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Cryo-electron Tomography (cryo-ET) generates 3D visualization of cellular organization

that allows biologists to analyze cellular structures in a near-native state with nano

resolution. Recently, deep learning methods have demonstrated promising performance

in classification and segmentation of macromolecule structures captured by cryo-ET,

but training individual deep learning models requires large amounts of manually labeled

and segmented data from previously observed classes. To perform classification and

segmentation in the wild (i.e., with limited training data and with unseen classes),

novel deep learning model needs to be developed to classify and segment unseen

macromolecules captured by cryo-ET. In this paper, we develop a one-shot learning

framework, called cryo-ET one-shot network (COS-Net), for simultaneous classification

of macromolecular structure and generation of the voxel-level 3D segmentation, using

only one training sample per class. Our experimental results on 22 macromolecule

classes demonstrated that our COS-Net could efficiently classify macromolecular

structures with small amounts of samples and produce accurate 3D segmentation at

the same time.

Keywords: one shot learning, cryo-ET, macromolecule classification, macromolecular segmentation, attention

1. INTRODUCTION

Cryo-Electron Tomography (cryo-ET) has made possible the observation of cellular organelles and
macromolecular structures at nano-meter resolution with native conformations (Lučić et al., 2013).
Without disrupting the cell, cryo-ET can visualize both known and unknown cellular structures
in situ1 and reveals their spatial and organizational relationships (Oikonomou and Jensen, 2017).
Using cryo-ET, it is possible to capture 3D structural information of diverse macromolecular
structures inside a given scanned sample.

To analyze the macromolecular structures in cryo-ET, two major subsequent steps need to
occur. First, we need to extract the subtomograms2 and average those that belong to the same
macromolecular class, in order to generate a high Signal-to-Noise Ratio (SNR) subtomogram for
clear visualization (Zhang, 2019). Second, it is desirable to obtain the macromolecule segmentation
in subtomograms to analyze the macromolecular structure parameters such as size distribution and

1At their original locations.
2Small cubic subvolumes containing one macromolecular structure.
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shape. However, the macromolecular structures are highly
heterogeneous and contain large quantities of subtomograms. In
the past, biologists would spend large amounts of time on a set
of tomograms to manually classify and segment subtomograms,
but manual annotation is time-consuming and susceptible to
the biases of individual biologists. Therefore, it is desirable to
automatically classify the extracted subtomograms into subset
of macromolecule with similar structure, and automatically
generate the macromolecular segmentation.

To automate the process as well as to achieve objective
analysis, deep learning methods for classification (Che et al.,
2017; Xu et al., 2017; Guo et al., 2018; Zhao et al., 2018;
Li et al., 2019, 2020) and segmentation (Chen et al., 2017;
Liu et al., 2018; Zhou et al., 2018) have been developed
for cryo-ET. Xu et al. (2017) proposed to use Inception3D
network and DSRF3D network for cryo-ET subtomogram
classification. Then, Chen et al. (2017) further improved the
DSRF3D network with residual connection design. Guo et al.
(2018) developed a cryo-ET classification model compression
technique to reduce the model size while maintaining the
classification performance. Zhao et al. (2018) developed a
classification model visualization technique for explaining the
model’s attention on the classified subtomograms. For cryo-
ET segmentation, Che et al. (2017) utilized independent
2D CNNs for cryo-ET tomogram components segmentation.
Liu et al. (2018) built a SSN3D net for subtomogram
segmentation via supervised training with large amounts of
segmentation data. While previous deep learning models on
cryo-ET improved the accuracy and efficiency on classification
and segmentation, there are still two major bottlenecks:
(1) as supervised classification methods, previous algorithms
still require large amount of manually annotated training
data for deep model’s training, and (2) previous algorithms
need to be trained again to apply to a new dataset of
different classes. The open question is: Is it possible to design
a generalizable cryo-ET subtomogram classification model
that requires only a small reference dataset (such as one
manually picked sample in each class) and match the given
subtomogram to a reference class, while performing generalizable
subtomogram segmentation?

