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Hundreds of millions of poor families receive some form of targeted social assistance.
Many of these antipoverty programs involve some degree of geographic targeting, where
aid is prioritized to the poorest regions of the country. However, policy makers in many
low-resource settings lack the disaggregated poverty data required to make effective
geographic targeting decisions. Using several independent datasets from Nigeria, this
paper shows that high-resolution poverty maps, constructed by applying machine
learning algorithms to satellite imagery and other nontraditional geospatial data, can
improve the targeting of government cash transfers to poor families. Specifically, we
find that geographic targeting relying on machine learning–based poverty maps can
reduce errors of exclusion and inclusion relative to geographic targeting based on recent
nationally representative survey data. This result holds for antipoverty programs that
target both the poor and the extreme poor and for initiatives of varying sizes. We also
find no evidence that machine learning–based maps increase targeting disparities by
demographic groups, such as gender or religion. Based in part on these findings, the
Government of Nigeria used this approach to geographically target emergency cash
transfers in response to the COVID-19 pandemic.

poverty | targeting | satellite imagery | Nigeria

Hundreds of millions of poor and vulnerable families benefit from some form of targeted
social assistance (1). Just since the onset of the COVID-19 pandemic, over 3,300 new
targeted social protection programs have been launched (1).

A key factor in the success of any antipoverty program is the degree to which it
is accurately targeted (2). When truly poor families do not receive benefits (errors
of exclusion) or when nonpoor families do receive benefits (errors of inclusion), this
undermines the effectiveness of the policy (3).

Unfortunately, many governments in low- and middle-income countries (LMICs) lack
recent, reliable data on where poverty is concentrated (4). While most LMICs have
access to poverty data that provide comprehensive coverage at the largest administrative
subdivision (e.g., the state level in Nigeria, comparable with the state level in the United
States), coverage is far less complete at the third administrative subdivision (e.g., the ward
level in Nigeria, comparable with municipalities in the United States). In Nigeria, the
most recent Demographic and Health Survey (DHS) surveyed households in only 13.8%
of wards. This problem is present across LMICs; in Peru, for example, 32.0% of the
comparable administrative units were covered in the most recent DHS, and in Indonesia,
just 16.1% were covered. In practice, this incomplete coverage means that a geographically
targeted program must either rely on potentially inaccurate and outdated poverty maps or
accept the efficiency losses of targeting larger administrative units.

In this paper, we ask the following question. Can fine-grained poverty maps, produced
by applying deep learning algorithms to high-resolution satellite imagery, improve the
accuracy of geographically targeted antipoverty programs? Our results are based on an
analysis done in a high-stakes policy environment to help the Government of Nigeria
determine its emergency COVID-19 response strategy.

Our main results evaluate different geographic targeting mechanisms available to
the Nigerian government, which are similar to those used by policy makers in many
LMICs. Specifically, we compare the targeting outcomes that would result from using
high-resolution machine learning (ML)–based poverty maps with those that would
result from using a recent nationally representative household survey (which we refer
to as the survey-based “benchmark”). Both approaches are evaluated using a nationally
representative survey of 22,110 Nigerian households that was independently collected and
not used to train the ML-based approach or to determine the survey-based benchmark.
By maintaining a clear separation between the data used to simulate targeting allocations
and the data used to evaluate those allocations, we limit the scope for overfitting on the
evaluation data.

Significance

Many antipoverty programs use
geographic targeting to prioritize
benefits to people living in specific
locations. This paper shows that
high-resolution poverty maps,
constructed with machine
learning algorithms from satellite
imagery, can improve the
geographic targeting of benefits
to the poorest members of
society. This approach was used
by the Nigerian government to
distribute benefits to millions of
the extreme poor. As
high-resolution poverty maps
become globally available, these
results can inform the design and
implementation of social
assistance programs worldwide.

Author affiliations: aSchool of International and Public
Affairs, Columbia University, New York, NY 10027; and
bSchool of Information, University of California, Berkeley,
CA 94720

Author contributions: I.S.S. and J.E.B. designed research;
I.S.S. and J.E.B. performed research; I.S.S. analyzed data;
and I.S.S. and J.E.B. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1To whom correspondence may be addressed. Email:
jblumenstock@berkeley.edu.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2120025119/-/DCSupplemental.

Published August 1, 2022.

PNAS 2022 Vol. 119 No. 32 e2120025119 https://doi.org/10.1073/pnas.2120025119 1 of 10

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2120025119&domain=pdf&date_stamp=2022-07-29
http://orcid.org/0000-0002-4943-231X
http://orcid.org/0000-0002-1813-7414
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:jblumenstock@berkeley.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://doi.org/10.1073/pnas.2120025119


We find that the ML-based poverty maps are at least as accurate
as the benchmark in targeting benefits to the poor (i.e., those
with consumption below the poverty line) and to the extreme
poor (consumption below half the poverty line) in regions where
benchmark data are available. We also document the main ad-
vantage of the ML-based maps, which is that they allow for
accurate microtargeting in all administrative subdivisions of the
country—including subdivisions where benchmark data do not
exist. This is important because the survey benchmark does not
contain data for 86.2% of Nigerian wards (the Admin-3 unit)
and 18.5% of local government areas (LGAs; the Admin-2 unit).
We document how the accuracy and complete coverage of the
ML-based maps make it possible to design a more disaggregated
geographic targeting policy than would be possible with survey
data alone. This disaggregation directly translates to a higher
fraction of benefits being allocated to the poor and the extreme
poor.

In addition, we assess the fairness of ML-based targeting with
respect to several different demographic subgroups. This is to
address the concern that targeting approaches that are agnostic to
recipients’ demographics may over- or undertarget certain groups,
such as female-headed households (5, 6). Comparing the demo-
graphic parity of ML-based and survey-based targeting approaches
along several dimensions, we find that ML-based targeting does
not decrease fairness overall.

These results build on prior work that developed methods for
the construction of high-resolution poverty maps (7–9). However,
our focus is different and more practical. We take the output of
prior work (the high-resolution poverty maps) as the input to
our analysis and show how such maps can improve the outcomes
of a real-world social assistance program. In January 2021, the
Nigerian government chose this approach to guide the expansion
of cash transfers to the urban poor (10); our hope is that this
analysis can help encourage future efforts to integrate recent
innovations in ML into humanitarian relief applications.

