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Theroleofhaploidenticalhematopoietic cell transplantation (HCT)usingposttransplant

cyclophosphamide (PTCy) foracute lymphoblastic leukemia (ALL) is beingdefined.We

performedaretrospective,multivariableanalysis comparingoutcomesofHCTapproachesby

donor foradultswithALL in remission.Theprimaryobjectivewas to compareoverall survival

(OS) amonghaploidenticalHCTsusingPTCyandHLA-matched siblingdonor (MSD), 8/8HLA-

matchedunrelateddonor (MUD), 7 /8HLA-MUD,orumbilical cordblood (UCB)HCT.Comparing

haploidenticalHCT toMSDHCT,we found thatOS, leukemia-free survival (LFS),nonrelapsemor-

tality (NRM), relapse, andacutegraft-versus-hostdisease (aGVHD)werenotdifferentbut chronic

GVHD(cGVHD)washigher inMSDHCT.ComparedwithMUDHCT,OS,LFS, andrelapsewerenot

different, butMUDHCThad increasedNRM(hazard ratio [HR], 1.42;P5 .02), grade3 to4aGVHD

(HR, 1.59;P5 .005), andcGVHD.Comparedwith7/8UDHCT,LFSandrelapsewerenotdifferent,

but 7/8UDHCThadworseOS (HR,1.38;P5 .01) and increasedNRM(HR,2.13;P# .001), grade3

to4aGVHD(HR, 1.86;P5 .003), andcGVHD(HR, 1.72;P# .001). ComparedwithUCBHCT, lateOS,

lateLFS, relapse, andcGVHDwerenotdifferentbutUCBHCThadworseearlyOS (#18months;

HR, 1.93;P, .001),worseearlyLFS (HR, 1.40;P5 .007) and increased incidencesofNRM(HR,

2.08;P, .001)andgrade3 to4aGVHD(HR,1.97;P, .001).HaploidenticalHCTusingPTCy

showednodifference in survivalbut lessGVHDcomparedwith traditionalMSDandMUDHCT

and is thepreferredalternativedonorHCToption foradultswithALL incomplete remission.

Introduction

Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for acute lymphoblas-
tic leukemia (ALL) and has been shown to be superior to intensive chemotherapy alone in some
studies.1,2 The UKALL XII/ECOG 2993 study compared an adult chemotherapy backbone or che-
motherapy followed by myeloablative autologous HCT (auto-HCT) with myeloablative allo-HCT in
patients with ALL age 15 to 59 years. An overall survival (OS) benefit was seen in patients with
standard-risk ALL with a donor primarily because of higher rate of relapse in the no donor group
than in the combined chemotherapy and auto-HCT groups.1 A meta-analysis of 13 trials comparing
allo-HCT to chemotherapy with or without auto-HCT concluded that the benefit of allo-HCT for
patients with ALL in first complete remission (CR1) was limited to patients younger than age 35
years.3 Recent studies have also shown that allo-HCT in CR1 yields outcomes similar to those in
pediatric-inspired chemotherapy in patients who are minimal residual disease (MRD) negative but
improves outcomes for patients who are MRD positive.4 For these MRD-positive patients, who
benefit most from allo-HCT in CR1, donor availability is especially important because haploidentical
HCT or umbilical cord blood (UCB) HCT may shorten the time to allo-HCT and promote the higher
cure rates observed with traditional fully HLA-matched donor allo-HCT.

The optimal donor for allo-HCT based on existing data seems to be a matched sibling donor (MSD) or an
8/8 HLA-matched unrelated donor (MUD) if an MSD is unavailable. A recently published study by the
Center for International Blood and Marrow Transplant Research (CIBMTR) compared outcomes of tradi-
tional donor (MSD or MUD) HCT and 7/8 HLA-MUD HCT for adults with ALL. Compared with MSD
HCT, MUD HCT yielded similar survival outcomes whereas the alternative 7/8 HLA-MUD HCT had inferior

Key Points

� Haploidentical HCT is
the preferred alternate
donor approach for
adults with ALL.

� Haploidentical
transplantation had
similar survival
compared with fully
HLA-matched donor
HCT but with
reduced GVHD.
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survival.5 For patients without a related or unrelated donor, haploi-
dentical HCT using posttransplant cyclophosphamide (PTCy) for
graft-versus-host disease (GVHD) prophylaxis is now a common
alternative transplant modality with demonstrated efficacy in ALL.6-
8 In addition, despite having outcomes that are inferior to those for
MSD and MUD HCT, 7/8 HLA-MUD and UCB HCT remain alterna-
tive graft sources for adult patients with ALL who do not have a fully
HLA-matched donor.

Although comparative data to support the use of haploidentical HCT
as a reasonable alternative to traditional MSD and MUD allo-HCT for
acute myeloid leukemia (AML) are increasing,9-13 comparative data
for ALL are more limited. Recent retrospective, comparative studies
using the European Society for Blood and Marrow Transplantation
(EBMT) registry have found no differences in outcomes between
haploidentical HCT using PTCy and MSD, MUD, and mismatched
UD (MMUD) HCT.14,15 The BMT-CTN 1101 study compared the
results of parallel phase 2 studies of reduced-intensity conditioning
(RIC) haploidentical HCT using PTCy and UCB HCT in lymphoma
and acute leukemia. The study found no difference in the primary
end point of progression-free survival at 2 years but found increased
nonrelapse mortality (NRM) and decreased overall survival (OS) with
UCB HCT compared with haploidentical HCT with PTCy.16 Taken
together, previous studies have shown no significant differences in
OS when comparing haploidentical HCT to MSD, MUD, or MMUD
HCT and a superior alternative donor approach among haploidenti-
cal HCT with PTCy, 7/8 HLA-matched UD HCT, and UCB HCT for
adult ALL specifically has not been established.

This retrospective, multivariable study was designed to compare
OS, leukemia-free survival (LFS), relapse, and NRM among adult
patients with ALL undergoing postremission therapy with haploi-
dentical HCT using PTCy compared with MSD HCT, MUD HCT,
7/8-HLA MUD HCT, or UCB HCT. We hypothesized that haploi-
dentical HCT using PTCy would result in similar OS compared with
MSD, MUD, and UCB HCT and superior OS compared with 7/8
HLA-MUD HCT in adults with ALL undergoing first allo-HCT in CR.
Results from this study further define the role of haploidentical HCT
for ALL in first or subsequent remissions.

