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The composition of the gastrointestinal microbiota and
associated metabolites changes dramatically with diet
and the development of obesity. Although many corre-
lations have been described, specific mechanistic links
between these changes and glucose homeostasis re-
main to be defined. Here we show that blood and in-
testinal levels of the microbiota-produced N-formyl
peptide, formyl-methionyl-leucyl-phenylalanine, are ele-
vated in high-fat diet-induced obese mice. Genetic or
pharmacological inhibition of the N-formyl peptide recep-
tor Fpr1 leads to increased insulin levels and improved
glucose tolerance, dependent upon glucagon-like peptide
1. Obese Fpr1 knockout mice also display an altered
microbiome, exemplifying the dynamic relationship be-
tween host metabolism and microbiota. Overall, we de-
scribe a new mechanism by which the gut microbiota can
modulate glucose metabolism, providing a potential ap-
proach for the treatment of metabolic disease.

Chronic inflammation in obesity can induce insulin re-
sistance leading to type 2 diabetes (T2D) (1). The com-
mensal microbiota of the gastrointestinal (GI) tract serve
as a key link between diet and metabolism, producing
numerous metabolites that influence host physiology
(2,3). Changes in gut microbiota, termed dysbiosis, are
associated with obesity as well as other disease states.
Interestingly, obesity-associated dysbiosis has been impli-
cated in the development of insulin resistance and T2D (4).
As of yet, most studies that have linked dysbiosis with

obesity or T2D involve associations and correlations with-
out detailed mechanisms. As rates of obesity and T2D
continue to rise across the globe (5), the identification of
the mechanisms by which gut microbiota interact with the
host to modulate metabolism is necessary before thera-
peutic interventions can be developed.

The effects of the microbiome and microbiota-derived
byproducts extend beyond the local intestinal epithelium
or gut immune cells. In mice fed a high-fat diet (HFD), gut
dysbiosis preceded elevations in circulating inflammatory
cytokines, suggesting an early role of the microbiome
in the induction of inflammation (6). As well, an “obese”
microbiome signature confers an increased capacity to
harvest energy from the diet, which could contribute to
the obese state (7). Obesity is strongly associated with an
increased microbiome content of the Firmicutes phylum
and a decreased representation of the Bacteroidetes phylum
(8). The importance of the microbiome was further high-
lighted in a study where germ-free (GF) mice that received
microbiota transplants from an obese human twin gained
10% more fat mass compared with mice receiving a micro-
biota transplant from the lean twin (9). However, the
mechanisms connecting microbiome changes and insu-
lin resistance or obesity remain to be elucidated, and are
likely to involve both immune cells and enteroendocrine
cells (10).

Incretins are a class of metabolic hormones released
from enteroendocrine cells in the gut (11). After eating,
glucagon-like peptide 1 (GLP-1) is released from L cells,
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which act on B-cells to potentiate glucose-stimulated in-
sulin secretion (11). Indeed, antagonism of the GLP-1
receptor (Glplr) lowers insulin secretion and increases
blood glucose concentrations (12). In T2D humans, post-
prandial GLP-1 secretion is generally impaired (13), al-
though the mechanism has not been established (14). The
microbiome, including metabolites and byproducts, may
play a role in gut hormone secretion since enteroendocrine
cells contain receptors to these products and can be
influenced by them (10).

Metabolites and byproducts of the microbiome have
been shown to orchestrate a variety of immune responses
in the mammalian host. Among these different products,
N-formyl peptides are derived from foreign bacteria or
destroyed host cells (mitochondria) and activate G-protein-
coupled N-formyl peptide receptors (FPRs) (15). N-formyl
peptides traditionally define a large group of oligopeptides
that contain a formyl-containing methionine (16). These
motifs are part of a larger group known as pathogen- or
danger-associated molecular patterns because they stimu-
late immune responses and inflammation (17). N-formyl
peptides can stimulate chemotaxis of FPR-expressing im-
mune cells (18), which leads to a signaling cascade that can
cause phagocytosis (19) or apoptosis (20). Intestinal epi-
thelial cells also express the Fprl receptor and, in response
to an infection, can affect epithelial cell restitution (21) or
migration (22). However, a role for Fprl in metabolism
remains unexplored (23).

In the current study, we investigated whether formyl-
methionyl-leucyl-phenylalanine (fMLF) levels are altered
in conditions of obesity and the associated dysbiosis, and
reveal a mechanism whereby this bacterial product influ-
ences glucose metabolism.

RESEARCH DESIGN AND METHODS

Animal Care and Use

Frpl knockout (Frpl-KO) and Glp1lr-KO mice were gen-
erated as previously described (24,25). Only male mice
were used in this study, fed ad libitum and maintained on
a 12-h light/dark cycle. At 8 weeks of age, mice were placed
on a 60% HFD (Research Diets) or normal chow diet (NCD)
(13.5% fat; LabDiet) for 8-10 weeks before analyses. For
broad-spectrum antibiotic treatment, mice were subject to
daily oral gavage (OG) for 2 weeks with water alone or
containing a mixture of antibiotics (Sigma-Aldrich): 0.5
mg/mL vancomycin HCl, 1 mg/mL ampicillin sodium salt,
1 mg/mL neomycin sulfate, 1 mg/mL metronidazole, and
1 mg/mL gentamycin sulfate. Mice were treated with the
Glplr antagonist exendin 9-39 (Sigma-Aldrich) or saline
vehicle in a 0.2 mg/kg dose 20 min before metabolic
studies. fMLF (Sigma-Aldrich) was administered at
1 mg/kg in saline via OG 1 h prior to analyses. Cinnamoyl-
phenylalanyl-(D)leucine-phenylalanyl-(D)leucine-phenylalanine
(cFLFLF) was provided daily at 0.5 mg/kg by OG for 2 weeks
prior to analyses. For all drug treatments, body weight
and food intake were monitored prior to and during the
treatment period. GF C57BL/6 mice maintained in the
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UC San Diego Gnotobiotic Mouse Facility. GF mice were
fed either an autoclaved chow diet (2019S Teklad Global
19% Protein Extruded Rodent Diet; Harlan Laboratories)
or an irradiated sterilized 60% HFD (06414 Teklad), as
previously described (26). For fecal transplantation, 8- to
10-week-old GF mice were gavaged with fecal suspensions
from either WT HFD or Fpr1-KO HFD animals (50 mg/mL).
Animal housing and procedures were performed according
to UC San Diego and Institutional Animal Care and Use
Committee—approved protocols, and conformed to the
Guide for Care and Use of Laboratory Animals of the National
Institutes of Health (NIH).

