Lewiston dams (Quinones et al. 2014; 
Katz et al. 2012).5 Hatchery fish may compete with natural-origin fish for food in the ocean, 
especially during times of low productivity. Offspring of hatchery fish have lower survival rates 
than natural spawners (Katz et al. 2012). Proportions of natural origin fall Chinook have 
significantly decreased concurrently with increases in hatchery returns (Quinones et al. 2014).   

“if we don't have relief on the Klamath, either through climate change or through 
water usage, then salmon populations will further decline and it'll be higher and 
higher … reliance on hatchery fish.”  

- Jim Yarnall, California Sport Fisheries representative to PFMC Salmon Advisory
Subpanel.

Fishing often results in the selective removal of older and larger Chinook salmon, which can lead 
to less resilience and greater sensitivity to changing ocean conditions (Okey et al. 2014). One 
explanation for this phenomenon is the size-selective harvest of larger fish associated with gill net 
mesh size (Law 2000).  

Influence of Ocean Conditions on Chinook Salmon  

Due to their extended ocean residency, ocean conditions play an important role in Chinook salmon 
cohort abundance. Chinook salmon spawn and rear in freshwater, migrate to the ocean as juveniles, 
spend one to four years in the ocean and return to freshwater to spawn and die (Satterthwaite 2019). 
Natural origin KRFC salmon hatch between February and March, spend seven to eight months in 
freshwater, and enter the estuary and ocean between June and the end of September (PFMC 
2019b). Conditions in the few first months of ocean migration are critical for the recruitment of 
California’s Central Valley Chinook salmon (Macfarlane 2010). In the California Current 
Ecosystem, juvenile Chinook salmon largely stay close to coastal waters near their natal rivers 
(Hassrick et al. 2016). The ocean distribution of Chinook salmon is influenced by the presence of 
cooler water and the accompanying higher nutrient levels that make for prime conditions for their 
prey, such as northern, lipid-rich krill (Wells et al. 2012). 

Physical ocean conditions can serve as indicators of Chinook salmon abundance. For example, the 
Pacific Decadal Oscillations (PDOs) are associated with recruitment, with greater marine survival 
occurring during periods of cool PDOs and poorer survival occurring during periods of warm 
PDOs (Mantua et al 1997; Peterson et al. 2014). With warming surface water temperatures in the 
Eastern Pacific Ocean, it is projected that the ocean distribution of adult Central California 
Chinook will shift southward, with increasing abundance in ocean waters adjacent to Central 
California. In contrast, Northern California fall runs, such as the KRFC, are expected to shift their 

5 As of 2013, these hatcheries were producing about 10 million juvenile Chinook salmon annually (Kinziger 
2013). 
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ocean distribution farther north and be found in lower abundance adjacent to northern California
coastlines (Shelton et al. 2019). 

Chinook Salmon Age of Maturity 

The age at which salmon reach reproductive potential and return to their natal rivers to spawn is 
called the age of maturity. Age of maturity is highly heritable (Carlson & Seamons 2008) and 
modifiable by selective harvest (Okey et al. 2014). Progressive deterioration of the genetic basis 
for maturation at an older age has been observed (Ricker 1980). Heritability of maturation age 
suggests that significant genetic variation for this trait may help salmon adapt to local conditions 
(Vähä et al. 2008). Variability based on sex has been observed, with females maturing, on average, 
later than males (Fleming 1996). Hatchery fish mature at an earlier age than natural-origin fish. 
Harvest intensity magnifies this trait (Davison and Satterthwaite 2017). Fishing also limits the 
capacity of Chinook from delaying maturity to benefit from more favorable environmental 
conditions (Fujiwara 2008). 

Management of Chinook Salmon Fisheries 

The KRFC fishery management process combines science-based stock prediction with policy-
based management decisions. Under the Magnuson-Stevens Fishery Conservation and 
Management Act, the objective of the management process is to maintain harvest at levels that 
meet legal requirements and preserve long-term stock productivity (PFMC 2008). The Pacific 
Fishery Management Council (PFMC) is the lead entity responsible for managing all salmon 
fisheries on the West Coast. 

Forecasting ocean abundance is broadly used as the starting point for setting harvest controls for a 
variety of salmon species along the West Coast (Haeseker et al. 2008; Satterthwaite et al. 2020). 
Each year the Pacific Fishery Management Council’s Salmon Technical Team (STT) forecasts 
total KRFC ocean abundance by performing linear regressions on estimates of age-specific ocean 
abundance and river runs of the same cohorts. This method is a variation of the “sibling model”, 
in which age-specific estimates of freshwater returns for a cohort are used to forecast the ocean 
abundance of the same cohort in the next year (Winship et al. 2015). From the ocean abundance 
forecast, the STT forecasts, in the absence of fishing, the escapement, which is the number of 
salmon that will reach natural areas to spawn (PFMC 2022a).  

The KRFC salmon fishery is managed by targeting a number of adults that will escape mortality 
and spawn in natural areas, often referred to as spawner “escapement targets” (PFMC 2022a). 
Escapement targets and exploitation rates for all salmon under PFMC jurisdiction are outlined in 
the Pacific Coast Salmon Fishery Management Plan (Salmon FMP). For KRFC salmon, the 
Salmon FMP allows for a maximum exploitation rate of 68%, also known as the maximum fishing 
mortality threshold (MFMT) (PFMC 2021, § 3.3.6). When total KRFC salmon ocean abundance 
is predicted to sustain an escapement, in the absence of fishing, of between 54,300-127,200, the 
MFMT varies between 25% and 68% of total spawning adults. The KRFC spawner escapement 
target (SMSY) is 40,700 and corresponds to the natural area escapement associated with maximum 
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sustainable yield (“MSY”).6 This escapement target, and higher targets in times of greater
abundance, are referred to as the KRFC “conservation objective”. (PFMC 2021).  

Figure 2 (PFMC 2019b, Figure 2.2.4.a). Klamath River Fall Chinook control rule. Potential 
spawner abundance is the predicted natural-area adult spawners in the absence of fisheries. 

The Salmon FMP includes a rule that allows for a very limited harvest of KRFC salmon during 
periods of low abundance. Before 2005, when total ocean abundance was forecast to be insufficient 
to support the escapement floor, fisheries were closed (PFMC 2003). After several closures of 
portions of the commercial and recreational fishery, in 2008, the National Marine Fishery Service 
adopted an Amendment to the Salmon FMP called the “de minimis fishery rule”. The purpose of 
the rule was to “provide some low level of economic relief for fisheries-dependent communities 
without significantly impacting the long-term productivity of KRFC” (PFMC 2008). When 
projected escapement to natural areas is between 35,600 and 30,500, the MFMT declines rapidly 
from 25% to 10% of spawners, and subsequently declines to 0% at projected escapement of below 
15,300 (Figure 2) (PFMC 2008). De minimis fishing for KRFC salmon has been permitted several 
times in recent years (PFMC 2022b). 

Once an escapement target is identified, the STT projects the allowable ocean harvest rate using 
the Klamath Ocean Harvest Model (KOHM) (Prager and Mohr 2001). The KOHM is a planning 
tool for establishing annual commercial and recreational ocean fishery seasons for the zones within 
PFMC jurisdiction. From ocean abundance estimates, historical fishery exploitation patterns, and 

6  The current KRFC Salmon escapement floor of 40,700 natural area spawners is an increase from the 
35,000-escapement floor set by the Klamath River Technical Team (KRTT) in 1986. When the KRTT 
adopted the 1986 floor, it concluded that this number of natural area spawners was half that required to 
achieve maximum sustainable yield. (PFMC 2008).  
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a combination of effort estimates and quotas, the KOHM predicts ocean fishery impacts on KRFC
salmon (PFMC 2011).  

Management of ocean salmon fishing focuses on achieving the conservation and allocation 
objectives for “weak stocks”; that is, those most at risk of overharvest in a given season. (PFMC 
2008). For example, in 2008 and 2009, the Sacramento River fall Chinook experienced relatively 
low abundance while the KRFC salmon experienced a period of relatively higher abundance. As 
a result, during this period the constraining factor in setting season length was achieving sufficient 
Sacramento River fall Chinook escapement. Over the last several years, the constraining factor has 
been achieving sufficient KRFC escapement (2003 FMP, Table 3-1; PFMC 2008; PFMC 2022b).7  

For the river harvest, the management authorities are the California Department of Fish and 
Wildlife (CDFW) and the Yurok and Hoopa Valley tribes. Federal law recognizes the Yurok and 
Hoopa Valley tribes reserved right to no less than 50% of the total salmon fishery (U.S. Solicitor 
General 1993). However, it fails to recognize a similar right for any other Klamath River tribes, 
despite their members’ culture and health being no less dependent on continued access to salmon.  

