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Abstract

In search of interventions targeting brain dysfunction and underlying cognitive impairment in 

schizophrenia, we look at the brain and beyond to the potential role of dysfunctional systemic 

metabolism on neural network instability and insulin resistance in serious mental illness. We 

note that disrupted insulin and cerebral glucose metabolism are seen even in medication-naïve 

first-episode schizophrenia, suggesting that people with schizophrenia are at risk for Type 2 

diabetes and cardiovascular disease, resulting in a shortened life span. Although glucose is the 

brain’s default fuel, ketones are a more efficient fuel for the brain. We highlight evidence that 

a ketogenic diet can improve both the metabolic and neural stability profiles. Specifically, a 

ketogenic diet improves mitochondrial metabolism, neurotransmitter function, oxidative stress/

inflammation, while also increasing neural network stability and cognitive function. To reverse 

the neurodegenerative process, increasing the brain’s access to ketone bodies may be needed. We 

describe evidence that metabolic, neuroprotective, and neurochemical benefits of a ketogenic diet 

potentially provide symptomatic relief to people with schizophrenia while also improving their 

cardiovascular or metabolic health. We review evidence for KD side effects and note that although 

high in fat it improves various cardiovascular and metabolic risk markers in overweight/obese 

individuals. We conclude by calling for controlled clinical trials to confirm or refute the findings 

from anecdotal and case reports to address the potential beneficial effects of the ketogenic diet in 

people with serious mental illness.
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INTRODUCTION

Traditionally, nutrition has been used as adjunctive therapy for improving lipid profiles, 

blood glucose, insulin resistance, and diabetes, however, it has not been thought of as a 

metabolic therapy affecting the structure and function of the brain, despite preliminary 

evidence otherwise [1]. For example, diet has been shown to have an effect on core 

symptoms of pediatric epilepsy [2]. Recent therapeutic focus has shifted towards the 

influence of nutrition on neural network brain stability, brain-derived neurotrophic factor, 

ATP energy function and neurotransmitter balance [1,3]. Diet, in particular ketogenic diets, 

have been identified to influence several biological processes, including mitochondrial 

energy metabolism, inflammatory processes, oxidative stress, monoaminergic activity, and 

progression of neuro-degeneration, and hence are considered a metabolic therapy itself [4]. 

Many neurological diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), 

epilepsy, bipolar disorder (BD), schizophrenia (SZ), and major depressive disorder (MDD) 

are characterized by cerebral glucose hypometabolism, insulin resistance, neurotransmitter 

imbalances, mitochondrial dysfunction, oxidative stress, and inflammation as potential 

causative factors [5,6]. Insulin resistance is a risk factor for dementia [7], cognitive 

deterioration later in life in those with type 2 diabetes mellitus (T2DM), and mood disorder, 

such as depression [8,9] as well as cognitive dysfunction in youth [10]. Reductions in left 

hippocampal grey matter volume have also been found to be common to MDD, BD, and 

SZ [11], showcasing the close neural interaction shared by these conditions. Therefore, new 

interventional approaches of metabolic psychiatry prevention and treatment targets must be 

further studied and may have the potential to yield universal improvements in psychiatric 

conditions through neuronal access to metabolic changes with nutritional ketones [11]. We 

review the current body of evidence for the effects of Ketogenic Diets (KD) on neuronal 

networks.

The KD has been identified as a potential treatment for neurodegenerative and 

neuropsychiatric conditions [12–14]. Initially used by clinicians in the 1920s as a treatment 

for epilepsy, this high-fat, moderate protein, low-carbohydrate diet releases ketone bodies 

(principally β–hydroxybutyrate (β-HB) and acetate) from the breakdown of fat and serves as 

an alternative fuel, diverting away from the use of glucose as the body’s main energy source 

[15]. See figure 1. Adhering to a sustained KD, an individual achieves a level of nutritional 

ketosis, contrary to and well below pathological ketoacidosis by diet instead of starvation. 