fMLF Detection and Analysis
Tissues, feces, and plasma were collected, homogenized
and lyophilized, if necessary. Metabolites were extracted
by adding PBS containing 4 nmol/L isotopically labeled
fMLF (N-formyl-L-methionyl-L-leucyl [**C-6, *°N]-L-
phenylalanine) as an internal standard (New England Pep-
tide). The mixture was extracted using a Waters Oasis HLB
SPE cartridge (30 mg, 1 mL) then eluted. The eluent was
dried in vacuo using a Thermo Savant vacuum concentrator
(Thermo Fisher Scientific) with the resulting dried pellet
resuspended in MeOH:H,O (40:60, v/v) for liquid
chromatography-mass spectrometry (MS) analysis.
Liquid chromatography-MS analysis was performed on
Agilent 1290 Infinity II UPLC system (Agilent Technolo-
gies) coupled to an Agilent 6495 triple-quadrupole mass
spectrometer equipped with an electrospray ionization
source. The acquired data were analyzed by Agilent Mass-
Hunter workstation software (version B.07.01), and the
concentration of fMLF was determined using calibration
curves of isotopically labeled standard spiked into pooled
plasma or stool at 1, 2.5, 5, 10, 25, and 50 nmol/L.

Bacterial DNA Measurement From Feces

The PowerViral DNA/RNA Isolation Kit (MoBio) was used
to isolate DNA from feces, followed by quantitative PCR
(gqPCR) for the bacterial 16S rRNA gene V2 region. Bac-
terial DNA concentration was estimated using a standard
curve of bacterial DNA.

Cell Culture and siRNA Transfection

Intraperitoneal macrophages were elicited from mice by
injection of 3% thioglycollate and harvested in PBS after
3 days. mGLUTag cells were cultured as previously de-
scribed (27). Forty-eight hours after plating cells, we
transfected pooled siRNA libraries against Fprl or Fpr2,
or a scrambled negative control (ON-TARGETplus SMART-
pool; Dharmacon), using GenMute Transfection Reagent
(SignaGen Laboratories).

In Vitro Chemotaxis Assay

After siRNA transfection, 1 X 10° cells were placed in the
upper chamber of a Transwell plate (8 wm polycarbonate
filter; Corning), whereas RPMI medium containing fMLF
(250 nmol/L) (Sigma-Aldrich) or MCP-1 (100 ng/mlL)
(Sigma-Aldrich) was placed in the lower chamber, and
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incubated for 4 h. Cells that migrated to the other side of
the Transwell filter were stained with DAPI, images cap-
tured on an Olympus MVX10 MacroView Microscope and
cells counted using ImageJ software (NIH).

Gene Expression Analysis

RNA was isolated with the DirectZol RNA isolation kit
(Zymo Research), and cDNA synthesized using the Ap-
plied Biosystems High Capacity Reverse Transcription Kit
(Thermo Fisher Scientific). Quantitative real-time PCR
was performed using iTaq SYBR Green Supermix (BIO-
RAD) and the Applied Biosystems StepOnePlus Real-Time
PCR System (Thermo Fisher Scientific). Relative gene
expression was calculated using the AACt method with
GAPDH as an internal control. Inferred expression of
intestinal epithelial cell Fprl was calculated by subtracting
lamina propria gene expression from the total ileum gene
expression. Primer sequences are listed in Supplementary
Table 1.

Intracellular cAMP Analysis

Intracellular cAMP levels in intraperitoneal macrophages
were measured using the Bridge-It cCAMP Designer Fluo-
rescence Assay Kit (Mediomics).

Metabolic Studies

Mice were fasted for 6 h prior to conducting insulin
tolerance tests and glucose tolerance tests (GTTs), which
have been described previously (28).

GLP-1 Detection

Blood serum was collected from mice fasted for 6 h,
immediately before (basal) and 10-15 min after dextrose
gavage, in the presence of DPP-4 (dipeptidyl peptidase 4)
inhibitor (EMD Millipore). Postprandial blood collection
was performed 10 min after gavage in NCD mice and
15 min after gavage in HFD mice. Analysis of GLP-1 was
conducted by High Sensitivity GLP-1 Active ELISA Kit,
Chemiluminescent (Millipore Sigma).

Glucose-Stimulated Insulin Secretion Assay

Primary murine islets were isolated as previously described
(29). Secreted insulin was normalized to the corresponding
intracellular insulin levels in the cell pellet of each sample.

Glucose-Stimulated GLP-1 Secretion Assay
mGLUTag cells were stimulated with 3 mmol/L glucose in
the presence or absence of Fprl agonists (fMLF) for 4 h.

Plasma Protein Measurements

Fasting insulin, glucagon, total GLP-1, and active GLP-1
levels were measured by ELISA (Alpco, Mercodia, and EMD
Millipore, respectively). Other fasting plasma proteins were
measured by MILLIPLEX Multiplex Assay (EMD Millipore).

Histological Analyses
Tissue sections of pancreas, epididymal white adipose tissue
(eWAT), small intestine, or colon were immunostained with
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appropriate antibodies, which are listed in Supplementary
Table 1 and were analyzed as described previously (30).

RNA Fluorescence In Situ Hybridization

RNA fluorescence in situ hybridization was performed on
frozen sections of the small intestine and colon using an
RNAscope Fluorescent Multiplex Kit with RNAscope
probes designed against mouse Fprl (catalog #319251)
and mouse Proglucagon (catalog #400601), according to the
manufacturer instructions (Advanced Cell Diagnostics,
Inc.). Slides were counterstained with DAPI, and images
were captured with an Olympus FV1000 Spectral Confocal
Microscope. For quantification, 15-30 randomly selected
Proglucagon® L cells on each slide were observed for the
Fprl probe signal, and images were analyzed for Fprl
probe fluorescence intensity using ImageJ software.