Patients and methods

Patients

All patient data were generated from the CIBMTR patient registry.
Eligible patients were age 18 years or older with a diagnosis of ALL
in first, second, or third or greater CR undergoing first allo-HCT
from 2013 through 2017. Patients must have had an allo-HCT from
a haploidentical, HLA-MSD, 8/8 HLA-MUD, 7/8 HLA-MUD, or UCB
donor.17 Patients undergoing haploidentical HCT that did not use
PTCy-based GVHD prophylaxis were excluded as were those
receiving ex vivo T-cell depletion or CD34 selection. Also excluded
were patients without consent to research, from embargoed cen-
ters, with no follow-up forms, alive with ,3 months of follow-up, or
receiving infrequently observed conditioning regimens. MRD testing
methods and positivity were as reported from CIBMTR sites. MRD
testing methods included flow cytometry (75%), molecular methods
(76%), and cytogenetics (62%), with 74% of patients being evalu-
ated with more than 1 method. Data on MRD testing methods was
missing for 7% of patients. The study was approved by the Institu-
tional Review Board of the National Marrow Donor Program.

Study objectives

The primary objective was to compare OS after HCT among the fol-
lowing donor-transplant groups: haploidentical HCT using PTCy,
MSD HCT, MUD HCT, 7/8 HLA-MUD HCT, and UCB HCT. Sec-
ondary objectives included comparing the LFS, relapse, NRM, grade
2 to 4 and grade 3 to 4 acute GVHD (aGVHD) rates,18 and chronic
GVHD (cGVHD) rates19 among the groups. We also performed 2
planned sensitivity analyses restricting the analysis to myeloablative
conditioning20 with peripheral blood as a source for hematopoietic
stem cells for non–cord blood donor types and to US centers only.
We also determined causes of death in each group.

Statistical analysis

This was a retrospective, 5-cohort comparative study from the
CIBMTR. Patient-, disease-, and transplant-related factors were
compared among the 5 transplant groups using x2 test for categor-
ical variables and Mann-Whitney U test for continuous variables.
The outcomes that were analyzed were OS, LFS, cumulative inci-
dence (CI) of relapse, NRM CI, rate of aGVHD, and rate of
cGVHD. OS was the time from transplantation to death as a result
of any cause, with surviving patients censored at the last time they
were reported alive. LFS was the time to leukemia relapse or death
as a result of any cause, with surviving patients censored at the last
time they were reported alive and were leukemia free. NRM was
summarized by the CI estimate of death in CR with relapse as a
competing risk. Relapse was summarized by the CI estimate with
treatment-related mortality as a competing risk. Probabilities of OS
and LFS were calculated by using the Kaplan-Meier estimator. CI
curves were created to present relapse and NRM with time to
relapse and time to NRM as competing risks.

To adjust for the differences in baseline characteristics, Cox propor-
tional hazards regression was used to compare the main treatment
groups. First, variables to be considered in the multivariable models
were selected. Variables considered were donor type, recipient age,
Karnofsky performance status, sex, HCT-CI score,21 race, ALL line-
age, Philadelphia chromosome (Ph)-BCR-ABL1 status, cytogenetic
risk, remission status, MRD status for CR1, time from diagnosis to
HCT for CR1, conditioning intensity, donor-recipient sex match,
donor-recipient cytomegalovirus (CMV) serostatus, year of transplant,
and transplantation center. The assumption of proportional hazards
for each factor in the Cox model was tested using time-dependent
covariables. When the test indicated differential effects over time
(nonproportional hazards), models were constructed that broke the
posttransplant time course into 2 periods, using the maximized par-
tial likelihood method to find the most appropriate breakpoint. The
proportionality assumptions were further tested. A backward step-
wise model selection approach was used to identify all significant
risk factors. Each step of model building contained the main effect
for treatment groups. Factors that were significant at a 5% level
were kept in the final model. The potential interactions between main
effect and all significant risk factors were tested. Adjusted probabili-
ties of LFS and OS and adjusted CI estimates were generated from
the final regression models stratified on treatment and weighted
averages of covariable values using the pooled sample proportion as
the weight function. These adjusted probabilities estimated likelihood
of outcomes in populations with similar prognostic factors. With hap-
loidentical HCT using PTCy as the baseline comparison group (inde-
pendent testing, no multiple testing considered, no differences in
patient characteristics adjusted, assuming all patients had at least a
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Table 1. Patient characteristics

Characteristic

Donor and HCT group

Haploidentical Matched sibling 8/8 HLA-MUD 7/8 HLA-MUD UCB

No. of patients 393 1627 1646 230 305

No. of centers 92 206 181 90 79

Median follow-up, mo (range) 24 (3-67) 26 (3-72) 35 (3-74) 35 (3-64) 35 (3-64)

Median recipient age, y (range) 41 (18-74) 42 (18-75) 43 (18-77) 38 (18-70) 37 (18-70)

Karnofsky performance status (%)

$90 233 (59) 1046 (64) 995 (60) 163 (71) 196 (64)

,90 152 (39) 542 (33) 629 (38) 65 (28) 107 (35)

Missing 8 (2) 39 (2) 22 (1) 2 (,1) 2 (,1)

No. of male recipients 214 (54) 969 (60) 976 (59) 134 (58) 176 (58)

HCT-CI score

0 81 (21) 592 (36) 405 (25) 53 (23) 89 (29)

1 57 (15) 221 (14) 224 (14) 35 (15) 42 (14)

2 61 (16) 228 (14) 266 (16) 37 (16) 46 (15)

31 194 (49) 552 (34) 745 (45) 104 (45) 125 (41)

Missing 0 34 (2) 6 (,1) 1 (,1) 3 (,1)

Race/ethnicity*

Hispanic White 87 (22) 246 (15) 136 (8) 42 (18) 64 (21)

Non-Hispanic White 170 (43) 846 (52) 1226 (74) 113 (49) 150 (49)

Black 59 (15) 74 (5) 53 (3) 19 (8) 27 (9)

Asian 22 (6) 111 (7) 64 (4) 10 (4) 22 (7)

Other/not specified 55 (14) 350 (22) 167 (10) 46 (20) 42 (14)

Immunophenotype

T cell 25 (6) 201 (12) 186 (11) 27 (12) 36 (12)

B cell 330 (84) 1316 (81) 1319 (80) 185 (80) 246 (81)

Not specified 38 (10) 110 (7) 141 (9) 18 (8) 23 (8)

