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SCALABLE HETEROGENEOUS CPU-GPU
COMPUTATIONS FOR UNSTRUCTURED

TETRAHEDRAL MESHES
.................................................................................................................................................................................................................

MULTICORE CPUS CAN BE COMBINED WITH GPUS TO PERFORM COMPUTATIONS OVER 3D

UNSTRUCTURED MESHES ON HETEROGENEOUS CPU-GPU CLUSTERS. THE AUTHORS

EXPLAIN HOW TO UNLOCK THE CPUS’ COMPUTING POWER WITHOUT SLOWING DOWN

OTHER TASKS RELATED TO DATA MOVEMENT. BY SOLVING THE REPRESENTATIVE

DIFFUSION EQUATION USING THE CELL-CENTERED FINITE VOLUME METHOD, THE AUTHORS

DEMONSTRATE THAT COMBINING THE COMPUTING CAPACITY OF CPUS AND GPUS

DELIVERS A PERFORMANCE ADVANTAGE OVER THE GPU-ONLY APPROACH.

......General-purpose GPUs as hard-
ware accelerators have entered the high-
performance computing landscape in the
past few years. In a GPU-enhanced cluster, a
computing node typically has significantly
higher performance than a node of a homo-
geneous CPU-based cluster, thus resulting in
a denser packing of the heterogeneous clus-
ters. This allows significant cost and power
savings due to smaller interconnects.

Owing to the large difference in theoreti-
cal floating-point capability between GPUs
and CPUs, in computing-bound applications
there is little incentive to include CPUs for
sharing the computational work on a GPU-
enhanced cluster, because this invariably
makes the implementation more complex.
However, for computations whose perform-
ance is limited by data traffic, rather than
floating-point operations, CPUs’ computing
capability should not be overlooked, because

the GPU-CPU difference in memory band-
width is considerably smaller. Four important
questions arise regarding heterogeneous GPU-
CPU computation:

� How much computational work should
be assigned to the CPUs?

� If there are different types of opera-
tions, which should be placed on the
GPU?

� How should the different tasks on the
CPU side be programmed?

� How much performance improvement
can we realistically expect from hetero-
geneous CPU-GPU computing?

Extending our earlier work on single
GPU-enhanced computing nodes,1 in this
article, we will shed some light on these ques-
tions for heterogeneous clusters. Of course, it
is impossible to answer these questions in
general. The answers depend on the specific
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computational problem to be solved and the
heterogeneous system’s hardware configura-
tion. By choosing a representative case of
solving the diffusion equation using the cell-
centered finite volume method over unstruc-
tured meshes, we aim to provide advice on
good programming practices, as well as some
important OpenMP and CUDA program-
ming details that carry over to many similar
problems.

Moreover, we will also discuss the impor-
tant issue of CPU-GPU workload partitioning,
and we will report performance measurements
on up to 128 GPU-enhanced computing nodes,
demonstrating the actual performance benefit
that heterogeneous CPU-GPU computing
offers. For structured meshes, heterogeneous
CPU-GPU computation has been studied in
several publications.2–5 However, the unstruc-
tured nature of our problem poses significant
additional challenges with respect to partition-
ing, communication, and load balancing.

Solving diffusion equations with
finite volumes

As a representative computational problem,
we use the following diffusion equation, which
describes a common natural phenomenon:

@uðx; tÞ
@t

¼ div K
!

xð Þgrad u
� �

; ð1Þ

where uðx; tÞ is typically some concentration
modeled as a function of space and time, and
K
!ðxÞ denotes a spatially varying tensor field
that, together with the concentration gradient,
determines the speed and direction in which
high concentration spreads toward low con-
centration. Because it is a basic building block
of many sophisticated mathematical models,
the diffusion equation (Equation 1) is an
important research topic for fast numerical
solvers and efficient software implementations.

In this article, we consider a finite-volume
approach for numerically solving Equation 1
in 3D, using an unstructured tetrahedral
mesh. Without going into the mathematical
details, suffice it to say that we can represent
the actual computation per time step using a
matrix-vector multiply:

ul ¼ Zul�1; ð2Þ

where the superscript l denotes the time level
and the u vector contains the numerical
approximations at the center of all tetrahedra.
Matrix Z is sparse and has, in addition to a
nonzero main diagonal, up to 16 nonzero val-
ues per row. These 16 off-diagonal nonzeros
correspond to each tetrahedron’s four immedi-
ate neighbors and 12 second-level neighbors.