Immunoblot Analysis

Proteins from tissue lysates loaded onto an SDS-PAGE gel
then transferred to a polyvinylidene fluoride membrane.
Membranes were blocked then incubated with antibodies,
which are listed in Supplementary Table 2 and were
analyzed as previously described (21).

Flow Cytometry Analysis

Lamina propria leukocytes were isolated from the small
intestine and colon as previously described, followed by
staining with fluorescence-tagged antibodies to detect cell
lineages (see table in Goodyear et al. [31]) (Supplementary
Table 2). Data were collected with a BD FACSCanto flow
cytometer (BD Biosciences) and analyzed using FlowJo
software.

Fecal Albumin Analysis

Fecal pellets were collected prior to and 8-10 weeks after
placing animals on an HFD and were frozen at —80°C.
Feces were resuspended at 10 mg/mL in PBS, and the
albumin concentration determined by ELISA (Bethyl Lab-
oratories, Inc).

In Vivo FITC-Dextran Assay

Analysis was performed as previously described (32). The
concentration of FITC-dextran was determined by fluo-
rescence spectroscopy relative to a linear standard curve of
FITC-dextran prepared in plasma from untreated mice.

Bacterial 16S rRNA Gene Sample Processing and
Sequencing

Bacterial DNA was isolated from feces using the Power-
Fecal DNA Isolation Kit (MoBio), according to the man-
ufacturer guidelines. Pools of PCR amplification using
bacterial 16S V4 rDNA fusion primers (515f and 806r)
were loaded into an Illumina MiSeq and sequenced for
250 cycles for paired-end sequencing (33).

Sequencing Data Analyses
Sequenced paired-end reads were merged, quality filtered,
and dereplicated with USEARCH (34). Representative
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sequences from the de novo operational taxonomic units
(OTUs) were assigned taxonomic classification via mothur’s
Bayesian classifier at 80% confidence; the classifier was
trained against the GREENGENES reference database of
16S rRNA gene sequences clustered at 99% (35). The a-
and B-diversity metrics were calculated as previously de-

scribed (36,37).

Inference of Metagenomes

Metagenome prediction was conducted from 16S rRNA
sequencing data using the Piphillin algorithm, using
the reference genome databases KEGG 70.1 and BioCyc
18.0 (38).

Synthesis and Purification of cFLFLF

The synthetic peptide cFLFLF was synthesized using
a standard solid-phase Wang resin supported Fmoc
(fluorenylmethyloxycarbonyl) peptide synthesis proto-
col using an auto synthesizer (CSBio), similar to pre-
vious publications (39).

Significance Testing

Sample sizes necessary for animal studies were estimated
using Russ Lenth’s power calculator (University of Iowa,
Iowa City, IA [http://homepage.divims.uiowa.edu/~rlenth/
Power/]). Whole microbiome significance testing was per-
formed by permutational ANOVA (PERMANOVA, version
3.2.2 [www.r-project.org]) (40). Taxon significance, or the
univariate differential abundance of OTUs, was tested using
the DESeq2 package, and g values were calculated with the
Benjamini-Hochberg procedure to correct P values, control-
ling for false discovery rates (41,42). All other data were
analyzed for significance testing using GraphPad Prism
software.

RESULTS

fMLF Is Increased in HFD/Obese Mice and Requires
Fpr1 to Induce Chemotaxis

To determine whether levels of N-formyl peptides are
altered by HFD-induced obesity, we conducted MS analysis
of blood plasma and GI tissues from wild-type (WT) mice
fed either a NCD or a 60% HFD. We found that blood levels
of the N-formyl peptide fMLF are several fold higher in
obese/HFD animals compared with lean/NCD animals, and
increase over time with animals being fed an HFD (Fig. 1A
and B). GI levels of fMLF across all gut regions are even
more dramatically increased while being fed an HFD and
are in a much higher range compared with those found in
the circulation (Fig. 1C and E). These elevated fMLF levels
are particularly dramatic considering the reduction in total
bacterial load that occurs over time while on an HFD (Fig.
1F). Consistent with a microbiota-derived origin, treat-
ment of NCD or HFD mice with broad-spectrum anti-
biotics for 2 weeks led to an ~80-100% reduction in blood
and intestinal fMLF levels (Fig. 1G and H). Additionally,
GF animals also had barely detectable intestinal and blood
levels of fMLF on NCD (Supplementary Fig. 1A and B). One
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of the receptors for fMLF is the N-formyl receptor, Fprl,
which we found expressed in all parts of the intestine and
is increased in the ileum and colon under HED feeding (Fig.
11). Intestinal lamia propria showed the highest expression
of Fprl (Supplementary Fig. 1C). However, Fprl expres-
sion was ~50% reduced in the small intestinal lamina
propria of HFD animals; therefore, the increased Fprl
expression in the total intestinal tissue in these mice
resides in the epithelial compartment (Supplementary
Fig. 1D). Although mammals have several FPRs, in vitro
macrophage chemotaxis experiments revealed that fMLF
acts through the Gj-coupled Fprl, rather than Fpr2, and
also reduces forskolin-induced cAMP (Fig. 1J-L and Sup-
plementary Fig. 1E and F) (43). In addition, gPCR expres-
sion analyses confirmed that Fpr1 is expressed throughout
the intestine, where fMLF levels are highest, and is in-
creased in HFD animals compared with NCD animals
(Supplementary Fig. 1G and H). These findings, together
with the marked differences between blood and intestinal
fMLF levels, led us to suggest that Fprl is stimulated by
fMLF present in the intestinal lumen, which is consistent
with reports that Fprl is expressed on the apical surface of
intestinal epithelial cells (44).

Loss of Fpri in HFD/Obese Mice Improves Glucose
Tolerance and Is GLP-1 Dependent

To assess the metabolic effects of Fprl, we placed WT and
Fpr1-KO littermates on an HFD for 10 weeks and mea-
sured glucose and insulin tolerance. OG-GTTs revealed
a significant improvement in glucose tolerance in Fpr1-KO
versus WT mice, with no change in body weight, organ
weight, or overall food intake (Fig. 2A and B and Supple-
mentary Fig. 2A-I). In addition, Fpr1-KO mice displayed
increased plasma insulin levels in both the basal state and
in response to glucose (Fig. 2C), while insulin tolerance
tests revealed no improvement in insulin sensitivity (Fig.
2D and E). In contrast, the loss of Fprl did not lead to
a significant improvement in glucose or insulin tolerance
on NCD (Supplementary Fig. 3). Overall, this is consistent
with the idea that elevated fMLF levels in the HFD state
activates Fprl leading to glucose intolerance.