Missed Escapement Targets and Preseason Forecasts of Ocean Abundance 

In 2018, low escapement in the years 2015-2017 resulted in KRFC salmon being declared to be 
“overfished”, which means that the stock’s productivity and sustainability are at risk (PFMC 
2019b). Low abundance of KRFC salmon resulted in continuing closures of the commercial 
fishery in the Klamath Management Zone (KMZ), relatively limited commercial and recreational 
seasons south of the KMZ, and the complete closure of the Yurok salmon river fisheries in 2017 
(PFMC 2019a; Parker 2022). The STT concluded that river habitat conditions, including below-
average flows and high temperatures that coincided with a high incidence of disease for a portion 
of the critical broods (2011-2014), contributed to the low KRFC salmon escapement.  

But it also identified another cause of the missed escapement targets – overforecasts of KRFC 
ocean abundance (PFMC 2019b). Inaccurate preseason forecasts were also identified as a principal 
causative factor of missed conservation objectives in 1990, 1992, and 2008 (Pierce 1998; PFMC 
2008). The 2018 overfished declaration, another overforecast the same year, and in 2019, the 
highest overforecast on record (Figure 3), triggered a renewed urgency to understand potential 
causes of forecasting error.8  

7 Often, it is age-4 KRFC salmon, which are a proxy for the health of the endangered California Coastal 
Chinook stock (“CCC”), that causes this constraint (PFMC 2022b). 
8 For all historic preseason forecasts and postseason estimates of ocean abundance, and forecasting accuracy 
ratios, see Preseason  Report I, Stock Abundance Analysis and Environmental Assessment Part 1 for 2022 
Ocean Salmon Fishery Regulations (PFMC 2022a) (https://www.pcouncil.org/documents/2022/03/2022-
preseason-report-i.pdf/). 
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Figure 3. Percentage of the inaccuracy of preseasons forecasts of total adults (ages 3, 4, and 5) 
KRFC ocean abundance. 

Research into forecasting errors of west coast salmon stocks includes attempts to identify physical 
and biological ocean indicators of changing abundance. Coastal ocean upwelling has been found 
useful in predicting 1-year-ahead forecasts of Snake River spring and summer Chinook salmon 
(Scheuerell and Williams 2005). However, larger-scale indicators of sea surface temperature were 
found to be more predictive than coastal upwelling for adult spring Chinook salmon in the 
Columbia River (Burke et al. 2013). Overall, results have been mixed and, after early promising 
performances, many environmental-based forecast methods have been discontinued (Wainright 
2021).  

Due to similar problems with inaccuracy, potential modifications to the forecasting model for 
Sacramento River fall Chinook salmon were recently explored (Winship et al. 2015). A model that 
employed temporally autocorrelated errors and models that directly incorporated information on 
environmental conditions such as sea surface temperature and upwelling strength were shown to 
have promise. However, concerns were expressed about changes in the long-term predictive 
strength of these variables, along with the complexity of incorporating them into models (Winship 
et al. 2015). Specific to KRFC salmon, recent research found no single ocean indicator that 
explained more than 17% percent of the error in forecasting ocean abundance (Satterthwaite et al. 
2020).  

This project explores the hypothesis that changing maturation rates are causing increased 
forecasting error in KRFC salmon, and attempts to answer the following questions: 

1) Has inaccuracy of preseason forecasts of ocean abundance increased since 1984?
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2) Have age-specific maturation rates increased since 1984?

3) If there is an increase in age-specific maturation rates, is there a relationship between
changing maturation rates and increased forecasting inaccuracy?

4) Could the accuracy of the forecasting model be improved if, instead of relying on brood
year data from 1979 to the present, it relied only on data from more recent brood years?

Methodology 

The STT provided all data, which included 1) preseason forecasts and postseason estimates of age-
specific and total adults ocean abundance (FY1985-2021), 2) a ratio of preseason forecasts to 
postseason estimates for ages, 3, 4, and 5, and total adults (FY1985-2021), 3) maturation rates for 
ages 3, 4 and 5 (FY1985-2022), and 4) run size and ocean abundance data for ages 2-5 (FY1982-
2022). Using R (R Core Team 2021), changes in forecasting error (FY1985-2021), maturation 
rates (FY1984-2021), and abundance (FY1983-2021) were analyzed by performing linear 
regression models. Similarly, the relationship between age-specific maturation rates and 
forecasting accuracy was analyzed using linear regression models, with maturation rates as the 
independent variable.  

In the context of calculating ocean abundance, three distinct “years” are frequently referenced: 
Brood Year, Run Year, and Forecast Year. 

Brood Year (BY) is the year when eggs of a certain cohort were deposited in the gravel 
(Ohlberger 2019a).  

Run Year (RY) is the year in which a brood of Chinook salmon returns from the ocean to 
its natal river to spawn. 

Forecast Year (FY) is the year in which the forecast is conducted and used to set fishing 
regulations.  

Preseason Forecasts of Ocean Abundance and Accuracy 

Computing preseason forecasts in year “y” involves linear regressions of historical post-season 
ocean abundance estimates for ages 3, 4, and 5 fish, against the post-season run size estimates for 
ages 2, 3, and 4 fish, respectively, in year “y-1”. The regression is constrained to the origin, as a 
river run size of zero predicts an ocean abundance remainder of zero for the same cohort. (PFMC 
2022a). For each forecast year, the linear regression is performed using brood year data from 1979 
forward. For example, in 2022, the linear regression was performed on brood year data on ocean 
abundance and run size from 1979 to 2018 (PFMC 2022c). The generated regression slope 
coefficient (β) is multiplied by the run size for that brood year.  

Put another way, the number of three-year-old fish left in the ocean is calculated from the number 
of two-year-old fish of that brood’s population that matured and returned to the river to spawn. 
Similarly, the ocean abundance of four-year-olds is calculated from the three-year-olds of the same 
brood year that matured (Pierce 1998). For example, to forecast age-4 ocean abundance in 2022, 



Page 12 of 46 

β was 1.192, which was then multiplied by the 2021 age-3 run size of 36,248, resulting in a
preseason estimate of 43,211 (Figure 4). 

Figure 4. Regression estimators for Klamath River Fall Chinook ocean abundance (September 1) 
based on that year’s river return of the same cohort. Numbers in the plot denote brood years (PFMC 
2022a; Fig. II-3). 

Each year, the CDFW Ocean Salmon Project generates “postseason estimates” of age-specific and 
total KRFC ocean abundance using cohort reconstruction methods. Identifying potential errors in 
the data supporting postseason estimates was beyond the scope of this project, therefore only a 
brief overview of the data used to generate postseason estimates and the cohort reconstruction 
method follows.9  

The cohort reconstruction method starts with sampling estimates of coded-wire-tagged hatchery 
fish and surveys of actual adults that return to natal streams and hatcheries to spawn (KRTT 2022). 
To these counts are added estimated harvest, mortality from other causes in the ocean and rivers, 
and fish that have not yet matured. These estimates are calculated from a mix of collected data, 
such as from harvest reports and escapement surveys (e.g., carcasses on riverbanks), extrapolations 
from that data, and assumptions about natural mortality rates. This process is completed for ages 
3, 4, and 5 salmon (PFMC 2022c; Mohr 2006).  

Age-specific contributions to Klamath Basin returns are estimated by the Klamath River Technical 
Team (KRTT) using scale analyses (KRTT 2022). Estimation of age composition is performed by 

9 For a full description of the data that underlies the cohort reconstructions, see Goldwasser (2001). 
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two trained scale readers, whenever possible, on random samples of scales collected from
harvested salmon and fish recovered in hatcheries and natural spawning areas. The KRTT uses age 
information collected from caught hatchery fish and statistical methods to correct for bias (KRTT 
2022). A diagram showing a sample reading of a Chinook salmon scale is attached as Appendix 
A.  

At the end of each season, the accuracy of KRFC salmon ocean abundance forecasting is calculated 
using the ratio of preseason forecasts to postseason estimates of ocean abundance (PFMC 2022a). 