[16]. During times of glucose deprivation or increased energetic demands, the brain has 

evolved to utilize ketones to preserve and augment critical central functions [17]. This is 

evident in a fasting state such as during sleep, when ketones can increase and maintain 

circulating ketone bodies, especially β-HB. Increased levels of β-HB have been reported to 

improve symptoms of various age-related diseases [18], thereby providing a rationale for the 

development of therapeutic ketogenic interventions in neurodegenerative diseases [19].

KETONES ARE FUEL FOR THE BRAIN AND BODY

Although the human brain is only 2% of the body’s volume, it consumes over 20% of 

its energy at rest [20], and accordingly, the brain is particularly vulnerable to changes in 

metabolism. While glucose is normally considered to be the brain’s default fuel, ketones 
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provide 27% more free energy than glucose [21]. People with insulin resistance cannot use 

glucose effectivity, with obvious consequences for brain function such that insulin resistance 

is an early risk-factor for dementia later in life [9]. In neurodegenerative conditions, the 

brain is unable to use glucose effectively due to both glial and neuronal changes in glucose 

transportation, in addition to changes in cellular respiration enzymatic activities, and insulin 

signaling [17]. During times of glucose deprivation or increased energetic demands, the 

brain has evolved to utilize ketones to preserve and augment critical central functions 

thereby providing a rationale for the development of therapeutic ketogenic interventions in 

AD and other neurodegenerative diseases. Ketones are released from free fatty acids taken 

up by the liver after glycogen stores are depleted in a fasting state. Mattson et al. suggest that 

this fuel switch is accompanied by biological adaptations of neural networks in the brain that 

optimize their function [14]. As might be expected, cognitive impairments in schizophrenia 

are related to brain insulin resistance, supporting its role in the pathophysiology of cognitive 

dysfunction in SZ [22]. Ketones are anti-inflammatory, decrease production of reactive 

oxygen species, and upregulate mitochondrial biogenesis in the brain [16].

BENEFITS OF THE KETOGENIC DIET

Nutritional ketosis is associated with improvement in metabolic health and mitochondrial 

function [16]. For example, a randomized controlled trial of 119 participants by McClernon 

et al. [23] reported participants assigned to a KD versus a low fat diet had significant 

decreases in body mass index (BMI) after six months, alongside mood improvements, 

and a significant reduction in negative affect and hunger [20]. Similarly, participants in 

an uncontrolled intervention study experienced a decrease in insulin levels and BMI, as 

well as an improvement in cognitive function assessing working memory and speed of 

processing after 12 weeks [24]. As a result of the extracellular changes that occur during 

ketosis, intracellular sodium concentrations would be expected to decrease correspondingly, 

which is a common feature of mood-stabilizing medications [25]. The utilization of ketone 

bodies by the brain instead of glucose has been proposed to bypass glucose hypometabolism 

commonly associated with neurological diseases, evidenced in a study by Cunnane et al. 

[26] who found that uptake of ketone bodies in individuals with AD has a beneficial 

effect on cognitive outcomes. Ketone bodies may also provide neural benefits to younger 

individuals and those not yet in a hypometabolic state, as ketones increase Gibbs free 

energy exchange for ATP by 27% compared to glucose, potentially representing a more 

efficient fuel for the brain [21,27]. In addition to bypassing glucose hypometabolism 

in the brain, ketone bodies have several favorable metabolic adaptations in regards to 

neurotransmitter imbalances, oxidative stress, and inflammation, characteristic of several 

neurological diseases [5]. While there may be other neurobiological mechanisms, see Table 

1 and Figure 2 for potential mechanistic effects.