Results

Benefits of Disaggregation. Our first intuitive result confirms
prior work and highlights the value of geographic disaggregation
in the design of geographic targeting policies. This analysis is
shown in Fig. 1, where we compare targeting performance at
different aggregation levels using hypothetical optimal targeting
data. Optimal targeting is simulated by using the same survey

Fig. 1. Targeting performance of policies at different administrative units.
ROC curves show the performance of geographic targeting policies designed
at the state (Admin-1), LGA (Admin-2), and ward (Admin-3) levels, where
all households in a targeted administrative unit receive full benefits and
households in untargeted units receive no benefits. The targeting of an
administrative unit is determined based on the average wealth of the unit as
calculated from NLSS data. True and false positive rates are calculated based
on the portion of true poor households that are targeted, where true poverty
status is determined based on the NLSS.

data to both perform and evaluate targeting. This allows us to
approximate how effectively targeting can be conducted when the
true underlying distribution of poverty is known. However, it is
important to note that this is a hypothetical exercise; no dataset
exists that would allow for optimal targeting in practice.

Fig. 1, Left displays the receiver operating characteristic (ROC)
curves where the objective is to provide benefits to the poor (daily
consumption below $1.05); Fig. 1, Right provides the ROC curves
for the objective of targeting the extreme poor (daily consumption
below $0.57). Substantial increases in the area under the curve
are produced as the targeting policy shifts from states (the largest
administrative unit) to LGAs (the intermediate administrative
unit) and from LGAs to wards (the smallest administrative unit).
These findings are consistent with work done in other contexts
to document the benefits of spatial disaggregation in geographic
targeting (11–13); intuitively, programs targeting smaller admin-
istrative units are able to more precisely direct benefits to the
poorest regions than programs targeting larger ones.

Coverage and Accuracy of ML-Based Poverty Maps. Our second
set of results contrasts the coverage of ML-based poverty maps
with survey-based alternatives and compares the accuracy of these
two approaches at different spatial scales.

The difference in coverage between survey- and ML-based
poverty maps is evident in Fig. 2A, which shows the two ver-
sions of Nigerian poverty maps side by side at different levels of
geographic aggregation. Gray areas indicate administrative units
where no surveys occurred in the benchmark dataset, a nation-
ally representative DHS household survey of 40,427 households
conducted in 2018. At the state level (row A), both maps have
complete coverage; however, at the LGA level (row B), the survey-
based map loses 18.5% of LGAs, and at the finest level (row C),
surveys cover only 13.8% of all wards in Nigeria. A full tabulation
of these results is also shown in the first two columns of Table 1.

The better coverage of ML-based poverty maps does not come
at the expense of accuracy. Rather, we find that the ML-based
poverty maps measure the spatial distribution of poverty with
approximately the same accuracy as the benchmark survey. This
can be seen in Fig. 2B, which measures the accuracy of survey-
based and ML-based poverty maps using a third independent
source of ground truth data, Nigeria’s National Living Standards
Survey (NLSS) of 22,110 households conducted in 2018 and
2019. At all levels of spatial disaggregation, the correlation with
the NLSS is similar. Note that we do not expect the ML-based
estimates to outperform the DHS-based estimates since the DHS
data were used to train the ML-based model (ML-Based Poverty
Maps). Rather, the main advantage of the ML-based maps is that
they allow for accurate extrapolation of wealth estimates into the
large number of regions not surveyed by the DHS.

We further find that correlations with ground truth for both
DHS and ML-based poverty maps increase when we consider only
the regions where the evaluation (NLSS) data are most reliable.
(This analysis is intended to address one limitation of our empir-
ical setting, noted in Issues of Incomplete Survey Coverage, which
is that the ground-truth NLSS data used to evaluate performance
are incomplete.) These results are shown in the last two columns
of Table 1, which reports the correlation between the two poverty
maps with ground truth estimates from the NLSS. While rows 1,
2, and 7 echo the results shown in Fig. 2B, the other rows indicate
the correlation in specific subsets of the administrative units. In
particular, we find that the performance of models evaluated using
data from all LGAs (row 2) is inferior to that of models using only
data from LGAs with at least 30 households in the NLSS (row
3). This effect is even stronger in Table 1, ward-level correlations,

2 of 10 https://doi.org/10.1073/pnas.2120025119 pnas.org

https://doi.org/10.1073/pnas.2120025119


Fig. 2. Coverage and correlations of ML and benchmark poverty maps to NLSS-estimated ground truth poverty maps. A compares the coverage and estimates
of traditional survey-based poverty maps (Left) and ML-based poverty maps (Right) at the three different administrative levels: state (row A), LGA (row B), and
ward (row C). Regions without data are shown in gray. Row D shows the high-resolution ML-based estimates prior to aggregation. For privacy reasons, high-
resolution poverty estimates are not generated for grid cells with fewer than 10 inhabitants. B compares the ML and survey benchmark (the DHS) wealth
estimates of each administrative unit against the NLSS ground truth estimate of that unit’s wealth. Pearson’s correlation coefficients are reported across all
relevant units. Fewer observations exist in B because not all LGAs and wards contain households that were surveyed in the DHS. All correlations are significant
at P = 0.001.

when we compare the analysis of all wards (row 7) with that of
wards with at least 20 households (row 8). As expected, both DHS
and ML-based poverty maps are more strongly correlated with the
NLSS validation data when regions with the fewest households
surveyed are excluded.

Perhaps most important, we find that the ML-based estimates
remain accurate even when evaluated in regions where no DHS
occurred. The accuracy of ML-based estimates in regions not
covered by the DHS (but present in the NLSS ground truth and
ML-based estimates) can be seen in rows 5 to 6 and 10 to 11
of Table 1. For instance, comparing rows 7 and 10, we see that
the correlation between the ML-based estimates and ground truth
is very similar (0.77 vs. 0.76). There is a slight attenuation in
accuracy at the LGA level (row 2 vs. row 5), but this is likely due to
the fact that the NLSS validation data are sparser in regions with
no DHS data. Thus, we recalculate these correlations removing
regions with little NLSS data (rows 6 and 11); the gap in accuracy
shrinks at the LGA level (row 3 vs. row 6) and disappears at the
ward level (row 8 vs. row 11). Overall, there is little evidence that
the performance of ML-based maps deteriorates in regions where
training data were unavailable.