Accuracy = pre/post 

Ratios that exceed 1.0 indicate that the forecast exceeded the postseason estimate – an 
“overforecast”. Ratios less than 1.0 indicate that the forecast was less than the postseason estimate 
– an “underforecast”. Error in the numerator (preseason forecasts), the denominator (postseason
estimates), or both, can affect the pre/post ratio.10

Maturation Rates 

To determine the age-specific maturity rate (Ma) of a brood year, the STT compares the age-
specific river run size against age-specific ocean abundance at the time maturation occurred. For 
example, in 2021 it was estimated that 36,348 of 82,218 age-3 fish in the ocean returned to their 
natal rivers and creeks to spawn (river run). Therefore, the 2021 age-3 maturity rate was 44% 
(36,348/82,218). 

Ma = Ra/Oa

● Oa – age-specific ocean abundance determined by cohort reconstruction.
● Ra – run size at age determined from in-river surveys.

Alternative Forecasting Model Evaluation 

To evaluate whether there were systematic changes in the ratio of ocean abundance to run size for 
ages 3 and 4 fish, using run years 1981-2021 a linear regression and a general additive model 
(using the R package ‘gam’) analysis were performed between the ratio (dependent variable) and 
year (independent variable). A generalized additive model (GAM) is a non-parametric, regression 
technique unrestricted by linear relationships between the dependent and independent variables 
(Wang et al. 2009).11 After discovering that the ratio changed after 1990 (see Results), two 
alternative data sets (Models 1 and 2) were identified and tested for performance.  

Model 1. For FY2004-2021, alternative forecasts of ocean abundance for ages 3 and 4 fish were 
calculated using brood year data from 1990 forward. Each new forecast was based on the brood 
year data that would have been available in that forecast year, except for data from BY1979-1989. 

10 There are many potential errors in the data supporting the cohort reconstruction method, including in 
sampling methodology, extrapolations from sampled populations, and assumptions about stray rates, 
natural mortality, and proportions of spawners in natural areas (Mohr 2006). For this project, it was assumed 
that postseason estimates are accurate.  
11 GAMs have been used to evaluate Chinook salmon forecasts, it has been used to evaluate forecasts of 
Queets River Coho salmon and the predictive strength of ocean indicators for Chinook salmon ocean 
abundance forecast accuracy (Wang et al. 2009; Satterthwaite et al. 2020). 
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New regression coefficients were generated using the linear regression model. The new 
coefficients were then multiplied by the run size in the year preceding the forecast year, resulting 
in new forecasts of ocean abundance.  

Model 2. For FY1993-2021, alternative forecasts of ocean abundance for ages 3 and 4 fish were 
calculated using data limited to the 10 most recent brood years and the same preseason forecasting 
methodology described above (using the R package ‘slider’). A three-year moving average method 
has been applied to other forecasts and was recently found to have some success in predicting 
Oregon Chinook (McCormick and Falcy 2015). In selecting a 10-year range, a balance of the risk 
of overfitting the model against the risk of using obsolete maturation rates was generally 
considered.12 New regression coefficients were generated by applying the linear regression model 
to the 10-year datasets. The new coefficients were then multiplied by the run size in the year 
preceding the forecast year, resulting in new forecasts of ocean abundance.  

Each new forecast generated by Models 1 and 2 was compared to the postseason estimate to 
generate a new pre/post ratio. The resulting ratios for each model were then compared to the 
existing pre/post ratios. To evaluate model performance, commonly used performance measures 
to characterize the central tendency and variability were used, including mean raw error (“MRE”), 
mean absolute error (“MAE”), mean percentage error (“MPE”), and root mean square error 
(“RMSE”) (Haeseker et al. 2008).13 To evaluate the significance of changes in pre/post, MRE, and 
MAE, between Models 1 and 2 and the original forecasts, paired t-tests were performed using the 
R package ‘tidyverse’.

To obtain MRE, the raw errors were averaged over the number of years (n) forecasted. The MRE 
reflects the overall bias of the forecasts. In contrast, the MAE reflects the magnitude of forecasting 
error regardless of the direction of the error. The RMSE was used to measure the forecast error 
variance and can be used to construct confidence intervals in forecasts (Haeseker et al. 2008). 

Results 

Total abundance for all age classes declined over the analysis period (AP), FY1985-2021. Average 
abundance between the periods 1985 to 2000 and 2000 to 2022 declined for ages 3, 4, and 5 fish 
by 39%, 30%, and 31% respectively. As of 2021, age 3 fish are the majority of adult KRFC ocean 
abundance; age 3 (77.2%), age 4 (21.5%), and age 5 (1.3%). 

Overforecasts Have Increased in Frequency and Magnitude Since 1985 

During FY1985-2021, overforecasts become more frequent and increased in magnitude for age 4 
fish (p = 0.026), age 5 fish (p = 0.01) and total adults (p = 0.02944). Age 3 forecasts did not 
significantly change through time (p = 0.27). Plots generated from linear regressions of forecasting 
accuracy for all ages and total adults are attached in Appendix B. 

12 A five-year moving average was also examined, but did not appear to perform markedly better than a 10-
year moving average (Appendix G). 
13 Raw Error = predicted abundance (xi) - observed abundance (x); Absolute Error (Δx) = |xi – x|; Percent 
Error = Δx/x; Root Mean Square Error = √Σn

i=1(Pa - Oa)2/n. 



Page 15 of 46 

Age-3 forecasts fluctuated between periods in which either overforecasts or underforecasts
predominated.  During the ten years spanning 1989 and 1998, nine overforecasts occurred, three 
by greater than 150%. During the following ten years (1999-2008) eight underforecasts occurred, 
three by more than 100%. During the following 13 years (2009-2021) ten overforecasts occurred, 
five by 100% or more. The standard deviation from complete accuracy (1.0) was 0.81. 

For age-4 KRFC salmon, of the 39 forecast years, eight were underforecast (pre/post ratios ranging 
from 0.37 to 0.95), two were precise (pre/post of 1.00), and 29 were overforecast (ranging from 
1.03 to 6.07). Over the 37-year AP, the average age 4 pre/post ratio was 1.48, or an overforecast 
of approximately 48%. The standard deviation from complete accuracy (1.0) was 1.17. 

For age-5 fish, between FY1985 and FY2000, precise forecasts or underforecasts occurred in 12 
of 16 (75%) years. Then overforecasts became dominant; during FY2001 to FY2020, overforecasts 
occurred in 12 of 20 (40%) years. Seven forecasts exceeded postseason estimates by more than 
100%.   

Total adult KRFC (ages 3, 4, and 5) resembled the patterns of the most abundant age-class – age-
3 fish. The 1990s had periods in which overestimates dominated, then in the 2000s underestimates 
became more common. Between 2007-2021 overestimates again became the most frequent 
occurrence. Between FY2015-2021, on average, total adult ocean abundance was overestimated 
by 71%. Unlike for age-3 fish, the trend of increasing pre/post ratios for total adults was 
statistically significant (p-value 0.018445). 

Figure 5.  Average forecasting accuracy by 10-year intervals, FY1985-2021. Pre/post ratios are 
shown on the y-axis; ratios > 1.0 are overforecasts and ratios < 1.0 are underforecasts. 
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Maturation Rates Have Increased Since 1983 

Age-2 (p = 0.02344), age-3 (p = 9.045e-06) and age 4 (p = 0.003304) maturation rates increased 
systematically over the AP. Age-5 rates did not (p = 0.9421). Maturation rates of age-2 (jacks) fish 
exhibited the strongest fluctuations (R2 = 0.1077), followed by rates of age 4 (R2 = 0.1892) and 
age 3 (R2 = 0.3929) fish. Charts of linear regressions of maturation rates are at Appendix C. 

Age 2 maturation rates ranged from 2% (1983) to 17% (2014), with a mean value of 5.9%. Average 
rates started at 4% in the 1980s and then dropped to 2% in the 1990s. In the early 2000s, average 
rates crept back up to close to 4% and, between 2000 and 2010, they jumped to an average of 
8.5%. The highest age-2 maturation rates occurred in 2015 (17%), 2016 (16%), and 2019 (12%). 