To examine how loss of Fprl leads to increased insulin
levels, we measured ex vivo glucose-stimulated insulin
secretion using pancreatic islets isolated from HFD WT
and Fpr1l-KO mice. Surprisingly, we found no change in
insulin secretion (Fig. 2F). In addition, islet size and total
mass in Fpr1-KO mice was unchanged (Supplementary Fig.
2J and K), although intracellular levels of insulin were
elevated (Fig. 2G). This suggests that Fprl deficiency
increases insulin levels through an extrinsic, or islet-
nonautonomous, manner. This is also consistent with
findings that Fprl is expressed only at very low levels in
WT pancreatic islets and is reduced further in HFD con-
ditions (Supplementary Fig. 1D). Interestingly, circulating
GLP-1 levels were higher in HFD Fpr1-KO mice compared
with WT mice (Fig. 2H). No significant changes were detected
in levels of other circulating gastric hormones or glucagon
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Figure 1—fMLF is increased in HFD/obese mice and requires Fpr1 for chemotaxis. A: Blood plasma fMLF levels in lean/NCD vs. obese/HFD
mice after 16 weeks on an HFD (n = 8-12 mice/group). B: Timecourse of fMLF levels after placement on an HFD (n = 6-8 mice per time point).
C: fMLF levels in various intestinal tissues in WT NCD and HFD animals after 8 weeks on diet (n = 8 mice/group). lleum (D) and colon (E) fMLF
levels after 8 and 20 weeks of HFD or NCD (n = 6-8 mice/group). F: Bacterial DNA levels in colon fecal samples, determined by 16S rRNA gene
expression and presented as a measure of bacterial load (n = 8 mice/group). G: Blood plasma fMLF levels in NCD and HFD mice (after 8 weeks
on diet) treated with or without antibiotics (n = 6-8 mice/group). H: lleum fMLF levels in HFD antibiotic-treated animals, after 8 weeks on diet
(n = 4 mice/group). I: Relative Fpr1 transcript levels in various intestinal tissues of NCD and HFD WT animals after 8 weeks on diet (n =
8 mice/group). J: Chemotaxis assays of thioglycollate-elicited intraperitoneal macrophages (IP-Macs) in response to fMLF treatment
(250 nmol/L), and after siRNA knockdown of Fpr1 or Fpr2 (n = 3). K: Chemotaxis assays in response to MCP-1 treatment (100 ng/mL)
demonstrate that knockdown of Fpr1 does not inhibit macrophage activation by other chemokines. L: mRNA transcript levels of Fpr1 and
Fpr2 in IP-Macs after siRNA knockdown. #Below detection limit. Data are mean = SEM. ns, not significant. *P < 0.05, **P < 0.001, *™*P <
0.0001 by one-way ANOVA with Bonferroni post-test (D-G) or two-tailed t test comparing the indicated groups. In D-F, statistical significance
is indicated by comparing groups at each respective time point.

and GLP-1 modulation (Supplementary Fig. 5). To deter-
mine whether the glucose-tolerant phenotype of HFD
Fprl-KO mice is dependent upon GLP-1, we pretreated
WT and Fprl-KO HFD mice with the Glplr antagonist
exendin 9-39 (45). This antagonist prevented the improved

(Supplementary Fig. 4), suggesting that GLP-1 may drive
the increased insulin secretion in Fprl-KO animals. We
also found that antibiotic-treated HFD mice displayed
improved glucose tolerance and increased GLP-1 levels,
consistent with a connection between the gut microbiota
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Figure 2—Loss of Fpr1 in HFD/obese mice improves glucose tolerance and is GLP-1 dependent. A and B: OG-GTT after 10 weeks on an
HFD, and area under the curve (AUC) (n = 7-10 mice/group). C: Plasma insulin levels during OG-GTT. D and E: Intraperitoneal insulin tolerance
test after 12 weeks on an HFD and AUC (n = 7-10 mice/group). F and G: Glucose-stimulated insulin secretion and intracellular insulin levels in
pancreatic islets from HFD WT and Fpr1-KO mice (n = 4 mice/per group, 20 islets/incubation). H: Active GLP-1 levels during the OG-GTT in A
(n =24-25 mice/group). / and J: OG-GTT and corresponding AUC of WT and Fpr1-KO HFD mice after 10 weeks on an HFD and treatment with
or without the Glp1r antagonist exendin 9-39 (n = 10-11 mice/group). K: Plasma insulin levels during the OG-GTT in/ (n = 10-11 mice/group).
Error bars indicate the SEM. ns, not significant. *P < 0.05, **P < 0.001, **P < 0.0001 by two-way ANOVA and Bonferroni post-test (A and /),
one-way ANOVA and Bonferroni post-test (J) or two-tailed t test. Statistical significance is indicated comparing groups at each respective
time point. In / and K, significance is indicated for WT vs. Fpr1-KO animals treated with vehicle.

glucose tolerance in Fpr1-KO mice compared with vehicle-
treated littermates (Fig. 2I and J). Similarly, the elevated
insulin levels in Fpr1-KO animals were suppressed by Glp1lr
inhibition (Fig. 2K). Thus, the beneficial effects of Fprl
deficiency are dependent upon GLP-1 signaling.