Inspired by one-shot learning models which aim to learn
information about object categories from one, or only a few
training images (Fe-Fei et al., 2003; Koch et al., 2015), In this
work, we develop a Cryo-ET One-Shot Network (COS-Net)
that is able to (1) classify macromolecular structure using only
a very small amount of samples, (2) simultaneously segment
structural regions in a subtomogram based on the classification
network, and (3) be readily and directly applied to classify and
segment novel structures without needing to be re-trained. Using
our COS-Net, biologists can classify and segment thousands of
subtomograms by only manually picking a few representative
subtomograms as support classes.When there is a need to classify
new subtomogram datasets with novel structures, the support
classes can be readily changed to accommodate without the need
to train the model again. Moreover, unlike previous one-shot
learning and few-shot learning algorithms that only address the
classification task, our COS-Net can generate both classification

and 3D segmentation with application in 3D imaging data
of cryo-ET.

Our COS-Net is a Siamese network with pairs of volume
encoders, volume decoders, and feature encoders. Given a
support set of subtomograms and a target subtomogram,
volume encoders first extract the volume’s feature presentations.
Then, the feature encoders transform the feature presentations
for the next stage: one-shot learning. In the meantime, the
volume decoders decode the feature presentations to generate
the coarse attention/segmentation of the subtomograms. Our
COS-Net with additional attention guidance from segmentation
information allows better feature embedding for one-shot
learning, and thus could provide better one-shot classification
performance. During the test stage, we also developed a
customized subtomogram processing pipeline to refine the coarse
attention/segmentation from COS-Net based on 3D Conditional
Random Field (3D-CRF) (Krähenbühl and Koltun, 2011).
Our experimental results demonstrated that our method can
effectively classify observed or novel macromolecular structures
and produce accurate segmentation mask.

2. METHODS

The general structure of our COS-Net is shown in Figure 1.
The COS-Net is a Siamese network with two encoding-decoding
streams. First, each stream consists of one volume encoder, one
volume decoder, and one feature encoder. The volume encoders,
volume decoders, and feature encoders shared weights between
the dual streams. The design of our volume encoders, volume
decoders, and feature encoders are illustrated in Figure 2 and are
discussed in detail in our next section. Denoting the input for the
upper stream as XS that is our support set with dimensions of
N × K, where N is the number of classes and K is sample per
class, support set XS consists ofN classes of macromolecules with
K samples per class. In our one-shot learning scheme, K = 1.
The upper volume encoder takes the support set XS as input and
generates the latent representation of the support set with:

FS1 = PVE(XS) (1)

where FS1 is the latent representation of the support set XS and
PVE is the volume encoder function. Then, the support set’s
latent representations FS1 are simultaneously fed into the volume
decoder PVD and feature encoder PFE:

MS = PVD(FS1 ) (2)

FS2 = PFE(FS1 ) (3)

where MS is the predicted segmentation of the support set, and
FS2 is the feature for next stage one-shot learning. Similarly,
denoting the input for the lower stream as XT that is our target
set with dimensions of 1 × K, target set XT consists of 1 classes
of macromolecules with K samples per class. In our one-shot
learning scheme, K = 1. Similarly, the same volume encoder
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FIGURE 1 | Illustration of our Cryo-ET One-Shot Network (COS-Net) structure. The data input consists of subtomogram support set and target subtomogram. The

network consists of pairs of volume encoders PVE , volume decoder PVD, and feature encoder PFE with details illustrated in Figure 2.

PVE takes the target set XT as input and generates the latent
representation of the target set with:

FT1 = PVE(XT) (4)

where FT1 is the latent representation of the target set XT . Then,
the target set’s latent representations FT1 are simultaneously fed
into the shared weights volume decoderPVD and feature encoder
PFE:

MT = PVD(FT1 ) (5)

FT2 = PFE(FT1 ) (6)

whereMT is the predicted segmentation of the target set, and FT2
is the feature for next stage one-shot learning. Given the features
FS2 from support set and the features FT2 from target set, we
compute the L1 distance between the features to calculate the
similarity between the support set features FS2 and the target set
features FT2 with:

Fdis = |FS2 − FT2 | (7)

where Fdis is the feature distance. Fdis is then input into a fully
connected layer followed by a softmax function:

Fout = softmax(Pfinal(Fdis)) (8)

where Fout is the final output with one-shot prediction indicating
that the target data matches with which specific class in the
support set.

Sub-networks Design: We use a 512 × 512 fully connected
layer as our feature encoder. The volume encoder and decoder
design are shown in Figure 2. Our volume encoder and
volume decoder consist of three level of 3D convolution
layers. Unlike conventional convolutional encoder and decoder,
we concatenate a Dual Squeeze-and-Excitation (DuSE) block
at each level’s output in order to re-calibrate the features
channel-wise and spatial-wise. More specifically, as illustrated
in Figure 2 bottom right, our DuSE block contains two 3D
Squeeze-and-Excitation branches for spatial-Squeeze-channel-
Excitation (scSE) and channel-Squeeze-spatial-Excitation (csSE),
respectively (Hu et al., 2018; Roy et al., 2018).