Imbalance of the GABA/glutamate neurotransmitters and glutamate excitotoxicity are 

predominant features of neurological diseases, from epilepsy [28] to AD [29], which have 

been shown to be corrected by KD [29–31]. A study by Olson et al. 31 demonstrated 

that a KD reduced seizures in a mouse model of epilepsy and that this was associated 

with an increase in GABA/glutamate and decrease in excitotoxicity. Similarly, in another 

study, Kraeuter et al. [32] pharmacologically manipulated GABA/glutamate balance to 
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generate a mouse model of SZ and reported normalization of symptoms after three weeks 

of exogenous β-HB administration. It has been generally accepted that oxidative stress 

contributes to most, if not all, chronic diseases, including SZ, BD, and MDD [6]. The 

KD has a myriad of corrective mechanisms of oxidative stress in neurological disorders, 

which have been reviewed in depth elsewhere [30,33]. Oxidative stress and inflammation 

are mutually reinforcing disease states [5,30], with recent post-mortem and in-vivo human 

evidence demonstrating the association between brain inflammation and mental illness [34]. 

This is also seen in other mental illnesses, as a study by Marques et al. (2019) found 

increased inflammatory markers (translocator protein) in the brains of living SZ patients 

[35].

A 2019 study by Athinarayanan et al. [36] investigated the effects of the KD compared 

to usual care in patients with T2DM over two years, finding significant improvements in 

restoring cardiometabolic function whilst utilizing less medication. This was evident through 

reductions in HbA1c, fasting glucose, fasting insulin, BMI, blood pressure, and triglycerides 

in the KD group. There was also a resolution of diabetes in the KD group (53.5% reversal, 

17.6% remission) but not in the control group. Similar reductions in HbA1c, BMI, and 

medication use when comparing KD to usual care in T2DM patients have been reported 

in other studies investigating effects after 10 weeks and one-year [37,38]. Furthermore, 

a recent five-year clinical trial of the KD in patients with T2DM has found similar 

positive cardiometabolic changes, demonstrating the potential for beneficial long-term 

outcomes [39]. The increase of small LDL particles is a common characteristic of diabetic 

dyslipidemia, and this has been found to be reversed by a KD [40]. Correspondingly, these 

positive cardiometabolic changes have been credited to lower the risk of cardiovascular 

disease in the T2DM population. Conversely, a recent review by Parry-Strong et al. [41] 

investigated the effects of the KD on T2DM, concluding that the diet may cause reductions 

in HbA1c, however, evidence of an advantage over other strategies is limited and further 

research is needed to provide definitive evidence.

CLINICAL EVIDENCE OF THE KETOGENIC DIET IN NEUROLOGICAL 

CONDITIONS

The KD first came to prevalence following its use in epilepsy in the 1920s and is currently 

mainly used in children with treatment resistant seizures [42]. Current research investigating 

the KD in epileptic adults does not show effects as favorable to those found in children, 

with fewer adult studies reporting seizure freedom or reduction compared to studies in 

children [42,43], possibly because adults typically fix their own meals and their eating is 

not monitored. A 2018 randomized controlled trial by Kverneland et al. [44] investigated the 

effects of a modified Atkins diet on adult epileptic patients. This diet also induces ketosis 

by limiting individuals to a maximum carbohydrate intake of 20 g/day. When compared to 

a control group, the intervention group showed significant reductions in seizure frequency, 

however, this was only a moderate reduction of 25%.

The accumulation of amyloid plaques through mitochondrial dysfunction, glucose 

hypometabolism, and neuronal loss are hallmark features of AD [29,45]. Recent 
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management strategies for AD have been aimed at modifying dietary and lifestyle habits, 

with the KD gaining traction as an intervention [29]. Several preclinical studies on the KD in 

Alzheimer’s have yielded promising results. Circulating ketone bodies of β-HB were found 

to attenuate the toxic effects of the amyloid beta peptide and protect mitochondrial function 

[46]. Additionally, studies in animal models have proved encouraging, with Van Der Auwera 

et al. [47] finding a 25% reduction in amyloid beta levels in mice on a KD compared to 

controls.

