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Role of Working Memory on Strategy Use in the Probability Learning Task 

Mahi Luthra (mkluthra@iu.edu), Peter M. Todd (pmtodd@indiana.edu) 
Psychological and Brain Sciences Department and Cognitive Science Program, Indiana University 

1101 E. 10th Street, Bloomington, IN 47408 USA 
 

 
Abstract 

Extensive research on probability learning has reported on the 
ubiquity of the probability matching strategy—choosing 
options in proportion to their probability of being correct. The 
current paper explores why the optimal strategy in this task 
(always choosing the higher probability option) is not 
intuitive for participants, by examining their decisions in 
relation to their working memory capacities. We hypothesize 
that probability matching is a by-product of an automatic 
recency-based strategy produced by limits in working 
memory storage and that deliberate strategizing mediated by 
working memory processing can override recency in favor of 
optimal responding. A variant of the Expectancy-Valence 
Learning Model is fit to participant data from a two-choice 
probability learning task using hierarchical Bayesian 
modelling. Point estimates of the best-fitting parameter values 
are then correlated with working memory measures. Results 
indicate close relations between them, providing support for 
our hypothesis. 

Keywords: working memory; probability learning; recency 

Introduction 
Decisions in life often condense into simple binary 
choices—to react or not to react, to speak or not to speak, to 
do or not to do. An important factor influencing such 
decision making is the outcomes of previous similar 
decisions. However, our abilities to integrate the histories of 
outcomes is strongly constrained by the attentional and 
processing limits of our working memory (WM), thus 
compromising the quality of our decision making. Indeed, 
several researchers have focused on differences in decision 
making between situations when information is gathered 
over sequential experience (where the narrow window of 
WM is likely to have an impact) and when it is obtained 
from simultaneous description (which is relatively 
uninfluenced by WM capacity; Hertwig, Barron, Weber, & 
Erev, 2004). The former is more typical of real-life, 
emphasizing the importance of examining the role of WM 
limits. In the current paper, we investigate how limits in 
storage and processing mechanisms of WM influence 
behavior on binary choices through the probability learning 
task. 

Probability Learning Task 
The probability learning task is a simple experimental 
paradigm involving multiple trials of choosing between two 
mutually exclusive and exhaustive outcomes (Vulkan, 
2000). For instance, in each trial, participants may be asked 
to predict which of two presented light bulbs will turn on 
(Humphreys, 1939). Typically, the two options have pre-
determined and unequal probabilities of occurring—e.g., 

Bulb A will turn on with 0.7 probability, and Bulb B with 
0.3 probability. Each trial is independent; hence the optimal 
strategy is to choose the higher probability side (once it has 
been identified) 100% of the time. This is known as 
probability maximizing—in our example such a strategy 
would lead to 70% accuracy. 

However, participants rarely perform this relatively 
simple strategy of exploring for the high payoff option and 
then exploiting via probability maximizing. Rather, a 
typically observed behavior is probability matching—
choosing options in proportion to their probability of 
occurrence. Participants therefore tend to choose Bulb A 
70% of the time and Bulb B 30%, leading to a lower 
accuracy level of 58% (.7×.7 + .3×.3). This behavior 
typically persists even after enough samples have been 
drawn to identify the higher probability option with at least 
some level of certainty (Arrow, 1958).  Probability 
matching has been given wide attention as a supposed lapse 
of judgement for which several explanations have been 
proposed, without much consensus regarding the underlying 
mechanism (Feher da Silva, Victorino, Caticha, & Baldo, 
2017). 

Working Memory and Probability Matching 
One of the primary explanations of probability matching is 
the recency effect. Human short-term retention abilities are 
limited, creating a narrow window of recent experience 
which makes information highly susceptible to time-based 
decay (Kareev, 1995). In the current task, this constraint 
encourages decisions to be based on smaller samples of 
information (most likely the very recent samples), which, 
given the law of large numbers, is likely to produce 
probability matching behavior (Plonsky, Teodorescu, & 
Erev, 2015; Rakow & Newell, 2010). For example, if 
participants retain only one previous trial in their short-term 
window and make utility calculations and decisions based 
on this previous trial, they would exhibit perfect matching. 
Several studies have fit such one-outcome-based win-stay-
lose-shift strategies to decision making with surprising 
success despite their relative simplicity (Nowak & Sigmund, 
1993). More sophisticated reinforcement learning models 
(such as the EVL and PVL models; Busemeyer & Stout, 
2002; Erev & Roth, 1998) also incorporate a recency 
weighting which discounts the influence of older outcomes. 
Such findings suggest that probability matching behavior 
could be a result of overweighting recent outcomes, 
produced by their higher activation in the attentional 
window. 