Cytogenetic risk score†

Normal 91 (23) 320 (20) 335 (20) 52 (23) 63 (21)

Poor 222 (56) 750 (46) 855 (52) 101 (44) 154 (50)

Missing/not tested/other 80 (21) 557 (34) 456 (28) 77 (33) 88 (29)

Ph/BCR-ABL1-positive 152 (46) 562 (43) 614 (47) 80 (43) 122 (50)

Remission status

CR1, MRD positive 112 (28) 513 (32) 509 (31) 58 (25) 78 (26)

CR1, MRD negative 143 (36) 644 (40) 697 (42) 85 (37) 124 (41)

CR1, MRD missing 14 (4) 145 (9) 59 (4) 6 (3) 10 (3)

CR2 105 (27) 296 (18) 334 (20) 62 (27) 74 (24)

$CR3 19 (5) 29 (2) 47 (3) 19 (8) 19 (6)

Time from diagnosis to HCT (CR1 only) (mo)

0-5 130 (48) 842 (65) 744 (59) 56 (38) 93 (44)

6-11 115 (43) 388 (30) 463 (37) 81 (54) 102 (48)

$12 24 (9) 72 (6) 58 (5) 12 (8) 17 (8)

Conditioning regimen

MAC, TBI-based 163 (41) 984 (60) 950 (58) 139 (60) 217 (71)

MAC, chemotherapy-based 63 (16) 323 (20) 312 (19) 51 (22) 11 (4)

RIC/NMA 167 (42) 316 (19) 383 (23) 39 (17) 76 (25)

BCR-ABL, breakpoint cluster region-Abelson murine leukemia; CMV, cytomegalovirus; CNI, calcineurin inhibitor; MAC, myeloablative conditioning; MMF, mycophenolate mofetil; MTX,
methotrexate; NA, not applicable; NMA, non-myeloablative.
*Other/not specified: Native American (n 5 30), Pacific Islander (n 5 20), non-resident of the United States (n 5 291), not specified (n 5 156), Hispanic, excluding White Hispanic

(n 5 213).
†CIBMTR cytogenetics criteria definition: Poor: Ph1/t(9:22)/BCR-ABL1, t(4:11), 11q23/MLL/KMT2A, hypodiploid (,45), t(8:14), complex ($3 abnormalities), iAMP21; normal: without

any abnormality; other: abnormality count of 1 or 2 abnormalities.

342 WIEDUWILT et al 11 JANUARY 2022 • VOLUME 6, NUMBER 1



2-year follow-up), the power test for 2-year OS probability was
based on a two-sided test with a significance level of 5%: haploi-
dentical HCT using PTCy vs (1) MSD HCT, 80% power to detect
at least a difference of 8%; (2) MUD HCT, 80% power to detect at
least a difference of 8%; (3) 7/8 HLA-MUD HCT, 80% power to
detect at least a difference of 11%; and (4) UCB HCT, 80% power
to detect at least difference of 10%.

Results

Patients

Between 2013 and 2017, a total of 4201 patients in 5 HCT
cohorts were eligible: 393 haploidentical HCT using PTCy, 1627
MSD HCT, 1646 MUD HCT, 230 7/8 HLA-matched UD HCT, and

305 UCB HCT. Cohorts were well matched for age, sex, Karnofsky
performance status, HCT-CI, immunophenotype, cytogenetic risk,
Ph-BCR-ABL1 status, disease status, MRD status at transplanta-
tion, and recipient CMV serostatus. Notable differences between
groups included race, time from diagnosis to HCT (CR1 only), con-
ditioning regimen intensity, donor age, graft source for non–cord
blood (peripheral blood or bone marrow), GVHD prophylaxis modal-
ity, and the use of in vivo T-cell depletion. PTCy-based GVHD pro-
phylaxis was used in 5% of MSD HCT, 4% of MUD HCT, and
13% of 7/8 HLA-MUD HCT. Compared with other groups, haploi-
dentical HCT using PTCy had the lowest percentage of non-
Hispanic White patients (43% vs 49%-74%), was more likely to
use RIC (42% vs 17%-25%), and was more likely to use bone mar-
row as the graft source (41% vs 14%-29%) (Table 1).

Table 1. (continued)

Characteristic

Donor and HCT group

Haploidentical Matched sibling 8/8 HLA-MUD 7/8 HLA-MUD UCB

Missing 0 4 (,1) 1 (,1) 1 (,1) 1 (,1)

Donor/recipient sex

Female donor/male recipient 82 (21) 415 (26) 244 (15) 42 (18) 161 (53)

other donor/recipient 311 (79) 1212 (74) 1396 (85) 188 (82) 137 (45)

Missing 0 0 6 (,1) 0 7 (2)

Donor/recipient CMV serostatus

1/1 206 (52) 859 (53) 506 (31) 90 (39) 0

1/2 31 (8) 144 (9) 197 (12) 25 (11) 0

2/1 83 (21) 287 (18) 553 (34) 64 (28) 0

2/2 72 (18) 306 (19) 382 (23) 50 (22) 0

UCB–/recipient1 0 0 0 0 200 (66)

UCB–/recipient– 0 0 0 0 100 (33)

Missing 1 (,1) 31 (2) 8 (,1) 1 (,1) 5 (2)

Median donor age, y (range) 35 (10-74) 41 (9-75) 28 (18-60) 31 (19-60) NA

Graft source

Bone marrow 160 (41) 230 (14) 316 (19) 67 (29) —

Peripheral blood 233 (59) 1397 (86) 1330 (81) 163 (71) —

GVHD prophylaxis

CNI 1 MTX 6 others 0 1107 (68) 1165 (71) 162 (70) 7 (2)

CNI 1 MMF 6 others 0 236 (15) 191 (12) 18 (8) 265 (87)

CNI 1 others 0 118 (7) 141 (9) 13 (6) 6 (2)

CNI alone 0 66 (4) 58 (4) 5 (2) 14 (5)

PTCy 1 CNI 6 MMF 393 (100) 75 (5) 73 (4) 29 (13) 2 (,1)

Other prophylaxis 0 17 (1) 13 (,1) 2 (,1) 10 (3)

Missing 0 8 (,1) 5 (,1) 1 (,1) 1 (,1)

In vivo T-cell depletion

Antithymocyte globulin 5 (1) 76 (5) 561 (34) 116 (50) 39 (13)