Age 3 maturation rates ranged from 19% (1985) to 85% (2018), with a mean value of 44%. 
Between 1982 and 1991 rates were consistently less than 40%, whereas between 1992 and 2021 
rates in 24 of 30 years exceeded 40%. Age-3 maturation reached unprecedented rates of 70%, 85% 
and 68% in 2017, 2018 and 2019 respectively (Figure 6).  

Age 4 maturation rates ranged from 61% (1986) to 100% (2019), with a mean value of 90%. Age-
4 maturation rates in the 1980s averaged less than 80%, then between 1990-1999, average rates 
increased to just over 90% and remained there until 2009. Between 2010 and 2021, average rates 
increased further to 94% (Figure 6). Maturation in 2017, 2018 and 2019 reached unprecedented 
rates of 99%, 96% and 100% respectively.14  

Although average maturation rates for ages 2, 3, and 4 fish all increased substantially during the 
AP, the timing of increases varied.15 Whereas average maturation rates of Age-2 fish decreased in 
the 1990s, before they increased in the 2000s, average maturation rates of ages 3 and 4 fish both 
increased significantly in the 1990s and systematically thereafter. Over the last 12 years, average 
maturation rates for Age-2 fish have reached 9% (compared to 4% in the 1980s), average rates for 
Age-3 fish have reached 53% (compared to 28% in the 1980s) and average rates for age-4 fish 
have reached 94% (compared to 78% in 1980s) (Figure 6). 

Similarly, peak maturation rates among age classes did not temporally align.  Age-2 fish reached 
17% in 2015 and stayed at 16% in 2016, they dropped to 6% by 2021. Age 3 and 4 fish reached 
their highest average rates of 74% and 98%, respectively, between 2018-2020.16  

14 Age 5 fish generally matured at a 100% rate over the AP, with the exceptions of 1992 (96%), 2002 (99%), 
2005 (99%) and 2013 (97%). 
15 Maturation rates of age 5 KRFC salmon have generally stayed at 100%, consistent with the description 
of KRFC age-class structure in the 1990s (Goldwasser 2001). 
16 Relatedly, estimates of ocean abundance of age-5 fish in 2019 and 2020, dropped to extremely low levels 
- 220 and 24, respectively.
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Figure 6. Age-specific average maturation rates by decade, FY1983-2021. Maturation rates, or 
the percentage of fish that returned to the river to spawn, are shown on the y-axis. 

Changes in Maturation Rates Are Predictive of Forecasting Error 

The relationships between age-2 maturation rates and age-3 forecasting accuracy (Figure 7) (p = 
4.94e-11) and age-3 maturation rates and age-4 forecasting accuracy (Figure 8) (p = 1.476e-07) 
was significant. The relationship between maturation rates in age-4 fish and forecasting accuracy 
for age-5 fish was not statistically significant (p = 0.3262). Although forecasting accuracy for two 
years, 2018 and 2020, were anomalously different (pre/posts of 16.00 and 29.17), even without 
those years, the relationship remained insignificant. 
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.
Figure 7. Linear regressions of age-2 maturation rates with Age-3 accuracy rates and of age-3 
maturation rates with age-4 accuracy rates. The blue lines are the best fit and the grey areas are the 
confidence intervals. The black line is the 1.0 pre/post ratio;  <1.0 indicates an underforecast and 
> 1.0 indicates an overforecast.
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Limiting Ocean Abundance and Run Size Data to Post-1990 Brood Years Decreased the
Magnitude and Frequency of Overforecasts in FY2004-2021 

The strong relationship between increasing maturation rates and the increasing frequency and 
degree of overforecasts led to the hypothesis that older brood years with lower maturation rates 
may be impairing forecasting accuracy. Indeed, other Chinook salmon preseason forecasts rely on 
data from more recent brood years, including the Columbia River fall and summer Chinook 
(PFMC 2021a). 

The first step in testing this hypothesis was to identify a year in which the relationship between 
ocean abundance and run size changed, which was accomplished using a GAM. Relative to the 
linear model, the GAM reduced variation and resulted in a better score under the Akaike 
Information Criterion: 

R2 AIC 

Linear Model 0.41 93 

Generalized Additive Model 0.51 88 

In other words, the GAM produced the best fit line that more closely tracked variation in the ratio 
of ocean abundance to run size (Appendix D). A visual inspection of the GAM model revealed a 
steeper slope for brood years 1979-1989 than 1990-2017 (Appendix D). After 1989, the ratio of 
ocean abundance to run size became more stable.  

Recreated regression slopes, forecasts of abundance, and pre/post ratios generated for Model 1 are 
shown in Appendix E, and for Model 2 are shown in Appendix F. A comparison of regression 
slopes generated by the existing data set with slopes generated by Models 1 and 2 is shown in 
Figure 9. 
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Figure 8. Regression slopes for the 2022 forecast of age-4 KRFC salmon were created by the 
existing model (blue), Model 1 (green), and Model 2 (red). The lesser grade of slopes generated 
by Models 1 and 2 is due to smaller slope coefficients. 

For age-3 fish, the null hypothesis that the existing data set generated more accurate age-3 forecasts 
than Model 1 cannot be rejected. Model 1 resulted in an insignificant decrease of the average 
pre/post from 1.34 to 1.24 (t = 1.59; p = 0.1303). Model 2 resulted in an insignificant decrease of 
the average pre/post from 1.21 to 1.13 (t = 0.94707; p = 0.3569).  However, for the most recent 
10-year period (FY2012-2021), Model 1 generated a significant decrease of 0.30 (t = 5.4711, p =
0.0003947) and Model 2 resulted in significant decrease of 0.44 (t = 4.3824, p = 0.001765)
(Appendix H).

In contrast, for age-4 fish, the null hypothesis that the existing data set would have generated more 
accurate forecasts can be rejected. Model 1, age-4 forecasts resulted in a significant decrease in 
the pre/post ratio from 1.69 to 1.32 (t = 5.7339; p = 2.43e-05). Model 2, age 4 forecasts resulted 
in a significant decrease in the pre/post ratio from 1.63 to 1.27 (t = 5.1926, p = 7.339e-05).  

Changes in MRE, MAE, and RMSE that result from both models are shown in Appendix H. The 
two models performed similarly in decreasing pre/post ratios: 
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Average pre/post (2004-2021) 

Original Model 1  Model 2 

Age 3 1.34 1.28 1.24 

Age 4 1.69 1.32 1.27 

Concerning underestimates, Model 1 performed slightly better. For age-3 fish, out of the 17 
forecast years, Model 1 generated fewer underestimates (8 v. 15) and underestimates of a lesser 
degree (mean 0.68 v. 0.4). For age-4 fish, they both generated 11 underestimates. But Model 2 
generated underestimates of a slightly lesser degree (mean 0.83 v. 0.78). 

Concerning overestimates, Model 2 performed significantly better. For age-3 fish, out of the 17 
forecast years, Model 2 generated only three overestimates, with an average of 1.25. Model 1 
generated 10 overestimates with an average of 1.69. For age-4 fish, the models performed similarly 
with Model 2 generating one more overestimate than Model 1, but the average overestimates were 
almost the same (2.16 [M1] v. 2.18 [M2]). 

Discussion 

Forecasting the ocean abundance of KRFC salmon is the first step in the development of annual 
ocean and river fishing regulations for many stocks of salmon. Errors in forecasts can result in 
erroneous forecasts of escapement, which in turn can prevent the development of regulations that 
achieve harvest and conservation objectives. If the mechanism of increased error in forecasting 
ocean abundance can be identified, adjustments to the model that may result in better performance 
can be evaluated. 

This project examines trends in the accuracy of forecasting the ocean abundance of KRFC salmon 
and evaluates a hypothesis that overforecasts have become more common due to a change in 
maturation rates. The hypothesis was tested by running linear regressions on data for forecasting 
accuracy and maturation rates between the years 1982-2021. Both the frequency and absolute error 
of overforecasts of KRFC salmon have increased. This trend may be partially explained by 
changing maturation rates. Finally, two alternative data sets were tested and discovered to 
generally improve the accuracy of the model used to forecast KRFC ocean abundance. 

Forecasting Accuracy 

Accurately forecasting ocean abundance is a management challenge common to most, if not all, 
salmon stocks. Forecasting errors can be substantial (Winship et al. 2015) and accuracy varies 
widely among stocks the PFMC manages (PFMC 2022a). One explanation for forecasting 
variability is that their utility breaks down when certain thresholds are crossed (Satterthwaite et al. 
2020).  