Results of National Targeting Simulations. The third set of re-
sults, which is likely most relevant to policy makers, compares

targeting outcomes using the ML-based wealth estimates with
targeting outcomes using survey benchmark wealth estimates.
The analysis is based on simulations of ward-level geographic
targeting, where all households in selected wards receive an equal
benefit and no households in unselected wards receive benefits.
The data and methods used to construct poverty maps from the
ML-based and survey-based data sources are described in Primary
Data Sources and Poverty Map Construction. The details of the
targeting simulations used to evaluate both methods are provided
in Targeting Simulations.

To summarize, we find that, using a variety of different methods
for evaluating targeting performance, the ML-based poverty maps
would deliver a higher proportion of benefits to the poorest
people in Nigeria than the survey-based benchmark (the DHS
with representative imputation). This is true whether the goal
of targeting is to provide benefits to the poor (defined as those
consuming less than US $1.05 per day) or the extreme poor
(consuming less than US $0.57 per day).

The ROC curves in Fig. 3A, Left compare ward-level geo-
graphic targeting performance using the ML-based maps (area
under the curve [AUC] = 0.87) with ward-level performance
using the survey benchmark (AUC = 0.81). We also include,
for reference, the performance of an “oracle” strategy (AUC =
0.93), which indicates the optimal performance that could be
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Table 1. Coverage and accuracy of different approaches to constructing poverty maps in Nigeria

No. of regions with estimates Correlation with ground truth estimates

DHS ML based DHS ML based
State-level correlations

1) All states 37 37 0.935 0.931
(0.877, 0.966) (0.870, 0.964)

LGA-level correlations
2) All LGAs 597 706 0.787 0.802

(0.755, 0.816) (0.774, 0.827)
3) > 30 ground truth households 333 371 0.839 0.863

(0.804, 0.868) (0.834, 0.887)
4) LGAs with DHS data 597 0.811

(0.782, 0.837)
5) LGAs with no DHS data 109 0.713

(0.606, 0.794)
6) > 30 ground truth households and no DHS 38 0.812

(0.665, 0.898)
Ward-level correlations

7) All wards 464 2, 016 0.779 0.769
(0.740, 0.812) (0.751, 0.786)

8) > 20 ground truth households 95 242 0.894 0.870
(0.844, 0.928) (0.835, 0.897)

9) Wards with DHS data 464 0.792
(0.756, 0.824)

10) Wards with no DHS data 1, 552 0.759
(0.737, 0.779)

11) > 20 ground truth households and no DHS 147 0.871
(0.825, 0.905)

The first two columns indicate the number of administrative units for which data exist in the 2019 NLSS ground truth and the 2018 DHS (column 1) or the ML-based estimates (column 2).
The last two columns indicate the Pearson correlation between wealth estimates generated from the ground truth (the NLSS) and the DHS (using representative imputation; column 3) or
ML-based estimates (column 4). Correlations are measured across administrative units (i.e., not across households) using NLSS household weights for aggregation at the state level but
not at the LGA or ward level. Different levels of spatial aggregation of wealth estimates are indicated. Rows 3, 6, 8, and 11 restrict analysis to administrative units where the NLSS ground
truth contains a minimum of 20 to 30 households (to remove high-variance observations from the ground truth estimate). Rows 4 and 9 evaluate the ML-based estimates on the regions
where DHS data exist; rows 5, 6, 10, and 11 evaluate the ML-based estimates on the subset of administrative units where no DHS data exist. All correlations are significant at P = 0.001;
parentheses show 95% CIs.

achieved with a purely geographic targeting approach. The survey
benchmark shown in Fig. 3 imputes the wealth of a fraction of
wards proportional to the number of wards with missing DHS
data (“representative imputation” is discussed in Issues of Incom-
plete Survey Coverage) to ensure that every ward has a nonzero
probability of receiving benefits. We separately measure the per-
formance of a survey-based approach that is evaluated only in the
13.8% of wards with DHS data, which produces an AUC = 0.87.
This approach performs similarly to the ML-based approach, but
it could not be feasibly implemented because it would leave 86.2%
of wards ineligible for benefits. Our findings are similar when we
evaluate targeting based on the proportion of transfers reaching
the extreme poor rather than the poor: ward-level targeting using
the ML-based estimates (AUC = 0.86) improves on the survey
benchmark (AUC = 0.80) and performs as well as the DHS when
the DHS is only evaluated in the 13.8% of DHS wards (AUC =
0.86).

We find that ML-based maps can improve upon the survey-
based benchmark for antipoverty programs of many sizes. Fig. 3B
shows the fraction of transfers going to the poor and the ex-
treme poor as the number of beneficiaries increases. We measure
program size as a fraction of the total number of poor in Nige-
ria (currently estimated at 73.5 million). In Fig. 3B, Left, the
ML-based map performs better than the benchmark irrespective
of the size of the program. In Fig. 3B, Right, the ML-based map
outperforms the benchmark for all extreme poverty program sizes,
except those targeting a population of between 11.8 and 25.7
million people.

Comparing these two panels, it is evident that all targeting
approaches perform better at targeting the poor than the extreme

poor. This is because there are fewer extreme poor (8.2%) than
poor households (40.5%), and the extreme poor are distributed
throughout the country. Thus, any purely geographic targeting
approach—no matter how accurate—will struggle to reach a large
share of the extreme poor. This finding is consistent with past
work on the difficulty of distinguishing poor and extreme poor
households (14, 15).

To more concretely illustrate how the improvements in target-
ing accuracy from using the ML-based maps translate into better
policy outcomes, Table 2 shows targeting precision at 10% recall
(i.e., the fraction of transfers that reach the poor when 10% of the
poor are targeted) (SI Appendix, Fig. S3 shows a visual comparison
of the targeted regions). In Table 2, we observe a similar pattern
as in Fig. 1: that targeting performance generally increases as
smaller administrative units are targeted (i.e., when results in states
are compared with LGAs and when LGAs are compared with
wards).*

Most important, we find that the ML-based approach out-
performs the main DHS benchmark (representative imputation)
at all levels of geographic targeting, except the state level (since
the DHS is designed and weighted to be representative at the
state level, it is expected to perform well—but state-level targeting
would not be viable in Nigeria given the size of most states). In