The use of the KD as an anticonvulsant intervention in BD was first proposed in 

2001 by El-Mallakh and Paskitti [25], highlighting the diet’s positive effects on glucose 

hypometabolism. However, there has been a lack of available human data investigating 

KD in BD. The first case series by Phelps, Siemers, and El-Mallakh [48] focused on 

two female patients with BD who were assigned a KD and maintained nutritional ketosis 

for up to three years. Both patients experienced the mood stabilizing effects commonly 

seen with medication, with no adverse reactions reported. It was hypothesized that the 

diet reduced intracellular sodium and calcium, which acidified blood plasma and stabilized 

mood [48]. The energy metabolism of ATP generated in BD is incapable of sustaining 

the sodium-potassium pump in neurons, which may cause a depressed state in conditions 

of severe ATP use deficiency, and a manic state in less severe ATP use deficiency [49]. 

This has led to the KD being hypothesized as an effective therapeutic intervention in BD 

due to positive effects on mitochondrial metabolism and function [50]. The underlying 

characteristics shared by these neurological conditions can also be evidenced in MDD. 

The mood stabilization effects of the KD have been identified as potentially recreating the 

pharmacological effects of mood stabilizing medication whilst circumventing detrimental 

side effects [15,25]. Reductions in neuroinflammation associated with KDs has been 

suggested to provide antidepressant effects and subsequently improve symptoms in patients 

with mood disorders [51,52]. Similarly in PD, the antioxidant and anti-inflammatory effects 

of the KD have been identified as neuroprotective mechanisms to potentially slow or halt 

progression of the disease [33]. Research has found that the presence of β-HB in PD patients 

have been found to be neuroprotective, supporting KD as a therapeutic intervention for PD 

[46,53].

Effective glucose metabolism maintains global excitatory neural network function [54]. 

Therefore, low availability of energy substrates can reduce synaptic function and lead 

to neural network instability [55], as is the case with the glucose hypometabolism that 

the discussed neurological conditions share. Neural network instability has recently been 

identified as a potential link to recurrent seizures in epilepsy and the use of the KD as a 

metabolic therapy has been speculated to provide a buffer against neural excitability and 

promote normal function [56]. The effects of the KD on mitochondrial function may be 

from improving ATP energy metabolism, likely improving neuronal homeostasis and also 

enabling higher resilience to neural damage during seizures [57]. The link between epilepsy 

and SZ has been well established, and the efficacy of some anti-epileptic medications in SZ 

patients suggests shared disease mechanisms [58]. There seems to be an association between 

metabolism and neural network stability and given the established success of the KD as a 

therapeutic intervention in epilepsy, it is likely that it will produce the same results in SZ.
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SCHIZOPHRENIA, METABOLISM, INFLAMMATION, AND NEURONAL 

TARGETS

SZ is diagnosed based on positive symptoms, such as delusions and hallucinations, and 

negative symptoms, such as anhedonia and amotivation. It is also characterized by cognitive 

deficits that are responsible for poor social and occupational outcomes [59]. Neuroleptic 

medications treat positive symptoms, but they have not been able to improve cognition, 

nor do they target pathophysiological mechanisms thought to underlie these deficits. 

Furthermore, antipsychotic use is frequently associated with motor and metabolic side 

effects [54]. Therefore, research is additionally focusing on both interventional strategies 

targeting brain dysfunction and the potential role of systemic metabolic dysfunction. In 

understanding the etiology of SZ, a leading theory is the abnormal neurodevelopment 

hypothesis which includes the influences of genetics, prenatal and perinatal disorders, and 

its combined interaction with environmental factors [60]. Another condition characterized 

by abnormal neurodevelopment is epilepsy [61], and given the observed ability of the 

KD to improve symptoms of epilepsy in pharmaco-resistant children [42], it suggests the 

possibility that the KD may be beneficial in controlling other potential neurodevelopmental 

conditions such as SZ.