Throughout this article, we assume that
the main diagonal of Z will be stored in a sep-
arate 1D array, D, whereas the off-diagonal
entries are stored in a padded, dense N � 16
array, A, with N being the total number of
tetrahedra in the mesh. In an unstructured
tetrahedral mesh, the column positions of
these off-diagonal entries do not follow any
easily predictable pattern. Thus, they must be
stored separately in I, an N � 16 array of
integer index values.

The following code segment gives a plain
implementation of Equation 2:

for (i¼0; i<N; iþþ) {

double value ¼ D[i]*u old[i];

for (j¼0; j<16; jþþ)
valueþ¼ A[i,j]*u old[I[i,j]];

u new[i]¼ value;
}

To calculate u new for each tetrahedron,
33 floating-point operations (17 multiplica-
tions and 16 additions) are needed in every
time step. At least 208 bytes per tetrahedron
must be read from memory (that is, 128
bytes for the 16 A[i,j] values, 64 bytes for
the 16 I[i,j] values, 8 bytes for D[i], and 8
bytes for u old[i]). In case cache data reuse
is not perfect, more data must be loaded,
depending on the access pattern of the off-
diagonal u old values. Moreover, 8 bytes
(due to u new[i]) are written to memory per
tetrahedron. Thus, computational intensity
is at most 33 flops per 216 bytes, and thus,
0.15. This is far lower than the ratio between
flops and memory bandwidth in Gbytes per
second of modern processors, which starts at
2 and can be higher than 5 for GPUs. There-
fore, the theoretical upper limit of the per-
formance for this computation on almost any
computing device is

P ¼ 33 flops�memory bandwidth

216 bytes
: ð3Þ
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Hierarchical mesh partitioning
Given a global tetrahedral mesh, the first

step in parallelization is a standard k-way par-
titioning, where k is the number of available
computing nodes. Then, for each node n, the
subdomain matrix Zn can be independently
computed corresponding to the tetrahedra
that the mesh partitioner has assigned to n.
Because of internode connections, the rows
of Zn that rely on values of tetrahedra
assigned to neighboring nodes constitute a
separator, whereas the remaining rows of Zn

constitute the interior part. Tetrahedra from
other nodes that have neighbors on node n
are replicated as ghost cells on n. During each
time step of the computation, using asyn-
chronous message passing interface (MPI)
communications, node n receives updated
values for these ghost cells from neighboring

nodes and sends updated values of its separa-
tor cells in return. The elements to be sent to
a specific node must be packed into a contig-
uous buffer during every round. The ghost
cells are organized such that their values can
be received in a contiguous fashion.

In order to use heterogeneous computing,
a second tier of partitioning is required to
split the CPU part from the accelerator part
on each node. Here, an asymmetric partition-
ing is needed, because the GPUs will gener-
ally receive a higher workload than the
CPUs. On each node, we generate one sub-
partition per GPU, plus one CPU subparti-
tion. In the case of multiple CPU sockets, the
CPUs can work on a shared subpartition
using OpenMP, although care must be taken
to obtain their full performance.6 Although
our test systems’ nodes have at most two
GPUs and CPUs, our code can deal with
almost any configuration as long as enough
CPU threads are available.

Thus, the global mesh is broken into k
parts, each of which is subdivided into the
MPI separator, a CPU-GPU separator, and a
CPU interior part, and for each GPU, a
GPU-CPU separator and a GPU interior
part (see Figure 1). All the resulting separa-
tors are packed together to allow contiguous
access for computation and communication.
There is no explicit GPU-GPU separator,
because this communication is performed by
transferring data via the CPU.

Although several techniques exist for
direct communication between accelerators
(for example, GPUdirect7), we did not use
them because they tend to be hardware spe-
cific and thus offer little portability.