Underestimates of ocean abundance can lead to overly restrictive harvest controls. It has been 
suggested that, for fisheries that protect weak stocks, errors in times of high abundance may cause 
little to no lost harvest or conservation opportunity (Satterthwaite et al. 2020). Regardless, with 
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the frequency and severity of underestimates lessening over the AP, the risk of overly restrictive
harvest controls also lessened. 

In contrast, as the frequency and severity of overforecasts of age-specific and total adult KRFC 
ocean abundance increased over the AP, the risk of missed conservation objectives also increased. 
Overforecasts of ocean abundance can lead to harvest controls that fail to achieve escapement 
targets (Winship 2015; FISHBIO 2020). Even small errors in forecasts can result in a failure to 
achieve the escapement floor (PFMC 2008). Because of the de minimis harvest rule, the room for 
error on ocean abundance forecasts is even less and may jeopardize, at least in the short term, the 
attainment of conservation objectives (PFMC 2008). Failure to attain conservation objectives can 
lead to declining abundance, which can cause further restrictions on recreational and commercial 
seasons (Woodson 2013). Further, due to the stepped design of the harvest control rule for KRFC,
even a small overforecast can result in substantial overharvest (Satterthwaite et al. 2020).   

“The more accurate the forecasts can be in the ocean abundance, then it'll allow 
managers to effectively set the desired seasons, so there isn't an over catch of the 
desired amount. At the same time, there's not an under-catch of the available fish 
[]. And so that would be beneficial for all users [].”  

- Jim Yarnall, California Sport Fisheries representative to PFMC Salmon Advisory
Subpanel.

Overforecasts may also result in ignoring policies designed to protect stocks from becoming 
“overfished” (Haeseker et al. 2008). When the two most recent postseason estimates and the 
current preseason forecast of spawning escapement are below the minimum stock size threshold, 
the Council is required to structure the fisheries to “avoid the stock from becoming overfished and 
to mitigate the effects on the stock status.” (PFMC 2021, § 3.1.3.1). Forecasts of spawning 
escapement are calculated from the forecasts of total adult ocean abundance (PFMC 2022a). 
Successful implementation of this protective policy depends on the accuracy of preseason 
forecasts. 

Due to the many variables that affect ocean abundance, accurate forecasting is challenging for 
most, if not all, salmon stocks on the West Coast (PFMC 2022a; ADFG 2022; Potter 2004), 
including sockeye and chum (Haeseker et al. 2008) and the KRFC salmon’s California cousin, the 
Sacramento River fall Chinook salmon (Wainright 2015). Of the 16 Chinook salmon stocks in 
PFMC jurisdiction for which pre/post data is maintained, the average pre/post for total adult KRFC 
salmon of 1.40 is the 13th largest (FY2004 to FY2021). In other words, it is among the worst-
performing models.17 

Mortality during outmigration is unlikely significantly contributing to KRFC forecast inaccuracy. 
If, for example, an outbreak of parasite Ceratonova Shasta infects a brood of juvenile fish, the 
lower survival rates would unlikely alter forecast accuracy, as the forecasts are only based on data 
collected after the fish have spent a year or more in the ocean. However, if such effects 

17 The PFMC maintains pre/post data on five Chinook stocks in the Columbia River Basin and 10 Chinook 
stocks in Puget Sound. This author did not uncover comparable data for California Central Valley Stocks. 
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systematically alter demographic parameters (maturation, survival) for a cohort beyond age 2, this 
may not be the case (O’Farrell 2022; McHugh 2022).  

The strong relationship between increasing maturation rates and increasing forecast error is a 
product of the formula used to calculate preseason forecasts. To forecast ocean abundance at age 
y by run size at age y-1, the STT uses the regression coefficient (OA/RS Slope) of the ratio of 
ocean abundance to run size for brood years 1979-2021. For example, if the OA/RS Slope in y 
was 1.2 and the age-3 run size in y-1 was 50,000, the age-4 forecast would be approximately 
60,000 (1.2 x 50,000). In other words, the OA/RS Slope described a historic maturity rate of age-
3 KRFC of approximately 45% (50,000/110,000). As 50,000 of 110,000 age-3 salmon matured, 
the remaining 60,000 stayed in the ocean and “aged” into age-4 salmon the following year, which 
number becomes the target of forecasting efforts for age-4 ocean abundance the next season.  

The shift towards earlier maturation has disrupted the premise of stable maturation rates on which 
the accuracy of the forecasting model depends. Although rates can vary annually, the existing 
forecasting model implicitly assumes they are relatively stable over the long term. When 
maturation rates change significantly, directly, and abruptly, the linear regression fails to capture 
the current relationship between ocean abundance and run size. In other words, maturation rates 
of older brood years slow the responsiveness of the OA/RS Slope, and model accuracy cannot 
catch up until sufficient new data inform the changing relationships.  

An examination of the 2019 age-4 overforecast of 6.76 reveals how spikes in maturation rates can 
cause unusually large overforecasts. The age-3 brood years used to generate the OA/RS Slope for 
FY2019 were 1980-2016, for which the average maturation rate was 42%. In contrast, the 85% 
maturation rate for age-3 fish in 2019 was more than twice that average rate, and close to the 
historic maturation rates for age-4 fish. Yet, the brood year data generated an OA/RS Slope of 
1.22, much larger than that used for age-4 fish.  If the OA/RS Slope used in the 2019 forecast had 
instead been 0.15, an OA/RS Slope closer to that derived from age-4 maturation rates, the 2019 
forecast would have been 12,824 age-4 fish. When compared to the postseason estimate of 15,685 
age-4 fish, that forecast would have resulted in a much more accurate pre/post of 0.82 (the perfect 
forecast is 1.0). 

Maturation Rates 

The null hypothesis that maturation rates for ages 2, 3 and 4 KRFC salmon did not increase 
between 1982-2021 can be rejected. If maturation rates continue on their current trajectory, age-4 
rates may soon reach 100% maturity and age-3 average rates could soon reach 70-80%. This would 
result in the disappearance of all age-5 fish and drastically decrease the abundance of age-4 fish.  

These maturation trends could also jeopardize the stock’s sustainability by causing lower 
recruitment rates. Older fish are generally larger, and larger fish are associated with greater 
fecundity and stronger egg health. Declines in average size can result in lower offspring survival 
as smaller salmon may not be able to dig redds deep enough to withstand scouring (Ohlberger et 
al. 2018). Increased maturation rates may also result in less variation in KRFC age-class structure. 
Variation in spawning age buffers populations from genetic diversity loss following catastrophic 
environmental events via the “portfolio effect” (Satterthwaite et al., 2017). Further, life history 
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variation reduces interannual variability in adult returns and the frequency of fishery closures 
(Waters et al. 2021). 

Fishing could partially explain this trend towards earlier maturation. Generally, by selecting older 
and slower-growing fish, fishing selects for earlier maturation (Law 2000). The average ocean 
harvest of KRFC salmon between 1986 and 1990 was 214,660 fish. Between 2010 and 2017, no 
annual commercial harvest exceeded 60,000 fish and, in 2017, the harvest dropped to 1,685 fish. 
This decline in commercial harvest may negatively correlate with increases in KRFC maturation 
rates. However, higher harvest levels in the late 1980s more closely align with the shift towards 
earlier maturation in ages 3 and 4 fish. Further, although harvest declined rapidly starting in the 
1990s, it is unsurprising that removal of fishing pressure did not result in maturation shifting back 
to earlier rates (Law 2000).     

Another potential cause of earlier maturation could be a change in the ocean ecosystem. Increased 
maturation rates after 1990 generally coincided with a period for which there is evidence of a 
potential regime shift in the California Current Ecosystem. Regime shifts are “dramatic, abrupt 
changes in the community structure that are persistent in time, encompassing multiple variables, 
and including key structure species—independently from the mechanisms causing them” (Peabody 
et al. 2018). The basin-scale atmosphere and surface ocean variability associated with the Pacific 
Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO) changed after 
1988/1989, weakening relationships with many regional physical and biological variables, 
including salmon populations (Litzow et al. 2020). This shift may have caused the abundance of 
coho salmon from the Canadian Fraser River to decrease in the 1990s (Beamish et al. 1997). 
Marked population declines across multiple levels of southern California fish assemblage occurred 
around 1989 or 1990 (Koslow et al. 2015). A potential 1989 regime shift in the North Pacific 
Ocean aligns with a decline in productivity of California chinook fisheries (Hare and Montua 
2000). The California Central Valley Chinook ESU experienced a significant decline in run size 
abundance after the 1980s (Tolmieri and Levin 2004). 