Alemtuzumab 0 33 (2) 62 (4) 6 (3) 0

None 388 (99) 1505 (93) 1010 (61) 105 (46) 265 (87)

Missing 0 13 (,1) 13 (,1) 3 (1) 1 (,1)

BCR-ABL, breakpoint cluster region-Abelson murine leukemia; CMV, cytomegalovirus; CNI, calcineurin inhibitor; MAC, myeloablative conditioning; MMF, mycophenolate mofetil; MTX,
methotrexate; NA, not applicable; NMA, non-myeloablative.
*Other/not specified: Native American (n 5 30), Pacific Islander (n 5 20), non-resident of the United States (n 5 291), not specified (n 5 156), Hispanic, excluding White Hispanic

(n 5 213).
†CIBMTR cytogenetics criteria definition: Poor: Ph1/t(9:22)/BCR-ABL1, t(4:11), 11q23/MLL/KMT2A, hypodiploid (,45), t(8:14), complex ($3 abnormalities), iAMP21; normal: without

any abnormality; other: abnormality count of 1 or 2 abnormalities.
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HR 1.13 (0.94-1.36), P=0.18

HR 1.03 (0.88-1.22), P =0.71

HR 0.99 (0.81-1.21), P =0.93

HR 1.06 (0.81-1.41), P=0.66 HR 1.42 (1.07-1.89), P=0.02 HR 2.13 (1.50-3.01), P<0.001 HR 2.08 (1.45-2.99), P=<0.001

HR 0.83 (0.67-1.03), P=0.09 HR 0.81 (0.57-1.13), P=0.22 HR 0.83 (0.60-1.13), P=0.23

HR 1.03 (0.87-1.22), P =0.73 HR 1.21 (0.95-1.54), P =0.12

HR 1.17 (0.96-1.41), P=0.11 HR 1.38 (1.08-1.78), P=0.01

≤18 months
HR 1.93 (1.45-2.56), P=<0.001
>18 months
HR 0.68 (0.38-1.21), P=0.19

≤18 months
HR 1.40 (1.09-1.79), P=0.007
>18 months
HR 0.58 (0.31-1.07), P=0.08

Identical sibling (---)
vs.

Haploidentical (–)

8/8 MUD (---)
vs.

Haploidentical (–)

7/8 MUD (---)
vs.

Haploidentical (–)

UCB (---)
vs.

Haploidentical (–)

Figure 1. OS, LFS, CI of relapse, and CI of NRM comparing haploidentical HCT with posttransplant cyclophosphamide to matched sibling, 8/8 HLA-MUD,

7/8 HLA-MUD, or UCB HCT.
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Table 2. Multivariable analysis for HLA-MSD HCT vs haploidentical HCT, 2013-2017

Covariate No. HR 95% Confidence interval P

OS

Main effect

Haploidentical HCT 393 Reference

MSD HCT 1627 1.13 0.94-1.36 .18

Remission status

CR1 1571 Reference

CR21 449 1.86 1.58-2.19 ,.001

Age (y) ,.001

18-29 572 Reference

30-39 367 0.97 0.77-1.22 .78

40-49 432 1.30 1.05-1.60 .02

50-59 417 1.49 1.21-1.85 ,.001

60-69 232 2.07 1.63-2.63 ,.001

Donor/recipient sex match

Other than F/M 1523 Reference

F/M 497 1.29 1.10-1.51 .002

Ph-BCR-ABL1 status .007

Negative 932 Reference

Positive 714 0.78 0.66-0.92 .003

T-cell-ALL/unspecified subtype 374 1.02 0.84-1.24 .83

Donor/recipient CMV serostatus .02

1/1 1065 Reference

1/2 175 0.81 0.62-1.05 .11

2/1 370 0.76 0.62-0.93 .007

2/2 378 0.84 0.69-1.01 .07

LFS

Main effect

Haploidentical HCT 381 Reference

MSD HCT 1583 1.03 0.88-1.22 .71

Disease status

CR1 1528 Reference

CR21 436 1.93 1.67-2.23 ,.001

Conditioning regimen

MAC-TBI 1116 Reference

MAC-chemotherapy 376 1.35 1.15-1.60 ,.001

RIC/NMA 470 1.50 1.28-1.76 ,.001

NRM

Main effect

Haploidentical HCT 381 Reference

MSD HCT 1583 1.06 0.81-1.41 .66

Remission status

CR1 1528 Reference

CR21 436 1.52 1.17-1.98 .002

Age (y) ,.001

18-29 553 Reference

30-39 353 0.66 0.44-0.99 .04

40-49 422 1.19 0.86-1.65 .28

50-59 411 1.59 1.17-2.16 .003

F, female; M, male.
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Table 2. (continued)

Covariate No. HR 95% Confidence interval P

60-69 225 2.10 1.49-2.96 ,.001

Donor/recipient sex match

Other than F/M 1479 Reference

F/M 485 1.54 1.22-1.94 ,.001

Relapse

Main effect

Haploidentical HCT 381 Reference

MSD HCT 1583 0.99 0.81-1.21 .93

Remission status

CR1 1528 Reference

CR21 436 2.25 1.89-2.68 ,.001

Conditioning regimen

MAC-TBI 1116 Reference

MAC-chemotherapy 376 1.40 1.14-1.72 .001

RIC/NMA 470 1.53 1.26-1.87 ,.001

aGVHD, grade 2-4

Main effect

Haploidentical HCT 376 Reference

MSD HCT 1545 0.92 0.77-1.11 .40

aGVHD, grade 3-4

Main effect

Haploidentical HCT 376 Reference

MSD HCT 1545 1.09 0.79-1.50 .59

cGVHD

MSD vs haploidentical HCT for donor/recipient sex match, other 1.37 1.12-1.69 .003

MSD vs haploidentical HCT for donor/recipient sex match, F/M 2.59 1.68-3.99 ,.001

Age (y) .002

18-29 563 Reference

30-39 361 1.13 0.93-1.37 .24

40-49 428 1.37 1.14-1.64 ,.001

50-59 413 1.17 0.95-1.43 .14

60-69 228 1.57 1.21-2.03 ,.001

Race/ethnicity

White Hispanic 333 Reference

White non-Hispanic 1006 0.75 0.63-0.89 .001

Black 132 0.93 0.70-1.23 .61

Asian 130 0.79 0.59-1.07 .13

Other/not specified 392 0.66 0.53-0.82 ,.001

Donor/recipient sex match

Other than F/M 1501 Reference

F/M 492 0.73 0.47-1.14 .17

Conditioning regimen

MAC-TBI 1132 Reference

MAC-chemotherapy 380 0.94 0.79-1.11 .46

RIC/NMA 478 0.74 0.61-0.90 .002

F, female; M, male.
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Table 3. Multivariable analysis for 8/8 HLA-MUD HCT vs haploidentical HCT, 2013-2017