As mentioned, insulin resistance and obesity have been historically linked to SZ, even 

before the advent of antipsychotic medication [62]. Importantly, antipsychotic medication 

may worsen cognitive dysfunction in SZ patients [63]. A recent meta-analysis affirms 

the presence of disrupted glucose metabolism and insulin resistance in medication-naïve 

first-episode SZ patients, suggesting that SZ itself, and not just the medication used to treat 

it, increases the risk of T2DM, cardiovascular morbidity and mortality, and more generally, 

accelerated aging [62]. Even young people with SZ are prone to diseases associated with 

aging including metabolic disease [64,65] and cognitive deficits [66,67]. Mitochondrial 

dysfunction is a potential mechanism underlying the association between SZ and glucose 

dysregulation [68]. SZ is also associated with systemic inflammation, as a study found 

significantly increased inflammatory markers on PET scan in the microglia of SZ patients 

compared to healthy controls [35]. Genome-wide studies have confirmed patients with SZ to 

have an inherent genetic predisposition to insulin resistance [69,70].

FUNCTIONAL DYSCONNECTIVITY IN SCHIZOPHRENIA

Human neuroscience has benefitted from the use of functional MRI (fMRI) to elucidate the 

functional neuroanatomical underpinnings of cognition associated with injury, illness, and 

age. fMRI has been used for more than two decades to assess neural function in specific 

regions of the brain as subjects perform a variety of tasks varying in difficulty and made 

more difficult by the overlay of scanner noise and physical restraint. More recently, the field 

discovered that much can be learned about the function of the brain by studying spontaneous 

oscillations of brain activity during rest, avoiding confounding factors of motivation and 

intellect for task performance [71]. Just as significant was the discovery that functional 

connectivity could be assessed by correlating oscillating activity in one region of the brain 

with another. This likely reflects the scaffolding between different brain areas, when they 
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are repeatedly co-active, recalling Hebb’s rule: “units that fire together, wire together” [72]. 

While functional dysconnectivity is related to cognitive deficits in SZ, it is not specific to a 

particular neural network or cognitive domain [73]. As might be expected, this resting-state 

functional connectivity is consistent with structural connectivity, as it is calculated over long 

periods of time [74].

Accordingly, most of the functional connectivity literature reports on static measures of 

connectivity, without regard to state fluctuation or transitions between moments in time in 

the resting scan time series. Recently, we [75–78] and others [1] have broadened this to 

include measures of functional network stability from moment to moment. Specifically, 

network stability reflects dynamic connectivity by assessing how long a network of 

independent nodes, within and between brain regions, maintains a stable connection. 

Network instability increases with age, cognitive deficits, and in T2DM [1].

KETOSIS STABILIZES BRAIN NETWORKS

Muiica-Parodi et al. [1] reported that a one-week KD increases functional brain network 

stability, restoring it to that seen in younger people. They showed that in younger (<50 

years old) adults, nutritional ketosis stabilized functional networks. Most importantly, in 

a separate, larger sample, they found network instability increased with age and with 

decreases in cognitive functioning [1], with the aging effect being accelerated in young 

people with T2DM. Although ketosis has a significant cumulative and synergistic effect 

over the years, these network changes occurred with a single week of ketosis, suggesting 

short-term adaptations to network stability are feasible with a KD. Ruling out any effects 

of weight loss on network stability, the authors reported similar network stabilization when 

giving participants a single exogenous ketone ester drink.

KETOGENIC DIETS AND SYMPTOMS IN SCHIZOPHRENIA

It is thought that the mechanism of KD bypassing glucose hypometabolism in patients 

with SZ helps increase oxygen consumption, improves ATP energy metabolism, and 

induces brain-derived neurotrophic factor to improve cognition [3,54,79]. In a postmortem 

analysis study by Sullivan et al. [80] investigating the brains of mouse models of SZ, 

the authors reported a 19%–22% decrease in glucose transporter expression, GLUT1 and 