Changing maturation rates may also be the result of increased mortality of immature, slow-
growing juveniles. Age 2 KRFC salmon that are growing faster are likely to mature at an earlier 
age (Vollestad et al. 2004). Larger salmon are also less likely to be exposed to predators, such as 
harbor seals, that prefer smaller fish (Ohlberger et al. 2019b). After entering the ocean as smolts, 
Chinook salmon are exposed to two critical causes of high mortality; the first is predation and the 
second is a related failure to achieve sufficient metabolic requirements. When ocean conditions 
are poor, juveniles may experience greater competition for food. Juveniles that fail to achieve the 
size required to maintain a critical level of metabolism may experience endocrine dysfunction, 
stunted growth, and eventually death by predation or organ failure (Beamish and Mahnken 2001). 
If marine mortality in slow-growing juveniles increases due to poor ocean conditions, that could 
result in selective survival of faster-growing juveniles (Woodson et al. 2013). As faster-growing 
fish are likely to mature earlier, selective mortality of slow-growing fish would be reflected in 
higher maturation rates in younger years.  

In contrast, stage-based life cycle modeling suggests earlier maturation can also be caused by 
predation later in life (Manishin et al. 2021). Killer whales in the Eastern Pacific Ocean are 
estimated to consume Chinook salmon at levels that exceed current levels of harvest in 
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commercial, recreational, and subsistence fisheries. Because they feed largely on the oldest and 
largest Chinook, killer whale predation may have resulted in evolutionary shifts towards smaller 
maximum size and faster early growth, which results in earlier maturation. Overlapping ocean 
distribution between killer whales and KRFC salmon may, however, be too limited to explain 
changes in KRFC age-class structure (Ohlberger et al. 2019b).   

Parentage also influences maturation rates in young male Chinook (jacks). Families sired by jacks 
mature earlier than families sired by adults (Vollestad et al. 2004). If increasing numbers of jacks 
are maturing earlier, and a greater proportion of spawners are jacks, that could result in a feedback 
loop of earlier age-2 maturation.  

Hatchery contributions can affect the maturation rates of mixed stocks because hatchery jacks 
generally mature faster than wild jacks (Winsor et al. 2021). If the ratio of hatchery to wild KRFC 
salmon is increasing, that could result in earlier maturation rates in the combined stock. The long-
term average contribution of hatchery fish to natural area spawners was 24% before 2015, and then 
it dropped to 9% from 2015 to 2017 (PFMC 2019b). It may be worth exploring whether hatchery 
fish contributions grew in the late 1980s or early 1990s when age-3 fish maturation rates grew 
significantly.  

Increased prey availability for juveniles under cooler water temperatures has also been found to 
accelerate maturation rates. Coastal upwelling events (the rise of large, nutrient-rich bodies of cold 
water to the surface layer) are associated with providing the necessary nutrients for increased 
primary production (Wells et al. 2012). This increased production of phytoplankton results in 
greater amounts of zooplankton, such as copepods and krill, that are favored prey of juvenile 
Chinook (Quinones et al. 2014). A high abundance of favored prey leads to faster growth and 
earlier maturation (MacFarlane 2010; Vollestad et al. 2004). However, Chinook salmon slow their 
growth when food is scarce and competition is greater, and slower-growing individuals mature 
later (Ohlberger et al. 2019b).  

Fujiwara and Mohr (2007) found a strong correlation between the rate of coastal upwelling in the 
spring before the maturation of Klamath River Chinook. They further surmised that the additional 
food productivity generated by coastal upwelling may influence fertility by increasing fecundity 
and/or signaling favorable conditions for offspring survival. Wells et al. (2007) similarly found a 
significant relationship between the run size of age-3 fish and conditions experienced during the 
spring before their third year at sea. However, later research on wild Chinook Salmon from an 
Oregon tributary of the Columbia River found no evidence that ocean productivity influences age 
of maturity and, to the contrary, suggested that age of maturity may be largely determined once 
smolts leave freshwater (Tattum et al. 2016).  

It is unclear whether changes in ocean conditions could explain recent spikes in maturation rates. 
Between 2014 and 2016, when these fish entered the ocean, sea surface temperature was 
abnormally warm and conditions were unproductive. There were fewer lipid-rich copepods and 
greater lipid-poor copepods and krill in waters just north of the Klamath River. But local upwelling 
and ichthyoplankton presence suggested favorable conditions for KRFC prey (PFMC 2019b). If 
overall conditions were poor for KRFC juvenile prey and yet they still matured earlier, that 
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suggests a more dominant offsetting factor, such as strong river conditions or mortality of older
fish by predation or harvest, was at play.   

Changing Maturation Rate as a Predictor of Forecasting Inaccuracy 

Persistent fluctuations in maturation rates suggest that the recent reprieve from overforecasts will 
be brief. In 2020 and 2021, age-2 maturation rates of 6% and 7% coincided with slight 
underforecasts of age-3 fish (pre/posts of 0.94 and 0.87, respectively). But as recently as 2018, a 
9% maturation rate in age-2 fish coincided with a substantial overforecast of age-3 fish (pre/post 
of 1.70). It is reasonable to expect further overforecasts of age-3 fish soon if age-2 maturation rates 
again reach or exceed 9%. Since the average age-2 maturation rate between 2010-2021 was 9%, 
rates will likely reach 9% again soon. Overforecasts of age-4 fish are likely to reoccur if age-3 
maturation rates reach or exceed 50%, which is also a likely scenario since between 2010-2021, 
the average age-3 maturation rate was 53%.  

There may be a trend in maturation rates that could be used to anticipate overforecasts in age-4 
fish. Since 2007, there have been at least four instances in which a significant age-3 overforecast 
was followed by a significant age 4 overforecast in the following year: 

FY Pre/post FY Pre/post FY Pre/post FY Pre/post
Age 3 2007 1.37 2009 1.97 2012 1.96 2018 1.70 
Age 4 2008 1.93 2010 1.71 2013 1.70 2019 6.76 

This pattern may reflect increasing maturation rates within the same brood, which makes sense 
biologically.18 A sudden ocean condition trigger, such as atypically strong ocean conditions, could 
shift maturation rates to earlier years for succeeding age classes of an affected brood. 

Shorter Datasets May Reduce Future Forecasting Error (Models 1 and 2) 

Excluding older brood years from the linear regression may generate more accurate forecasts, as 
those broods maturated substantially slower. If maturation rates stay at or near average rates for 
the last decade, either Models 1 or 2 should generate more accurate forecasts. The lagging 
performance of the models for age-3 forecasts may be due to the gradual change in age-2 
maturation rates throughout the 1990s (in contrast to the more abrupt increase in age-3 maturation 
rates after 1990). As a result, the models do not decrease the overforecast magnitude for age-3 fish 
until broods that matured earlier start to dominate the data, which pattern begins with FY2012. 

If avoiding overforecasts is the goal, Model 2 may be preferable. It generated fewer overforecasts 
of age-3 fish and total adults. As it uses a shorter, moving data set, Model 2 can also more quickly 
incorporate further changes in maturation timing.  

Because spikes and valleys in maturation rates consistently generate large forecast errors, it is 
important to continue to search for conditions that predict their occurrence. Neither model corrects 
the problem of years in which there are large pre/post errors, such as 2019, when the pre/post for 
age-4 fish was 6.76 (Appendix E). 2019 was a poor year for sea surface temperature and copepod 

18 The statistical significance of this pattern was not tested in this project. 
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biomass within the southern California Current Ecosystem.19 However, that was also true in 2015-
2017, when the age-4 overforecasts were much less (1.17, 1.82, 1.08). Therefore, there may not be 
a single ocean indicator that significantly explains KRFC forecasting error (Satterthwaite et al. 
2020) or changing maturity rates.   

Next Steps 

As the PFMC pursues a solution to KRFC forecasting inaccuracy, one option is to continue 
exploring models that anticipate changes in maturation rates. Regarding model methodology, a 
recent investigation into Oregon Chinook salmon forecasts concluded that sibling regression 
models continue to perform as well as, if not better than, non-traditional models such as principal 
component analysis, less absolute shrinkage and selection operator, and artificial neural networks 
(McCormick and Falcy 2015). Data on marine survival variability from nearby populations have 
been shown useful for escapement-based management of coho salmon (Ohlberger et al. 2019a). A 
“separate reconstruction method” may tease out differences in juvenile and adult natural mortality 
rates (Allen et al. 2016).  