GLP-1 Secretion Is Dependent on Fpr-1 Expression

Consistent with elevated GLP-1 levels in HFD Fprl-KO
mice, immunofluorescence analysis revealed increased
GLP-1 expression in enteroendocrine L cells of the ileum
and colon in these mice compared with reduced levels
observed in WT HFD mice (Fig. 3A and B and Supplemen-
tary Fig. 6A). mRNA transcript levels of Proglucagon, the

precursor of GLP-1, were also increased in Fpr1l-KO mice
relative to WT mice on an HFD (Fig. 3C and Supplementary
Fig. 6B and (), indicating a potential transcriptional basis
for increased GLP-1 levels. We also demonstrate Fprl
expression in L cells through RNA fluorescence in situ
hybridization and immunofluorescence analyses (Fig. 3D
and Supplementary Fig. 6D and E). Interestingly, whereas
Fprl expression was quite low and difficult to detect in
NCD L cells, we found increased Fprl expression in HFD L
cells. In addition, Fprl expression was increased in the
colon of HFD mice, as measured by qPCR and Western blot
analyses (Fig. 1I and Supplementary Figs. 1G and 6D-G).
This provides a reasonable explanation for the more
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dramatic phenotypic difference in Fprl-KO mice on an
HED. GLP-1 can also be produced in pancreatic a-cells, but
our studies show that Fprl expression is very low in
isolated murine islets, with even lower expression in
HFD (Supplementary Fig. 1C and D). This suggests that the
actions of Fprl to modulate GLP-1 levels are primarily
through L cells in the intestine.

Given these results, we postulated that {MLF acts upon
L cells to suppress glucose-stimulated GLP-1 secretion. To
test this, we measured glucose-stimulated GLP-1 secretion
in murine mGLUTag L cells, treated with or without fMLF.
Treatment with fMLF suppressed GLP-1 secretion in
a dose-dependent fashion (Fig. 3E). Furthermore, siRNA-
mediated Fprl knockdown abrogated the effect of fMLF
to reduce GLP-1 secretion at any of the concentrations
tested (Fig. 3F and Supplementary Fig. 6F). Whereas Fprl
was well expressed, we could not detect the low-affinity
Fpr2 in these cells (data not shown). Treatment of mGLUTag
cells with palmitate to mimic HFD conditions also led
to increased expression of Fprl, similar to that observed
in vivo (Supplementary Fig. 6E). Overall, we conclude that
fMLF can signal through FPR1 in L cells to inhibit GLP-1
secretion.

Flow cytometric analysis of the small intestinal lamina
propria confirmed previously reported immune cell pop-
ulation differences in HED versus NCD animals, including
reduced eosinophil and increased macrophage numbers
(Supplementary Fig. 7A-H) (32). However, loss of Fprl
did not change immune cell composition in either diet
condition. gPCR analysis of these cells revealed little
change in proinflammatory gene expression, although anti-
inflammatory interleukin-10 expression was increased in
Fpr1-KO HFD mice (Supplementary Fig. 7I and J). Sim-
ilarly, elevated interleukin-10 levels were detected in the
blood of these mice (Supplementary Fig. 7K). Analysis of
inflammation in eWAT also showed no significant change
in macrophage numbers and only a modest improvement
in inflammatory gene expression (Supplementary Fig. 8).

Pharmacological Control of Fpr1 Activity Modulates
GLP-1 Levels and Glucose Tolerance

To confirm that the Fpr agonist fMLF detrimentally
impacts glucose metabolism in vivo, we acutely treated
WT HFD mice with fMLF. Treatment reduced glucose
tolerance (Fig. 4A-C) and GLP-1 levels (Fig. 4D). In con-
trast, fMLF had no significant effect in NCD mice, likely
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due to the low expression of GI L-cell Fprl in these animals
compared with HFD animals (Supplementary Fig. 94). In
addition, we determined whether pharmacological inhibi-
tion of Fprl could provide benefits similar to those seen in
Fpr1-KO mice. In contrast to agonist administration, the
treatment of WT HFD mice with the Fprl antagonist
cFLFLF (Supplementary Fig. 9B) improved glucose toler-
ance (Fig. 4E and F) and increased plasma insulin and GLP-
1 levels, without changing body weight or food intake (Fig.
4G and H and Supplementary Fig. 9C-H). The improved
glucose tolerance induced by the Fprl antagonist is de-
pendent upon the Glplr, as treatment had no effect in
HFD Glp1r-KO littermates (Fig. 4E and F). These results
suggest that GLP-1 dependency is the dominant mecha-
nism for the Fpr1-KO phenotype.

Loss of Fpr1 Alters Intestinal Microbiome Composition
in HFD/Obese Mice

We next assessed the effects of diet and genotype on the
microbiome. Levels of fMLF in the blood and intestine of
HEFD Fprl-KO mice were reduced compared with WT mice
(Fig. 5A and B). Measurement of GI permeability as
assessed by fecal albumin content and analysis of blood
levels of orally administered FITC-dextran confirmed in-
creased permeability in HED animals, consistent with the
increased plasma fMLF levels (Supplementary Fig. 10A and
B) (32). However, we found no change in GI permeability in
Fpr1-KO mice compared with WT mice, suggesting that
the microbiota composition in the Fpr1-KO mice might be
responsible for decreased fMLF. To investigate this, we
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conducted fecal 16S rRNA gene sequencing of WT mice and
Fprl-KO littermates fed a NCD or HFD. Sequences were
clustered based on similarity into OTUs and compared
against a reference 16S rRNA database to identify their
bacterial classifications (Supplementary Fig. 10C) (35). There
was a modest change in a-diversity between lean/NCD and
HFD animals as measured by either the Shannon diversity
index or OTU richness (Fig. 5C), while the loss of Fpr1 led to
a marked increase in diversity compared with WT mice on an
HFD, although not on a NCD (Fig. 5C and Supplementary
Fig. 10D and E). We next examined compositional differ-
ences between samples, termed B-diversity, based on dis-
similarity of whole microbiome abundance profiles, using
Bray-Curtis and principal component analyses. Diet was the
strongest determinant of differences, with HFD and NCD
samples highly dissimilar regardless of genotype (Fig. 5D).
Interestingly, the Fpr1-KO significantly affected microbiome
composition, but only in HFD animals, revealing that HFD
interacts with the Fprl-KO genotype to uncover an other-
wise masked phenotype.

Comparison between Fprl-KO and WT microbiome
abundances on an HEFD revealed differences in >360
OTUs (Fig. 5E and Supplementary Table 3). The mean
relative abundances of several obesity-associated families
within these phyla, including Lachnospiraceae and Rikenel-
laceae (Supplementary Fig. 10F-H) (46), were altered by
diet and genotype. To illuminate what functional bacterial
pathways and enzymes might be altered, we performed
Piphillin inferred metagenomic content analysis, which
predicts metagenomes from 16S rRNA sequencing data
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by comparison with reference genome databases (47). This
analysis predicted numerous pathways and enzymes al-
tered by diet or genotype (Fig. 5F, Supplementary Fig. 101,
and Supplementary Tables 4 and 5).