GLUT3, and in glycolytic genes. These brains also unveiled a 22% increase in the β-HB 

importer (MCT1), suggesting that the brain may be compensating for cerebral glucose 

hypometabolism by upregulating its facility to transport ketone bodies. Therefore, the brain 

with SZ may be metabolically prepared to respond to a KD. Further studies of KD in animal 

models have yielded favorable results [32,81,82], however, clinical evidence in human 

subjects is limited to case reports and small pilot studies [83–85]. A case report by Palmer 

[85] reported on two instances of SZ patients who experienced a drastic improvement in 

symptoms after adopting a KD. Neither patient started a KD to treat their SZ, however, 

within two-to-four weeks, both patients noticed a dramatic reduction in symptoms of 

psychosis and subsequently stopped all antipsychotic medications. Similar results were 

reported in a case study by Kraft and Westman [83], whereby a patient with a 50-year 

history of SZ reported a resolution in longstanding symptoms of auditory hallucinations 
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after one week of initiating a KD. Upon 12-month follow-up, the authors reported that the 

patient was able to adhere to the diet, only having 2–3 isolated episodes of consuming 

carbohydrates around holidays, however, these periods did not correspond with a recurrence 

in her symptoms.

A pilot case series by Gilbert-Jaramillo et al. [86] investigated the effects of a 2000 kcal, 

3:1 KD (3 parts fat to every 1 part protein and carbohydrate) over six weeks on twins 

diagnosed with SZ. Both participants had tried numerous medications to resolve their 

symptoms, however, these were unsuccessful. Medications were continued throughout the 

study. Unfortunately, both participants struggled with compliance to the diet, reporting 

difficulty due to onset of severe high sugar food cravings after 14 days of the KD. The 

Positive and Negative Syndrome Scale (PANSS) was used as a measure of SZ symptoms, 

which decreased modestly alongside body fat over the six-week intervention. Although the 

study showed that the KD can have short-term benefits on psychiatric condition, metabolic 

function and body composition in young adults, results were limited due to a lack of 

compliance to the KD. Efforts to improve the compliance are needed for the field to move 

forward, and alternate ways to promote ketosis should be explored. Ultimately, blood ketone 

levels should be monitored to allow the most flexibility in ketogenic treatments.

A recent study by Danan et al. [87] investigated the effects of the KD on patients with 

severe, persistent mental illness whose symptoms were poorly controlled with neuroleptic 

medication. Of the 31 patients, 12 were diagnosed with SZ, however, two of the SZ 

patients dropped out due to inability to adhere to the KD for >14 days. Throughout the 

duration of the study period, the patients were voluntarily admitted to a psychiatric hospital 

6 days per week to allow for close monitoring. During these periods they were given 

ketogenic meals, however, for up to 36 consecutive hours on the weekends they were 

unsupervised. The duration of the intervention ranged from 6 to 248 days, with significant 

improvements in symptoms of depression (Hamilton Depression Rating Scale, Montgomery-

Åsberg Depression Rating Scale) and SZ (PANSS), alongside metabolic health measures 

of BMI, blood pressure, blood glucose, and triglycerides. All 10 patients with SZ recorded 

improvements in PANSS scores, with a mean reduction from 91.4 to 49.3. The minimal 

clinically significant change in PANSS of 16.5 was achieved in all 10 patients, however, 

the average reduction of 42.1 points is far above this and is therefore supportive of the 

KD as an interventional strategy for SZ [88]. Study limitations include retrospective data, 

sample, and unique controlled conditions where intervention was applied. Also, there was 

no hospitalized, diet as usual control group for comparison with the KD patients; it is 

possible that just being in the hospital is associated with improvement in PANSS. The 

high compliance rate of 90% was likely due to food being prepared 6 days per week in a 

controlled monitored setting.