It must be noted that most studies find that probability 
matching does not persist—when enough trials are 
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presented, participants are often able to switch to the 
optimal strategy of maximizing. For instance, Restle (1961) 
found that probability matching disappeared after 1000 
trials. Other studies have emphasized that switching to the 
optimal strategy is more likely if participants are provided 
with higher monetary payoffs, regular feedback, and more 
intense practice (Shanks, Tunney, & Mccarthy, 2002). An 
interpretation of this is that probability matching (produced 
e.g. by short-term recency) is a default response, which can 
be overridden in favor of maximizing through conscious 
deliberation. This dual process hypothesis is supported by 
correlations between SAT scores and maximizing on a 
descriptive version of this task (West & Stanovich, 2003). 

These features of probability learning behavior—recency-
based responding and deliberate strategy shift to 
maximizing—are likely to be mediated by WM capacity. 
Several models of WM consist of two core functions, 
storage and processing (frequently known as the span and 
control of attention respectively; Cowan, 2008). Here, we 
refer to storage as the ability to temporarily hold 
information in an active attentional state, protected from 
time-based decay and other interference. Decay in storage 
capacity is likely to produce recency-based performance in 
the probability learning task, as it constrains the number of 
previously observed outcomes that are in a readily 
accessible state when making a new decision (Ricker, 
Vergauwe, & Cowan, 2016). The processing component of 
WM directs attentional use, focusing it on goal-relevant 
information. An important function of WM processing is the 
inhibition of automatic but incorrect responding, as 
suggested by correlations with performance on the 
antisaccade and Stroop tasks (Kane & Engle, 2003; 
Unsworth, Schrock, & Engle, 2004). In our task, this 
component is perhaps responsible for resisting convenient 
recency-based responding and deducing the optimal strategy 
by steering and focusing attention toward task-relevant 
information (which could include independence of trials and 
the existence of a higher probability option).  

Based on this previous research, in our study, we 
hypothesize the following to be correlated: (1) recency-
based responding and WM storage capacity, and (2) strategy 
shift to maximizing and WM processing abilities. 

Previous Studies and the Current Experiment  
Several experiments have previously linked WM with 
performance on probability learning or other similar tasks 
(Gaissmaier, Schooler, & Rieskamp, 2006; Kareev, 1995; 
Rakow & Newell, 2010). These studies have reported mixed 
results—some have found positive correlations between 
WM capacity and maximizing, while others have reported 
the opposite. Through this paper, we attempt to resolve this 
debate. Further, unlike previous studies, our primary 
motivation is to model the interaction of the two WM 
components in producing recency-based responding and 
suppressing it in favor of the optimal strategy. 

For our task, we used the light bulb setting described 
earlier. Participants chose between two bulbs and received 

feedback (i.e., which bulb lit up) after each trial. To model 
probability learning behavior, we used the Strategy-Shift 
Expectancy-Valence Learning (SS-EVL) model–a variant of 
the original EVL model (Busemeyer & Stout, 2002). 
Recency and strategy shift parameters extracted from this 
model were correlated with WM scores. Since such 
statistical analysis is likely to be noisy, our study has a 
larger sample size than that of previous experiments. 

Methods 
Participants 
One hundred and thirty-one undergraduate students of 
Indiana University served as participants and were 
compensated with course credit. Of these, data of eight 
participants was excluded due to failure to perform at least 
one of the tasks. 

Tasks and Procedure 
The experiment consisted of five computer-based tasks (four 
WM and one probability learning). Each session lasted 
around 60 minutes and began with administration of the 
WM tasks.  

Memory tasks. Participants performed four WM tasks in 
the following order: symmetry span, digit span, visual array, 
and operation span.  

WM storage was measured with the digit span and visual 
array tasks. The digit span is a simple number recall task 
classically used as a measure of short-term memory (method 
similar to Quinn, Tuci, Harvey, Di Paolo, & Wood, 2005). 
The visual array task requires detecting rapid color changes 
in an array of 4, 6, 8, or 10 colored squares (method similar 
to Cowan, Fristoe, Elliott, Brunner, & Saults, 2006). Here, 
task performance depends on temporary storage of colors, 
and has been frequently used as a measure of storage 
(Cowan et al., 2006; Shipstead, Redick, Hicks, & Engle, 
2012). 