As changes in host metabolism can influence gut micro-
biota composition (4), we tested whether the differences in
microbiota observed in HFD Fpr1-KO mice might be the
result or a cause of improved glucose tolerance. Given the
coprophagic nature of mice, one would predict that a micro-
biota-dependent effect would be transferrable through
cohousing. We found that even when cohoused, differences
in glucose tolerance were readily observed between gen-
otypes, arguing against microbiome-transferable effects

(Fig. 5G). Analysis of whole microbiome abundance profiles
from multiple cohorts containing cohoused or separated
mice showed that, whereas WT and Fpr1-KO mice raised in
separate cages display differences in microbiota composi-
tion, those that are cohoused are more similar or the same
(Supplementary Fig. 10J).

Fecal Microbiota Transfer From Fpr1-KO HFD Donor
Mice to GF Recipient Mice Does Not Alter Glucose
Tolerance Compared With Controls

To further elucidate the role of the microbiome, we
performed fecal microbiota transfer experiments, in which
we transferred microbiota by gavage from either WT or
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Figure 6 —Fecal microbiota transfer (FMT) from WT and Fpr1-KO HFD donor mice to GF recipient mice leads to glucose intolerance. A:
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**P < 0.001 by two-way ANOVA and Bonferroni post-test (A) or one-

way ANOVA and Bonferroni post-test, comparing the indicated groups. In A, significance is indicated for GF vs. HFD + WT FMT animals at

each respective time point.

Fpr1-KO HFD donor mice to GF recipient animals. After
8 weeks on an HFD, no differences in glucose tolerance
were found between animals receiving microbiota from
WT or Fprl-KO mice (Fig. 6A). Insulin and GLP-1 levels
were also unchanged, suggesting that the altered micro-
biome of Fprl-KO mice does not transfer the improved
metabolic phenotype (Fig. 6B and C). Rather, the enhanced
glucose tolerance in Fpr1-KO mice appears to be genotype
related. Body weight, epididymal fat, and liver weight were
also unchanged between mice that received WT or Fprl-KO
HFD microbiome transplants (Fig. 6D-F).

DISCUSSION

In these studies, we identify a bacterial product and host
receptor signaling mechanism that modulates GLP-1 to
influence metabolism in diet-induced obesity. As such,
fMLF is among the first identified microbiota-produced
compounds increased in obesity, which can directly impair
glucose homeostasis. These data support a model whereby
lean animals have a healthy microbiota producing lower
levels of fMLF, which, together with low Fprl expression
in L cells, allows for abundant postprandial GLP-1 secretion.
In contrast, obesity-induced dysbiosis leads to elevated
fMLF levels and increased Fprl expression, culminating

in suppressed GLP-1 secretion and reduced glucose toler-
ance (Supplementary Fig. 11).

Incretins are important hormones that stimulate [3-cell
glucose-stimulated insulin secretion (11). In particular, GI
L cells produce GLP-1 under the influence of dietary
glucose as well as other regulatory inputs. Recent studies
have also demonstrated that glucagon-producing a-cells in
the pancreatic islets also produce GLP-1 and that this may
play an important role in stimulating insulin secretion in
neighboring B-cells (48). In addition, with respect to
a-cells versus L cells, our studies found low expression
of Fprl in a-cells compared with robust expression in L
cells, along with high local levels of fMLF in the GI tract
(Supplementary Fig. 1C and D). This suggests that the
major physiologic effects of fMLF are on GI L cells. It is also
well known that GLP-1 has robust effects to improve
glucose homeostasis in an insulin-independent manner
(49). Thus, GLP-1 causes decreased a-cell glucagon secre-
tion, delayed gastric emptying, and neuronal signaling
from the gut to the brain that may contribute to modu-
lation of metabolic homeostasis (50). With this paradigm,
the effects of GLP-1 from either a-cells or L cells on the
stimulation of insulin secretion would represent only one
arm of GLP-1 regulation of glucose homeostasis.
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Our studies show that feeding mice an HFD had a strong
effect that caused microbiome changes, commonly termed
dysbiosis. In addition to the diet-induced dysbiosis, we
found that Fpr1-KO also led to alterations in the compo-
sition of the microbiota. Interestingly, predicted levels of
methionyl-tRNA formyltransferase (MTFMT), the enzyme
that produces formylmethionine, were increased in WT
HFED versus NCD mice, consistent with increased fMLF
production (51). Furthermore, in Fpr1-KO mice versus WT
mice on an HEFD, predicted levels of purine production
enzymes were elevated, potentially decreasing substrate
availability for MTEMT and contributing to the reduced
fMLF levels observed in Fprl-KO animals (52). Interest-
ingly, in the current study, whereas Fpr1-KO mice dem-
onstrated an altered microbiome, when we did fecal
transplant studies from Fpr1l-KO mice into GF WT ani-
mals, we found that the microbiome transplant did not
confer any changes in metabolic status. These data suggest
that the microbiome alterations we observed in the
Fpr1-KO mice are secondary to their improved metabolic
status.

Another important finding from this study is that HFD
mice display elevated fMLF levels, which are associated
with glucose intolerance and reduced GLP-1 secretion. This
increased fMLF level is likely derived from the microbiome,
as antibiotic treatment of mice abolished blood levels of
fMLF and GF animals also displayed barely detectable
intestinal and blood fMLF levels (Fig. 1G and H and
Supplementary Fig. 1A and B). Although these data suggest
that most of the fMLF present in HED mice appears to be
microbiome derived, there may be a small contribution
from host mitochondria, which remains to be determined.
Since the treatment of WT and Fprl-KO mice with the
GLP1 antagonist (9-39) blocked the effects of Fpr1-KO to
improve glucose tolerance, this suggests that the major
aspects of the metabolic phenotype in the KO animals can
be traced back to GLP-1/GLP1R interactions. Furthermore,
treating mice with exogenous fMLF by OG led to wors-
ening of glucose tolerance, whereas the treatment of these
mice with the Fprl antagonist cFLFLF markedly im-
proved glucose tolerance with enhanced insulin secretion.
G-protein-coupled receptors have been established as
important regulators of L-cell GLP-1 secretion through
the elevation of intracellular cAMP levels leading to a rise
in intracellular CaZ* with membrane depolarization (53).
Since Fprl is a Ggi-coupled G-protein—coupled receptor,
our data are consistent with the proposal that fMLF
signaling through Fprl can lower intracellular cAMP levels
by activating G; (Supplementary Fig. 1F). These lowered
levels of cAMP would impair membrane depolarization and
reduce GLP-1 secretion. This raises the possibility that
Fprl antagonists could eventually be used in the context of
antidiabetic therapy.