Heterogeneous implementation
The CPU part of a computing node, which

can comprise several physical sockets working
on shared memory, handles all communica-
tion between the GPUs, as well as the MPI
communication with other nodes using a sin-
gle MPI process. This technique’s advantage is
that the entire complexity of running the het-
erogeneous computation is encapsulated in
the intranode code. Thus, existing internode
communication schemes can be reused when
transforming conventional codes into hetero-
geneous implementations. In our case, a

MPI separator 

CPU interior part 

GPU 0 separator 

GPU 0 interior part 

GPU 1 separator 

GPU 1 interior part 

CPU-GPU separator 

MPI separator 

Node interior part 

(a) (b)

Figure 1. Hierarchical partitioning. (a) Workload per computing node after

the initial symmetric partitioning. The cells have been permuted such that

the message passing interface (MPI) separator forms a contiguous block. (b)

Division of the workload after the intranode partitioning and appropriate

permutations.
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simple set of MPI Isend and MPI Irecv
instructions handle internode communication.
In addition to its simplicity, this approach has
the advantage of keeping the number of MPI
ranks—and thus, the total size of the separa-
tors—low, which ensures that communication
is unlikely to become a bottleneck.

Finally, to ensure good cache data reuse
for the off-diagonal u old values, we use the
partitioner for a third time to reorder the tet-
rahedra in the interior computation parts.
The goal is to create blocks of tetrahedra that
have as many neighbors as possible within
each block, and thus as few neighbors as pos-
sible outside the block. Doing so regularizes
accesses to u old[i], which has a dramatic
effect on performance.6,8 We obtained good
performance for a block size of 512 tetrahe-
dra on the CPU and 64 on the GPU. Note
that only the tetrahedra in the interior com-
putation part are reordered in this way. Reor-
dering the tetrahedra in the separators is not
worthwhile, because they invariably access
neighbors outside the current device—and
thus, outside their block.

Our GPU kernel processes elements of A
in a column-major ordering, as suggested in
V�azquez et al.9 This means that for every
thread block of size b, every b contiguous
rows are turned into a b� 16 submatrix and
transposed. This allows coalesced accesses to
values of A and I—that is, threads in a thread
block access the elements in a contiguous
manner, thus attaining full memory band-
width. We found that a thread block size b¼
128 yielded the best performance, because
smaller sizes limit the device occupancy. Tet-
rahedra beyond the last block of size b are
computed using a row-major kernel. Because
of their small number, they have a negligible
effect on performance.

Our heterogeneous code’s core is the
assignment of different tasks to different
hardware CPU threads. In our implementa-
tion, we do this by directly assigning a type
to a thread on the basis of its OpenMP thread
number. We use one control thread per accel-
erator. Each such control thread launches the
separator computation on its accelerator,
then copies the result asynchronously to the
CPU, and starts the computation of the inte-
rior part. Meanwhile, all the remaining
threads work on the MPI separator elements.

When this is done, a single thread diverges
and communicates the u new values belong-
ing to the MPI separator to the neighboring
nodes via MPI, while receiving correspond-
ing values in return. In our experiments,
using more than one MPI communication
thread did not pay off.

The remaining threads then compute the
CPU-GPU separator, and upon completion,
one copy thread per accelerator diverges to
start copying the result to its accelerator,
while the remaining threads compute the
interior CPU part, which means that they are
pure computational threads. Each copy
thread also transfers u new values belonging
to the separators from other accelerators to its
own accelerator once they have been trans-
ferred to the CPU memory. Because these
transfers are asynchronous, the copy thread
can then rejoin the computational threads
working on the interior CPU part. When all
these tasks have been executed, the threads
are gathered at a barrier. The array pointers
of u old and u new are then swapped on all
devices, and a new time step begins.

Note that we only use physical cores to
run the threads. Hyperthreading and similar
techniques could make the threads less
responsive, and can thereby reduce perform-
ance. Thus, for a given number of accelera-
tors, an equal number of control and copy
threads must be available in addition to the
computational threads. If too few computa-
tional threads remain, the CPU performance
will be low, which invalidates the entire
approach. As a rule of thumb, the total num-
ber of cores should be at least four times the
number of accelerators. Figure 2 shows an
overview of the threads for a typical test
node.

In addition to this, the GPU control
threads (threads 14 and 15 in Figure 2) and
the GPU communication threads (threads 1
and 2 in Figure 2) use multiple CUDA
streams to overlap communication and com-
putation on the GPU. Thanks to its two
copy engines, a modern GPU such as the
K20 can send its separator while simultane-
ously receiving the CPU-GPU separator
from its copy thread, as Figure 2 shows. An
example of streams that overlap communica-
tion with computation can be found in Fig-
ure 3. The figure is derived from the output

.............................................................