*Note that while targeting performance increases with spatial disaggregation in Table 2,
we earlier saw in Table 1 that the correlation between the NLSS ground truth and both
the ML-based and DHS-based poverty maps decreased with spatial disaggregation. This
illustrates a bias–variance trade-off, where the smaller units of analysis imply that fewer
households are available to calculate the average wealth of a region.
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Fig. 3. Ward-level targeting performance. Curves show performance of ge-
ographic targeting for programs of different sizes for three different ap-
proaches to targeting: an optimal approach based on the NLSS evaluation
data; the ML-based approach based on high-resolution poverty maps; and
a survey benchmark based on DHS data, imputing a representative portion of
missing values. A shows ROC curves based on whether the NLSS households
in targeted wards are poor (Left) or extreme poor (Right). B shows the fraction
of program benefits going to the poor (Left) and extreme poor (Right) as the
size of the antipoverty program varies.

targeting the poor, the ML-based approach increases precision
relative to the benchmark from 0.82 to 0.86 at the LGA level and
from 0.79 to 0.92 at the ward level. In targeting the extreme poor,
the increase is from 0.30 to 0.39 at the LGA level and from 0.31
to 0.41 at the ward level. At both the LGA and ward level, we see

substantial overlap between regions selected by all three poverty
maps (SI Appendix, Fig. S3).†

These increases in precision directly translate into reductions
in errors of exclusion and inclusion. For instance, if we compare
two geographically targeted antipoverty programs that each
provide transfers to 7.3 million individuals (i.e., 10% of
Nigeria’s poor population), the best ML-based approach (ward-
level targeting) would correctly target 6,750,920 individuals;
66,735,620 poor individuals would not receive transfers, and
597,734 nonpoor individuals would be incorrectly included.
DHS-based ward-level targeting would correctly target 5,787,802
individuals; 67,698,738 would be incorrectly excluded, and
1,560,852 would be incorrectly included. In other words, the
ML-based approach would reduce exclusion errors by 1.4% and
would reduce inclusion errors by 61.7%, resulting in nearly
a million poor individuals receiving aid who otherwise would
not have.

Our finding that ML-based targeting outperforms the survey
benchmark is robust to several alternative approaches to targeting.
Thus far, performance has been evaluated based on a method’s
ability to target regions with low average (mean) wealth. When
targeting is instead conducted based on median wealth, ML-based
maps improve AUC over survey-based maps from 0.808 to 0.863
for targeting the poor and from 0.803 to 0.854 for targeting the
extreme poor. Similar performance is observed for targeting based
on the fraction of households in the ward that are (extreme) poor;

†The analysis in Table 2 is based on wards where both the DHS and the NLSS contain
at least one household (N = 464). There is also a large number of wards for which the
DHS does not contain data, but the NLSS does (N = 1,552). In these regions, it is possible
to evaluate ML-based targeting performance but not the survey-based benchmark. We
focus on wards where all data are available to facilitate direct comparisons between the
DHS and ML model. In an analysis not reported in Table 2, we find that the targeting
accuracy of the ML-based approach is largely unchanged when evaluated on the full set
of 1,552 wards with NLSS data. For targeting the poor, AUC remains virtually unchanged
(0.867 vs. 0.869 for DHS wards only). For targeting the extreme poor, we observe a
slightly larger decline (to 0.82 from 0.86). Precision at 10% recall is unchanged at 0.92 for
targeting the poor and declines slightly from 0.41 to 0.39 for targeting the extreme poor
(SI Appendix, SI Text and Fig. S8).

Table 2. Precision at 10% recall

Precision at 10% recall

Targeting approach Targeting the poor Targeting the extreme poor Coverage, %
States

Optimal (NLSS) 0.806 0.277 100
ML based 0.682 0.118 100
DHS based 0.795 0.218 100

LGAs
Optimal (NLSS) 0.979 0.553 91.2
ML based 0.855 0.390 100
DHS based (representative imputation) 0.824 0.301 100
DHS based (minimum imputation) 0.843 0.321 91.2
DHS upper bound 0.840 0.359 81.5

Wards
Optimal (NLSS) 1.000 0.976 22.9
ML based 0.919 0.406 100
DHS based (representative imputation) 0.793 0.311 100
DHS based (minimum imputation) 0.867 0.366 22.9
DHS upper bound 0.923 0.376 13.8

The first two columns indicate the fraction of transfers going to poor (or extreme poor) individuals when the program budget allows for 10% of the poor (or extreme poor) to be targeted.
The third column indicates the proportion of each administrative unit for which the relevant dataset provides estimates (e.g., the NLSS conducted surveys in 91.2% of LGAs and 22.9% of
wards). Optimal (NLSS) targeting uses the NLSS ground truth data to select the poorest administrative units for benefits. ML-based targeting selects units based on the average estimated
wealth of those units. DHS-based targeting (representative imputation) selects units based on the average wealth of DHS households in that unit using an imputed wealth estimate on a
representative fraction of units, reflecting the proportion of units in the country for which DHS estimates would have to be imputed. DHS-based targeting (minimum imputation) evaluates
targeting performance in the full sample of NLSS wards, with missing wards imputed. DHS upper bound evaluates targeting performance only in units where the DHS occur.
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Fig. 4. Comparison of targeting fairness for selected demographic groups (assigned based on the head of household). Under perfect individual targeting,
the fraction of transfers going to members of a demographic group would be equal to the fraction of total poor households belonging to that demographic
group. A shows the percentage difference between the number of households in each demographic group expected to receive transfers and the number that
actually receive transfers, when 10% of the population is targeted. Error bars show bootstrapped 95% CIs. B shows how the fraction of transfers going to sample
subgroups varies as a function of program size and as a fraction of total population. Dashed horizontal line indicates the proportion of poor households whose
head of household belongs to that demographic group. Results pictured are for ward-level targeting.

AUCs for ML-based maps are 0.861 for targeting the poor vs.
0.802 for survey-based maps and 0.835 vs. 0.774 for targeting the
extreme poor. SI Appendix, Fig. S6 has the corresponding ROC
plots.

These results also remain qualitatively unchanged if we make
different assumptions about the DHS benchmark. In particular,
Table 2 also provides an upper-bound estimate of the performance
of a survey benchmark by evaluating performance only in the
81.5% of LGAs and 13.8% of wards covered by the DHS. ML-
based poverty maps outperform this DHS upper bound every-
where except when targeting the poor at the ward level, where the
two approaches are nearly identical (precision of 0.923 vs. 0.919).
We also include a “minimum imputation” estimate of DHS
performance that is evaluated on the full NLSS sample (as opposed
to the subset of NLSS regions that also appear in the DHS) by
imputing DHS estimates for all regions where the DHS does not
contain data (SI Appendix, SI Text and Fig. S8). The performance
of minimum imputation typically exceeds that of representative
imputation but falls below the DHS upper bound, and it always
performs worse than the ML-based approach.