For scSE, we spatial-wise squeeze the input feature map using
global average pooling, where the feature map is formulated
as F = [f1, f2, . . . , fC] here with fn ∈ R

H×W×D denoting the
individual feature channel. We flatten the global average pooling
output, generating v ∈ R

C with its z-th element:

vz =
1

H ×W × D

H
∑

i

W
∑

j

D
∑

k

fz(i, j, k) (9)
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FIGURE 2 | Architectures of our volume encoder and volume decoder in Figure 1. The Dual Squeeze-and-Excitation (DuSE) block is illustrated on the bottom right.

where vector v embeds the spatial-wise global information.
Then, v is feed into two fully connected layers with weights of

w1 ∈ R
C
2 ×C and w2 ∈ R

C× C
2 , producing the channel-wise

calibration vector:

v̂ = σ (w2η(w1v)) (10)

where η and σ are the ReLU and Sigmoid activation
function, respectively. The calibration vector is applied to
the input feature map using channel-wise multiplication,
namely channel-Excitation:

F̂sc = [f1v̂1, f2v̂2, . . . , fCv̂C] (11)

where v̂i indicates the importance of the i-th feature channel
and lies in [0, 1]. With scSE embedded into our network, the
calibration vector adaptively learns to emphasize the important
feature channels while playing down the others.

In csSE, we formulate our feature map as F =

[f 1,1,1, . . . , f i,j,k, . . . , fH,W,D], where f i,j,k ∈ R
C indicates

the feature at spatial location (i, j, k) with i ∈ {1, . . . ,H},
j ∈ {1, . . . ,W}, and k ∈ {1, . . . ,D}. We channel-wise squeeze
the input feature map using a convolutional kernel with weights
of w3 ∈ R

1×1×1×C×1, generating a volume tensor m = w3 ⊛ F
with m ∈ R

H×W×D. Each f i,j,k is a linear combination of all
feature channel at spatial location (i, j, k). Then, the spatial-wise
calibration volume that lies in [0, 1] and can be written as:

m̂ = σ (m) = σ (w3 ⊛ F) (12)

where σ is the Sigmoid activation function. Applying the
calibration volume to the input feature map, we have:

F̂cs = [f 1,1,1m̂1,1,1, . . . , f i,j,km̂i,j,k, . . . , fH,W,Dm̂H,W,D] (13)

where calibration parameter of m̂i,j,k provides the relative
importance of a spatial information of a given feature map.
Similarly, with csSE embedded into our network, the calibration
volume learns to stress the most important spatial locations while
ignores the irrelevant ones.
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Finally, channel-wise calibration and spatial-wise calibration
are combined via element-wise addition: FDuSE = F̂sc + F̂cs.
With the two SE branch fusion, feature at (i, j, k, c) possess high
activation only when it receives high activation from both scSE
and csSE. Our DuSE encourages the networks to re-calibrate the
feature map such that more accurate and relevant feature map
can be learned.
Training Strategy and Losses: We design a customized training
strategy to train our COS-Net, such that the training procedure
matches the inference at test time. Specifically, two support set
are randomly generated during the training procedure. Within
N classes, the same n classes are randomly sampled for each
support set. 1 subtomogram is randomly sampled from these
classes to form a n-way-1-shot scheme. The ground-truth one-
shot classification label is generated by matching the class labels
from the two support set, i.e., 1 for matched class label and 0 for
unmatched class label.

Our training loss consists of two parts, including a Binary
Cross Entropy (BCE) loss for one-shot classification learning
and a Dice Similarity Coefficient (DSC) loss for one-shot
segmentation. Denoting the ground-truth one-shot classification
label as Fgt , the BCE loss can be written as:

Lbce = −Fgt log(Fout)− (1− Fgt)log(1− Fout) (14)

Denoting the ground-truth subtomogram segmentation for the
two support set as Mgt1 and Mgt2, the segmentation loss can be
written as:

Ldsc = 2−
2× |Mgt1

∩MS1 |

|Mgt1
| + |MS1 |

−
2× |Mgt2

∩MS2 |

|Mgt2
| + |MS2 |

(15)

where MS1 and MS2 are the predicted segmentation from COS-
Net. The total loss thus can be formulated as:

Ltot = Ldsc + Lbce (16)

In testing, one of the support sets during training can be replaced
with the target subtomogram for direct inference.
Attention-guided Segmentation: The segmentation predicted
from COS-Net is a probability distribution, which is used for
guiding our final segmentation. Specifically, the volume decoder’s
output is a probability distribution ranging between 0 and 1.
We use a 3D Conditional Random Field (CRF) to refine and
generate the final 3D subtomogram segmentation. The CRF aims
to optimize the following objective function:

E(x) =
∑

i

ψu(xi)+
∑

i,j

ψp(xi, xj) (17)

where ψu is the unary potential that encourages the CRF output
to be loyal to the probability distribution from the COS-Net. ψp

is the pairwise potential between label on voxel i and j and can be
expanded as:

ψp = µ(xi, xj)

[

w1exp

(

−
|pi − pj|

2

2σ 2
α

−
|Ii − Ij|

2

2σ 2
β

)

+w2exp

(

−
|pi − pj|

2

2σ 2
γ

)]

(18)

where µ(xi, xj) is the compatibility transformation and depends
on the labels xi and xj such that µ(xi, xj) = 1 if xi 6= xj, and
0 otherwise. Ii and Ij are the intensity value at voxel location i
and j. pi and pj are the spatial coordinates of voxel i and j. w1,
w2, σα , σβ , and σγ are learnable parameters for CRF. This term
penalizes pixels with similar position p and intensity x but with
different label.

3. EXPERIMENTS AND RESULTS

3.1. Data Preparation
We prepared a realistically simulated dataset with known
macromolecular structures by reconstructing the tomographic
image using the projection images (Pei et al., 2016). The limiting
factors of cryo-ET, such as noise, missing wedge, and electron
optical factors (Modulation Transfer Function, Contrast Transfer
Function) were all properly included. The simulation process
mimicked the experimental cellular sample imaging condition
and tomographic reconstruction process. We took into account
the randomness of macromolecule structural poses. The packed
volume containing macromolecular structures were projected to
a series of 2D projection images with specified tilt angle steps. The
resulting projection images were convolved to include optical
factors and then back-projected to obtain the reconstructed 3D
simulated tomogram. 22 distinct macromolecular structures are
chosen from the Proterin Databank (PDB) with their PDB ID
information (Berman et al., 2000) of atomic coordinates and
connectivity, and secondary structure assignments. We choose
very representative macromolecules such as ribosome (4V4Q),
proteasome (3DY4), and RNA polymerase (2GHO), which are
well-studied due to their abundance and importance in cellular
functions. Each simulated tomogram of 600 × 600 × 300 voxels
contains 10,000 randomly distributedmacromolecules. Given the
true position of these macromolecules inside tomograms, we
collected 5,835 subtomograms of size 32 × 32 × 32, belonging
to 22 structural classes. The dataset with 22 distinct classes was
split into a training set with 14 classes and a test set with 8 classes.
Three datasets with different levels of signal-to-noise ratio (SNR)
were used, including SNR =∞, SNR = 1, 000, and SNR = 0.5.

3.2. Classification Results
Table 1 summarizes the one-shot classification performance
with different sub-network setup. We evaluated the one-shot
classification accuracy under different noise level and various
one-shot training schemes. First, comparing the COS-Net
with and without volume decoder for guiding the one-shot
classification, with volume decoder can significantly improve the
classification accuracy for sub-networks with or without DuSE
block. For example, using the SNR = 1, 000 dataset, the 2way-
1shot COS-Net with DuSE improve the accuracy from 0.928 to
0.939 by adding the volume decoder. Second, comparing the
COS-Net with and without DuSE block, adding DuSE block
to volume encoder/decoder can also improve the classification
accuracy. However, the classification accuracy decreases as the
SNR decreases, due to the structural details being degraded by
noise. Meanwhile, the classification accuracy also decreases as the
number of classes (way) increase.
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TABLE 1 | The one-shot classification accuracy on three dataset with three different SNR levels.