JULY/AUGUST 2015 9



of the nvprof GPU profiler. Some details
have been modified for visibility—for exam-
ple, the interior tetrahedra take far longer to
compute than all other operations combined,
but it has been shortened here. The interior
computation cannot be overlapped with the
separator computation because both use the
same computing resources, but it does over-
lap with communication. While the kernel
launches are relatively fast compared with the
kernel running time, initializing CPU-GPU
data transfer incurs a significant overhead in

the calling thread, even though the transfer
itself is fast. We also observe synchronization
gaps (that is, periods in which no computa-
tion occurs). These synchronization costs
represent a significant challenge for achieving
high performance.

Experimental setup
All experimental instances are derived

from a 3D mesh of a healthy male human car-
diac geometry acquired by MRI. We employ

Thread Compute GPU 1
separator

Send GPU 1
separator to host

Send GPU 0
separator to host

Compute GPU 1 main part
GPU 1
swap

GPU 0
swap

Idle

Compute GPU 0 main part

Compute
CPU-GPU
separatorCompute MPI

separator

Compute CPU main part

Send CPU-GPU
separator to GPU 1

Send GPU 0
separator to GPU 1

Send GPU 1
separator to GPU 0

Send CPU-GPU
separator to GPU 0

Send MPI separator to other
nodes

Receive MPI separator from other
node

Time during computational round

CPU
swap

Compute GPU 0
separator

15

14

13

...

3

2

1

0

Figure 2. OpenMP task assignment. Example of the task-parallel thread assignment using 16

cores and two GPUs. Threads 14 and 15 serve as control threads for the GPUs, and threads 1

and 2 are their copy thread. Threads 3 through 13 are computational threads and perform only

computation, and thread 0 is the MPI communication thread.

Thread

Stream 1

launch launch memcpy memcpy memcpy synch

interior

copyseparator copy back Copy GPU 1
separator

Time during computational round

Stream 2

Figure 3. CUDA streams. Using multiple streams to overlap communication and compu-

tation. Instructions issued in the CPU thread are assigned to different GPU streams to overlap

communication and computation on the GPU.
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tetgen to generate the initial global mesh.10

For our experiments, we set a target resolution
via a maximum volume constraint per tetrahe-
dron of 2:8� 10�6, thereby generating more
than 115 million tetrahedra. This test instance
is large enough for a moderate number of
computing nodes. However, we need at least
five GPUs to store the partitioned data in
device memory at this instance size. To obtain
measurements on smaller node counts, we cre-
ated a second instance of 6.8 million tetrahe-
dra, which can be run using a single GPU. We
run all experiments using fewer than 8 GPUs
using this smaller instance instead.

We then use the PaToH11,12 and Kaffpa13

partitioning software to generate the initial
k-way partitioning of the global mesh. Kaffpa
generally takes less time to partition than
PaToH and produces better quality (if we use
the high-quality setting). Because Kaffpa can
only generate symmetric partitions, we use
PaToH for the intranode partitioning and
then use Kaffpa again for the reordering.

Finally, to maintain generality, we do not
exploit the effects of fitting the entire CPU
workload in the L3 cache. Small CPU work-
loads can lead to high CPU performance
when all required data fits in cache.1 Thus, in
the case of an extremely small CPU workload,
it is worthwhile to expand it up to the maxi-
mum cacheable size, thereby speeding up the
overall computation. Although we do not use
this, this effect guarantees that, in the future,
the CPU can remain useful for memory-
bound computations even if many fast acceler-
ators are available. Another way to benefit
from large CPU caches might be to explicitly
load the MPI separators into cache to com-
pute them quickly at the start of each round.

We use two heterogeneous machines with
slightly different characteristics as test hard-
ware systems, which lead to different ratios
between CPU and GPU workload in these
systems. This is important for benchmarking
our heterogeneous code.

As our primary test system, we use the
GPU part of TACC’s Stampede. It is primar-
ily a Xeon Phi machine, but we use its GPU
partition for our experiments. Each of its 128
GPU nodes possesses a single Nvidia K20
GPU and two powerful Intel Xeon E5-2680
processors with eight cores each, which gives
it a strong CPU-to-GPU performance ratio.