Preliminary analytic data of approximately half (13) of the participants to date in a 

Stanford open label, single arm pilot trial in an outpatient population was recently presented 

and revealed benefits with the KD on patients with BD and schizophrenia. This cohort 

included 13 patients, 10 with BD and 3 with schizophrenia, with 1 drop out. Participants 

were provided KD metabolic therapy for 16 weeks and had initially weekly and after one-

month, biweekly clinical evaluations with a psychiatrist and nutritionist coach. Metabolic 
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improvements achieved overall included 10% decrease in BMI, 19% reduction in absolute 

fat mass, systolic/diastolic blood pressure decrease, and 31% reduction in visceral adipose 

tissue. Metabolic syndrome was reversed in all who met criteria at the outset of the study 

(3). Additional metabolic biomarkers improvements included a 28% decrease in hs-CRP, 

a high sensitivity inflammatory metabolic marker and 21% reduction in triglycerides. 

Psychiatric improvements were also observed, with an overall 16% improvement in life 

satisfaction (MANSA Quality of Life), 34% improvement in Clinical Global Impression, 

25% reduction in depressive symptoms on patient health questionnaire and 28% reduction in 

sleep quality with Pittsburgh Sleep Quality Index [15,89]. The preliminary results suggests 

that a KD as a metabolic and mental clinical therapeutic intervention offers promise.

SAFETY AND COMMON SIDE EFFECTS OF KETOGENIC THERAPIES

Among 16 published controlled clinical trials with more than 25 subjects for parallel design, 

or fewer than 15 subjects for crossover design, total cholesterol decreased in one study [90], 

increased in one study [53], and did not change in other 6 studies [91–96]. High-density 

lipoprotein cholesterol increased in 4 out of 12. Low-density lipoprotein cholesterol was 

unchanged in most studies, but increased in two studies [53,97]. Triglycerides decreased by 

50 percent in reported studies [91,94,95,97–100] and blood pressure decreased by 33 percent 

[96,97]. C-reactive protein significantly decreased in one study [97]. These data suggest a 

KD improves various cardiovascular risk markers in overweight/obese subjects.

The adverse effects most commonly reported initially in KDs include fatigue, constipation, 

weight loss, and transient hyperlipidemia [14,25], however, these side effects have been 

found to improve with continued adherence to the diet [14]. The weight loss effect is 

welcome for many, particularly in individuals with obesity, however, would need to be 

monitored regularly depending on the medical condition. Additionally, lipid profiles in 

individuals starting a KD have been shown to acutely increase when beginning the diet, but 

normalize after approximately one year [101]. Normal healthy lipid profiles have been found 

to persist in long term KD use, in excess of three years [102]. It is worth noting that the 

carbohydrate composition of diets in studies varied, from the traditional KD which typically 

consists of 20 g/day, to those which consist of 50 g/day or roughly 30–40% of caloric 

intake. Therefore, adverse effects may not be homogenous across all studies. Individuals 

undergoing the medicalized version of the KD should be monitored and given corresponding 

supplementation if needed [14].

Diet adherence and compliance has been mixed and remains a barrier to successful 

application of the KD [42]. A meta-analysis of compliance rates in adults with epilepsy 

on the KD reported a 45% overall compliance rate [103], with the modified Atkins diet 

yielding higher compliance rates. Similar results were found in an observational study of 

139 adult patients with epilepsy treated with a KD, 48% of patients discontinued the diet 

or were lost to follow-up [104]. The main reason cited for discontinuation was difficulty 

adhering and having enough external food choices. However, recently the food environment 

has shifted to become more ketogenic friendly than previously [40]. A 2018 by Hallberg et 

al. reported a 83% compliance rate to the KD after one year in patients with T2DM [37]. 

Compliance rates of other diets are not dissimilar from those previously reported of the KD, 
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as adherence to a gluten free diet has been reported to be between 17–45% in adults with 

coeliac disease [105], and a 26.4% adherence to a Mediterranean diet in individuals 65 or 

older [106]. Recent trials of the KD in T2DM have shown adherence rates of nearly 50% 

at five years, whilst maintaining improvements in cardiometabolic health markers [39] and 

exhibiting no major adverse effects [41].