Data Networks 2way-1shot 4way-1shot 6way-1shot 8way-1shot

SNR:∞

SCNN w/o Decoder 0.931 0.763 0.613 0.595

SCNN w Decoder 0.945 0.798 0.663 0.636

DuSE-SCNN w/o Decoder 0.934 0.772 0.618 0.603

DuSE-SCNN w Decoder 0.957 0.831 0.672 0.646

SNR:1000

SCNN w/o Decoder 0.923 0.698 0.493 0.473

SCNN w Decoder 0.935 0.706 0.493 0.473

DuSE-SCNN w/o Decoder 0.928 0.701 0.504 0.479

DuSE-SCNN w Decoder 0.939 0.718 0.534 0.513

SNR:0.5

SCNN w/o Decoder 0.812 0.599 0.501 0.387

SCNN w Decoder 0.824 0.616 0.502 0.399

DuSE-SCNN w/o Decoder 0.821 0.614 0.510 0.391

DuSE-SCNN w Decoder 0.829 0.628 0.513 0.403

2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are included. The highest accuracy for each learning scenario is marked in blue.

TABLE 2 | The segmentation results for all eight test classes on SNR = 1,000 dataset.

SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.84± 0.07 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.89± 0.01 0.84± 0.01 0.88± 0.01 0.83± 0.01

4way-1shot 0.84± 0.07 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.84± 0.02

6way-1shot 0.85± 0.08 0.85± 0.02 0.85± 0.02 0.87± 0.01 0.89± 0.01 0.84± 0.01 0.87± 0.01 0.84± 0.01

8way-1shot 0.85± 0.07 0.84± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.83± 0.01

DuSE-SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.85± 0.08 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.01

4way-1shot 0.85± 0.07 0.85± 0.02 0.85± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.01

6way-1shot 0.85± 0.08 0.85± 0.02 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.02

8way-1shot 0.84± 0.08 0.85± 0.01 0.86± 0.02 0.87± 0.01 0.90± 0.01 0.85± 0.01 0.88± 0.01 0.85± 0.02

The mean±standard deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are reported at different rows. The

macromolecular PDB ID is indicated for each classes.

TABLE 3 | The segmentation results for all eight test classes on SNR = ∞ dataset.

SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.03 0.95± 0.03 0.96± 0.01 0.97± 0.02

4way-1shot 0.92± 0.08 0.95± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.03 0.97± 0.03

6way-1shot 0.92± 0.08 0.94± 0.04 0.98± 0.01 0.96± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.01 0.96± 0.02

8way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.96± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.02

DuSE-SCNN 1A1S 1BXR 1EQR 1F1B 1FNT 1GYT 1KPB 1LB3

2way-1shot 0.92± 0.08 0.94± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.02 0.97± 0.02

4way-1shot 0.93± 0.07 0.96± 0.02 0.98± 0.01 0.97± 0.02 0.97± 0.02 0.95± 0.03 0.96± 0.02 0.97± 0.02

6way-1shot 0.92± 0.08 0.95± 0.03 0.98± 0.02 0.97± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.02

8way-1shot 0.92± 0.07 0.94± 0.03 0.98± 0.02 0.96± 0.02 0.97± 0.02 0.95± 0.02 0.96± 0.02 0.96± 0.03

The mean±standard deviation DSC are reported in the table. 2way-1shot, 4way-1shot, 6way-1shot, and 8way-1shot learning scenarios are reported at different rows. The

macromolecular PDB ID is indicated for each classes.

3.3. Segmentation Results
The segmentation performance of our attention-guided
segmentation is evaluated using the same test set as in the
classification section based on DSC:

DSC =
2× |Mgt ∩Mpred|

|Mgt| + |Mpred|
(19)

where Mpred is our generated segmentation, and Mgt is the
ground-truth segmentation. Segmentation results with different
training schemes on SNR = 1, 000 dataset are visualized in
Figure 3. As we can see, our method can generate accurate
3D segmentation that does not rely on unseen classes’ pixel-
level or image-level training data. It is also worth notice that
our method can achieve robust and consistent segmentation
performance over different way one shot learning schemes.
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FIGURE 3 | Illustration of segmentation results on all three test classes using COS-Net with DuSESCNN. The macromolecule PDB ID is indicated for each classes on

the left. The ground truth segmentation (second column) is compared against COS-Net with 2way-1shot, 4way-1shot, 6way-1shot scenarios from second to fifth

column. The enlarged images on selected 2D slices are visualized at the bottom.

Besides, a comparison of segmentation results with and
without DuSE block on eight different macromolecule classes
is visualized in Figure 4. While segmentation with DuSE
block does not significantly outperforms segmentation without
DuSE block, they both produce reasonable segmentation of
macromolecules.