As the secondary machine, we use the
University of Cambridge’s Wilkes system.
We use up to 64 nodes on Wilkes, and each
node has two CPUs and two Nvidia K20
GPUs, only one of which can be accessed at
full PCI Express (PCIe) bus speed from a
given CPU. Thus, each CPU has one pre-
ferred GPU, and the second GPU is accessed
through the other CPU on the node. The
CPUs are Intel Xeon E5-2630v2 (that is, Ivy
Bridge processors), which are similar to the
Sandy Bridge processors used in Stampede.
However, these CPUs have only six cores
each and lower attainable memory band-
width, which reduces the system’s CPU-to-
GPU performance ratio. On both machines,
we use the Intel icc compiler 13.1.0, Intel
MPI 4.1.3.049, and CUDA 6.0. We deacti-
vate hyperthreading in all instances, and use
one OpenMP thread per core. We set the
OpenMP thread affinity to “scatter.” We use
up to 64 nodes on Wilkes.

Experimental results
Using the test setting described earlier, we

tested the performance of the individual com-
puting devices to assess load balancing and
upper limits on performance. We then tested
scaling performance using only CPUs and
only GPUs. Our final experiment measured
the heterogeneous performance and compared
it to the GPU-only values, thereby evaluating
the success of our heterogeneous scheme.

Single-device computation performance test
A crucial ingredient of our heterogeneous

implementation is the static workload ratio,
which we obtain using performance predic-
tions that are based on the computing devi-
ces’ memory bandwidth. For any device, we
obtain its workload ratio by dividing its pre-
dicted performance P by the sum of the pre-
dictions for all devices. For convenience, we
denote the total GPU workload ratio as r,
which means the CPU workload ratio will be
1� r and each individual GPU will have a
workload of r divided by the number of
GPUs.

Now, given the peak memory bandwidth
provided by the vendors and the fact that the
maximum flop-to-byte ratio is 0.157, we
obtain Ppeak, that is, the predicted performance
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based on these values, and thus the appropriate
workload ratio rpeak. Table 1 shows the results.
We compare this to the actual measured per-
formance Preal and the resulting optimal work-
load ratio ropt. We can use Preal to obtain an
upper limit on the heterogeneous code’s per-
formance by multiplying the corresponding
Preal values with the number of computing
devices used.

The discrepancy between Ppeak and Preal is
significant, which implies that Ppeak is not a
good performance prediction. We improve it
by using Pstream, which is the performance
estimate based on bandwidth measured using
the Stream benchmark.14 Table 1 clearly
shows that Pstream is a much better prediction
for Preal, and rstream is closer to ropt.

Interestingly, the difference between the
workload ratios is small in most cases. How-
ever, overestimating CPU performance by
even a small amount has a comparatively
large impact on the overall performance
when the CPU contribution is small.1 For
example, on Wilkes, the fact that both Ppeak

and Pstream overestimate the CPU perform-
ance leads to CPU workloads that are 17 per-

cent higher than optimal (that is, from 0.17
to 0.2). This could in turn lead to roughly 17
percent higher execution time and thus 15
percent lower performance. Thus, we con-
clude that benchmarking the actual perform-
ance Preal to obtain ropt can pay off, and we
use it in this study, but it might not be worth-
while in practice. In general, we recommend
reducing the CPU workload a bit because
erring in the direction of high CPU work-
loads is much more costly than vice versa.

Homogeneous node scaling experiment
In the previous experiments, we obtained

a theoretical upper bound on performance.
Now we bound it from below by running the
full communication and computation on the
test systems, but we use only CPUs or GPUs,
thereby establishing the maximum perform-
ance attainable without using heterogeneous
computing. This is necessary to assess the
performance gain—and, thus, the potential
payoff in using heterogeneous CPU-GPU
computation. Figure 4 shows the attained
performance on both Stampede and Wilkes.

These results include MPI communica-
tion, and are thus significantly lower per
node than the Preal values from Table 1 would
indicate. Summing up the CPU and GPU
values gives us an estimate for the perform-
ance upper limit we can expect from hetero-
geneous computing. Interestingly, despite
having the same GPUs and using only one
GPU per node on both machines, we observe
noticeably lower GPU performance on
Wilkes.