Targeting Fairness and Demographic Parity. Our final set of
results explores the extent to which different targeting approaches
(optimal [the NLSS], survey benchmark [the DHS; representa-
tive imputation], and ML-based) lead to a “fair” distribution of
resources, where fairness is assessed based on statistical parity. This
is motivated by the fact that a singular focus on the accuracy of
targeting (at reaching the poor) might inadvertently concentrate
benefits toward (or away from) specific, potentially marginalized
or underserved, subgroups of the population (5, 6, 16–18). We
note three results.

First, geographic targeting can create demographic disparities—
likely due to the fact that different subgroups of the population
concentrate in specific geographic areas. These results can be
seen in Fig. 4A, which quantifies the difference in the percentage
of households of a certain group that are expected to receive
transfers (based on the percentage of that group that is truly
poor) and the percentage of households of that group that
receive transfers according to each specific targeting method.
In the figure, a large number of demographic subgroups (sets

of bars) are statistically over- or undertargeted irrespective of the
targeting methodology (indicated by bar color). For instance, even
under optimal geographic targeting, Hausa speakers (40.0% of
Nigerians per NLSS estimates) are overtargeted, and Igbo speakers
(11.2% of Nigerians) are undertargeted. We also note significant
undertargeting of female-headed households across all targeting
strategies.

Second, spatial disaggregation has no clear effect on statistical
disparities. With religion, we find that targeting smaller spatial
units (i.e., wards) is marginally less disparate than targeting larger
spatial units (i.e., LGAs). However, the opposite result appears
when considering the age of the head of household. However,
across all of these cases, confidence intervals (CIs, indicated by
the whiskers) overlap. Thus, the overall impact of disaggregation
may depend on the patterns of spatial heterogeneity in the specific
regions under consideration.

Third and perhaps most relevant to the focus of this paper, we
find that ML-based targeting leads to disparities that are similar
in magnitude and direction to the survey-based benchmark. In
Fig. 4A, we see that 95% CIs for ML- and survey-based targeting
overlap significantly for all demographic groups. In Fig. 4B, we see
similar results when the number of people targeted varies. While
parity varies slightly for different program sizes, no systematic
differences between targeting approaches are apparent.

Discussion

This paper provides empirical evidence that recent advances in
ML can improve the geographic targeting of social assistance. Our
analysis, done to support the Government of Nigeria’s human-
itarian response to the ongoing COVID-19 crisis, indicates that
programs targeted using ML-based maps can direct more transfers
to the poorest households than programs targeted using survey-
based poverty maps. This improvement in targeting efficiency
is due to the fact that the ML-based maps provide accurate
estimates of the relative wealth of every administrative subdivision
of the country, whereas survey data typically only cover a small
fraction of all units. As a result, an ML-based approach can be
designed for smaller regions, while a survey-based approach can
only be designed for larger regions. We do not find evidence that

6 of 10 https://doi.org/10.1073/pnas.2120025119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120025119/-/DCSupplemental
https://doi.org/10.1073/pnas.2120025119


ML-based poverty maps increase disparities between demographic
groups in the Nigerian context.

Limitations. While promising, this approach and the results we
document have important limitations. In particular, our analysis
focuses on a comparison between targeting based on a large,
standardized DHS (completed in 2018) and ML-based estimates
trained on that survey, as evaluated using a more reliable NLSS
with consumption data (completed in 2019). Some of our find-
ings may be specific to this particular data environment. For
instance, when the gap in time between the survey benchmark
and the evaluation data is larger (or smaller), it is possible that the
gains from ML-based estimates may differ. Our analysis in Nigeria
also relies on ML-based estimates that are relatively accurate
(ρ= 0.802 for Admin-2 regions); when ML-based estimates are
more (or less) accurate, we expect the relative benefits to increase
(or decrease). Likewise, in countries with a different underly-
ing wealth distribution or with different spatial patterns in the
concentration of poverty, results may vary. Related, as discussed
in Ground Truth Evaluation Data from the NLSS and Issues of
Incomplete Survey Coverage, our reliance on the NLSS to evalu-
ate both methods carries its own limitations; the NLSS surveys
only a fraction of all geographic units and is not representative
below the state level, and our evaluation relies on one particular
asset-based notion of poverty, when in fact, poverty is complex
and multidimensional. None of these limitations undermine the
internal validity of our analysis, but they do highlight important
avenues for future work.

Finally, we want to state clearly that this analysis should not be
misconstrued to imply that ML-based approaches should replace
survey-based methods for measuring poverty. Indeed, the ML-
based approach was only feasible because high-quality survey data
existed to train the ML model. More broadly, household surveys
capture a wide range of information, with much greater nuance
than can be clearly seen in overhead imagery and which may
not be easily modeled with ML (19, 20). Rather, these results
suggest that ML-based maps can provide a reliable method for
geographic targeting when time and resource constraints prevent
new data collection—a frequent consideration in the large num-
ber of LMICs without a recent census or comprehensive social
registry.

Materials and Methods

Related Work. This paper connects a recent strand of the applied ML literature
to a rich literature in development economics. The most closely related ML papers
explore how ML algorithms can be used to construct estimates of the spatial
distribution of wealth and poverty from high-resolution satellite imagery (7–9,
20–24). Also related are papers that construct granular poverty maps from mobile
phone (5, 25–28) and social media data (29) and recent work on evaluating
fairness in ML-based targeting approaches (5, 6). Broadly speaking, these studies
match nontraditional data (such as satellite or phone data) to a survey-based
ground truth measure of wealth, train ML methods to predict wealth from the
nontraditional data, and use the trained model to predict wealth estimates in
regions where no ground truth data exist (30).

The second literature, which has a rich history in development economics,
studies the targeting of social assistance and government transfers. This body
of work provides theory and empirical evaluations of the different targeting
mechanisms that are commonly used to determine eligibility for benefits (2, 3).
The crux of the problem is that central governments often lack recent, reliable, and
comprehensive data on the living conditions of each family (4). Thus, a variety
of common targeting mechanisms exist to help direct benefits to the neediest
households: self-targeting, where benefits are available to anyone, but there is
some “ordeal” involved in registering such that only those with the greatest need
will choose to participate (31, 32); proxy means tests, where wealth is estimated

based on a small number of easily observed assets and housing characteristics
(33, 34); community-based targeting, where communities are asked to identify
their neediest members (35, 36); and geographic targeting, where resources are
channeled to the regions with the highest levels of poverty (37–39). A key result
from this literature, which we extend in this paper, is that significant efficiency
gains can be achieved by targeting small administrative units rather than larger
ones (11–13).