The quantitative results using SNR = 1, 000 and SNR = ∞

datasets are summarized in Tables 2, 3, respectively. As we
can observe, for all 8 unseen classes, our COS-Net is able
to generate reasonable 3D segmentation. For SNR = ∞ data,
the DSC of our COS-Net with DuSE are all > 0.92 for all
classes, indicating accurate 3D macromolecule segmentation.

For SNR = 1, 000, the DSC of COS-Net with DuSE are >
0.84. The decrease in segmentation performance is due to
the increased noise level that degrades the macromolecule
structure details. However, as illustrated in Figure 3, our
COS-Net can still generate reasonable 3D segmentation for
unseen classes.

4. DISCUSSION AND CONCLUSION

In this work, we developed a one-shot learning framework for
cryo-ET where simultaneous classification and segmentation
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FIGURE 4 | Illustration of segmentation results on all eight test classes using 2way-1shot. The macromolecular PDB ID is indicated for each classes on the top. The

ground truth segmentation (second row) is compared against COS-Net with SCNN (third row) and COS-Net with DuSESCNN (fourth row). The enlarged images on

selected 2D slices are visualized at the bottom.

can be performed for seen or unseen macromolecule
subtomograms. Specifically, we developed a COS-Net to
learn the class matching between a support set consisting
of multiple classes with only 1 sample per class and a target
subtomogram. In COS-Net, the segmentation attention
is utilized to better guide the one-shot classification.
In the mean time, the volume decoder of COS-Net
allows us to generate the coarse segmentation of the
macromolecule in the subtomogram. Then, 3D CRF is
utilized to refine the 3D macromolecule segmentation
from COS-Net.

We demonstrated the successful application of our COS-Net
on a cryo-ET dataset consisting of 22 macromolecule classes.
First, our method demonstrated accurate one-shot classification
performance over dataset with different noise levels. Even with
SNR as low as 0.5, the classification accuracy is over 0.8 in a 2way-
1shot classification scheme. As compared to previous supervised
cryo-ET classification methods with classification accuracy of
about 0.9, our method is able to achieve comparable performance

without using large-scale high-quality labeled data (Liu et al.,
2018; Che et al., 2019). Second, our method can produce high-
quality 3D segmentation for unseen macromolecules under
different one-shot classification schemes. As we can observe
in Table 3, our COS-Net can produce 3D segmentation with
DSC> 0.84 on all test macromolecules over all one-shot
schemes. As compared to previous supervised segmentation
methods, our segmentation performance is comparable to
these supervised cryo-ET segmentation models with DSC of
about 0.88, which require segmentation ground truth on
seen macromolecule classes for training (Liu et al., 2018;
Che et al., 2019). Therefore, our method provides a solution
of both accurate classification and segmentation for unseen
macromolecule classes.

The presented work can potentially be further improved
from the following perspectives. First of all, the classification
accuracy decreases as the number of classes in the support
set increases. As more classes are involved in the class
matching procedure and only one sample is used for each
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classes, the classification difficulty will naturally increase.
However, our COS-Net can be extended from one-shot
to few-shot if more samples are available for each class,
and this strategy could potentially improve the classification
accuracy. Moreover, the macromolecule alignment is not
considered in the current one-shot classification pipeline.
The macromolecule in the support set and target set may
not be aligned, i.e., they have different orientations before
feeding into our network, which could potentially decrease
the classification accuracy. Subtomogram pre-processing by
alignment of macromolecule in subtomograms could potentially
further improve our classification accuracy and will be a focus
in our future work (Lü et al., 2019; Zeng and Xu, 2020).
Second, the cryo-ET imaging data is reconstructed from limited
angle conditions. The subtomogram image quality could be
degraded by the limited angle reconstruction artifacts and
potentially impact the downstream COS-Net’s performance.
Deep learning based limited angle reconstruction algorithms
could be incorporated to mitigate these artifacts and potentially
further improve our performance (Zhou et al., 2019, 2020).
Third, our study is performed based on realistically simulated
cryo-ET dataset with sufficient amounts of macromolecule
classes for one-shot learning studies. Currently, real cryo-
ET data does not provide sufficient amounts of classes for
one-shot learning studies, and we will include it in our
future studies.

In summary, we developed a COS-Net for one-shot
classification and segmentation in cryo-ET, which enables the
classification and segmentation for unseen macromolecules in
the wild. We believe our algorithm is an important step toward
the large-scale and systematic in situ analysis of macromolecular
structure in single cells captured by cryo-ET.
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