Covariate No. HR 95% Confidence interval P

OS

Main effect

Haploidentical HCT 393 Reference

MUD HCT 1646 1.17 0.96-1.41 .11

Remission status

CR1 1534 Reference

CR21 505 1.79 1.53-2.10 ,.001

Age (y) ,.001

18-29 545 Reference

30-39 364 1.03 0.81-1.30 .82

40-49 391 1.38 1.11-1.71 .004

50-59 382 1.55 1.24-1.93 ,.001

60-69 357 1.85 1.48-2.31 ,.001

Race/ethnicity

White Hispanic 223 Reference

White non-Hispanic 1396 0.95 0.75-1.21 .68

Black 112 1.33 0.94-1.87 .11

Asian 86 0.44 0.26-0.75 .002

Other/not specified 222 1.02 0.74-1.39 .92

HCT-CI .01

0 486 Reference

1 281 1.01 0.79-1.30 .91

2 327 1.03 0.81-1.30 .84

31 939 1.25 1.04-1.50 .02

Ph-BCR-ABL1 status

Negative 883 Reference

Positive 766 0.82 0.70-0.96 .02

T-ALL/unspecified subtype 390 1.03 0.85-1.24 .77

LFS

Main effect

Haploidentical HCT 381 Reference

MUD HCT 1618 1.03 0.87-1.22 .73

Remission status

CR1 1509 Reference

CR21 490 1.74 1.51-1.99 ,.001

Race/ethnicity

White Hispanic 217 Reference

White non-Hispanic 1379 0.97 0.78-1.19 .76

Black 105 1.33 0.98-1.82 .07

Asian 84 0.57 0.37-0.87 .01

Other/not specified 214 0.94 0.71-1.24 .67

Conditioning regimen

MAC-TBI 1097 Reference

MAC-chemotherapy 363 1.46 1.24-1.73 ,.001

RIC/NMA 539 1.61 1.39-1.87 ,.001

NRM

Main effect

Haploidentical HCT 381 Reference
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Table 3. (continued)

Covariate No. HR 95% Confidence interval P

MUD HCT 1618 1.42 1.07-1.89 .02

Remission status

CR1 1509 Reference

CR21 490 1.33 1.06-1.67 .01

Age (y) ,.001

18-29 539 Reference

30-39 356 0.86 0.62-1.20 .37

40-49 382 1.30 0.97-1.76 .08

50-59 372 1.61 1.20-2.15 .001

60-69 350 1.82 1.36-2.44 ,.001

Race/ethnicity

White Hispanic 217 Reference

White non-Hispanic 1379 0.79 0.58-1.09 .15

Black 105 1.04 0.63-1.73 .87

Asian 84 0.35 0.16-0.74 .006

Other/not specified 214 0.98 0.66-1.47 .93

Relapse

Main effect

Haploidentical HCT 381 Reference

MUD HCT 1618 0.83 0.67-1.03 .09

Remission status

CR1 1509 Reference

CR21 490 2.20 1.84-2.64 ,.001

Sex

Male 1168 Reference

Female 831 0.81 0.68-0.97 .02

Race/ethnicity

White Hispanic 217 Reference

White non-Hispanic 1379 1.04 0.78-1.39 .77

Black 105 1.59 1.06-2.37 .02

Asian 84 0.75 0.44-1.26 .27

Other/not specified 214 0.88 0.60-1.29 .52

Conditioning regimen

MAC-TBI 1097 Reference

MAC-chemotherapy 363 1.57 1.25-1.98 ,.001

RIC/NMA 539 1.83 1.50-2.23 ,.001

aGVHD, grade 2-4

Main effect

Haploidentical HCT 376 Reference

MUD HCT 1553 1.17 0.98-1.41 .09

Conditioning regimen

MAC-TBI 1042 Reference

MAC-chemotherapy 367 0.86 0.72-1.04 .11

RIC/NMA 519 0.81 0.68-0.95 .01

aGVHD, grade 3-4

Main effect

Haploidentical HCT 376 Reference

MUD HCT 1553 1.59 1.15-2.20 .005
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OS and LFS

In multivariable analysis, compared with haploidentical HCT, MSD
HCT and MUD HCT had similar OS (hazard ratio [HR], 1.13;
P 5 .18 and HR, 1.17; P 5 .11, respectively) and LFS (HR, 1.03
[P 5 .71] and HR, 1.03 [P 5 .73], respectively). In contrast, 7/8
HLA-MUD HCT had inferior OS and similar LFS when compared
with haploidentical HCT (OS: HR, 1.38 [P 5 .01]; LFS: HR, 1.21
[P 5 .12]). UCB HCT had inferior OS before 18 months (HR,
1.93; P # .001) and similar OS after 18 months (HR, 0.68; P 5

.19) when compared with haploidentical HCT. In addition, LFS
before 18 months was inferior to UCB HCT (HR, 1.40; P 5 .007)
and was similar after 18 months (HR, 0.58; P 5 .08). Other multi-
variable factors associated with decreased OS included HCT in
CR21, older age, female donor to male recipient, Ph-BCR-ABL1
negativity, and CMV-seronegative donor to CMV-seropositive recip-
ient for MSD HCT vs haploidentical HCT; CR21, older age, non-
Asian race, HCT-CI 31, and Ph-BCR-ABL1 negativity for MUD
HCT vs haploidentical HCT; CR21 for 7/8 HLA-MUD HCT vs hap-
loidentical HCT; and CR21 and myeloablative chemotherapy (vs
myeloablative total body irradiation [TBI]) for UCB HCT vs haploi-
dentical HCT. Multivariable survival outcomes are summarized in
Tables 2-5 and Figure 1. Univariable outcomes are summarized in
supplemental Table 3.