CONCLUSIONS

In the search for interventions addressing brain dysfunction underlying cognitive impairment 

in SZ and bipolar illness, we look comprehensively at the brain and beyond to the potential 

role of dysfunctional central and systemic metabolism. Evaluating metabolic dysfunction 

can also help us understand the pathophysiology of serious mental illness. Diverting 

attention towards cardiovascular metabolism and addressing neural network stability and 

insulin resistance may advance developments in treatment. The mechanisms of action 

of a KD include efficient energy mitochondrial metabolism, neurotransmitter function, 

improving neural network stability and improvements in oxidative stress and inflammation. 

The metabolic, neuroprotective, and neurochemical benefits of the KD have the potential 

to provide symptomatic relief to patients, in SMI, yet this is limited by a lack of robust 

clinical trial data specifically in mental health. To reverse this neurodegenerative process, 

increasing neurons’ access to ketone bodies may be critical. Numerous clinical reviews 

have called for further research to confirm anecdotal and case findings [5,6,81,82], as early 

evidence of positive effects of the KD on schizophrenic and bipolar symptoms warrant 

further investigation and require confirmation through controlled clinical trials.
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Figure 1. 
A depiction of the biochemistry of ketogenesis in the liver and brain. Prolonged glucose 

restriction leads to an increased glucagon to insulin ratio, which leads to release of free 

fatty acids into the bloodstream. Free fatty acids are taken up into liver mitochondria 

where they are used to produce acetyl coenzyme A (Acetyl-CoA). These molecules then 

enter ketogenesis through the formation of ketone bodies. Acetyl-CoA is converted into 

acetoacetate, which then allows for reversible reduction to beta hydroxybutyrate (BHB), as 

well as acetone. These ketone bodies then exit the liver and enter peripheral tissues and 

the brain, which is facilitated by monocarboxylic acid transporters. When in situ, BHB can 

be converted back into acetoacetate, serving as an eventual source of acetyl-CoA to release 

energy via the tricarboxylic acid cycle. Abbreviations: Acetyl-CoA, acetyl coenzyme A; 

BHB, beta- hydroxybutyrate; CAT, carnitine acylcarnitine translocase; CO2, carbon dioxide; 

FAs, fatty acids; MCT, monocarboxylic acid transporter; TCA, tricarboxylic acid.
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Figure 2. 
A diagram depicting a basic mechanistic model of the ketogenic diet and its potential 

benefits. Neurobiological and physiological mechanisms of the ketogenic diet are shown in 

rectangular boxes, with corresponding effects in circles. The flow chart depicts at a high 

level possible mechanisms of ketogenic diet on cognition and mental health functioning. 

Abbreviations: IS, insulin sensitivity, ROS, reactive oxygen species.
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Table 1.

Potential mechanistic effects of the ketogenic diet underpinning neurological conditions.

Neural Deficit Neural Symptom Ketogenic Therapy Effect

Mitochondrial dysfunction Decrease in energy level production Induces mitochondrial biogenesis

Oxidative stress and 
inflammation

Increase in ROS leading to neuronal damage Decreases ROS levels with ketone bodies; increases 
HDL cholesterol levels for neuroprotection

Na/K ATPase loss of function Impaired ATP production via oxidative 
phosphorylation

Provides alternative energy source via ketosis, 
replenishes acetyl-CoA

Imbalance in monoaminergic 
activity

Changes in behavior and emotion due to imbalance 
in neurotransmitter concentrations

Regulates neurotransmitter metabolites via ketone 
bodies and intermediates

GABA/glutamate imbalance Depressive and mania symptoms, unsustainable 
energy requirements, and neuronal damage

Increases GABA levels whilst decreasing glutamate 
levels

Abbreviations: ATP, adenosine triphosphate; GABA, gamma-aminobutyric acid; HDL, high-density lipoprotein; K, potassium; Na, sodium; ROS, 
reactive oxygen species.
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