A potential ocean indicator of maturation may be prey availability. Greater krill abundance is 
correlated with the improved condition of juvenile central California Chinook, which is correlated 
with higher maturation rates in the same cohort the following year (Wells et al. 2012). Although a 
single ocean indicator was not found to predict KRFC forecasting error (Satterthwaite et al. 2020), 
it may be worth searching for a suite of indicators, like the method being used to predict Oregon 
Coastal Natural Chinook salmon abundance north of Cape Blanco (PFMC 2022a).  

Forecasting model modifications alone may not be a satisfactory solution. Simple linear 
relationships struggle to capture the environment’s overall influence on salmon abundance 
(Winship et al.2015). Reactive tweaks to models may never result in high forecasting precision 
(Wainright 2021; Mantua and Francis 2004). Further, it is unclear that increasing forecast accuracy 
will necessarily result in an increased frequency of meeting escapement targets (Rupp et al. 2012). 

If ocean conditions are causing earlier maturation, climate change may make accuracy forecasting 
an even greater challenge. Between 2012 to 2016, the percentage of global oceans experiencing 
strong or severe heat waves increased from 30% to 70% (Suryan et al. 2021). Modeling suggests 
that marine heat waves that affect the CCE will occur more frequently under anthropogenic climate 
change (Jacox et al. 2018). Generally, there is a 10- to 20-year lag between regime shifts and their 
detection in the ecosystem. (Peabody et al. 2020). Therefore, it’s not only possible but likely, that 
the marine heat waves of 2014-2016 and 2019 may have resulted in changes to the ocean 
ecosystem that has yet to be detected (Suryan et al. 2021). That could mean another shift in 
maturation timing to which ocean abundance forecasting methods will need to be able to adapt. 

Ultimately, it may be that policymakers need to adapt to and embrace uncertainty (McCormick 
and Falcy 2015; Wainright 2021). The PFMC Habitat Committee noted in 2006 that, in the face 
of forecasting inaccuracies of 50% or greater, “a precautionary approach is called for” 
(Supplemental Habitat Committee Report, 2006). Considering this recent bout of overforecasts, 

19 https://media.fisheries.noaa.gov/2022-03/2021-Ocean-Indicators-and-Salmon-Forecasting-trend-all-no-
numbers-030322.png (last visited May 10, 2022) 
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many of which were more than 50% inaccurate, a precautionary management approach remains 
merited (Ohlberger et al. 2018). Such an approach may have benefits beyond fishery sustainability, 
as even small adjustments in escapement targets can result in substantial ecological benefits, 
greater access to salmon for cultural and subsistence purposes, and reduced risk of extirpation of 
weak stocks (Munsch et al. 2020).  

“Almost every recreational fisherman that I've spoken with wants conservation of 
the resource. So they can pass that same fishing opportunity on to their kids and 
their grandchildren that they had the opportunity to have. And if that means short-
term curtailments or restrictions, they would much rather do that and preserve the 
fishery, as opposed to, we're going to catch every last fish now here.” 

- Jim Yarnall, California Sport Fisheries representative to PFMC Salmon Advisory
Subpanel.

“If we're gonna make an error, I would much rather see us make an error where we 
under forecast right, I would much rather see a situation where we under predict the 
amount of fish and then more fish actually are in the ocean. And then, you know, 
our quotas wouldn't be that impactful to allow enough fish to return to meet the 
fisheries requirements” 

-Keith Parker, Sr. Fisheries Biologist, Yurok Tribe (Parker 2022).

Conclusion 

Although Chinook salmon have proven capable of overcoming a variety of pressures on their 
survival, their resilience is being tested. The loss of wild Chinook salmon in the Basin would not 
be felt equally and would have social justice implications. Like other tribes, the Yurok “has always 
managed our fishery responsibly, prioritized conservation of the resource for long-term 
productivity over short-term exploitation, so that future generations of Yurok people will 
benefit.”20 For tribes in the Basin, identity, culture, and spirituality are inextricably intertwined 
with continued access to Chinook salmon (Parker 2022).  

Accurately forecasting salmon ocean abundance is a vexing problem, exacerbated by changing 
ocean conditions and increasing maturation rates. Greater caution may be warranted in relying on 
forecasts when setting harvest control rules. Relying on shorter, more recent datasets on ocean 
abundance and run size in forecasting may be part of the solution. Doing so may reduce forecasting 
error and the accompanying risk of overharvesting during times of low abundance.  
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APPENDIX A  
Sample Chinook salmon scale 

Image of a KRFC scale used to determine the age of the fish. A scale is cut with a fine razor, 
pressed on a slide, and examined under a microscope. The annuli on the scale increase as salmon 
grow. The black brackets show a set of rings, or circuli, that accumulate during a summer spent in 
the ocean when the fish grow more rapidly. The red brackets show rings that accumulate the 
following winter when they are growing slower. This fish spent three years in the ocean before it 
matured, and thus was an age-4 fish. 
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APPENDIX B
Error Rates 

Ratio of preseason forecasts to postseason estimates for age-3 (p = 0.27), age-4 (p = 0.026), and 
age-5 fish (p = 0.01), and total adults (p = 0.02944), for forecasts years 1985-2021. The blue line 
is best fit, the grey area is the confidence interval, and the black line is the 1.0 pre/post ratio. A 1.0 
pre/post ratio indicates a perfect forecast, <1.0 indicates an underforecast and > 1.0 indicates an 
overforecast. 
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APPENDIX C 
Maturation Rates 

Maturation rates for age-2 (FY1983-2021; p = 0.02344), age-3 (FY1983-2021; p = 9.045e-06), 
age 4 (FY1984-2021; p = 0.003304), and age-5 fish (FY 1985-2021; p = 0.9421). The blue line is 
best fit and the grey area is the confidence interval. 
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APPENDIX D
 The Fit of a Linear Model and a Generalized Additive Model 

The ratio of age-4 ocean abundance to age-3 run size for brood years 1979-2017, generated from 
a linear model (dark green best fit line) and a generalized additive model (blue best fit line).  
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APPENDIX E
Post-1989 

Model 1: Age-3 Forecasts 
Run 
Year 

Forecast 
Year 

Brood Years Slope 
(RD) 

Run Size 
y-3

Forecast 
y-4

Postseason 
Estimate Pre/post 

2003 2004 1990-2000 1.03 94287 97464 105246 0.93 

2004 2005 1990-2001 1.04 33105 34433 38079 0.90 

2005 2006 1990-2002 1.04 43811 45616 63384 0.72 

2006 2007 1990-2003 1.04 18505 19390 33650 0.58 

2007 2008 1990-2004 1.05 113685 119376 81411 1.47 

2008 2009 1990-2005 1.01 18644 18961 21131 0.90 

2009 2010 1990-2006 1.01 78620 79980 62089 1.29 

2010 2011 1990-2007 1.00 46129 46453 64570 0.72 

2011 2012 1990-2008 1.01 59023 59793 74300 0.80 

2012 2013 1990-2009 1.02 243938 248583 194407 1.28 

2013 2014 1990-2010 0.95 55152 52598 180669 0.29 

2014 2015 1990-2011 0.99 57792 57104 60979 0.94 

2015 2016 1990-2012 0.99 36742 36344 24777 1.47 

2016 2017 1990-2013 0.99 8619 8508 9821 0.87 

2017 2018 1990-2014 0.99 24397 24084 10531 2.29 

2018 2019 1990-2015 0.99 85496 84267 15685 5.37 

2019 2020 1990-2016 0.96 30166 28920 14964 1.93 

2020 2021 1990-2017 0.96 37820 36181 38319 0.94 

Avg. 1.32 

Model 1: Age-4 Forecasts 
Run 
Year 

Forecast 
Year 

Brood Years Slope 
(RD)