The symmetry span and operation span tasks require 
simultaneous usage of memory and processing and were 
used as measures of WM processing (methods similar to 
Oswald, Mcabee, Redick, & Hambrick, 2014). The memory 
component of these tasks involves the retention of presented 
items (spatial positions of colored squares for symmetry 
span and letters for operation span). Memory items are 
interpolated with processing components (symmetry or 
arithmetic accuracy judgements respectively) that interfere 
with rehearsal of memory items. 

These specific working-memory tasks were selected 
because they not only represent the functional components 
of working memory (i.e., storage and processing), but also 
use different content modalities—symmetry span and visual 
array are visuo-spatial tasks, while digit span and operation 
span are verbal-numeric tasks. 

Probability learning task. Participants performed three 
probability learning games, each involving 100 trials. 
During each game, participants were presented with an 
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image of a ‘bulb-box’, a device containing two lightbulbs 
(Bulb A and Bulb B). Participants were informed that on 
each trial one of the two bulbs would turn on and it was 
their task to guess the correct bulb. For every correct guess, 
participants gained one point and for every incorrect guess, 
they lost one point. Number of points won by participants 
was revealed at the end of each game. To motivate 
participants to aim for higher points and achieve optimal 
decisions, participants were rewarded with between 0 to 3 
nutrition bars based on performance. The probability with 
which the two bulbs lit up remained constant within each 
game but varied from game to game. Three probability 
contingencies were used—0.60, 0.70, and 0.80—the order 
of which was determined randomly. Bulb A or Bulb B was 
set as the more frequent bulb in each game with equal 
probability. Participants were informed that each ‘bulb-box’ 
game had a different underlying ‘program’ controlling it to 
minimize tendencies of using previous games as priors for 
future ones. To further combat this, the color of the 
lightbulbs was changed from game to game. 

Results 
Probability matching (selecting the bulbs in proportion to 
how often they light up) was observed in the aggregated 
data of participants, decreasing with successive games 
(Figure 1). 

 
Figure 1: Proportion of maximizing choices averaged across 

trials (data for all game and probability contingencies) 

Further, we found that participants were more likely to 
choose the maximizing option as the number of trials played 
increased within each game (Figure 2). 

 
Figure 2: Averaged proportion of maximizing responses 

across trials 
 

We then calculated correlations between WM scores and 
frequency of maximizing responding. Maximizing 
responding was calculated as the proportion of times the 
maximizing option was selected in a game. Significant 
correlations were obtained for scores on visual array (r(123) 
= 0.2, p=.03) and spatial span tasks (r(123) = 0.19, p=.04), 
while correlations with digit span (r(123) = 0.09, p=.36) and 
operation span (r(123) = 0.19, p=.07) were weaker. Stronger 
correlation with the visuo-spatial WM tasks (as opposed to 
the verbal ones) could arise if participants were retaining 
previous outcomes as visuo-spatial information (e.g. left 
bulb, right bulb, right bulb…).  

These positive correlations between WM and optimal 
responding are in line with our hypotheses. They are 
consistent with results from some previous studies on WM 
and probability learning (Rakow & Newell, 2010; West & 
Stanovich, 2003); but contradict others which have found 
negative correlations (Gaissmaier et al., 2006; Kareev, 
1995). 

Modelling 
Correlation measures provide us a small peak into the 
relationship between WM capacity and probability 
matching. However, they do not reveal the relation between 
WM capacity and the use of recency or strategy shift to 
maximizing. We therefore modelled the data using a 
modified EVL model and correlated parameters with WM 
scores. We also employed a Baseline Bernoulli model for 
comparison.  

Model Descriptions 
Strategy-Shift Expected-Valence Learning Model (SS-
EVL). Variants of the EVL model have been previously 
used to model probability learning (Feher da Silva et al., 
2017; Schulze, van Ravenzwaaij, & Newell, 2015) and other 
reinforcement learning tasks (such as the Iowa and Soochow 
Gambling Tasks; Ahn, Busemeyer, Wagenmakers, & Stout, 
2008). Its parameters typically include consistency 𝑐𝑐 and 
recency A. In our version of the model, we accommodate a 
strategy shift toward maximizing through a third 
parameter—timepoint of shift T. 