In summary, our findings illustrate a mechanism
whereby the gut microbiota influences metabolism in obe-
sity (Supplementary Fig. 11). We demonstrate that fMLF
levels are significantly increased in HFD mice and that Fprl
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KO improves glucose tolerance and promotes GLP-1 and
insulin secretion. GLP-1 antagonism reverses the beneficial
metabolic effects of Fprl KO, indicating a primary role of
incretins in the phenotype. We also found that the treat-
ment of HFD mice with fMLF can exacerbate glucose
intolerance, although antagonizing fMLF with cFLFLF sig-
nificantly improves glucose tolerance. Finally, microbiome
changes occur with an HFD and Fprl KO, which highlight
a dynamic host-microbiome relationship. The antidiabetic
effects of fMLF antagonism should be further explored in
order to maximize the incretin effect in patients who have
uncontrolled hyperglycemia.

Acknowledgments. The authors thank Dr. Ji Wang and Dr. Phillip Murphy
at the NIH for providing Fpr1-KO mice; Dr. Daniel Drucker at the University of
Toronto for providing Glp1r-KO mice; Dr. Patricia McDonald at Scripps Research
Institute of Florida for providing the mGLUTag cell line; and Dr. Lars Eckmann and
Dr. Yukiko Miyamoto at the UC San Diego Gnotobiotic Mouse Facility for providing
GF mice and fecal transplantation. The authors also thank Angela Tyler (University
of California, San Diego) for administrative support.

Funding. This study was funded in part by grants from the NIH Office of the
Director (F32-DK-105686 and T32-DK-007494) and National Institute of Diabetes
and Digestive and Kidney Diseases (DK-033651, DK-063491, DK-074868, and
DK-101395). Imaging was conducted at the UC San Diego Neuroscience
Microscopy Facility (NIH grant P30-NS-047101). The synthesis of cFLFLF was
supported by a private donation to D.P. (147807-101-DR02793-41200).
Duality of Interest. This study was funded in part by grants from Merck and
Johnson & Johnson (UCSD 2016-1729). No other potential conflicts of interest
relevant to this article were reported.

Author Contributions. JW., MR, Y.-J.X., AM.F.J., JM.0., W.Y., D.E.O.,
Y.S.L, and J.D.W. performed in vivo and in vitro studies. JW., MR, Y.-J.X,,
AM.F.J., JM.0.,WY., D.EO,YS.L.,J.D.W., and M.J. analyzed the data. J.W. and
J.M.0. designed the studies and wrote the manuscript. M.R., Y.-J.X., AM.F.J.,
JM.0., WY, DEO, LS.C, AWH., NAM, CNR,YS.L,JDW, MD.C, D.P.,
and M.J. gave input to the design of the studies and the writing of the manuscript.
L.S.C., AW.H., N.AM., and C.N.R. conducted and analyzed 16S rRNA sequencing.
M.D.C. and D.P. synthesized and purified cFLFLF. JW. and J.M.O. are the
guarantors of this work and, as such, had full access to all the data in the study
and take responsibility for the integrity of the data and the accuracy of the data
analysis.

References

1. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as
a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin
Pract 2014;105:141-150

2. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI.
Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005;102:11070—
11075

3. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in
obese and lean twins. Nature 2009;457:480-484

4. Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell
2013;152:673-684

5. Shamseddeen H, Getty JZ, Hamdallah IN, Ali MR. Epidemiology and economic
impact of obesity and type 2 diabetes. Surg Clin North Am 2011;91:1163—1172, vii

6. Guo X, Li J, Tang R, et al. High fat diet alters gut microbiota and the ex-
pression of paneth cell-antimicrobial peptides preceding changes of circulating
inflammatory cytokines. Mediators Inflamm 2017;2017:9474896

7. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An
obesity-associated gut microbiome with increased capacity for energy harvest.
Nature 2006;444:1027-1031


http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-1307/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-1307/-/DC1
http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db18-1307/-/DC1

1426  fMLF and Obesity-Induced Glucose Intolerance

8. Castaner 0, Goday A, Park YM, et al. The gut microbiome profile in obesity:
a systematic review. Int J Endocrinol 2018;2018:4095789

9. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins discordant for
obesity modulate metabolism in mice. Science 2013;341:1241214
10. Lu VB, Gribble FM, Reimann F. Free fatty acid receptors in enteroendocrine
cells. Endocrinology 2018;159:2826-2835
11. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 re-
ceptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet
2006;368:1696—1705
12. Miyawaki K, Yamada Y, Yano H, et al. Glucose intolerance caused by a defect
in the entero-insular axis: a study in gastric inhibitory polypeptide receptor
knockout mice. Proc Natl Acad Sci U S A 1999;96:14843-14847
13. Toft-Nielsen MB, Damholt MB, Madsbad S, et al. Determinants of the im-
paired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin
Endocrinol Metab 2001;86:3717-3723
14. Larsen MP, Torekov SS. Glucagon-like peptide 1: a predictor of type 2 di-
abetes? J Diabetes Res 2017;2017:7583506
15. Roberts EC, Hobson CH, Anderson RP, Chadwick VS. Radio-immunoassay for
formyl methionyl leucyl phenylalanine. Il. Demonstration of an enterohepatic
circulation of immunoreactive bacterial chemotactic peptides in man. J Gastro-
enterol Hepatol 1990;5:38-43
16. Prevete N, Liotti F, Marone G, Melillo RM, de Paulis A. Formyl peptide re-
ceptors at the interface of inflammation, angiogenesis and tumor growth.
Pharmacol Res 2015;102:184-191
17. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPS cause
inflammatory responses to injury. Nature 2010;464:104-107
18. Prossnitz ER, Ye RD. The N-formyl peptide receptor: a model for the study of
chemoattractant receptor structure and function. Pharmacol Ther 1997;74.73—-102
19. Huang J, Chen K, Chen J, et al. The G-protein-coupled formylpeptide receptor
FPR confers a more invasive phenotype on human glioblastoma cells. Br J Cancer
2010;102:1052-1060
20. Wagener BM, Marjon NA, Prossnitz ER. Regulation of N-formyl peptide
receptor signaling and trafficking by arrestin-src kinase interaction. PLoS One
2016;11:e0147442
21. Babbin BA, Jesaitis AJ, lvanov Al, et al. Formyl peptide receptor-1 activation
enhances intestinal epithelial cell restitution through phosphatidylinositol
3-kinase-dependent activation of Rac1 and Cdc42. J Immunol 2007;179:8112—
8121
22. Leoni G, Alam A, Neumann PA, et al. Annexin A1, formyl peptide receptor,
and NOX1 orchestrate epithelial repair. J Clin Invest 2013;123:443-454
23. Molloy MJ, Grainger JR, Bouladoux N, et al. Intraluminal containment of
commensal outgrowth in the gut during infection-induced dysbiosis. Cell Host
Microbe 2013;14:318-328
24, Gao JL, Lee EJ, Murphy PM. Impaired antibacterial host defense in mice
lacking the N-formylpeptide receptor. J Exp Med 1999;189:657-662
25. Scrocchi LA, Brown TJ, MaClusky N, et al. Glucose intolerance but normal
satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene.
Nat Med 1996;2:1254—1258
26. Chen P, Miyamoto Y, Mazagova M, Lee KC, Eckmann L, Schnabl B. Mi-
crobiota protects mice against acute alcohol-induced liver injury. Alcohol Clin Exp
Res 2015;39:2313-2323
27. Drucker DJ, Jin T, Asa SL, Young TA, Brubaker PL. Activation of proglucagon
gene transcription by protein kinase-A in a novel mouse enteroendocrine cell line.
Mol Endocrinol 1994;8:1646—1655
28. Riopel M, Seo JB, Bandyopadhyay GK, et al. Chronic fractalkine adminis-
tration improves glucose tolerance and pancreatic endocrine function. J Clin Invest
2018;128:1458-1470
29. LeeYS, Morinaga H, Kim JJ, et al. The fractalkine/CX3CR1 system regulates
B cell function and insulin secretion. Cell 2013;153:413-425
30. Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage
localization and function in adipose tissue of obese mice and humans. J Lipid Res
2005;46:2347-2355

Diabetes Volume 68, July 2019

31. Goodyear AW, Kumar A, Dow S, Ryan EP. Optimization of murine small
intestine leukocyte isolation for global immune phenotype analysis. J Immunol
Methods 2014;405:97-108

32. Johnson AM, Costanzo A, Gareau MG, et al. High fat diet causes depletion of
intestinal eosinophils associated with intestinal permeability. PLoS One 2015;10:
€0122195

33. Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial
community analysis on the lllumina HiSeq and MiSeq platforms. ISME J 2012;6:
1621-1624

34. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon
reads. Nat Methods 2013;10:996-998

35. McDonald D, Price MN, Goodrich J, et al. An improved Greengenes taxonomy
with explicit ranks for ecological and evolutionary analyses of bacteria and ar-
chaea. ISME J 2012;6:610-618

36. Shannon CE. A mathematical theory of communication. Bell Syst Tech J
1948;27:623-656

37. Bray JR, Curtis JT. An ordination of the upland forest communities of
southern Wisconsin. Ecol Monogr 1957;27:326-349

38. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017;
45(D1):D353-D361

39. Zhang Y, Kundu B, Zhong M, et al. PET imaging detection of macro-
phages with a formyl peptide receptor antagonist. Nucl Med Biol 2015;42:
381-386

40. Anderson MJ. A new method for non-parametric multivariate analysis of
variance. Austral Ecol 2001;26:32—46

41. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550

42. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible in-
teractive analysis and graphics of microbiome census data. PLoS One 2013;8:
€61217

43. Ye RD, Boulay F, Wang JM, et al. International Union of Basic and Clinical
Pharmacology. LXXIIl. Nomenclature for the formyl peptide receptor (FPR) family.
Pharmacol Rev 2009;61:119-161

44. Wentworth CC, Jones RM, Kwon YM, Nusrat A, Neish AS. Commensal-
epithelial signaling mediated via formyl peptide receptors. Am J Pathol 2010;177:
2782-2790

45. Edwards CM, Todd JF, Mahmoudi M, et al. Glucagon-like peptide 1 has
a physiological role in the control of postprandial glucose in humans: studies with
the antagonist exendin 9-39. Diabetes 1999;48:86-93

46. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut
microbiome. Cell 2014;159:789-799

47. lwai S, Weinmaier T, Schmidt BL, et al. Piphillin: improved prediction of
metagenomic content by direct inference from human microbiomes. PLoS One
2016;11:e0166104

48. Fava GE, Dong EW, Wu H. Intra-islet glucagon-like peptide 1. J Diabetes
Complications 2016;30:1651-1658

49. Chambers AP, Sorrell JE, Haller A, et al. The role of pancreatic pre-
proglucagon in glucose homeostasis in mice. Cell Metab 2017;25:927-
934.e3

50. Shah M, Vella A. Effects of GLP-1 on appetite and weight. Rev Endocr Metab
Disord 2014;15:181-187

51. Meinnel T, Mechulam Y, Blanquet S. Methionine as translation start signal:
a review of the enzymes of the pathway in Escherichia coli. Biochimie 1993;75:
1061-1075

52. Nagy PL, Marolewski A, Benkovic SJ, Zalkin H. Formyltetrahydrofolate hy-
drolase, a regulatory enzyme that functions to balance pools of tetrahydrofolate
and one-carbon tetrahydrofolate adducts in Escherichia coli. J Bacteriol 1995;177:
1292-1298

53. Simpson AK, Ward PS, Wong KY, et al. Cyclic AMP triggers glucagon-like
peptide-1 secretion from the GLUTag enteroendocrine cell line. Diabetologia 2007;
50:2181-2189