This paper connects these two historically disjoint literatures by examining
whether recent innovations in ML-based poverty mapping can improve the target-
ing of social assistance and humanitarian aid (40). We build on prior work by Yeh
et al. (8), who discuss the potential for ML-based maps in program targeting but
stop short of analyzing a real-world policy decision and who do not compare the
ML approach to status quo alternatives. We also build on recent work that shows
how mobile phone metadata can improve targeting outcomes in Afghanistan
(28) and Togo (5). Relative to these projects, our approach is likely most relevant
in contexts where mobile phone data are not publicly available or when policy
applications require a geographic approach to targeting.

Targeting Context: Nigeria. Our analysis was motivated by a specific request
for assistance from the Government of Nigeria, which was working with the
World Bank to design an emergency social assistance program in response to the
COVID-19 crisis. At the onset of COVID-19, there was no single comprehensive
social registry that would allow them to identify the individuals or households
with the greatest need for assistance, and in the middle of the pandemic, it
was impractical to go door to door to collect this information. Thus, they were
interested in evaluating different approaches to geographic targeting.

Nigeria is home to roughly 211 million people, making it the seventh most
populous country in the world. Geographically, Nigeria has three different levels
of administrative subdivisions (Fig. 2); 37 states (Admin-1) are subdivided into a
total of 774 LGAs (Admin-2), which in turn, are subdivided into a total of 8,808
wards (Admin-3). However, in early 2020, the best poverty data available to the
Government of Nigeria could only provide estimates of state-level poverty; they
did not allow for estimates of rates of poverty at the LGA or ward level.

Based in part on the analysis described in this paper, the government elected
to use our high-resolution poverty maps to target the COVID-19 Rapid Response
Registration (RRR) Cash Transfer Project, which began disbursing benefits to
the first of an eventual 1 million recipients in mid-January 2021 (10). The RRR
program is designed specifically to help the urban poor; SI Appendix has a
separate evaluation of targeting outcomes for urban areas only.

Primary Data Sources and Poverty Map Construction.
ML-based poverty maps. The high-resolution poverty maps shown in Fig. 2A,
row D are constructed using an ML approach described in greater detail in Chi
et al. (9), which follows an approach similar to that first proposed by Jean et al. (7).
To summarize, ground truth survey data from several DHSs provide information
on the wealth of millions of households in LMICs, including 40,427 households
across Nigeria. These “labels” are matched, using geographic markers in the
survey dataset, to a rich set of nontraditional geospatial data, including features
derived from high-resolution satellite imagery using a convolutional neural net-
work as well as mobile connectivity data and other topological data. A gradient-
boosted decision tree is then used to predict the labels from the satellite and other
geospatial features using spatially stratified cross-validation. The fitted model is
then used to predict the wealth of every 2.4-km gridded region in the country of
Nigeria.

To produce estimates of the wealth and poverty of the different administrative
units of Nigeria (Fig. 2A, Right, rows A–C), the 2.4-km estimates are aggregated
using population weights, where the population of each 2.4-km grid cell is
generated using population estimates from Humanitarian Data Exchange (41).
Specifically, the wealth estimate of administrative unit i is calculated as

Wi =

(
1∑

t∈T I(t, i)pt

)∑
t∈T

I(t, i)ptwt , [1]

where T is the set of all 2.4-km satellite tiles; p and w approximate the population
and wealth of tile t, respectively; and I gives the fraction of tile t that intersects
administrative unit i. Because wealth indices are relative and have no meaningful
units, they are normalized at the administrative level to have a mean of zero and
SD of one.
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Benchmark poverty maps from the DHS. As a benchmark against which we
compare the targeting outcomes of the ML-based maps, we construct a set of
poverty maps using data from a recent, nationally representative household
survey. Specifically, we obtain the microdata from Nigeria’s 2018 DHS (42). The
DHS is a standardized household survey funded by the US Agency for Interna-
tional Development; the 2018 Nigerian DHS conducted surveys with 40,427
households in 1,360 unique locations across the country. The survey instrument
contains detailed questions about the socioeconomic conditions of each house-
hold, including a wealth index, which provides a scalar measure of the wealth of
that household relative to all other surveyed households.‡ We also observe the
approximate location of each DHS household, where the DHS groups households
into clusters (roughly equivalent to villages in rural areas and neighborhoods in
urban areas) and provides the geocoordinates of the centroid of the cluster of
households after adding up to 5 km of jitter to preserve the privacy of individual
households.

To construct poverty maps from the household survey data (as shown in
Fig. 2A, Left), we calculate the average wealth index of all surveyed households
located in the relevant administrative unit. For this process, we obtained shape
files and urban/rural classifications for each administrative unit from the World
Bank. Both the NLSS and the DHS were designed to provide estimates of popula-
tion characteristics that are representative at the state level, and each household
has an associated survey sampling weight. Thus, for the state-level poverty maps,
we use this sampling weight to calculate the weighted average wealth index of
all households in the state. When constructing LGA and ward wealth estimates,
we take the simple average of all households in the relevant administrative unit
since the household survey weights were not intended to provide LGA- or ward-
representative inferences.
Ground truth evaluation data from the NLSS. To evaluate the performance of
targeting using the ML-based poverty maps and the survey-based poverty maps,
we obtain a separate independent source of “ground truth” data on living stan-
dards in Nigeria. This is the 2019 NLSS, an ambitious household survey financed
by the World Bank and implemented by Nigeria’s National Bureau of Statistics
(43). The survey was conducted with 22,110 households, of which 22,104 had
precise geo-coordinates. For each household in this dataset, we observe the exact
geocoordinates as well as a rich set of questions about socioeconomic conditions.
We use the responses to these questions to construct a DHS-style wealth index for
each NLSS household.§ The NLSS was never used to train the ML-based poverty
maps and did not influence the collection of the DHS data; it thus provides
an objective and out-of-sample means for validating the alternative approaches
to geographic targeting. SI Appendix has a detailed description of the survey
methodology and data availability.
Data limitations. In important ways, our analysis is constrained by the incom-
pleteness of ground truth data, a point discussed in detail in Issues of Incomplete
Survey Coverage. To summarize, while the scope and scale of the NLSS were quite
extensive relative to survey efforts in many LMICs, it still did not collect data in
8.8% of LGAs and 77.1% of wards. Since the NLSS was carefully designed to be
nationally representative, our main analysis assumes that evaluation performed
on the NLSS sample will generalize to the rest of the country. We cannot test
this assumption directly since we do not have evaluation data beyond what is
available in the NLSS. However, our analysis in Table 1 and SI Appendix, Table S1
tests this indirectly by assessing the accuracy of ML-based maps in regions with
and without DHS data. Since the DHS was also designed to be nationally repre-
sentative, this analysis may shed light on the limits of evaluating performance on
incomplete but nationally representative survey data. In Table 1, we observe that
the performance of the ML-based maps does not depend critically on the avail-
ability of DHS data. However, in SI Appendix, Table S1, we do observe a decrease