Run Size 
y-2

Forecast 
y-3

Postseason 
Estimate 

Pre/Post 

2003 2004 1990-2001 25.80 3845 99205 159446 0.62 

2004 2005 1990-2002 25.50 9646 246050 189977 1.30 

2005 2006 1990-2003 25.54 2296 58654 90666 0.65 

2006 2007 1990-2004 22.41 26935 603694 376940 1.60 

2007 2008 1990-2005 22.43 1684 37775 68015 0.56 

2008 2009 1990-2006 19.95 25247 503728 240787 2.09 

2009 2010 1990-2007 19.79 11914 235861 192750 1.22 

2010 2011 1990-2008 19.40 16640 322816 240222 1.34 

2011 2012 1990-2009 12.82 84895 1088693 799446 1.36 

2012 2013 1990-2010 13.13 21433 281437 438443 0.64 

2013 2014 1990-2011 13.16 14356 189011 216493 0.87 

2014 2015 1990-2012 12.82 22321 286334 110506 2.59 

2015 2016 1990-2013 12.80 6094 78034 32670 2.39 

2016 2017 1990-2014 12.81 2787 35704 63236 0.56 

2017 2018 1990-2015 12.70 20318 258100 193725 1.33 

2018 2019 1990-2016 12.65 10872 137585 82994 1.66 

2019 2020 1990-2017 12.66 9951 125980 158696 0.79 

2020 2021 1990-2018 12.66 9077 114915 155267 0.74 

Avg. 1.28 
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Forecasting accuracy by forecast year (2004-2021) for ages 3 and 4 fish. Original pre/post ratios 
are shown in orange and Model 1 pre/post ratios are shown in blue. Pre/posts ratios > 1.0 
represent overforecasts and < 1.0 represent under forecasts. 
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APPENDIX F
10-Year Moving Average
Model 2: Age-3 Forecasts

Run 
Year 

Forecast 
Year 

Brood 
Years 

Slope 
(RD) 

Run Size 
(Age 2) 

Forecasts 
(Age 3) 

Postseason 
Estimate 

Pre/ 
post 

1992 1993 1979-1988 17.74 13693 242914 168473 1.44
1993 1994 1980-1989 17.56 7598 133421 119915 1.11
1994 1995 1981-1990 19.28 14371 277073 787309 0.35
1995 1996 1982-1991 19.22 22774 437716 192272 2.28
1996 1997 1983-1992 19.89 9532 189591 140153 1.35
1997 1998 1984-1993 19.73 7993 157702 154799 1.02
1998 1999 1985-1994 21.58 4639 100110 129066 0.78
1999 2000 1986-1995 17.88 19248 344154 617097 0.56
2000 2001 1987-1996 19.22 10246 196928 356128 0.55
2001 2002 1988-1997 22.30 11343 252949 513604 0.49
2002 2003 1989-1998 23.18 9226 213859 401112 0.53
2003 2004 1990-1999 24.81 3845 95394 159446 0.60
2004 2005 1991-2000 27.20 9646 262371 189977 1.38
2005 2006 1992-2001 27.74 2296 63691 90666 0.70
2006 2007 1993-2002 23.49 26935 632703 376940 1.68
2007 2008 1994-2003 31.55 1684 53130 68015 0.78
2008 2009 1995-2004 24.61 25247 621329 240787 2.58
2009 2010 1996-2005 24.85 11914 296063 192750 1.54
2010 2011 1997-2006 20.32 16640 338125 240222 1.41
2011 2012 1998-2007 17.77 84895 1508584 799446 1.89
2012 2013 1999-2008 16.49 21433 353430 438443 0.81
2013 2014 2000-2009 10.54 14356 151312 216493 0.70
2014 2015 2001-2010 10.72 22321 239281 110506 2.17
2015 2016 2002-2011 10.77 6094 65632 32670 2.01
2016 2017 2003-2012 10.40 2787 28985 63236 0.46
2017 2018 2004-2013 10.37 20318 210698 193725 1.09
2018 2019 2005-2014 10.01 10872 108829 82994 1.31
2019 2020 2006-2015 10.07 9951 100207 158696 0.63
2020 2021 2007-2016 10.07 9077 91405 155267 0.59

Avg.  1.13 

Recreated slopes, preseason forecasts, and pre/post ratios generated for Age-3 fish from Model 2.
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Model 2: Age 4 Forecasts
Forecast 
Year 

Brood Years Slope 
(RD) 

Run-Size 
(Age 3) 

Forecasts 
(Age 4) 

Postseason 
Estimates Pre/post 

1993 1979-1988 2.19 6936 15252 15037 1.01 
1994 1980-1989 2.17 48301 104861 41736 2.51 
1995 1981-1990 2.10 37017 78032 28726 2.72 
1996 1982-1991 2.06 201896 417723 226282 1.85 
1997 1983-1992 1.62 38766 62917 62820 1.00 
1998 1984-1993 1.43 34973 50186 44733 1.12 
1999 1985-1994 1.27 59244 75477 30456 2.48 
2000 1986-1995 1.13 29171 33051 44176 0.75 
2001 1987-1996 1.09 187088 204487 133801 1.53 
2002 1988-1997 0.93 99097 92894 98927 0.94 
2003 1989-1998 0.94 94576 89062 192180 0.46 

2004 1990-1999 1.03 94287 97493 105246 0.93 
2005 1991-2000 1.04 33105 34562 38079 0.91 
2006 1992-2001 1.04 43811 45914 63384 0.72 
2007 1993-2002 1.01 18505 18838 33650 0.56 
2008 1994-2003 1.00 113685 114708 81411 1.41 
2009 1995-2004 0.95 18644 17893 21131 0.85 
2010 1996-2005 0.98 78620 77048 62089 1.24 
2011 1997-2006 0.96 46129 44325 64570 0.69 
2012 1998-2007 1.14 59023 67404 74300 0.91 
2013 1999-2008 1.18 243938 288335 194407 1.48 
2014 2000-2009 0.86 55152 47795 180669 0.26 
2015 2001-2010 0.92 57792 53325 60979 0.87 
2016 2002-2011 0.92 36742 33979 24777 1.37 
2017 2003-2012 0.91 8619 7847 9821 0.80 
2018 2004-2013 0.90 24397 22133 10531 2.10 
2019 2005-2014 0.93 85496 79896 15685 5.09 
2020 2006-2015 0.87 30166 26263 14964 1.76 
2021 2007-2016 0.87 37820 32987 38319 0.86 

Recreated slopes, preseason forecasts, and pre/post ratios generated for Age-4 fish from Model 2.
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Comparison of Model 2 (blue) to existing (orange) accuracy of forecasting age-4 ocean abundance, 
using pre/post ratios for forecast years 2004 to 2021.  

Pre/posts ratios > 1.0 represent overforecasts and < 1.0 represent under forecasts. 
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APPENDIX G 
5-year moving average
Model 3 (Charts only)

Comparison of Model 3 (blue) to existing (orange) accuracy of forecasting ages 3 and 4 ocean 
abundance, using pre/post ratios for forecast years 2004 to 2021.  

Pre/posts ratios > 1.0 represent overforecasts and < 1.0 represent under forecasts. 
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APPENDIX H 
Changes in Error 

Model 1 

Age 3 

● MRE decreased from 82,218 to 49,628 fish (t = 1.1464; p = 0.2675).
● MAE decreased from 112,479 to 94,914 fish (t = 0.60308; p = 0.5544).
● RMSE decreased from 206,365 to 127,054, a 38% reduction.

Age 4

● MRE decreased from 19,460 to 225 fish (t = -4.3346; p = 0.0004502).
● MAE decreased from 33,215 to 23,963 fish (t = 1.661; p = 0.115).
● RMSE decreased from 52,616 to 39,067, a 26% reduction.

Model 2 

Age 3 

● MRE decreased from 16,679 to 13,013 fish (t = 0.22145, p = 0.8274).
● MAE decreased from 141,214 to 139,355 fish (t = -0.6957, p = 0.496).
● RMSE decreased from 218,876 to 212,933, a 2.7% reduction.

Age 4

● MRE decreases from -21,135 to -11,097 fish (t = -6.4001;p = 6.589e-06)
● MAE decreases from 34,774 to 34686 fish (t = 1.7331; p = 0.1012)
● RMSE decreased from 1,008,444 to 1,306,692, a 30% reduction.

A t-test on solely FY2012-2021 generated the following results:

● Pre/post decrease of 0.44 (t = 4.3824, p = 0.001765)
● MRE decrease of 58,004 fish (t = 5.64, df = 9, p = 0.0003176)
● MAE decrease of 16,193 fish (t = 0.7712, p = 0.4604)