Relapse and NRM

In multivariable analysis, MSD HCT had similar relapse (HR, 0.99; P
5 .93) and NRM (HR, 1.06; P 5 .66) compared with haploidentical
HCT. Compared with haploidentical HCT, relapse was not signifi-
cantly different with MUD HCT (HR, 0.83; P 5 .09), 7/8 HLA-MUD
HCT (HR, 0.81; P 5 .22), or UCB HCT (HR, 0.83; P 5 .23). NRM,
however, was significantly higher with MUD HCT (HR, 1.42; P 5

.02), 7/8 HLA-MUD HCT (HR, 2.13; P # .001), or UCB HCT (HR,
2.08; P # .001) compared with haploidentical HCT. Notably, mye-
loablative conditioning using TBI significantly reduced the risk of
relapse across all donor HCT cohorts. Multivariable relapse and
NRM analyses are summarized in Tables 2-5 and Figure 1. Univari-
able analyses are summarized in supplemental Table 3.

GVHD

Multivariable analysis revealed either reduced or similar rates of
severe aGVHD and cGVHD with haploidentical HCT using PTCy
relative to other HCT cohorts. Compared with haploidentical HCT,
MSD HCT had similar CIs of grade 2 to 4 and grade 3 to 4
aGVHD (HR, 0.92 [P 5 .40] and HR, 1.09 [P 5 .59], respectively)
but increased CI of cGVHD (HR, 2.59; P , .001 for female-male
donor-recipient sex match; HR 1.37; P 5 .003 for other donor-
recipient sex match). MUD HCT had a similar CI of grade 2 to 4
aGVHD (HR, 1.17; P 5 .09), an increased CI of grade 3 to 4
aGVHD (HR, 1.59; P 5 .005), and an increased CI of cGVHD
(HR, 1.38; P 5 .001). 7/8 HLA-MUD HCT had an increased CI of
grade 2 to 4 aGVHD (HR, 1.33; P 5 .04), grade 3 to 4 aGVHD
(HR, 1.86; P 5 .003), and cGVHD (HR, 1.72; P , .001). UCB
HCT was associated with an increased CI of grade 2 to 4 and
grade 3 to 4 aGVHD (HR, 1.83 [P , .001] and HR, 1.97;
[P , .001], respectively) with a similar CI of cGVHD (HR, 1.13;
P 5 .38). Multivariable GVHD analyses are summarized in
Tables 2-5.

Causes of death

Death from ALL was more common with haploidentical HCT (48%)
and HLA-identical sibling HCT (52%) compared with other HCT
cohorts (31%-38%). Death from GVHD accounted for 5% of
deaths after haploidentical HCT compared with 12% to 24% in
other HCT cohorts. Similar rates of death from infection were
observed when comparing haploidentical HCT (21%) to other HCT
cohorts (17%-23%). Other causes of death were also similar
among the cohorts (detailed summary in Table 6).

Sensitivity analyses

To address 2 potential sources of bias, we performed 2 sensitivity
analyses for OS, LFS, relapse, and NRM, restricting the study popu-
lation to either the most common modalities of myeloablative condi-
tioning with peripheral blood as a source of hematopoietic stem
cells or to US centers for better completion of follow-up at 2 years.
When restricted to myeloablative conditioning and peripheral blood

Table 3. (continued)

Covariate No. HR 95% Confidence interval P

Race/ethnicity

White Hispanic 217 Reference

White non-Hispanic 1318 0.65 0.47-0.90 .009

Black 109 0.90 0.53-1.53 .69

Asian 80 0.29 0.12-0.68 .005

Other/not specified 205 0.67 0.43-1.06 .08

cGVHD

MUD vs haploidentical for donor/recipient sex match, other 1.38 1.14-1.68 .001

MUD vs haploidentical for donor/recipient sex match, F/M 2.91 1.87-4.52 ,.001

Remission status

CR1 1528 Reference

CR21 501 0.81 0.69-0.95 .009

Donor/recipient sex match

Other than F/M 1707 Reference

F/M 322 0.69 0.44-1.08 .10
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Table 4. Multivariable analysis for 7/8 HLA-MUD HCT vs haploidentical HCT, 2013-2017

Covariate No. HR 95% Confidence interval P

OS

Main effect

Haploidentical HCT 393 Reference

7/8 HLA-MUD HCT 230 1.38 1.08-1.78 .01

Remission status

CR1 418 Reference

CR21 205 1.82 1.41-2.34 ,.001

LFS

Main effect

Haploidentical HCT 381 Reference

7/8 HLA-MUD 227 1.21 0.95-1.54 .12

Remission status

CR1 414 Reference

CR21 194 1.84 1.46-2.33 ,.001

Race/ethnicity

White Hispanic 124 Reference

White non-Hispanic 277 0.95 0.71-1.28 .73

Black 75 1.33 0.92-1.94 .13

Asian 32 0.50 0.25-0.97 .04

Other/not specified 100 0.70 0.48-1.03 .07

Conditioning regimen

MAC-TBI 295 Reference

MAC-chemotherapy 111 1.29 0.94-1.75 .11

RIC/NMA 201 1.46 1.12-1.89 .005

NRM

Main effect

Haploidentical HCT 381 Reference

7/8 HLA-MUD HCT 227 2.13 1.50-3.01 ,.001

Donor/recipient CMV serostatus

1/1 287 Reference

1/2 55 0.40 0.18-0.86 .02

2/1 143 0.78 0.51-1.19 .25

2/2 121 0.56 0.34-0.92 .02

Relapse

Main effect

Haploidentical HCT 381 Reference

7/8 HLA-MUD HCT 227 0.81 0.57-1.13 .22

Remission status

CR1 414 Reference

CR21 194 2.39 1.76-3.25 ,.001

Race/ethnicity

White Hispanic 124 Reference

White non-Hispanic 277 0.94 0.64-1.39 .76

Black 75 1.24 0.76-2.02 .38

Asian 32 0.36 0.14-0.93 .03

Other/not specified 100 0.58 0.34-0.99 .05

Conditioning regimen

MAC-TBI 295 Reference
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stem cell source, outcomes were similar to those for the full popula-
tion except that decreased OS with 7/8 HLA-MUD compared with
haploidentical HCT was no longer statistically significant (HR, 1.39;
P 5 .07; supplemental Tables 1, 4, 6-9; supplemental Figures 1-4).
When restricted to US centers only, outcomes were also similar
except there was a decreased risk of relapse (HR, 0.76; P 5 .02)
but inferior OS (HR, 1.23; 95% confidence interval, 1.00-1.50; P 5

.05) with MUD compared with haploidentical HCT (supplemental
Tables 2, 5, 10-13; supplemental Figures 1-4).