‡The wealth index is constructed as the first principal component of a vector of assets and
household characteristics: air conditioner, animal-drawn cart, bank account, bed, bicycle,
boat with a motor, canoe, car or truck, chair, computer, cupboard, electric iron, electricity,
fan, generator, landline, motorbike, main floor material, main roof material, main wall
material, mobile telephone, motorcycle or scooter, number of members per sleeping
room, owns a house, owns land, radio, refrigerator, sofa, source of drinking water, table,
television, type of toilet facility, type of cooking fuel, and watch.
§The NLSS is more detailed than the DHS and contains a superset of the DHS asset
questions. We, therefore, use the principal component analysis weights from the DHS
wealth index to calculate the wealth index of each NLSS household (rather than calculating
a new set of eigenvectors from the NLSS data).

in performance in very remote regions (SI Appendix, Accuracy of Targeting Data
in Remote Regions has details).

A second limitation of the NLSS is that it was designed to be representative
at the state level, meaning that households sampled at the smaller LGA and
ward levels are not guaranteed to be representative of their administrative units.
We test the importance of this limitation in Table 1 by assessing performance
in regions with more and fewer surveyed households, as we expect the sparser
regions to have the highest variance (Table 1). As expected, the accuracy of both
the ML-based and the survey-based maps is higher in regions with more surveyed
households. However, we do not see evidence suggesting that our estimate of
the relative performance of ML-based and survey-based maps is meaningfully
changed by this source of measurement error in the NLSS data.

Targeting Simulations. We simulate the geographic targeting of antipoverty
programs in Nigeria using two different approaches—one based on the ML-based
poverty maps (derived from satellite imagery) and the other based on the survey-
based benchmark (derived from the 2018 DHS). The performance of these two
approaches is evaluated using ground truth data derived from the 2018 to 2019
NLSS, which is considered the most comprehensive and up-to-date survey in
Nigeria.

Specifically, we assess targeting performance based on the proportion of
transfers that would reach poor and extreme poor households under different ap-
proaches to geographic targeting. Using the Nigeria-specific World Bank poverty
line of 377 Nigerian Naira per person per day ($1.05 in 2018), we estimate from
the NLSS data that 40.5% of the population is poor (consumption below the
poverty line) and that 8.2% of the population is extremely poor (consumption
below half the poverty line). Since neither the DHS nor the ML model provide
direct income or consumption data, our simulations of DHS and ML-based tar-
geting focus on the 40.5% and 8.2% of households with the lowest wealth. Thus,
households with wealth indices in the bottom 8.2% are classified as extreme poor,
and those in the bottom 40.5% are classified as poor (i.e., poor is inclusive of
extreme poor).

Based on these thresholds, we can classify each household in the NLSS
evaluation data as extreme poor, poor, and nonpoor; we can likewise calculate
the fraction of households in each administrative unit that falls into each category
of poverty. When calculating state-level poverty rates, we use the survey sample
weights; no weights are used to calculate poverty rates at the LGA and ward levels.

We then simulate geographic targeting policies at the state, LGA, and ward
levels, where the targeting is determined using estimates from the ML-based
poverty map (“ML-based method”), the DHS-based poverty map data (the “bench-
mark method”), and the NLSS-based poverty map (the “oracle method”). Under
each approach, we assume that 100% of the households within a given adminis-
trative unit will receive the same benefit, which is how the Nigerian government
originally envisioned this program would be implemented. Note that this implies
that even the oracle method, where geographic targeting is determined by the
same dataset used to evaluate targeting, will not be perfectly accurate. This is
because there exist nonpoor households in even the poorest wards of Nigeria,
so providing benefits to everyone in the poorest wards will result in errors of
inclusion. Likewise, errors of exclusion will occur whenever poor individuals live
in wealthy regions—even if the targeting data can perfectly separate wealthy from
poor regions.

While ward-level targeting theoretically has a higher upper bound on perfor-
mance, estimates at the LGA and state levels can draw on more data and thus,
may be more accurate. It is useful to analyze targeting performance for these
administrative units as well to quantify the trade-off between greater targeting
precision (at the ward level) and potentially more accurate wealth estimates
(at the LGA/state level).
Alternative targeting criteria. In addition to the poverty maps used in our
main specification, which estimate mean poverty of each administrative unit,
we create two additional ward-level poverty maps from each data source as a
robustness check. The first estimates median poverty. Because the NLSS and DHS
sample weights are not representative at the ward level, we use the poverty
level of the unweighted median household in each ward. Median wealth is
calculated from the ML-based map using the median of the wealth estimates of
each 2.4-km satellite tile, weighted by the estimated population in that tile. The
second additional map estimates poverty rate and extreme poverty rate of each
ward. To estimate these poverty rates, NLSS and DHS households are classified
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as (extreme) poor based on the percentile of their wealth index (Targeting Simu-
lations). The unweighted fraction of households in each ward that are (extreme)
poor is used as the targeting criteria for the NLSS and the DHS. For the ML-
based map, each 2.4-km satellite tile is classified as (extreme) poor based on the
percentile of its estimated wealth index, the fraction of people in each ward who
are (extreme) poor is then calculated as the fraction of people who live in satellite
tiles that are classified as (extreme) poor. Since separate maps are created for the
poor and extreme poor, the order in which wards are targeted depends on which
map is being used for targeting.