The model assumes that on every trial, participants assign 
a utility value to the two lightbulbs—1 if it is correct on that 
trial, and 0 otherwise. Therefore, in a trial, utility u(t) gained 
from bulb j based on outcome x is defined by:  

𝑢𝑢𝑗𝑗  (𝑡𝑡) =  �1  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) = 𝑗𝑗,
0  𝑖𝑖𝑖𝑖 𝑥𝑥(𝑡𝑡) ≠ 𝑗𝑗  

This utility is then incorporated into the running expected 
utility Ej of the two options using a weighted utility 
updating rule (Rescorla & Wagner, 1972) which discounts 
older outcomes with a recency parameter A. Larger the 
value of A, greater is the influence of older outcomes: 

𝐸𝐸𝑗𝑗(𝑡𝑡) =  𝐴𝐴 ∙  𝐸𝐸𝑗𝑗(𝑡𝑡 − 1)  + (1 − 𝐴𝐴)  ∙  𝑢𝑢(𝑡𝑡) 
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Figure 3: Structure and priors of the hierarchical Bayesian model 

 
Figure 4: Model fitting of individual participants 

 

The expected utility calculations are then used to make a 
choice decision D based on Luce’s choice rule (Luce, 1959) 
incorporating exploration 𝜃𝜃: 

Pr [𝐷𝐷(𝑡𝑡 + 1) = 𝑗𝑗] = 𝑒𝑒𝜃𝜃(𝑡𝑡) .∙ 𝐸𝐸𝑗𝑗(𝑡𝑡)

� 𝑒𝑒𝜃𝜃(𝑡𝑡) ∙  𝐸𝐸𝑘𝑘𝑡𝑡)
2

𝑘𝑘=1

  ;    𝜃𝜃(𝑡𝑡) = ( 𝑡𝑡
10

) 𝑐𝑐 

𝜃𝜃(𝑡𝑡) represents the extent to which participants make 
choice decisions based on calculated utilities. If 𝜃𝜃(𝑡𝑡) = 0, 
decisions are random and as 𝜃𝜃(𝑡𝑡) increases, decisions are 
highly sensitive to utilities. The value of 𝜃𝜃 is dependent on 
the free consistency parameter c, which is constrained 
between 0 and 1. Though we do not use this parameter for 
future WM analysis, it is essential to incorporate it in the 
model—it provides for a cleaner estimate of recency by 
accounting for the influence of exploration in participant 
data. 

Finally, we assume that at some trial T, participants 
identify and shift to the maximizing strategy. Therefore, 
from this trial onward, the expected utilities of the 
maximizing and non-maximizing options are set to 1 and 0 
respectively. Hence, the running utility Ej is revised such 
that: 

𝒇𝒇𝒇𝒇𝒇𝒇 𝒕𝒕 > 𝑻𝑻 ∶        𝐸𝐸𝑗𝑗(𝑡𝑡) =  �  1   𝑖𝑖𝑖𝑖 𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,
0 𝑖𝑖𝑖𝑖 𝑗𝑗 ≠ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

Baseline Model. A simple Bernoulli baseline model was 
also fit to data. The Baseline model has only one 
parameter—probability that participants choose the 
maximizing option, 𝑝𝑝(𝑗𝑗 = 1). Therefore, the model predicts 
unequal probabilities of choosing between the two bulbs, 
which are independent of outcomes observed by participants 
and constant across trials.  

In our task, participants could be using varied strategies 
(e.g., looking for patterns in outcomes or random guessing). 
This model serves to filter out such participants who are 
better modelled by a random Bernoulli process than by a 
recency model which assumes positive dependency on 
observed outcomes. Thus, this model is not intended to be a 
process model of the underlying mechanism, but rather a 
useful cache for unaccounted strategies. If a larger number 
of participants are better fit by this model than the SS-EVL, 

it suggests that our proposed mechanism of probability 
matching is not dominant in the population. 

Model Fitting 
We used Bayesian hierarchical modelling for parameter 
fitting and model comparison (see Figure 3 for details about 
prior and multilevel structure). We combined the two 
models into a single hyper-model and employed a 
categorical distribution to determine the strategy used by 
each participant— on each MCMC timestep, for each trial, 
it sampled from one or the other model based on its 
probability of being the true process underlying that 
participant’s data. In a similar way, we also estimated the 
population level posterior probability for each model. The 
analysis was implemented on JAGS via R. We drew 
200,000 samples via three MCMC chains. Inspection of 
diagnostic plots indicated convergence for most parameters. 

Here we only fit data from the first probability learning 
game of each participant because of considerable order and 
practice effects in future games. 
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Model Comparisons 
Overall, the SS-EVL model outperformed the Baseline, 

with a posterior probability P(model=SS-EVL|D) of 0.71. 
Further, 85 out of 123 participants were categorized as 
employing an SS-EVL strategy (for examples of individual 
fit, see Figure 4). SS-EVL also better captured the 
participants’ average pattern of performance across trials 
(Figure 5).  