Discussion

Haploidentical HCT is a growing allo-HCT modality for ALL that has
expanded allo-HCT to patients without traditional HLA-matched
related or unrelated donors, especially those of mixed race or ethnic-
ity. The choice of alternative donors for allo-HCT in ALL is an area
of ongoing research, debate, and clinical interest. In addition, the rel-
ative benefits of haploidentical HCT compared with traditional
MSDs and MUDs is just being defined. In this study, we demon-
strated that haploidentical HCT using PTCy resulted in OS similar
to that in traditional MSD and MUD allo-HCT but with less GVHD.
In addition, we found superior OS compared with alternative 7/8
HLA-MUD and UCB HCT. The superior survival seen with haploi-
dentical HCT using PTCy compared with 7/8 HLA-MUD HCT and
UCB HCT was likely due to reduced NRM related to reduced
GVHD with haploidentical HCT. Notably, rates of infection were
similar among the 5 cohorts, suggesting that delayed immune
reconstitution with haploidentical HCT in the adult ALL population
did not translate into increased infection-related mortality.

Previous smaller retrospective studies comparing haploidentical
HCT to MSD, MUD, and MMUD HCT found no differences in
disease-free survival, relapse, NRM, aGVHD, or cGVHD. Recently,
Shem-Tov et al14 performed a retrospective multi-institution

comparison of 136 ALL patients undergoing haploidentical HCT
with 809 patients with ALL receiving MUD HCT and 289 patients
with ALL receiving 9/10 HLA-MUD HCT. This smaller study found
no differences in OS, LFS, relapse, NRM, aGVHD, or cGVHD
among the groups.14 Similarly, a larger study comparing 487 haploi-
dentical HCTs to 974 MUD HCTs for ALL found no difference in
any outcome, including aGVHD and cGVHD.15 Our study expands
on and contrasts these studies with a large contemporary popula-
tion that showed significant differences in major outcomes between
haploidentical HCT using PTCy to all other major donor sources.
This study helps clarify the role of haploidentical HCT in adult ALL
and expands our knowledge of the expected benefits of haploidenti-
cal HCT relative to other donor HCT approaches. Importantly, our
study supports haploidentical HCT with PTCy as the preferred HCT
approach for patients who do not have an MSD or MUD.

Similar to previous studies,22-25 our results show that myeloablative
conditioning using TBI compared with myeloablative chemotherapy
or RIC/non-myeloablative conditioning significantly reduced the risk
of relapse and improved LFS across all donor HCT cohorts. The
recently published Phase III FORUM study randomly assigned 417
children and young adults ages 4 to 21 years with ALL to either
myeloablative TBI-based or myeloablative chemotherapy-based con-
ditioning before MSD, MUD, or MMUD allo-HCT. Patients in the TBI
arm had improved OS, improved event-free survival, less relapse,
and improved NRM.23 In adults with ALL, a retrospective EBMT reg-
istry study comparing TBI-based to chemotherapy-myeloablative
conditioning for MSD, MUD, or MMUD allo-HCT found better OS,
LFS, and relapse incidence with TBI-based conditioning,24 although
the OS benefit in adults has not been seen across all retrospective
studies.22,25 In this study, the benefit of myeloablative conditioning
using TBI on reducing relapse improved OS only in haploidentical
HCT and UCB HCT comparisons, suggesting that these modalities
may derive more benefit from TBI. Overall, our study supports

Table 4. (continued)

Covariate No. HR 95% Confidence interval P

MAC-chemotherapy 111 1.60 1.05-2.44 .03

RIC/NMA 201 2.09 1.49-2.95 ,.001

aGVHD, grade 2-4

Main effect

Haploidentical HCT 376 Reference

7/8 HLA-MUD HCT 216 1.33 1.02-1.73 .04

Conditioning regimen

MAC-TBI 288 Reference

MAC-chemotherapy 107 0.68 0.47-0.98 .04

RIC/NMA 196 0.68 0.51-0.92 .01

aGVHD, grade 3-4

Main effect

Haploidentical HCT 376 Reference

7/8 HLA-MUD HCT 216 1.86 1.23-2.80 .003

cGVHD

Main effect

Haploidentical HCT 393 Reference

7/8 HLA-MUD HCT 230 1.72 1.34-2.20 ,.001
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Table 5. Multivariable analysis for UCB HCT vs haploidentical HCT, 2013-2017

Covariate No. HR 95% Confidence interval P

OS

UCB HCT vs haploidentical HCT (mo)

#18 1.93 1.45-2.56 ,.001

.18 0.68 0.38-1.21 .19

Remission status

CR1 481 Reference

CR21 217 1.62 1.27-2.07 ,.001

Karnofsky performance status (%)

,90 259 Reference

$90 429 0.81 0.64-1.04 .10

Conditioning regimen

MAC-TBI 380 Reference

MAC-chemotherapy 74 2.14 1.45-3.14 ,.001

RIC/NMA 243 1.22 0.93-1.59 .15

LFS

UCB HCT vs haploidentical HCT (mo)

#18 1.40 1.09-1.79 .007

.18 0.58 0.31-1.07 .08

Remission status

CR1 469 Reference

CR21 203 1.59 1.27-1.99 ,.001

Race/ethnicity

White Hispanic 144 Reference

White non-Hispanic 310 0.86 0.65-1.13 .27

Black 83 1.33 0.93-1.89 .12

Asian 41 0.55 0.31-0.97 .04

Other/not specified 94 0.94 0.65-1.36 .74

Conditioning regimen

MAC-TBI 364 Reference

MAC-chemotherapy 72 1.77 1.23-2.55 .002

RIC/NMA 235 1.51 1.19-1.91 ,.001

NRM

Main effect

Haploidentical HCT 381 Reference

UCB HCT 291 2.08 1.45-2.99 ,.001

Karnofsky performance status (%)

,90 247 Reference

$90 416 0.65 0.46-0.90 .01

Conditioning regimen

MAC-TBI 364 Reference

MAC-chemotherapy 72 1.96 1.16-3.32 .01

RIC/NMA 235 0.88 0.59-1.29 .51

Relapse

Main effect

Haploidentical HCT 381 Reference

UCB HCT 291 0.83 0.60-1.13 .23

Remission status

CR1 469 Reference
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current recommendations26 for using myeloablative TBI for condi-
tioning in allo-HCT for adult ALL because of the reduced risk of
relapse with similar or improved OS, but further study is warranted
on optimal conditioning regimens across donor HCT types for adult
ALL.