Issues of Incomplete Survey Coverage. One limitation of the surveys—both
the DHS data used to construct benchmark estimates of poverty and the NLSS data
used to evaluate targeting performance—is that the data are sparse. As we discuss
in greater detail below, only 13.8% of Nigerian wards have one or more surveyed
DHS households, and only 22.9% of wards have one or more households in the
NLSS.
Incomplete evaluation data. While great care was taken in the design of
the NLSS to ensure that the survey population was representative of the full
population of Nigeria (and also representative of each state), we are unable to
evaluate the performance of the ML-based and survey-based poverty maps in
the 8.8% of LGAs and 77.1% of wards where no ground truth NLSS data exist. To
ensure that results are comparable for all targeting approaches, we further limit
our results on targeting accuracy to the 77% of LGAs and 5% of wards where both
the NLSS and the DHS include at least one household. When evaluating targeting
for LGAs and wards, we also report results when performance is measured only
on the subset of wards where the NLSS contains at least 20 households and the
subset of LGAs where the NLSS contains at least 30 households. This effectively
removes the wards and LGAs where our ground truth estimates of poverty have
the highest variance.
Incomplete benchmark data. The fact that the DHS data are only collected in a
small fraction of all geographic units of the country means that those data cannot
be used in isolation to determine a ward- or LGA-level geographic targeting policy.
Instead, either the policy would need to be designed at the state level (where DHS
coverage is complete), or some form of imputation would be required to make
decisions about LGAs and wards where data do not exist.

In the targeting simulations, we simulate the performance of geographic
targeting with DHS data using three different methods. The first, “DHS upper
bound,” considers only those administrative units where both the DHS and the
NLSS were conducted (5.3% of all wards and 76.9% of all LGAs). This approach
requires no imputation and provides an indication of the performance to be
expected if it was possible to collect DHS data in 100% of wards. The resources
required for such a data collection effort make this approach impractical, but it
represents an upper bound on the performance of targeting with DHS data.

The second method, “DHS based (minimum imputation),” considers all 706
LGAs and 2,016 wards covered by the NLSS—even though many of those units
do not have any households covered by the DHS. Specifically, in the 597 LGAs
and 464 wards where DHS data are available, DHS estimates are used directly.
In the remaining 109 LGAs and 1,552 wards, wealth estimates are imputed as
the average (population-weighted) wealth of the larger spatial unit in which the
smaller unit falls (i.e., we use the average LGA wealth for wards with no DHS and
the average state wealth for LGAs with no surveys).

The third method, “DHS based (representative imputation),” simulates what
we believe is the most realistic scenario by imputing data for a fraction of wards
and LGAs to match the true missingness in the national data. To ensure compara-
bility with the DHS upper-bound method, our primary results use the matched
sample of 597 LGAs and 464 wards where both the DHS and the NLSS are
available. Using the minimum imputation method, we also show results for the
larger sample of regions where NLSS data are available in SI Appendix, Fig. S8.

Specifically, we impute the wealth WL(i) of LGA i for a randomly selected
subset of LGAs as

ŴL(i) =
(

1
Ai,L

)∑
h∈H

(ahwh)1{S(h) = S(i), L(h) �= i} [2]

Ai,L =
∑
h∈H

ah1{S(h) = S(i), L(h) �= i}.

Here, H is the set of all surveyed households, and h is a household in state S(h)
and LGA L(h), with survey weight ah and wealth index wh. Intuitively, this gives

the survey-weighted mean wealth of households in the same state as a given LGA
but not within the LGA itself. We similarly impute the wealth ŴW(i) of ward i for
a randomly selected subset of wards as

ŴW(i) =

⎧⎨
⎩
(

1
Ai,W

) ∑
h∈H

wh1{L(h) = L(i), W(h) �= i} ∃h ∈ Hi,W

ŴL(L(i)) � ∃h ∈ Hi,W,
[3]

where Ai,W is defined analogously to Eq. 2 and Hi,W is the set of all households
in the same LGA as ward i but not in ward i. W(h) gives the ward in which survey
household h is located. Thus, if at least one household exists in the survey data
that is in the same LGA as a given ward, the ward is imputed as the simple average
of all households in the LGA. Otherwise, the ward’s wealth is imputed as the
survey-weighted average of all households in the same state as the ward but not
the ward itself.

Our goal with this third method is to make the imputation representative of
the true missingness in the DHS. Thus, we randomly replace 18.5% of LGAs and
86.2% of wards with imputed values since 18.5% of LGAs and 86.2% of wards
do not have the DHS (and would thus require imputed estimates in practice). We
repeat this randomization process 1,000 times and report results for the iteration
with the median performance, as determined by the area under the ROC curve.

Estimating Demographic Parity. We estimate the “fairness” of targeting
based on statistical parity (16), which defines a fair allocation as one in which
the fraction of households in a specific group receiving transfers is equal to
the fraction of households in that group that are truly poor. We acknowledge
that other notions of fairness exist and may conflict with this focus on statistical
parity (45).

Our analysis assesses statistical parity for four demographic characteristics
that are recorded in the NLSS: gender, age, religion, and language (a proxy for
ethnicity, which is not recorded). We observe these characteristics just for the head
of household, so our evaluation focuses on the extent to which households with
a household head of a certain type are under- or overtargeted.

The fractions of households in each ward in each demographic category
are estimated using NLSS data. NLSS data are also used to estimate the total
fraction of poor households that belong to each demographic group. This
reference statistic is calculated for the subset of wards in which targeting
simulations occur (i.e., those with coverage in both the NLSS and the DHS);
thus, it may not accurately reflect the country-level demographics of poor
households.

For each of the three targeting approaches – optimal (the NLSS), survey
benchmark (the DHS with representative imputation) and ML-based – we cal-
culate the fraction of targeted households that belong to each demographic
group. These fractions are evaluated using ward-level demographic information
from the NLSS, and vary based on the number of targeted households. We also
calculate a snapshot of parity for a program targeting 10% of the population. For
demographic group d, we calculate the extent of over- or undertargeting using

Fraction of targeted in d − Fraction of poor in d
Fraction of poor in d

· 100. [4]

We generate CIs by bootstrap sampling Eq. 4 1,000 times.

Data Availability. The ML-based estimates of wealth were contsructed by Chi
et al. (9) and are available from the Humanitarian Data Exchange (https://data.
humdata.org/dataset/relative-wealth-index). Population estimates are publicly
available from the High Resolution Settlement Layer (41). DHS data survey data
are available upon registration at https://www.dhsprogram.com/ (42). NLSS sur-
vey data must be requested from the Nigerian National Bureau of Statistics (43).
The code used for these analyses, along with direct links to required data sources,
is available at https://github.com/issmythe/nigeria poverty mapping (46).
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