Heterogeneous node scaling experiment
Figure 5 shows the results for our heteroge-

neous implementation and compares the
attained performance to using only GPUs,
and to an instance of the heterogeneous code
where all communication is disabled. On
Stampede, the difference between the hetero-
geneous and pure GPU results is quite pro-
nounced, which validates our technique’s
usefulness. Furthermore, the communication-
free performance is only slightly higher, which
indicates that communication is largely over-
lapped with computation. The speedup for
128 nodes is 98.7.

For Wilkes, we obtained the GPU-only
value by running the pure GPU code with

Table 1. Computational performance estimates (Ppeak and Pstream)

and measurements (Preal) of a single device in each of the test

systems (in gigaflops). The r values denote workload

partitioning ratios computed on that basis. Unlike the

GPU peak bandwidth, the GPU stream bandwidth is based on

activated error-correcting code.

Bandwidth (Gbytes per second) Stampede Wilkes

CPU peak bandwidth 102.4 102.4

CPU stream bandwidth 77.8 72.9

GPU peak bandwidth 208 2� 208

GPU stream bandwidth 151.1 2� 151.1

Performance (Gflops) Stampede Wilkes

CPU Ppeak 16.11 16.11

CPU Pstream 12.24 11.47

CPU Preal 11.46 8.78

GPU Ppeak 32.74 2� 32.74

GPU Pstream 23.78 2� 23.78

GPU Preal 21.46 2� 21.46

Workload divisions Stampede Wilkes

rpeak 0.67 0.80

rstream 0.66 0.80

ropt 0.65 0.83

..............................................................................................................................................................................................

HETEROGENEOUS COMPUTING

............................................................

12 IEEE MICRO



two MPI processes on each node. The process
placement is such that it matches each process
with its preferred GPU, thus optimizing com-
munication performance. The more complex
node layout, along with the fact that the
CPUs are weaker on this machine, reduces
the heterogeneous code’s performance lead.
The speedup is 27.7 for 32 nodes and 42.7

for 64 nodes. Also, for 64 nodes, the hetero-
geneous performance is actually lower than
the pure GPU result, while the communica-
tion-free performance is significantly higher.
This indicates that in this setup, intranode
communication is in fact a bottleneck.

We assume that this bottleneck is due to
limitations in strong scaling—that is,
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workloads per computing device become so
small that communication becomes an issue
in this case. In addition, the CPUs on Wilkes
essentially have nonuniform memory access
to the GPUs, which our assignment of con-
trol threads does not consider. Furthermore,
our one MPI thread communication model
is not ideally suited to fully use the two
InfiniBand adapter cards per node. This sug-
gests that for complex computing nodes, the
scheme must be adapted to obtain full com-
munication performance.

When considering parallel efficiency, which
we can derive by multiplying the single-device
performance results from Table 1 with the
number of devices involved, we find that the
value remains quite stable at about 80 percent.
However, the value starts to drop when at least
64 GPUs are involved. We assume that this is
the general limit for strong scaling at this
instance size, because the communication-free
results show similar behavior, which indicates
that on Stampede, the principal limitations to
strong scaling are caused by load-balancing
and synchronization issues, rather than com-
munication overhead.

C onsequently, future work will focus on
improving load balancing to maintain

scalability for even larger instances on very
large clusters. However, because our hetero-
geneous parallelization scheme is in no way
limited to the example application discussed
in this article, our main concern is to make
the system available for a wide range of scien-
tific applications on heterogeneous clusters.

Our experiments on Stampede show that
the strong scalability is very good when using
up to 32 GPUs. At 128 nodes, we still attain
95 percent of the communication-free upper
bound. Efficient communication is a concern
on the complex nodes of Wilkes, though.

Although the chosen diffusion equation
and the explicit finite-volume numerical strat-
egy are simple, the obtained experiences with
hierarchical mesh partitioning, CPU-GPU
workload division, and OpenMP/CUDA pro-
gramming readily extend to more advanced
real-world applications. One possible direc-
tion of future work is to apply our findings to
the monodomain model of computational
electrocardiology, which comprises the diffu-
sion equation and a set of ordinary differential

equations that describe the electrical behavior
of cardiac cells.

We have focused on a single application,
but the programming techniques we describe
in this article are not application specific.
Assuming that static load balancing is suitable
for the problem, and interior cells significantly
outnumber separator cells, the techniques we
describe can be used to efficiently incorporate
CPU and GPU operations on many kinds of
mesh-based computations. MICRO
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