 
Figure 5: Average participant data and model predictions 

across trials 

Correlations with WM scores 
To test our hypothesis that WM components correlated with 
strategy use, we analyzed those participants who were better 
fit by the SS-EVL model. Point estimates (modes) of two 
SS-EVL parameters were correlated with WM scores—
recency A and timepoint of strategy shift T (Table 1). As in 
the behavioral correlations reported above, visual array and 
symmetry span were more strongly correlated than other 
measures. Of the two measures of WM storage, only visual 
array showed indication of correlation with recency, 

providing partial support for hypothesis 1 that 
overweighting of recent outcomes is a by-product of WM 
storage limits. As predicted in hypothesis 2, measures of 
WM processing shared a significant negative correlation 
with timepoint shift—participants with higher WM 
processing abilities were likely to shift toward the 
maximizing strategies within fewer trials.  

Discussion 
Our study demonstrates the process by which WM 
components work together to produce typical probability 
learning behaviour. The picture that emerges suggests that 
the limits of the WM store intensify weighting of recent 
events, producing default responses that require greater WM 
processing to inhibit them in favor of the optimal strategy. 
In the real world, such a tendency toward recency makes 
sense as it allows us to adapt to our dynamic and temporally 
autocorrelated environment, where making decisions based 
on older information is often unsuccessful and recent events 
are a good indicator of the current state of the world 
(Plonsky et al., 2015). It appears that the two components of 
WM thus work together to produce appropriate everyday 
behavior—limits in the WM store allow for quick recency-
based responses to environmental stimuli while WM 
processing acts as a correctional mechanism, stepping in to 
replace the recency-based strategy if an optimal strategy is 
found. 

It would therefore be hasty to call probability matching a 
lapse in judgement (Vulkan, 2000)—participants do not fail 
to arrive at successful decisions in the probability learning 
task because of some cognitive failure. Rather, they do not 
always use the optimal strategy because the task itself is not 
representative of natural environments: unlike typical real-
world situations, here the event probabilities are stationary 
across trials, and the trials are independent of one another. 
Participants therefore must deploy deliberate processing to 
resist responding automatically based on assumed 
environmental structures where recency would be best. 
While binary decisions may be common to our everyday 
life, the probability structure underlying this task is not, 
making the optimal strategy unintuitive. Future work can 
examine participant performance using real-world 
probability structures—for instance having the probabilities 
of the bulbs shift or be autocorrelated across trials 
(Gaissmaier & Schooler, 2008). 

As mentioned earlier, previous studies have found mixed 

Table 1: Correlations between WM obtained parameter values 

 WM storage measures WM processing measures 

 Visual Array Digit Span Symmetry Span Operation Span 

Recency (A) 0.19+ 0.08 0.18+ 0.11 
Timepoint of shift (T) −0.16 −0.11 −0.24* −0.20+ 

+p<.1.   *p<.05.   **p<.01.   ***p<.001    N=85 
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results when relating WM to performance in similar tasks—
some have obtained positive correlations, providing support 
to our results (e.g., Rakow & Newell, 2010; West & 
Stanovich, 2003), while others have obtained the opposite 
(e.g., Gaissmaier et al., 2006; Kareev, 1995). While, the 
differing results could be due to difference in task 
structure—the studies reporting negative correlations use a 
correlation-detection task, which involves estimating two 
probabilities and not just one (for details of the task, refer to 
Kareev, 1995)—this is an unlikely explanation since our 
model would still predict positive correlations for such a 
task structure. Therefore, a more likely possibility is that 
participants employ different strategies (such as pattern 
matching, random responding etc.), producing different 
results. In the current paper, we only focused on recency-
based responding—the SS-EVL model fit participants for 
this specific strategy and our results suggested that it was 
the dominant strategy in our sample when compared to a 
Bernoulli baseline. We then correlated the obtained 
parameter estimates for participants best fit by this model 
with WM scores, therefore excluding any effect of other 
strategies. However, future work must model other possible 
strategies, determine their frequency in the sample and their 
relation to WM capacity.  

Further work must also be done to narrow in on the 
mechanisms underlying these decisions. While our model 
estimates the timepoint at which the strategy-shift toward 
maximizing occurs, it does not uncover the mechanism that 
produces this shift. Our correlational evidence argues that 
this mechanism is associated with the processing component 
of WM, but we do not know what operation within this 
component leads to optimal strategizing and why it reaches 
a threshold at a particular timepoint. Identifying the likely 
mechanisms at work in making decisions based on recent 
and older information will help us understand the role of 
limited WM storage and processing in these common choice 
settings. 
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