The primary reason for decreased NRM with haploidentical HCT
compared with MUD HCT, 7/8 MMUD HCT, and UCB HCT seems
to be significantly decreased rates of severe aGVHD and cGVHD
with haploidentical HCT using PTCy. Death from GVHD was sub-
stantially higher in the non-haploidentical HCT cohorts and reduced
quality of life from GVHD-related complications, although not
assessed in this study, with other donor sources may be an addi-
tional reason to pursue haploidentical HCT with PTCy in the ALL
population. On the basis of its success in haploidentical HCT, PTCy
GVHD prophylaxis is being studied in MSD, MUD, and MMUD
HCT. Existing studies evaluating alternative GVHD prophylaxis with
PTCy for MSD and UD HCT27-30 have consistently found low rates

of cGVHD, and these approaches may produce relative benefits
similar to those seen with haploidentical HCT in this study for reduc-
ing GVHD and NRM. However, the impact of these approaches on
relapse in the setting of fully HLA-matched donor HCT will need to
be closely evaluated.

Although HRs for relapse favored non-haploidentical HCT modal-
ities except HLA-identical sibling (HR, 0.81-0.83), this finding
was not statistically significant and did not lead to inferior OS or
LFS with haploidentical HCT using PTCy. When restricted to
sites in the United States only, relapse was significantly higher
with haploidentical HCT using PTCy compared with MUD HCT
(HR, 0.76; 95% confidence interval, 0.61-0.96; P 5 .02), which
raised some concern that relapse may be higher in some settings
with haploidentical HCT, although in the same comparison, hap-
loidentical HCT showed significantly better OS because of sub-
stantially lower NRM. A larger future study and longer follow-up
are needed to evaluate whether the large and significant

Table 5. (continued)

Covariate No. HR 95% Confidence interval P

CR21 203 1.88 1.40-2.53 ,.001

Race/ethnicity

White Hispanic 144 Reference

White non-Hispanic 310 0.99 0.68-1.45 .98

Black 83 1.51 0.95-2.39 .08

Asian 41 0.55 0.26-1.19 .13

Other/not specified 94 0.73 0.43-1.25 .25

Conditioning regimen

MAC-TBI 364 Reference

MAC-chemotherapy 72 1.64 0.99-2.71 .05

RIC/NMA 235 2.01 1.47-2.74 ,.001

aGVHD, grade 2-4

Main effect

Haploidentical HCT 376 Reference

UCB HCT 285 1.83 1.46-2.30 ,.001

aGVHD, grade 3-4

Main effect

Haploidentical HCT 376 Reference

UCB HCT 285 1.97 1.35-2.88 ,.001

cGVHD

Main effect

Haploidentical HCT 393 Reference

UCB HCT 297 1.13 0.86-1.47 .38

Conditioning regimen

MAC-TBI 375 Reference

MAC-chemotherapy 71 1.11 0.72-1.72 .64

RIC/NMA 243 0.65 0.49-0.87 .003

HCT-CI .05

0 169 Reference

1 98 0.60 0.39-0.92 .02

2 105 0.91 0.63-1.31 .60

31 317 0.68 0.50-0.91 .01
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reduction in aGVHD and cGVHD and death from GVHD with
haploidentical HCT may be associated with a small increased
risk of relapse after HCT. Non-severe aGVHD and cGVHD have
previously been associated with reduced relapse,31 and this
study suggests that reducing GVHD with haploidentical HCT
may have an impact on relapse. Consistent with this, MSD HCT
and haploidentical HCT had similar rates of aGVHD and nearly
identical risk of relapse (HR, 0.99).

A strength of this study is the large number patients and interna-
tional centers, which allows us to generalize the results, especially
to centers in the United States. In addition, the large sample size in
each cohort allowed adequate power to detect meaningful differ-
ences in outcomes between the HCT approaches. One limitation of
this study is that it is retrospective. A prospective randomized study
to better control for numerous variables would be needed to confirm
our findings and address some limitations. For instance, the impact
on outcomes from large centers favoring certain donor HCT modali-
ties could influence the results. Another limitation is lack of stan-
dardized testing and definitions for MRD in data collected from
sites. We found no differences in OS based on the CIBMTR defini-
tions of MRD before HCT in contrast to a recent EBMT registry
report.24 However, well-defined MRD positivity before allo-HCT has
been shown to predict poor outcomes with increased relapse and
reduced survival after allo-HCT for ALL.32-40 Reasons for our find-
ings could be heterogeneity in testing, definitions of MRD used at
different CIBMTR sites, and possibly a lack of sensitivity of MRD for
predicting outcomes in a real-world setting. Another limitation of our
study was an inability to evaluate the impact of central nervous sys-
tem and extramedullary ALL on outcomes because the centers did
not report these data. Follow-up for this study was also relatively
short, given that haploidentical HCT has only come into widespread
use in the last 5 years. Finally, our analysis was restricted to patients
undergoing haploidentical HCT using PTCy, and our conclusions
may not extend to alternate haploidentical HCT approaches.
Approaches that use in vivo T-cell depletion or in vitro T-cell deple-
tion and CD341 cell selection have shown promising outcomes in

ALL that seem to be comparable or possibly superior to MSD and
MUD allo-HCT.41-48 High-quality comparative studies are needed
that compare well-matched populations undergoing T-cell replete
haploidentical HCT using PTCy with approaches using in vivo T-cell
depletion or in vitro T-cell depletion and CD341 cell selection.

Our findings support haploidentical HCT using PTCy as the pre-
ferred alternative donor HCT for ALL given the superior OS seen
relative to 7/8 HLA-MUD and UCB HCT. Our data also suggest
that OS is not different with haploidentical HCT using PTCy com-
pared with traditional MSD and MUD HCT but with a reduced risk
of GVHD. Although longer follow-up and confirmatory studies are
needed, from this analysis haploidentical HCT seems to be an
acceptable HCT option for all adult patients with ALL in remission
that lacks anti-donor–specific HLA antibodies. To overcome the
major causes of failure of haploidentical HCT uncovered in this
study, future studies that aim to prevent relapse and reduce infec-
tious death may further improve outcomes after haploidentical HCT.
Future studies with longer follow-up will also be needed to defini-
tively establish the role of haploidentical HCT using PTCy at differ-
ent stages of ALL remission, particularly in the era of effective
salvage treatments such as bispecific T-cell engagers, antibody-
drug conjugates, and cellular therapies.
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